True and brittle micas: composition and solid-solution...

36
True and brittle micas: composition and solid-solution series G. TISCHENDORF 1 , H.-J. FO ¨ RSTER 2, *, B. GOTTESMANN 3 AND M. RIEDER 4 1 Bautzner Strasse 16, D-02763 Zittau, Germany 2 Institute of Earth Sciences, University of Potsdam, P.O. Box 601553, D-14415 Potsdam, Germany 3 GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473 Potsdam, Germany 4 Institute of Materials Chemistry, TU Ostrava, 17. listopadu 15/2172, CZ-708 33 Ostrava-Poruba, Czech Republic [Received 8 May 2007; Accepted 11 September 2007] ABSTRACT Micas incorporate a wide variety of elements in their crystal structures. Elements occurring in significant concentrations in micas include: Si, IV Al, IV Fe 3+ , B and Be in the tetrahedral sheet; Ti, VI Al, VI Fe 3+ , Mn 3+ , Cr, V, Fe 2+ , Mn 2+ , Mg and Li in the octahedral sheet; K, Na, Rb, Cs, NH 4 , Ca and Ba in the interlayer; and O, OH, F, Cl and S as anions. Extensive substitutions within these groups of elements form compositionally varied micas as members of different solid-solution series. The most common true K micas (94% of almost 6750 mica analyses) belong to three dominant solid-solution series (phlogopite–annite, siderophyllite polylithionite and muscovite celadonite). Their classification parameters include: Mg/(Mg+Fe tot ) [=Mg#] for micas with VI R >2.5 a.p.f.u. and VI Al <0.5 a.p.f.u.; Fe tot /(Fe tot +Li) [=Fe#] for micas with VI R >2.5 a.p.f.u. and VI Al >0.5 a.p.f.u.; and VI Al/( VI Al+Fe tot +Mg) [=Al#] for micas with VI R <2.5 a.p.f.u. The common true K micas plot predominantly within and between these series and have Mg6Li <0.3 a.p.f.u.. Tainiolite is a mica with Mg6Li >0.7 a.p.f.u., or, for transitional stages, 0.3 0.7 a.p.f.u.. Some true K mica end-members, especially phlogopite, annite and muscovite, form binary solid solutions with non-K true micas and with brittle micas (6% of the micas studied). Graphical presentation of true K micas using the coordinates Mg minus Li (= mgli) and VI Fe tot +Mn+Ti minus VI Al (= feal) depends on their classification according to VI R and VI Al, complemented with the 50/50 rule. KEYWORDS: true micas, brittle micas, classification, solid-solution series, composition. Introduction MICAS are widespread in igneous, metamorphic and sedimentary rocks. Their crystal structure accommodates a plethora of elements, leading to a large and diverse mineral group. The composi- tional diversity of micas has led to numerous attempts at classification and graphical presenta- tion (Foster, 1960a,b; Tro ¨ger, 1962; Rieder et al., 1970, 1998; Koval et al., 1972; Gottesmann and Tischendorf, 1978; C ˇ erny ´ and Burt, 1984; Monier and Robert, 1986; Jolliff et al., 1987; Burt, 1991; Tischendorf et al., 1997, 2004; Sun Shihua and Yu Jie, 1999, 2000). Following an idea and proposal of Charles Guidotti { , our colleague, friend and co-author of a recent paper on micas (Tischendorf et al., 2004), we present in this paper a survey and analysis of composition and solid solution in the mica group, comprising trioctahedral and dioctahedral, common and uncommon true K micas, other alkali-element-bearing micas, and brittle micas. The principles behind the subdivision, and the graphical presentation adopted, follow the recom- mendations of the Mica Sub-committee of the International Mineralogical Association’s Commission on New Minerals, Nomenclature * E-mail: [email protected] DOI: 10.1180/minmag.2007.071.3.285 Mineralogical Magazine, June 2007, Vol. 71(3), pp. 285–320 # 2007 The Mineralogical Society { Died 19 May 2005

Transcript of True and brittle micas: composition and solid-solution...

Page 1: True and brittle micas: composition and solid-solution seriescnmnc.main.jp/micasolidsolutions.pdf · True and brittle micas: composition and solid-solution series G. TISCHENDORF 1,

True and brittle micas: composition and solid-solution series

G. TISCHENDORF1, H.-J. FORSTER

2,*, B. GOTTESMANN3

AND M. RIEDER4

1 Bautzner Strasse 16, D-02763 Zittau, Germany2 Institute of Earth Sciences, University of Potsdam, P.O. Box 601553, D-14415 Potsdam, Germany3 GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473 Potsdam, Germany4 Institute of Materials Chemistry, TU Ostrava, 17. listopadu 15/2172, CZ-708 33 Ostrava-Poruba, Czech Republic

[Received 8 May 2007; Accepted 11 September 2007]

ABSTRACT

Micas incorporate a wide variety of elements in their crystal structures. Elements occurring insignificant concentrations in micas include: Si, IVAl, IVFe3+, B and Be in the tetrahedral sheet; Ti, VIAl,VIFe3+, Mn3+, Cr, V, Fe2+, Mn2+, Mg and Li in the octahedral sheet; K, Na, Rb, Cs, NH4, Ca and Ba inthe interlayer; and O, OH, F, Cl and S as anions. Extensive substitutions within these groups ofelements form compositionally varied micas as members of different solid-solution series. The mostcommon true K micas (94% of almost 6750 mica analyses) belong to three dominant solid-solutionseries (phlogopite–annite, siderophyllite�polylithionite and muscovite�celadonite). Their classificationparameters include: Mg/(Mg+Fetot) [=Mg#] for micas with VIR >2.5 a.p.f.u. and VIAl <0.5 a.p.f.u.;Fetot/(Fetot+Li) [=Fe#] for micas with VIR >2.5 a.p.f.u. and VIAl >0.5 a.p.f.u.; and VIAl/(VIAl+Fetot+Mg)[=Al#] for micas with VIR <2.5 a.p.f.u. The common true K micas plot predominantly within andbetween these series and have Mg6Li <0.3 a.p.f.u.. Tainiolite is a mica with Mg6Li >0.7 a.p.f.u., or,for transitional stages, 0.3�0.7 a.p.f.u.. Some true K mica end-members, especially phlogopite, anniteand muscovite, form binary solid solutions with non-K true micas and with brittle micas (6% of themicas studied). Graphical presentation of true K micas using the coordinates Mg minus Li (= mgli) andVIFetot+Mn+Ti minus VIAl (= feal) depends on their classification according to VIR and VIAl,complemented with the 50/50 rule.

KEYWORDS: true micas, brittle micas, classification, solid-solution series, composition.

Introduction

MICAS are widespread in igneous, metamorphic

and sedimentary rocks. Their crystal structure

accommodates a plethora of elements, leading to

a large and diverse mineral group. The composi-

tional diversity of micas has led to numerous

attempts at classification and graphical presenta-

tion (Foster, 1960a,b; Troger, 1962; Rieder et al.,

1970, 1998; Koval et al., 1972; Gottesmann and

Tischendorf, 1978; Cerny and Burt, 1984; Monier

and Robert, 1986; Jolliff et al., 1987; Burt, 1991;

Tischendorf et al., 1997, 2004; Sun Shihua and

Yu Jie, 1999, 2000).

Following an idea and proposal of Charles

Guidotti{, our colleague, friend and co-author of a

recent paper on micas (Tischendorf et al., 2004),

we present in this paper a survey and analysis of

composition and solid solution in the mica group,

comprising trioctahedral and dioctahedral,

common and uncommon true K micas, other

alkali-element-bearing micas, and brittle micas.

The principles behind the subdivision, and the

graphical presentation adopted, follow the recom-

mendations of the Mica Sub-committee of the

International Mineralogical Association’s

Commission on New Minerals, Nomenclature

* E-mail: [email protected]: 10.1180/minmag.2007.071.3.285

Mineralogical Magazine, June 2007, Vol. 71(3), pp. 285–320

# 2007 The Mineralogical Society

{ Died 19 May 2005

Page 2: True and brittle micas: composition and solid-solution seriescnmnc.main.jp/micasolidsolutions.pdf · True and brittle micas: composition and solid-solution series G. TISCHENDORF 1,

and Classification (IMA-CNMNC) (Rieder et al.,

1998) and the IMA principles of mineral

classification. This paper treats the micas only in

terms of their compositions, an approach that

permits a quick and easy classification of any

mica.

Methods

This study is based on mica analyses obtained by

different analytical methods (wet chemical, X-ray

fluorescence, electron- and ion-microprobe

analysis). Data sources not listed in the

References are given in previous publications

(e.g. Tischendorf et al., 1997, 1999, 2001a,b,

2004) or are noted in Deer et al. (2003).

The crystallo-chemical formulae were calcu-

lated on the basis of 22 cation charges, except for

oxy-micas with 24 cation charges. The concentra-

tion of Li2O, if essential but not known, was

estimated using the empirical equations published

by Tischendorf et al. (2004, their Appendix).

Results

Compositionally, micas are subdivided into true

micas, with monovalent cations in the interlayer,

and brittle micas containing divalent cations in the

interlayer. Our evaluation of mica analyses yielded

the following quantitative subdivisions (in percen-

tages of the total population of ~6750 analyses).

True micas (96.8% of all analyses) comprise:

(1) common true K micas (93.1%): [annite,

celadonite, muscovite, phlogopite, polylithionite,

siderophyllite, tainiolite];

(2) uncommon true K micas (1.6%): contain a

minor element (Mn2+, Fe3+ or F) in an above-

average concentration [fluorannite, masutomilite,

montdorite, shirozulite, tetra-ferriannite, tetra-

ferriphlogopite], an uncommon element (Zn, V,

Cr, Mn3+ or B) as major element [in boromusco-

vite, chromphyllite, hendricksite, roscoelite,

norrishite] or a common element in an uncommon

coordination (e.g. Na+ in shirokshinite);

(3) uncommon true non-K micas (2.1%):

contain the monovalent cations Na, Rb, Cs or

NH4 as major element substituting for K [in

aspidolite, ephesite, nanpingite, paragonite, preis-

werkite, sokolovaite, tobelite].

Brittle micas (3.2% of all analyses) comprise:

(1) common brittle micas (2.8%): contain Ca or

Ba as major cations proxying for K [in clintonite,

ferrokinoshitalite, ganterite, kinoshitalite,

margarite];

(2) uncommon brittle micas (0.4%): contain V,

Be, Fe3+, Ti or S and O as major elements, in

addition to Ca or Ba [in anandite, bityite,

chernykhite, oxykinoshitalite].

Common true K micas

Principles of classif|cation

Our classification scheme uses four major,

octahedrally-coordinated cations (Mg, Fetot,VIAl, Li) together with the existence of solid

solutions. It considers only IMA-approved end-

member names and strictly applies the 50/50 rule

(e.g. Nickel, 1992).

The main parameters in this classification areVIR, VIAl and the product Mg6Li (all in a.p.f.u.).

The value of VIR = 2.5 differentiates trioctahedral

from dioctahedral micas. The limiting value

between micas of the phlogopite–annite and

siderophyllite–polylithionite series (VIAl = 0.5)

results from the application of the 50/50 rule. The

same is valid for the parameter Mg6Li, which

separates tainiolite micas (Mg6Li >0.3) from all

other trioctahedral micas (Mg6Li <0.3).

(1) Phlogopite–annite series

trioctahedral (VIR >2.5); VIAl <0.5; Mg6Li <0.3

end-members: phlogopite KMg3[AlSi3O10](OH)2,

annite KFe2+3 [AlSi3O10](OH)2

classification according to the ratio Mg/

(Mg+Fetot) [= Mg#]

phlogopite: Mg# >0.5

annite: Mg# <0.5

(2) Siderophyllite�polylithionite series

trioctahedral (VIR >2.5); VIAl >0.5; Mg6Li <0.3

end-members : s ide rophy l l i t e KFe2+2 Al

[ A l 2 S i 2 O 1 0 ] ( O H ) 2 , p o l y l i t h i o n i t e

KLi2Al[Si4O10]F2;

classification according to the ratio Fetot/

(Fetot+Li) [= Fe#]

siderophyllite: Fe# >0.5

polylithionite: Fe# <0.5

(3) Tainiolite group

trioctahedral (VIR >2.5); Mg6Li for tainiolite

sensu stricto >0.7, for tainiolitic micas 0.3�0.7

end-member: tainiolite KLiMg2[Si4O10]F2

(4) Muscovite�celadonite series

dioctahedral (VIR <2.5); Mg6Li <0.3

end-members: muscovite KAl2&[AlSi3O10]

(OH)2, celadonite: KMgFe3+&[Si4O10](OH)2;

classification according to VIAl/(VIAl+Fetot+Mg)

[= Al#]

muscovite: Al# >0.5

celadonite: Al# <0.5

286

TISCHENDORF ET AL.

Page 3: True and brittle micas: composition and solid-solution seriescnmnc.main.jp/micasolidsolutions.pdf · True and brittle micas: composition and solid-solution series G. TISCHENDORF 1,

Celadonites are further subdivided according to Li

et al. (1997) as confirmed by Rieder et al. (1998).

Distribution of natural compositions in the mgli�feal

plotMica compositions may be described in two-

dimensional triangular or three-dimensional plots

(cf. Tischendorf et al., 2004, for a compilation).

We have proposed a simple two-dimensional

presentation according to the occupancy of the

octahedral sheet, using the parameters Mg minus

Li (= mgli) and VIFetot+Mn+Ti minus VIAl (=

feal) a.p.f.u. (Tischendorf et al., 1997, 2004).

Figure 1 shows common true K micas,

excluding only tainiolite and celadonite. The

maximum in the frequency distribution of natural

muscovite compositions is close to the end-

member composition. Two frequency peaks

occur in the phlogopite–annite series, and one

occurs in the siderophyllite–polylithionite join.

Very few compositions plot in the relatively large

areas in the Mg-Al sector (lower right) and in

smaller areas in the Fe-Li sector (upper left) of the

plot. Figure 2 shows the numbers of cations per

formula unit for compositions in the phlogopite–

annite, siderophyllite–polylithionite and

muscovite–celadonite series. Figure 3 shows

species resulting from the application of the

50/50 rule. Joins combining related end-members

are displayed and so are the half-way divides.

FIG. 1. mgli/feal plot of ~6100 common true K-mica compositions (excluding tainiolite and celadonites). Mica end-

members, ideal members, and one theoretical component are indicated. Isolines show relative densities of

composition points (1, 5, 10, 20, 30%) normalized to the density maximum at mgli = 0.05 and feal = �1.70 (the most

frequent muscovite composition), which is taken as 100%. Abbreviations: ann � annite, eas � eastonite, hyp-mus �hyper-muscovite, mus � muscovite, phl � phlogopite, pol � polylithionite, sid � siderophyllite, trans-mus �

transitional muscovite, tri � trilithionite.

CLASSIFICATION OF MICAS

287

Page 4: True and brittle micas: composition and solid-solution seriescnmnc.main.jp/micasolidsolutions.pdf · True and brittle micas: composition and solid-solution series G. TISCHENDORF 1,

Compositional characteristics

In the following, we point out important

compositional features of common true K micas

in Fig. 4, some of which shed new light on the

relationships between common true K micas,

uncommon true micas and brittle micas. Because

of the wide compositional variation of common

true K mica species, we characterize varieties

according to their compositions (Appendices 1�5).

Phlogopite (1814 analyses): Many composi-

tions (43%) have insufficient IVAl, suggesting that

Fe3+ and/or Ti4+ may be present in the tetrahedral

sheet. Of these compositions, 28% are so close to

the end-member formula that they may be referred

to as phlogopite sensu stricto; 50% are Fe-rich

phlogopites, 12% Ti-Fe-rich phlogopites, 5% Al-

Fe-rich phlogopites, 4% Ti-rich phlogopites (up to

0.75 a.p.f.u. Ti), and 1% Al-rich phlogopites (up

to 0.5 a.p.f.u. VIAl; for example Ferry, 1981)

(Appendices 1a and b). Few phlogopites have

larger Mn contents, but some (4%) contain

considerable fluorine (>1 a.p.f.u.; Stoppa et al.,

1997, Motoyoshi and Hensen, 2001); the latter

should be termed F-rich phlogopite. Phlogopite

enriched in Zn or V (up to 0.6 a.p.f.u.) is

uncommon. The maximum contents (in a.p.f.u.)

are 0.20 for Cr, 0.12 for Cs, 0.04 for Ni and 0.07

for Rb. Barium behaves differently, because a

solid-solution series exists from phlogopite–

kinoshitalite (cf. Figs 11a and 12).

FIG. 2. Phlogopite�annite and siderophyllite�polylithionite series, and the muscovite portion of the muscov-

ite�celadonite series plotted in the mgli/feal diagram. Mica end-members, ideal members, and one theoretical

component are indicated. The boundary between the first two series (VIAl = 0.5) and their boundary with muscovite

(VIR = 2.5) is marked by dashed lines. Note that two boundaries are shown in the transitional area between annite and

siderophyllite (both for VIAl = 0.5), one at VIR = 3.0, and another at VIR = 2.75. See Fig. 1 for abbreviations.

288

TISCHENDORF ET AL.

Page 5: True and brittle micas: composition and solid-solution seriescnmnc.main.jp/micasolidsolutions.pdf · True and brittle micas: composition and solid-solution series G. TISCHENDORF 1,

Annite (1376 analyses): in this group, 15% of

the samples analysed appear to have no VIAl.

Only 7% refer to annite sensu stricto. Most

annites (50%) are classified as Mg-rich annite,

33% as Al-Mg-rich annite, 5% as Ti-Mg-rich

annite (up to 0.65 a.p.f.u. Ti), and 3% as Al-rich

annite. About 2% of the annite micas contain

>0.3 a.p.f.u. Li and, therefore, represent Li- or Li-

Al-rich annite (Appendices 2a and 2b). Li-rich

annite is usually also enriched in F (up to

1.4 a.p.f.u.; e.g. Kile and Foord, 1998). A few

annites are Cl-rich (in the range 0.3�0.9 a.p.f.u.;

Oen and Lustenhouwer, 1992). Also uncommon

are annites containing large concentrations of Zn

(0.3�0.6 a.p.f .u. ; Tracy, 1991) or Mn

(0.3�0.6 a.p.f.u.). Large concentrations of Ba

(0.3�0.5 a.p.f.u.) may be an indication of a

solid-solution series between annite and ferroki-

noshitalite (cf. Figs 11a and 12).

Siderophyllite (748 analyses): most micas

(58%) classified in this group are Li-rich side-

rophyllites (with F up to 1.8 a.p.f.u.), followed by

Mg-rich siderophyllite (25%), and siderophyllite

sensu stricto (17%) (Appendices 3a and 3b).

However, compositions corresponding to ideal

KFe2+2 Al[Al2Si2O10](OH)2 do not occur in nature

(Fig. 24). Because Si4+ does not occur below

2.5 a.p.f.u. (except for micas with Ba2+ and/or

Ca2+ and/or Fe3+ >0.5 a.p.f.u. and/or Ti4+

>0.25 a.p.f.u.), the octahedral sheet must accom-

FIG. 3. Mica species in three dominant solid-solution series among common true K micas plotted in the mgli/feal

diagram. Mica end-members, ideal members, and one theoretical component are indicated. Boundaries between the

series are dashed, and between species are shown by dash-and-dot lines. Between annite and siderophyllite, forVIAl = 0.5, only the boundary at VIR = 2.75 is shown. Also inserted are lines joining mica end-members (dotted),

with 50/50 divides indicated. The arrow marks the direction towards celadonite (cel). Areas devoid of mica

compositions are not labelled. See Fig. 1 for abbreviations.

CLASSIFICATION OF MICAS

289

Page 6: True and brittle micas: composition and solid-solution seriescnmnc.main.jp/micasolidsolutions.pdf · True and brittle micas: composition and solid-solution series G. TISCHENDORF 1,

modate more divalent (Mg2+) and univalent (Li+)

cations to balance charges. Therefore, a more

realistic composition would be KFe2+1.75Al0.75

Li0.25Mg0.25[Si2.5Al1.5O10](OH)2 (for VIR = 3.0)

or KFe2+1.75Al0.75&0.25Li0.125Mg0.125[Si2.875

Al1.125O10](OH)2 (for VIR = 2.75), respectively

(Appendix 3b, and Tischendorf et al., 2004).

Compositionally, siderophyllite is an atypical end-

member mica, because it plots in the centre of all

K-mica compositions. It contains all the principal

elements of the octahedral sheet, Fe, VIAl, Mg and

Li. A few siderophylli tes contain Mn

(0.30�0.35 a.p.f.u., Abdalla et al., 1994;

Mohamed et al., 1999), with Cs and Rb contents

of up to 0.20 and 0.15 a.p.f.u., respectively.

Polylithionite (648 analyses): half of all

polylithionites are polylithionite sensu stricto,

the rest being Fe-rich polylithionite. About 80%

of the compositions contain 1.0�2.0 a.p.f.u. F

(Appendices 3a and 3b). The Rb concentration

seldom exceeds 0.3 a.p.f.u., but one Rb-rich

polylithionite (unnamed) contains 0.82 a.p.f.u.

Rb (Cerny et al., 2003). Concentrations of Cs in

polylithionite are usually large, and Cs-rich

varieties (up to 0.88 a.p.f.u., Wang et al., 2004)

do exist. Sokolovaite, a Cs analogue of poly-

lithionite, was proposed by Pautov et al. (IMA

2004-012; Burke and Ferraris, 2005).

Tainiolite (28 analyses) and tainiolitic micas

(31 analyses): in contrast to common true K micas,

FIG. 4. Average values and 1s standard deviations (open squares and error bars) of common true K mica varieties in

the mgli/feal diagram (Appendices 1�4). The boundary between annite and siderophyllite is given for VIAl = 0.5 atVIR = 2.75. Boundaries between the series are dashed; boundaries between species are marked by dash-and-dot lines.

Mica end-members, ideal members, and one theoretical component are indicated. tai � tainiolite. See Fig. 1 for

further abbreviations. Mica varieties are characterized by element prefixes, e.g. Ti-Fe means Ti-Fe-rich phlogopite.

290

TISCHENDORF ET AL.

Page 7: True and brittle micas: composition and solid-solution seriescnmnc.main.jp/micasolidsolutions.pdf · True and brittle micas: composition and solid-solution series G. TISCHENDORF 1,

characterized either by high Mg or high Li,

tainiolite has high Mg (0.5�2.3 a.p.f.u.) and high

Li (0.4�1.0 a.p.f.u.) (Appendix 4). Such composi-

tions have a unique position within the mica

group. By containing some Al and Fe, tainolite

deviates slightly from ideal KLiMg2[Si4O10]F2.

Also, it has moderate concentrations of Rb and Cs.

Tainiolite can, of course, be plotted in terms of

mgli/feal, but because of possible coincidence with

unrelated mica compositions, it should be treated

as a separate subsystem (Fig. 5). Tainiolites are

theoretically characterized by Mg6Li >0.5

a.p.f.u. In addition to tainiolite sensu stricto,

other micas with large Mg and large Li contents

occur that are intermediate between tainiolite and

other common true K micas. Such micas may be

termed tainiolitic micas. These micas are typically

enriched in Cs. Accordingly, we may distinguish

three groups of tainiolites (Appendix 4):

(1) Tainiolite sensu stricto; characterized by

Mg6Li >0.7 a.p.f.u.; Mg >1.9 a.p.f.u.; Si =

3.1�4.0 a.p.f.u.; in carbonatites (Le Bas et al.,

1992; Cooper et al., 1995); transitional to

phlogopite, but unusually enriched in Li;

(2) Fe-rich tainiolitic micas; characterized by

Mg6Li = 0.3�0.7; Fetot >0.9; Si = 2.6�3.1; in

Red Cross/Tanco pegmatites (Morgan and London,

1987; Hawthorne et al., 1999); transitional to Mg-

rich annite, but unusually enriched in Li;

(3) Al-rich tainiolitic micas; characterized by

Mg6Li = 0.3�0.7; VIAl >0.6; Si = 2.6�3.1; in

spodumene pegmatites (Kuznetsova and

Zagorskiy, 1984; Semenov and Shmakin, 1988:

‘magnesian zinnwaldite’, Pesquera et al., 1999);

transitional to Li-rich siderophyllite, but

unusually enriched in Mg.

The positive correlation of Mg and Li applies

only to tainiolite sensu stricto. In Fe-rich and Al-

rich tainiolitic micas, MgO and Li2O correlate

negatively, as in all other micas. We stress that, in

the mgli/feal plot, the area of tainiolite sensu

stricto shows no overlap with the area of

siderophyllite (Fig. 4).

Muscovite (1574 analyses): most muscovites

(55%) have compositions close to the ideal

formula and exhibit very limited chemical

variation. The next most common compositions

are Fe-rich muscovite and Mg-rich muscovite

FIG. 5. mgli/feal plot for the end-member tainiolite sensu stricto and other pertinent end-members connected by tie

lines. Also shown are the 50/50 divides, which outline the field of micas belonging to tainiolite sensu stricto. See

Figs 1 and 4 for abbreviations.

CLASSIFICATION OF MICAS

291

Page 8: True and brittle micas: composition and solid-solution seriescnmnc.main.jp/micasolidsolutions.pdf · True and brittle micas: composition and solid-solution series G. TISCHENDORF 1,

(16% each). Li-Fe-rich muscovite (6%), Li-rich

muscovite (5%), and Mg-Fe-rich muscovite (2%)

are comparatively rare (Appendices 5a and b).

Generally, the concentration of other elements in

muscovite is small. Related dioctahedral mica

end-members (e.g. roscoelite, chromphyllite,

ganterite), which form solid-solution series with

muscovite, explain large concentrations of V, Cr

and Ba in the latter (Morand, 1990; Breit, 1995;

Treolar, 1987; Hetherington et al., 2003).

Concentrations of F, up to ~2 a.p.f.u., may

occur in Li-rich muscovite. Concentrations of

Rb do not exceed 0.2 a.p.f.u. (Zagorskiy and

Makrygin, 1976; Lagache and Quemeneur, 1997).

Celadonite micas (61 analyses): only limited

information is available about the presence of trace

or minor elements (Appendix 4). End-member

compositions of celadonites are given by Li et al.

(1997) and are confirmed by Rieder et al. (1998).

The general formula is: K(Mg,Fe2+)(Fe3+,Al)

&[Si4O10](OH)2. The mode of graphical presenta-

tion proposed by Li et al. (1997) is equivalent to

mgli/feal. However, because of their Fe3+ concen-

trations, celadonites must be presented either

jointly with muscovite (Tischendorf et al., 2004)

or in a separate plot (Fig. 6).

Uncommon true K micas, other alkali and brittle micas,and their relation to common true K micas

Uncommon true and brittle micas are similar to

common true K micas because they exhibit the

same kinds of cation substitutions in octahedral

and tetrahedral coordination. These substitutions

follow from (1) the requirement of charge balance

and (2) ion-size constraints of cation coordina-

tions. In practice, the same ‘unusual’ elements,

known to enter uncommon true and brittle micas

(Ba, Ca, Na, Rb, Cs, Mn, Zn, Cr, V), also enter

common true K micas and are normally analysed

for. Exceptions are the highly unusual NH4, B and

Be. Occupancy of the octahedral sheet is the basis

for the classification of common true K micas,

and it can equally well serve the same purpose for

the uncommon true and brittle micas. These latter

mica also can be plotted in terms of mgli and feal

coordinates; however, most of them tend to

cluster along the periphery of the diagram.

Common true K micas, in particular phlogopite,

annite and muscovite, act as end-members of

solid-solution series with uncommon true or

brittle micas. Examples of such series may be

micas with the interlayer occupied by atoms other

than K, micas with octahedral cations other than

Mg, Fe2+, Li and VIAl, or micas with tetrahedral

cations that are different from Si and IVAl.

InterlayerInstead of K, the following elements may be

the dominant cation in the mica interlayer: Na,

Cs, Rb, NH4, Ca and Ba.

K–Na substitution. The substitution of Na in the

interlayer of common trioctahedral K micas

(Fig. 7a) generally ranges up to 0.4 a.p.f.u., and

only rarely beyond 0.45. Full replacement of K by

Na in phlogopite and eastonite leads to aspidolite

FIG. 6. Classification of the celadonite family in the mgli/

feal diagram.according to the principles of Li et al.

(1997).

292

TISCHENDORF ET AL.

Page 9: True and brittle micas: composition and solid-solution seriescnmnc.main.jp/micasolidsolutions.pdf · True and brittle micas: composition and solid-solution series G. TISCHENDORF 1,

(19 analyses) and preiswerkite (26 analyses),

respectively. The Na mica ephesite (9 analyses)

has no K counterpart. Likewise, the substitution

of Na in common dioctahedral K micas is

<0.4 a.p.f.u. (Fig. 7b). The mica with a complete

substitution of K by Na is paragonite

(72 analyses). There also exists a Sr-enriched

variety of paragonite containing up to 0.23 a.p.f.u.

Sr (Bryanchaninova et al., 2004). The large

difference in ionic radius between Na+ and K+

makes likely the existence of a miscibility gap in

all such binaries, manifest by a significantly

increased number of compositions in which K or

Na dominate relative to intermediate composi-

tions. Guidotti et al. (1994) examined the extent

of K�Na substitution and associated other

chemical changes.

K�Rb substitution. Although Voncken et al.

(1987) synthesized the Rb analogue of muscovite,

and Beswick (1973) experimentally demonstrated

complete miscibility between K and Rb in

phlogopite, no end-member with Rb as the

dominant interlayer cation has yet been observed

in nature. The substitution of Rb in the interlayer

of common true K micas rarely exceeds

0.20 a.p.f.u. (Fig. 8). Exceptions are Rb-rich

annite (0.45 a.p.f.u. Rb) and a still unnamed Rb

analogue of ‘zinnwaldite’ (0.82 a.p.f.u. Rb; Cerny

et al., 2003).

K�Cs substitution. Common trioctahedral

micas may substitute up to ~0.20 a.p.f.u. Cs

(Fig. 9). Cerny et al. (2003) reported enrichment

of Cs in some phlogopite, annite and sidero-

phyllite micas. Also, there is a Cs-rich mica

described as Cs polylithionite by Cerny et al.

(2003, one analysis) and Wang et al. (2004, 13

analyses). Sokolovaite is the Cs analogue of

polylithionite (Pautov, IMA 2004-012; Burke and

Ferraris, 2005). Complete substitution of K by Cs

in dioctahedral micas leads to nanpingite (3

analyses, Yang et al., 1988; Ni and Hughes, 1996;

Peretyazhko et al., 2004). Data indicate a

miscibility gap in the interval 0.20�0.60 a.p.f.u.

Cs, rather than complete substitution between K

FIG. 7. (a) Proportion of Na in XIIR for the series phlogopite (phl)–aspidolite (asp). Data for preiswerkite (prei) and

ephesite (eph) are given for comparison. Sodium (>0.1 a.p.f.u.) in phlogopite is shown as averages (n = number of

analyses) at 0.1 a.p.f.u. intervals. Numbers of analyses are given in parantheses; standard deviations are shown in

pale grey. Data sources: Schaller et al. (1967), Keusen and Peters (1980), Schreyer et al. (1980), Oberti et al. (1993),

Godard and Smith (1999), Visser et al. (1999), Costa et al. (2001), Ruiz Cruz (2004), Banno et al. (2005), Bucher et

al. (2005), Konzett et al. (2005). (b) Proportion of Na in XIIR for the series muscovite (mus)–paragonite (par).

Sodium (>0.1 a.p.f.u.) in muscovite is given as averages (n = number of analyses) at 0.1 a.p.f.u. intervals. Numbers

of analyses are given in parentheses; standard deviations are shown in pale grey. Data sources: Ackermand and

Morteani (1973), Hock (1974), Baltatzis and Wood (1977), Hoffer (1978), Katagas and Baltatzis (1980), Grambling

(1984), Harlow (1994, 1995), Bucher et al. (2005), Escuder-Viruete and Perez-Estaun (2006). Sr-bearing paragonites

are from Bryanchaninova et al. (2004).

CLASSIFICATION OF MICAS

293

Page 10: True and brittle micas: composition and solid-solution seriescnmnc.main.jp/micasolidsolutions.pdf · True and brittle micas: composition and solid-solution series G. TISCHENDORF 1,

and Cs in both trioctahedral and dioctahedral

micas, which is attributed to the large difference

in ionic radius (Shannon and Prewitt, 1969;

Shannon, 1976).

K�NH4 substitution. Among trioctahedral

micas, apparently only phlogopite rich in Fe

contains significant concentrations of NH4

(~0.30�0.40 a.p.f.u.; D.E. Harlov, pers. comm.,

2005), in accordance with the hydrothermal

synthesis of end-member ammonium phlogopite

(Eugster and Munoz, 1966). Complete solid

solution between muscovite and tobelite has been

confirmed experimentally at T >400ºC (Poter et al.,

2007). However, the analysed natural dioctahedral

micas show a gap in composition around 0.50 (e.g.

Nieto, 2002). In the NH4�XIIR–NH4 diagram

(Fig. 10), natural compositions display a large

scatter, possibly resulting from uncertainties in the

analysis of N and the inability to analyse H by

electron microprobe.

K�Ca substitution. The Ca concentration of

trioctahedral common true K micas does not

exceed ~0.30 a.p.f.u. Larger Ca concentrations,

corresponding to 0.9�1.0 a.p.f.u., are character-

istic for clintonite (48 analyses), a brittle mica

violating the Lowenstein rule. Clintonite does not

appear to be the end-member of any solid-solution

series. High Ca, coupled with high Li and Be,

leads to the formation of the unusual brittle mica

bityite (13 analyses, Fig. 11a). Margarite (68

FIG. 8. Proportion of Rb in XIIR for annite (ann),

siderophyllite (sid), polylithionite (pol), tainiolite (tai)

and muscovite (mus). Rubidium (>0.1 a.p.f.u.) in

muscovite and polylithionite is given as averages (n =

number of analyses) at 0.1 a.p.f.u. intervals. Numbers of

analyses are given in parentheses. Most data for Rb-rich

micas come from Skosyreva and Vlasova (1983) and

Cerny et al. (2003).

FIG. 9. Proportion of Cs (>0.1 a.p.f.u.) in XIIR for

phlogopite (phl), annite (ann), siderophyllite (sid),

polylithionite (pol), muscovite (mus), sokolovaite (sok)

and nanpingite (nan). Data for Cs rich micas were taken

from Yang et al. (1988), Hawthorne et al. (1999), Cerny

et al. (2003), Peretyazhko et al. (2004) and Wang et al.

(2004).

FIG. 10. Proportion of NH4 in XIIR for phlogopite (phl),

muscovite (mus) and tobelite (tob). Data are taken from

Higashi (1978, 1982, 2000) [Japan], Wilson et al. (1992)

[Utah, USA] and D.E.Harlov (2005, pers. comm.)

[Maine, USA; Erzgebirge, Germany].

294

TISCHENDORF ET AL.

Page 11: True and brittle micas: composition and solid-solution seriescnmnc.main.jp/micasolidsolutions.pdf · True and brittle micas: composition and solid-solution series G. TISCHENDORF 1,

analyses) is a dioctahedral brittle mica with Ca

concentrations in the range 0.5�1.0 a.p.f.u..

However, the Ca concentration in muscovite

reported to date is small, indicating the absence

of a solid-solution series between muscovite and

margarite (Fig. 11b).

K�Ba substitution. Unlike the substitutions

above, the K�Ba replacement in trioctahedral

micas of the phlogopite–annite series is almost

complete (cf. Greenwood, 1998). If the Ba-for-K

substitution exceeds 0.5 a.p.f.u., the mica is

kinoshitalite (57 analyses) or oxykinoshitalite

(2 analyses), an exotic, Ti-enriched mica known

only from an olivine nephelinite (Kogarko et al.,

2005). Ferrokinoshitalite (4 analyses) is a brittle

mica with an octahedral sheet resembling that of

annite (Guggenheim and Frimmel, 1999), whereas

anandite (5 analyses, Pattiaratchi et al., 1967) has

an additional condition, namely that IVAl be

replaced by IVFe3+ and that S be incorporated

instead of one (OH). In dioctahedral micas, a

partial replacement of K by Ba results in the

formation of ganterite (13 analyses, Graeser et

al., 2003; Hetherington et al., 2003; Ma and

Rossman, 2006) or chernykhite (2 analyses), ifVIV simultaneously substitutes for VIAl.

Phlogopite, kinoshitalite, annite and ferro-

kinoshitalite form complete solid solutions

(Figs 12a, 13). All four of these end-members

participate in the series (see also Frimmel et al.,

1995, their Fig. 2). The K�Ba substitution in the

interlayer is coupled with the tetrahedral substitu-

tion XIIBa + IVAl > XII(K,Na) + IVSi (Brigatti and

Poppi, 1993). The concentration of Ba in

muscovite is usually <0.4 a.p.f.u., and ganterite

is characterized by Ba ~0.5 a.p.f.u. (Fig. 12b). A

composition corresponding to the ideal end-

member BaAl2&[Al2Si2O10](OH)2 has not yet

been reported from nature. The Ba-V-rich mica

chernykhite described by Ankinovich et al. (1973)

contains only ~0.3 a.p.f.u. Ba and thus does not

reach beyond the required 50%.

Octahedral sheetOctahedral substitutions are responsible for the

formation of uncommon true micas by: (1) the

FIG. 11. (a) Sum XIICa+IVAl as a function of XII(K,Na)+IV(Si,Be) for phlogopite (phl), annite (ann), siderophyllite

(sid), polylithionite (pol), clintonite (cli) and bityite (bit) (including Be-rich margarite). Calcium (>0.1 a.p.f.u.) in

common true K micas is shown as averages in 0.1 a.p.f.u. intervals. Numbers of analyses are given in parentheses,

and Ca contents (in a.p.f.u.) are indicated. Data for uncommon micas come mostly from Bucher-Nurminen (1976),

Guggenheim et al. (1983), Lahti and Saikkonen (1985), Ackermand et al. (1986), MacKinney et al. (1988), Alietti et

al. (1997) and Grew et al. (1999). (b) The sum XIICa+IVAl as a function of XII(K,Na)+IVSi for muscovite (mus)

(Ca>0.05 a.p.f.u.) and margarite (mar). Numbers of analyses are given in parentheses, and Ca contents (in a.p.f.u.)

are indicated. Data for margarite come mainly from Ackermand and Morteani (1973), Hock (1974), Gibson (1979),

Guidotti et al. (1979), Frey et al. (1982), Guggenheim et al. (1983), Lahti (1988), Morand (1990) and Godard and

Smith (1999).

CLASSIFICATION OF MICAS

295

Page 12: True and brittle micas: composition and solid-solution seriescnmnc.main.jp/micasolidsolutions.pdf · True and brittle micas: composition and solid-solution series G. TISCHENDORF 1,

occurrence of common elements in unusually

large concentrations (Mn2+, Fe3+, Ti); (2) the

incorporation of unusual elements in significant

concentrations (Zn, V, Cr); and (3) the incorpora-

tion of an element in a valence state uncommon in

micas (Mn3+).

Incorporation of high Mn. Even though the Mn

concentrations of dioctahedral micas are

<0.2 a.p.f.u., several trioctahedral Mn-bearing

micas exist, including shirozulite, the Mn

analogue of annite, produced by the substitution

of Mn2+ for Fe2+. No compositions close to the

end-member have been found. The composition

reported in the original description (Ishida et al.,

2004) has only 1.53 a.p.f.u. Mn2+. Masutomilite,

the Mn-analogue of what used to be termed

‘zinnwaldite’, owes its existence to the same Fe2+

> Mn2+ substitution. However, the ideal Mn =

1.0 a.p.f.u. of the masutomilite lies beyond the

range of natural compositions (Harada et al.,

1976). The most Mn-rich polylithionite

(0.59 a.p.f.u.) was reported by Boggs (1992).

The most Mn-rich phlogopite has 1.1 a.p.f.u

(Yoshii et al., 1973) and for annite up to 0.57

Mn a.p.f.u. (Chen and Wu, 1987). Norrishite (8

analyses) is a rare Li-bearing mica with trivalent

Mn. All these micas have high Mn, but they never

reach the ideal Mn mica end-member (Eggleton

and Ashley, 1989; Gnos et al., 2003).Montdorite

is an uncommon Mn-bearing, tetrasilicic transi-

tional mica that has yet been found at only one

locality and for which only one single analysis is

ava i lab le (Rober t and Maury , 1979) .

Hendricksite (3 analyses) may contain up to

1.1 a.p.f.u. Mn2+ (Frondel and Ito, 1966;

Guggenheim et al., 1983) (Fig. 14).

Incorporation of high Zn. Hendricksite is the

only uncommon trioctahedral mica in which the

Zn concentration may reach 1.45 a.p.f.u. No

doubt exists about the coordination of Zn

because there is insufficient Mg (1�2.5 a.p.f.u.)

and Fe2+ is low (<1 a.p.f.u.) (Frondel and Ito,

1966; Frondel and Einaudi, 1968; Guggenheim et

al., 1983). Other phlogopites and annites may

have Zn concentrations up to 0.6 a.p.f.u. (Craig et

al., 1985; Tracy, 1991). Zinc concentrations in

FIG. 12. (a) Plot of XIIBa+IVAl vs. XII(K,Na)+IVSi for phlogopite (phl) and annite (ann) (Ba >0.1 a.p.f.u.) as well as

for kinoshitalite (kino), ferrokinoshitalite (Fekino) and anandite (ana). Numbers of analyses are given in parantheses,

and the Ba content (in a.p.f.u.) is indicated. Data sources for uncommon micas: Pattiaratchi et al. (1967); Lovering

and Widdowson (1968); Mansker et al. (1979); Filut et al. (1985); Solie and Su (1987); Bol et al. (1989); Dasgupta

et al. (1989); Tracy (1991); Edgar (1992); Bigi et al. (1993); Brigatti and Poppi (1993); Frimmel et al. (1995);

Henderson and Foland (1996); Jiang et al. (1996); Shaw and Penczak (1996); Guggenheim and Frimmel (1999);

Gnos and Armbruster (2000); Tracy and Beard (2003); Dolezalova et al. (2005, 2006). (b). The plot of XIIBa+IVAl

vs. XII(K,Na)+IVSi for muscovite (mus) (Ba >0.05 a.p.f.u.) as well as for ganterite (gan) and chernykhite (cher).

Numbers of analyses are given in parantheses, and the Ba content (in a.p.f.u.) is indicated. Data for uncommon micas

were taken from Ankinovich et al. (1973), Graeser et al. (2003), Hetherington et al. (2003) and Ma and Rossman

(2006).

296

TISCHENDORF ET AL.

Page 13: True and brittle micas: composition and solid-solution seriescnmnc.main.jp/micasolidsolutions.pdf · True and brittle micas: composition and solid-solution series G. TISCHENDORF 1,

siderophyllite, polylithionite and the dioctahedral

micas are comparatively small, mostly

<0.03 a.p.f.u. (Fig. 15).

Incorporation of high V. Enhancement in V3+ is

rare in trioctahedral micas (Pan and Fleet, 1991;

Deer et al., 2003, their Table 42, analysis 44).

Larger concentrations occur in dioctahedral

micas, for which the V content varies continu-

ously from V-rich muscovite to either roscoelite

(20 analyses) or the brittle mica chernykhite

(2 analyses). In roscoelite and chernykhite, V

replaces VIAl up to 1.7 a.p.f.u. (Ankinovich et al.,

1973; Hofmann, 1990; Meunier, 1994).

Reznitskiy et al. (1997) reported significant V in

chromphyllite (Fig. 16).

Incorporation of high Cr. Chromium behaves

much as V does. The Cr3+ contents of trioctahe-

dral micas are <0.2 a.p.f.u. (Fig. 17). However,

Cr is concentrated in dioctahedral micas, for

which there is a continuous series from muscovite

through Cr-rich muscovite (Treloar, 1987) to

chromphyllite (21 analyses). Chromphyllite

may also display enrichment in Ba (up to

0.2 a.p.f.u.; Reznitskiy et al., 1997).

Incorporation of high Fe3+. The nature of entry

of Fe3+ in the octahedral sheet has not been

sufficiently studied, but the deficiency of IVAl is

FIG. 14. Mn vs. the remaining octahedral cations in

phlogopite (phl), annite (ann), siderophyllite (sid),

polylithionite (pol) (Mn >0.3 a.p.f.u.) and muscovite

(mus) (Mn >0.15 a.p.f.u.) as well as for montdorite

(mon), norrishite (nor), shirozulite (shi) and hendricksite

(hen). Numbers of analyses appear in parentheses. Data

sources for uncommon micas: Frondel and Ito (1966),

Robert and Maury (1979), Guggenheim et al. (1983),

Eggleton and Ashley (1989), Gnos et al. (2003) and

Ishida et al. (2004).

FIG. 15. Zn vs. the remaining octahedral cations for

phlogopite (phl), annite (ann) (Zn >0.3 a.p.f.u.), sidero-

phyllite (sid), and muscovite (mus) (Zn >0.05 a.p.f.u.) as

well as for hendricksite (hen). Numbers of analyses

appear in parentheses. Most data were taken from

Frondel and Ito (1966), Guggenheim et al. (1983), Craig

et al. (1985) and Tracy (1991).

FIG. 13. XIIBa (>0.3 a.p.f.u.) as a function of

Mg/(Mg+Fetot) [=Mg#] for phlogopite(phl)/kinoshitalite

(kino-phl) [Mg#>0.5] and annite(ann)/kinoshitalite

(kino-ann) as well as ferrokinoshitalite(Fekino)

[Mg#<0.5]. The distribution of points for phlogopite-

type and annite-type kinoshitalites may indicate the

existence of a solid-solution series across the whole

system.

CLASSIFICATION OF MICAS

297

Page 14: True and brittle micas: composition and solid-solution seriescnmnc.main.jp/micasolidsolutions.pdf · True and brittle micas: composition and solid-solution series G. TISCHENDORF 1,

probably made up by IVFe3+ (Brigatti et al., 1996;

Tombolini et al., 2002). Indeed, a theoretically

possible tetrahedral composition [Si2.5Al1.5]

might give rise to a trioctahedral occupancy of

[R2+2.5Fe3+

0.5] (or [Fe3+1.5R

2+] for VIR = 2.5). In rare

cases up to 1.5 a.p.f.u. Fe3+ may enter the

octahedral coordination. At greater Fe3+ concen-

trations (>0.4 a.p.f.u.), a good correlation corre-

sponds to the substitution: VIFe3+ + IVAl > VIR2+

+ IVSi (see also Dymek, 1983) (Fig. 18).

Incorporation of high Ti. As in the case of Fe3+,

large concentrations of Ti4+ in octahedral

coordination are subject to structural limitations.

For example, given a tetrahedral composition

[Al1.5Si2.5], the trioctahedral sheet with VIR = 3

can accommodate a maximum of 0.25 a.p.f.u.

Ti4+. For VIR = 2.5, the corresponding maximum

rises to 0.75 a.p.f.u. Ti4+. For micas with Ti4+

concentrations >0.4�0.8 a.p.f.u. (Mansker et al.,

1979; Henderson and Foland, 1996; Zhang et al.,

1993), the assumption is that some of the Ti fills

the tetrahedral site to a sum of 4.0. Good

elemental correlations support the substitution

scheme VITi4+ + 2IVAl >VIR2+ + 2IVSi

(Tschermak-type substitution, see also Mesto et

al., 2006) that functions at high Ti4+ concentra-

tions (0.40�0.75 a.p.f.u.) (Fig. 19). A comparison

of the Ti4+ contents among micas of the

phlogopite–annite series shows that the greatest

concentrations (up to 0.75 a.p.f.u.) are limited to

phlogopite with a Mg# = 0.8�0.9, whereas

FIG. 17. Contents of Cr (>0.1 a.p.f.u.) vs. the remaining

octahedral cations for phlogopite (phl) and muscovite

(mus) as well as for chromphyllite (crph). Numbers of

analyses are given in parentheses. Data for chromphyl-

lite were taken predominantly from Treolar (1987) and

Reznitskiy et al. (1997).

FIG. 18. Plot of VIFe3++IVAl vs. VIR2++2IVSi for

phlogopite (phl) and annite (ann) micas whose Fe3+

content was determined analytically. Shown are a.p.f.u.

intervals of Fe3+ of the respective species.

FIG. 16. Contents of V vs. the remaining octahedral

cations for phlogopite (phl) (V >0.3 a.p.f.u.), and

muscovite (mus) (V >0.2 a.p.f.u.) as well as for

roscoelite (ros), chromphyllite (crph) and chernykhite

(cher). Numbers of analyses are given in parentheses.

Data sources for uncommon micas: Ankinovich et al.

(1973), Treolar (1987), Hofmann (1990), Meunier

(1994), Breit (1995) and Reznitskiy et al. (1997).

298

TISCHENDORF ET AL.

Page 15: True and brittle micas: composition and solid-solution seriescnmnc.main.jp/micasolidsolutions.pdf · True and brittle micas: composition and solid-solution series G. TISCHENDORF 1,

smaller concentrations accompany progressively

more ferruginous compositions. In annite with

Mg# <0.4, the Ti concentration does not exceed

0.4 a.p.f.u. (Fig. 20).

Incorporation of Na. The existence of the

trioctahedral mica shirokshinite (4 analyses), a

Na analogue of tainiolite, indicates that other

micas, particularly those from Na-rich assem-

blages, may have Na in octahedral coordination

(Weiss et al., 1985; Pekov et al., 2003).

Armbruster et al. (2007) demonstrated extended

solid solution between tainiolite and shirokshinite.

Tetrahedral sheetIn the tetrahedral sheet, Si ranges from 4 to 2

a.p.f.u., and IVAl from 0 to 2 a.p.f.u., accordingly.

The ratio Si/IVAl = 1/3, known in clintonite, is in

violation of the Lowenstein rule and seems to be

an exception. Lack of IVAl requires incorporation

of some IVFe3+ or IVTi4+ to avoid a cation excess

in the octahedral sheet. A clarification of the role

of Ti in the tetrahedral sheet is desirable. In

addition to Fe3+ and Ti, B and Be also play a rare

role, although under-reported in analytical

routines.

Incorporation of Fe3+. Tetra-ferri-annite

(2 analyses; Wones, 1963) and tetra-ferriphlo-

gopite (19 analyses; Brigatti et al., 1996) are

analogues of annite and phlogopite, with IVFe3+

replacing IVAl. Tetra-ferriphlogopite seems to

have a pronounced miscibility with phlogopite

(Fig. 21, also Brod et al., 2001; Tombolini et al.,

2002). Anandite (5 analyses) is an enigmatic

S-bearing brittle mica, also related to annite.

Incorporation of B. Trioctahedral micas invari-

ably contain <0.15 a.p.f.u. B, most commonly

<0.05 a.p.f.u. (Cerny et al., 1995; Badanina et al.,

2004). The bulk of the dioctahedral micas also

contain <0.15 a.p.f.u. B. Generally, no correlation

exists between B and IVAl (Fig. 22). However,

FIG. 21. Relation of IVFe3+ to IVAl in phlogopite (phl)

and tetra-ferriphlogopite (tetra-ferriphl). Data are taken

from Brod et al. (2001; Table 4 and 7) and Tombolini et

al. (2002; Table 1).

FIG. 19. Plot of VITi+2IVAl against VIR2++2IVSi for

phlogopite containing between 0.40 and 0.75 a.p.f.u. Ti.

FIG. 20. Contents of Ti (>0.25 a.p.f.u.) as a function of

Mg/(Mg+Fetot) [=Mg#] in Ti-rich phlogopite (Ti phl)

and Ti-Fe-rich phlogopite (Ti-Fe phl) [Mg# >0.5] as

well as in Ti-Mg-rich annite (Ti-Mg ann) [Mg# <0.5].

CLASSIFICATION OF MICAS

299

Page 16: True and brittle micas: composition and solid-solution seriescnmnc.main.jp/micasolidsolutions.pdf · True and brittle micas: composition and solid-solution series G. TISCHENDORF 1,

such a replacement relationship appears if boron

is >0.5 a.p.f.u., leading in some cases to

boromuscovite (10 analyses; Foord et al., 1991;

Novak et al., 1999; Thomas et al., 2003).

Incorporation of Be. The brittle mica bityite

(13 analyses) is a geochemical paradox, allowing

(as in tainiolite) a simultaneous presence of

substantial concentrations of incompatible

elements (Be, Li) and a compatible element (Ca)

(Lin and Guggenheim, 1983; Lahti and

Saikkonen, 1985). In compositions with IVAl

ranging from 2 to 1 a.p.f.u. (and Be from 0 to

1 a.p.f.u.), a continuous replacement of IVAl by

Be, according to the coupled substitution Ca2+ +

Be2+> (K,Na)+ + IVAl3+, appears to operate

(Fig. 23).

AnionsThe anion positions are occupied mainly by

(OH) and F and, more rarely, by Cl, S or O. Most

Mg-Fe micas (phlogopite, annite, Mg-rich side-

rophyllite), and Al micas (muscovite, celadonite),

are OH-rich; Li micas (polylithionite, tainiolite)

are typically F-rich. Li-rich annite, Li-rich side-

rophyllite and Li-rich muscovite are transitional.

Fluorine supplied by mantle degassing may give

rise to F-rich phlogopite (up to 1.65 a.p.f.u.; e.g.

Stoppa et al., 1997) in mafic to ultramafic rocks.

Fluorannite is an F-rich annite present in only

some evolved A-type granites (Shen et al., 2000,

but also Charoy and Raimbault, 1994). Large Cl

concentrations appear restricted to some of the

annites, hendricksitic phlogopites to annites, and

ferrokinoshitalites. Highest Cl concentration is

reported in ferrokinoshitalite from skarns (Tracy,

1991), with an OH/F/Cl ratio of 0.47/0.27/1.26

(a.p.f.u.). In rare cases, O or S is incorporated in

trioctahedral micas such as the Ti-rich brittle mica

oxykinoshitalite (2 analyses), in which Fe is

completely replaced by Ti (Kogarko et al., 2005),

norrishite (2 analyses; Eggleton and Ashley,

1989), and anandite (5 analyses; Pattiaratchi et

al., 1967).

Discussion and conclusions

Charge balanceBy definition, trioctahedral micas should contain

three cations, and dioctahedral micas two cations,

in octahedral coordination. If the sum of cation

charges is constant (= 22, including K), the

occupancy of the tetrahedral sheet is fixed. For K

micas and other micas with a univalent cation in

the interlayer it follows that:

five octahedral charges (e.g. polylithionite: 2Li+

+ Al3+, tainiolite: 2Mg2+ + Li+, celadonite: Fe3+ +

Mg2+) require [Si4];

FIG. 23. Plot of XIICa + IVBe as a function of XII(K,Na) +IVAl for bityite and Be(Li)-rich margarite (mar). Be

contents (in a.p.f.u.) are indicated. Numbers of analyses

are given in parentheses. Data were taken from Lahti

and Saikkonen (1985).

FIG. 22. Quantity of IVB in relation to IVAl for

siderophyllite (sid), polylithionite (pol), muscovite

(mus) and boromuscovite (bmus). Numbers of analyses

are given in parentheses. Data for the common true K

micas were taken predominantly from Cerny et al.

(1995) and Badanina et al. (2004); data for boromusco-

vite are from Foord et al. (1991), Novak et al. (1999)

and Thomas et al. (2003).

300

TISCHENDORF ET AL.

Page 17: True and brittle micas: composition and solid-solution seriescnmnc.main.jp/micasolidsolutions.pdf · True and brittle micas: composition and solid-solution series G. TISCHENDORF 1,

six charges as in phlogopite (3Mg2+) or

muscovite (2Al3+) require [Si3Al];

six-and-a-half charges as in Fe-rich phlogopite

(1.5Mg2+ + Fe2+ + 0.5Al3+) or annite (2.5Fe2+ +

0.5Fe3+) require [Si2.5Al1.5];

seven charges (siderophyllite: 2Fe2+ + Al3+,

eastonite: 2Mg2+ + Al3+) would require a

tetrahedral sheet of [Al2Si2].

Surprisingly, natural common true K micas with

tetrahedral composition [Al2Si2] are not known.

Their minimum concentration of IVSi is 2.5.

In contrast, brittle micas (with a divalent cation

such as Ca and Ba in the interlayer) with

six octahedral cation charges (e.g. kinoshitalite

[3Mg2+] or margarite [2Al3+]) would require

[Al2Si2] in the tetrahedra;

seven octahedral cation charges (e.g. clintonite

[2Mg2+ + Al3+]) would require an absolute

minimum of tetrahedral Si [Al3Si].

In prac t ice , c l in toni te has Si1 . 1�1 . 3

(48 analyses). Therefore, an increasing proportion

of divalent cations (Ca2+, Ba2+) in the interlayer

of true micas, as well as an increase of trivalent

(Fe3+, also VIAl3+) and quadrivalent cations (Ti4+)

in the octahedral sheet (normally occupied in the

phlogopite–annite series by divalent cations such

as Mg2+, Fe2+), brings about a minimization of Si

in tetrahedral coordination. On the contrary,

incorporation of monovalent Li in the octahedral

sheet (except the uncommon ephesite and bityite)

may increase tetrahedral Si up to 4.0.

Figure 24 gives an overview of charge-balance

as a function of Si. The plot shows mean values

for analyses of all mica species. True micas obey

the following relation for cation charge sums: VIR

= 9 � IVSi. The equation for brittle micas is VIR =

8 � IVSi. Micas deviating from these relationships

(kinoshitalite, margarite, anandite) have a smaller

proportion of divalent cations in the interlayer

(0.69 a.p.f.u. Ba, 0.74 a.p.f.u. Ca, 0.88 a.p.f.u.

Ba, respectively). According to its formula,

ganterite (Ba ~0.50 a.p.f.u.) is intermediate

between true and brittle micas. Bityite plots in a

special position because of its concentration ofIVBe2+. Oxykinoshitalite and norrishite are distin-

guished by a different fundamental condition of

24 cation charges; besides, the latter has the

unique concentration of trivalent manganese.

Ephesite (like eastonite) is a mica that plots at

the outer border of the mgli/feal diagram (Figs 2

and 3), indicating a trioctahedral, but abnormal

status. Note that the theoretical end-member

compositions of siderophyllite and eastonite in

Fig. 24 lie well outside the bulk of the mica

analyses. The Mg-Fe mica group [Si = 2.5�2.9],

the Al mica group [Si = 2.9�3.3] as well as the

Li-Al mica group, including tainiolite, montdorite

and celadonite (= tetra-silicic micas) [Si =

3.3�4.0], form separate clusters along the lineVIR = 9 � IVSi.

Substitution of elements, solid-solution series, andmiscibility gaps

A significant property of the micas is that, almost

without exception, they form solid solutions. In

this study, we have not examined whether a

particular mica is a member of a complete solid-

solution series with well defined end-members, or

whether it is a result of only a partial element-

exchange. We have dealt with real analytical

determinations of elements and tried to establish

their mutual relationships. In such a case, all

statements about substitutions of elements in

minerals should be normalized to the scale of

examination. Accordingly, microprobe analyses

can avoid problems (multiple generations of a

mica, the presence of heterogeneous phases, etc.)

and will yield results different from wet-chemical

analyses. The future application of new and more

sophisticated analytical techniques will certainly

offer a more detailed view of the phase chemistry.

Because of the multicomponent nature of the

mica chemical system, and the wide possibilities

of mutual replacement of elements in micas,

complex relationships govern the occupancy of

individual coordinations and the conditions for a

necessary charge-balance. Guidotti and Sassi

(1998) used their detailed study of metamorphic

Na/K white micas as an example of the

miscellaneous isomorphic substitutions. Element

substitutions in common true K micas are not

restricted to schemes operating within a particular

solid-solution series, but deviate into composi-

tional space between such series. We may

distinguish five magmatic evolutionary pathways

(Fig. 25):

(I) Phlogopite sensu stricto–Ti-rich phlogopite–

Ti-Fe-rich phlogopite–Fe-rich phlogopite–Mg-Ti-

rich annite–annite sensu stricto–Li-rich annite

(corresponding with a branch of the complete

trioctahedral system phlogopite/biotite/sidero-

phyllite-lepidomelane according to Foster,

1960a, representing the Al-deficient path devel-

oped during the evolution of mantle-derived

magmatic rocks);

(II) Al-rich phlogopite–Al-Fe-rich phlogopite–

Al-Mg-rich annite–Al-rich annite–Al-Li-rich

CLASSIFICATION OF MICAS

301

Page 18: True and brittle micas: composition and solid-solution seriescnmnc.main.jp/micasolidsolutions.pdf · True and brittle micas: composition and solid-solution series G. TISCHENDORF 1,

annite (branch of the complete trioctahedral

system phlogopite/biotite/siderophyllite–lepido-

melane according to Foster, 1960a; Al-enriched

path developed during the evolution of mantle-

derived magmatic rocks);

(III) Al-Mg-rich annite–Mg-rich siderophyllite-

siderophyllite sensu stricto–Li-rich siderophyl-

lite–Fe-rich polylithionite–polylithionite sensu

stricto (ferrous lithium-mica series according to

Foster, 1960b, lithium–iron micas according to

Rieder et al., 1970; path developed during the

formation of crust-derived magmatic rocks,

including their pegmatitic and aplitic derivates);

(IV) Fe-rich polylithionite–Li-Fe-rich musco-

vite–Fe-rich muscovite (ferrous aluminium–

lithium mica series according to Monier and

Robert, 1986, zinnwaldite–muscovite subsolidus

‘autometasomatic’ trend of Henderson et al.,

1989; path developed during late-magmatic

evolution of granites); and

(V) Polylithionite–Li-rich muscovite–musco-

vite sensu stricto (aluminium–lithium micas

according to Foster, 1960b; path developed

during evolution of pegmatites).

In addition, muscovite, Mg-rich muscovite, Fe-

rich muscovite and Mg-Fe-rich muscovite are

components of metamorphic rocks wherein the

mica composition varies as a function of the

conditions of formation. Tainiolite sensu stricto,

Fe-rich and Al-rich tainiolitic micas, however, are

FIG. 24. Sum of charges of VIR related to IVSi for averages of selected natural mica species. Shown are brittle micas:

anandite, bityite, clintonite, kinoshitalite, margarite; trioctahedral true micas: annite, eastonite, ephesite,

hendricksite, montdorite, phlogopite, polylithionite, preiswerkite, shirokshinite, siderophyllite, tainiolite sensu

stricto; dioctahedral true micas: boromuscovite, celadonite(cel), chromphyllite, ganterite, margarite, muscovite,

nanpingite, paragonite, roscoelite, tobelite; and some theoretical mica end-members: annite, celadonite, clintonite,

eastonite, kinoshitalite, margarite, muscovite, phlogopite, polylithionite, siderophyllite, tainiolite, norrishite, and

oxykinoshitalite (oxy-kino); (a) cluster of Mg-Fe mica group [Si = 2.6 to 2.9], (b) cluster of Al mica group [Si = 2.9

to 3.3], (c) cluster of Li-Al mica group including tainiolite, montdorite, and celadonite (= tetra-silicic micas) [Si =

3.3 to 4.0]; white grey = range of transitional micas between true and brittle micas. For common true K micas holds:

Sum of charges of VIR = 9 � IVSi (in a.p.f.u.); for brittle micas: Sum of charges of VIR = 8 � IVSi (in a.p.f.u.).

Abbreviations as in preceding figures.

302

TISCHENDORF ET AL.

Page 19: True and brittle micas: composition and solid-solution seriescnmnc.main.jp/micasolidsolutions.pdf · True and brittle micas: composition and solid-solution series G. TISCHENDORF 1,

mostly hybrid products, if evolved solutions react

with mafic rocks.

The best-documented solid-solution series

between true and brittle micas is that between

phlogopite and kinoshitalite (Fig. 12a). Larger Ba

concentrations apparently occur in the whole

phlogopite–annite series; however, whether a

complete miscibility occurs between annite and

ferrokinoshitalite remains an open question

(Fig. 13). Complete element substitution is also

present in the series muscovite–roscoelite

(Fig. 16), muscovite–chromphyllite (Fig. 17) and

phlogopite–tetra-ferriphlogopite (Fig. 21). A

substitution relation probably exists for musco-

vite–tobelite (Fig. 10), and may also exist between

common true K micas and Na micas, namely

phlogopite–aspidolite (Fig. 7a) and muscovite–

paragonite (Fig. 7b), although the latter appears

more limited. In contrast, miscibility gaps

probably exist between common true K micas

and Ca-bearing brittle micas (Fig. 11a,b), and

between muscovite and boromuscovite (Fig. 22).

Experiments have shown a complete miscibility

between K and Rb in phlogopite, but a possible

miscibility with natural common true K micas

remains to be studied (Fig. 8). On the contrary, the

Cs-rich part in the K�Cs system is occupied

(Fig. 9), indicating a complete element exchange.

Although only a few analyses are available in the

system muscovite–bityite, the data indicate a

nearly complete replacement of IVAl by IVBe

(Fig. 23). Manganese and Zn are enriched in some

micas (masutomilite, montdorite, norrishite, shir-

ozulite, hendricksite) that will form only under

special physicochemical conditions and must be

considered separately (Figs 14, 15). The concen-

trations of Ti as well as Fe3+ are limited because of

their large valence (Figs 18�20). To date, no

known mica (apart from oxykinoshitalite) has

predominant Ti in the octahedral position. Finally,

OH and F are apparently miscible in almost any

mica.

Principles of classif|cation

Micas constitute a group of minerals character-

ized by a predominant substitution of elements.

Their classification rests on the existence of end-

members and their interconnection by solid-

solution series.

Common true K micas can be classified usingVIR, VIAl, Mg6Li, accompanied by fractions

Mg/(Mg+Fetot) [=Mg#], Fetot/(Fetot+Li) [=Fe#],

and Al/(Al+Fetot+Mg) [=Al#], all in a.p.f.u.. The

series phlogopite–Ti-Fe-rich phlogopite–Ti-Mg-

rich annite–annite–Li-rich annite (I), Al-rich

phlogopite–Al-Fe-rich phlogopite–Al-Mg-rich

annite–Li-Al-rich annite (II), Al-Mg-rich annite–

siderophyllite–Li-rich siderophyllite–Fe-rich

polylithionite–polylithionite (III), Fe-rich poly-

lithionite–Li-Fe-rich muscovite–Fe-rich musco-

v i t e–Mg-Fe- r i ch muscov i t e ( IV) , and

polylithionite–Li-rich muscovite–muscovite–

Mg-rich muscovite (V) form the framework of

the common true K micas (Fig. 25). These series

constitute the main substitution patterns present in

natural micas. Most of the main composition

maxima coincide with the mica species (such as

muscovite, phlogopite and polylithionite). An

exception is the relative frequency maximum

close to mgli = 1.25 and feal = 1.25, which

encompasses micas formerly termed ‘biotite’

(Fig. 1). Most of this maximum occurs within

the Mg-rich part of the annite field, but it also

straddles the fields of phlogopite and sidero-

phyllite. Most of the former ‘biotites’ are

intermediate annite–phlogopite solid solutions.

Another, less problematic exception is the relative

maximum close to mgli = �1 and feal = 0, which

is cut by the siderophyllite/polylithionite discri-

mination divide and lies precisely where the

micas formerly termed ‘zinnwaldite’ would have

plotted. Consequently, most ‘zinnwaldites’ corre-

spond to intermediate polylithionite–siderophyl-

lite solid solutions.

Incompletely investigated micas can be desig-

nated with series names such as biotite, phengite,

or zinnwaldite (Rieder et al., 1998) but, after

detailed investigation, such series names ought to

be abandoned in favour of more precise terms

such as Fe-rich phlogopite, Li-Fe-rich muscovite

or Li-rich siderophyllite. These names apply from

an end-member out to the 50/50 divide, which is a

universally accepted border that may run, counter-

intuitively, through frequency maxima in compo-

sition plots.

The Fetot/(Fetot+Li) ratio [=Fe#] can be used,

together with VIAl, to describe compositions at or

near the siderophyllite–polylithionite series.

Alternatively, it can be used alone to sort all

trioctahedral micas, because Fe# = 1.0 holds for

Fe-bearing phlogopite and end-member annite.

Several end-members of the common true K

micas are starting points for solid-solution series

with end-members of uncommon true K micas,

other alkali element true micas, and brittle micas.

Figure 25 presents the whole mica system.

Tainiolites form a special sub-system (Fig. 5).

CLASSIFICATION OF MICAS

303

Page 20: True and brittle micas: composition and solid-solution seriescnmnc.main.jp/micasolidsolutions.pdf · True and brittle micas: composition and solid-solution series G. TISCHENDORF 1,

Concerning the classification of celadonites

(Fig. 6), we follow Li et al. (1997).

Natural compositions of common true K micas

represent complex multi-element substitutions

involving Fe2+, Mg, VIAl, Li, Ti, Fe3+ and

Mn2+. However, solid-solution series between

common true K micas and uncommon true

K micas, other alkali-element true micas, and

brittle micas are characterized by simpler,

element-for-element, binary substitutions (e.g.

K > Na or K > Ba or VIAl > Cr).

Relationships of classif|ed micas to the mgli/feal system

The application of the mgli/feal variables offers

an overall view of the whole mica family and

allows the user to inspect all main compositions.

Mica end-members plot in the mgli/feal diagram

at vertices with angles between 90º and 125º

(KMg3[AlSi3O10](OH)2, phlogopite; KFe2+3

[AlSi3O10](OH)2, annite; KLi2Al[Si4O10]F2, poly-

lithionite; KAl2&[AlSi3O10](OH)2, muscovite;

Figs 2 and 3). Vertices with angles between 155º

FIG. 25. The system of trioctahedral and dioctahedral true and brittle micas (without celadonites) plotted in terms of

mgli and feal variables. Common true K mica species are assigned their areas within the diagram. Evolutionary

pathways of igneous micas are indicated (I to V), documented by compositional averages of mica varieties.

Uncommon true K micas, other alkali element micas, brittle micas, and some further ideal mica members are listed

in the boxes outside of the diagram. The position of the Zn-rich mica hendricksite corresponds to its average

composition in nature. In the mica formulae, the order of elements in the individual sheets conforms to the

recommendations of the Mica sub committee of the CNMNC (Rieder et al., 1998).

304

TISCHENDORF ET AL.

Page 21: True and brittle micas: composition and solid-solution seriescnmnc.main.jp/micasolidsolutions.pdf · True and brittle micas: composition and solid-solution series G. TISCHENDORF 1,

and 165º represent micas with the ideal composi-

tions KMg2.5Al0.5[Al1.5Si2.5O10](OH)2 (Al-rich

phlogopite), KLiFe2+2 [Si4O10](OH)2 (Li-rich

annite) and KLi1.25Al1.75[Al1.5Si2.5O10]F2 (Al-rich

trilithionite). Other essential ideal components,

such as KLi1.5Al1.5[AlSi3O10]F2 (trilithionite),

KMg2Fe2+[AlSi3O10](OH)2 (Fe-rich phlogopite),

KFe2+2 Mg[AlSi3O10](OH)2 (Mg-rich annite) plot

along the outer boundary of the polygon. End-

m e m b e r s i d e r o p h y l l i t e � K F e 2 +2 A l

[Al2Si2O10](OH)2 or KLi0.25Fe2+1.75Mg0.25Al0.75

[Al1.5Si2.5O10](OH)2 � plots at a pivotal point of

the mica system. The position of tainiolite

(KLiMg2[Si4O10]F2) is unique and isolated

(Fig. 5). Likewise, the celadonites, which defini-

tively contain Fe3+, must be treated separately from

the mainstream micas (Fig. 6). The course of VIR

and VIAl in the diagram, as well as points for micas

lying half-way along the joins of end-members,

delineate the fields of mica species.

The boundaries of mica species in the mgli/feal

diagram are theoretical and may not coincide

completely with those based on the relevant

elemental ratios used for classification. Such

discrepancies may be caused by two important

factors:

(1) Ideal mica members are related to VIR = 3.0

or 2.0, which is the basis underlying the

construction of the diagram; however, occupan-

cies of natural micas may differ from these

values;

(2) For plotting, the theoretical compositions

are reduced to main constituents of the octahedral

sheet (Fetot,VIAl, Ti, Mn, Mg, Li), but in reality,

they may contain additional elements such as Zn,

Cr and V.

Overlaps may affect the boundary between

annite and siderophyllite in particular. Therefore,

Fig. 2 shows two sets of isolines for VIAl = 0.5,

one for VIR = 3.0 and the other for VIR = 2.75. We

recommend use of the VIAl = 0.5 isoline for VIR =

2.75 for discrimination between these two species

(Figs 3 and 4).

The advantages of the application of mgli/feal

variables for classification are:

(1) A graphical presentation of all common true

K micas, trioctahedral and dioctahedral, Li-

bearing and non-Li-bearing, is possible in a

single diagram in two dimensions. Separate

plots should be used only for tainiolites and

celadonites.

(2) The a.p.f.u. values from the crystallochem-

ical formulae are easy to convert into the mgli/feal

variables.

(3) The mgli/feal variables are based on the

main, octahedrally coordinated cations in the

mica structure.

(4) The plotting of all theoretical formulae is

straightforward.

(5) The grids for accompanying variables such

as VIR, IVSi, as well as VIAl, Mg, Fetot (including

Ti + Mn), and Li can be shown in the diagram

(Tischendorf et al., 2004, their Figs 2 and 3).

(6) The mgli and feal variables correspond well

with the substitution vectors according to

Tschermak (Burt, 1991): mgli represents a

condensed form of 3MgIVAl[2LiVIAlSi]�1 and

feal is approximately 3(Fe2+Mn2+Ti0.5)2+

[2VIAl]�1, neglecting Fe3+.

(7) The plot offers the possibility to display

fractionation tendencies in magmatic rocks as

evolution series including all mica species and

varieties.

(8) The graphical mica presentation applying

mgli/feal is highly compatible with the chemical

mica classification according to VIAl, VIR, Mg#,

Fe# and Al#.

Acknowledgements

K. Breiter (Prague), R. Thomas, and D.E. Harlov

(both Potsdam) contributed unpublished mica

analyses. F. Pietschmann (Zittau) helped with

the mathematical procedures. The authors wish to

acknowledge the thorough work of A. Hendrich

and M. Dziggel (Potsdam) who carefully

constructed the figures. The paper benefited

from constructive reviews by three anonymous

referees and editorial comments by C. Geiger

(Kiel) and M. Welch (London). B. Clarke

(Halifax) read the final version to check for

language correctness. We also acknowledge

valuable discussions with E.A.J. Burke

(Amsterdam) and E.H. Nickel (Wembley,

Australia).

References

Abdalla, H., Matsueda, H., Ishihara, S. and Miura, H.

(1994) Mineral chemistry of albite-enriched grani-

toids at Um Ara, Southeastern Desert, Egypt.

International Geological Review, 36, 1067�1077.

Ackermand, D. and Morteani, G. (1973) Occurrence and

breakdown of paragonite and margarite in the Greiner

Schiefer series (Zillerthal Alps, Tyrol). Contributions

to Mineralogy and Petrology, 40, 293�304.

Ackermand, D., Herd, R. K. and Windley, B.F. (1986)

Clintonite of regional metamorphic origin, along the

CLASSIFICATION OF MICAS

305

Page 22: True and brittle micas: composition and solid-solution seriescnmnc.main.jp/micasolidsolutions.pdf · True and brittle micas: composition and solid-solution series G. TISCHENDORF 1,

margin of the Fiskenaesset complex, West

Greenland. Neues Jahrbuch fur Mineralogie,

Abhandlungen, 155, 39�51.

Alietti, E., Brigatti, M.F. and Poppi, L. (1997)

Clintonite-1M: Crystal chemistry and its relation-

ships to closely associated Al-rich phlogopite.

American Mineralogist, 82, 936�945.

A n k i n o v i c h , S . G . , A n k i n o v i c h , Y e . A . ,

Rozhdestvenskaya, I.V. and Frank-Kamenetskiy,

V.A. (1973) Chernykhite, a new barium-vanadium

mica from northwestern Karatau. International

Geological Review, 15, 641�647.

Armbruster, T., Richards, R.T., Gnos, E., Pettke, T. and

Herwegh, M. (2007) Unusual fibrous sodian

tainiolite epitactic on phlogopite from marble

xenoliths of Mont Saint-Hilaire, Quebec, Canada.

The Canadian Mineralogist, 45, 541�549.

Badanina, E.V., Veksler, I.V., Thomas, R., Syritso, L.F.

and Trumbull, R.B. (2004) Magmatic evolution of

Li-F, rare-metal granites: a case study of melt

inclusions in the Khangilay complex, Eastern

Transbaikalia (Russia). Chemical Geology, 210,

113�133.

Baltatzis, E. and Wood, B.J. (1977) The occurrence of

paragonite in chloritoid schists from Stonehaven,

Scotland. Mineralogical Magazine, 41, 211�216.

Banno, Y., Miyawaki, R., Kogure, T., Matsubara, S.,

Kamiya, T. and Yamada, S. (2005) Aspidolite, the

Na analogue of phlogopite, from Kasuga-mura, Gifu

Prefecture, central Japan: description and structural

data. Mineralogical Magazine, 69, 1047�1057.

Beswick, A.E. (1973) An experimental study of alkali

metal distribution in feldspars and micas.

Geochimica et Cosmochimica Acta, 37, 183�208.

Bigi, S., Brigatti, M.F., Mazzucchelli, M. and Rivalenti,

G. (1993) Crystal chemical variations in Ba-rich

biotites. Contributions to Mineralogy and Petrology,

113, 87�99.

Boggs, R.C. (1992) A manganese-rich miarolitic granite

pegmatite assemblage from the Sawtooth batholith,

South central Idaho, U.S.A. Abstracts: International

Symposium ‘‘Lepidolite 200’’, Nove Mesto na

Morave/Czechoslovakia, 29.8.�3.9.1992, 15�16.

Bol, L.C.G.M., Bos, A., Sauter, P.C.C. and Jansen,

J.B.H. (1989) Barium-titanium-rich phlogopites in

marbles from Rogaland, southwest Norway.

American Mineralogist, 74, 439�447.

Breit, G.N. (1995) Origin of clay minerals associated

with V-U deposits in the Entrada Sandstone

Placerville Mining District, southwestern Colorado.

Economic Geology, 90, 407�419.

Brigatti, M.F. and Poppi, L. (1993) Crystal chemistry of

Ba-rich trioctahedral micas-1M. European Journal

of Mineralogy, 5, 857�871.

Brigatti, M.F., Medici, L., Saccani, E. and Vaccaro, C.

(1996) Crystal chemistry and petrologic significance

of Fe3+-rich phlogopite from the Tapira carbonatite

complex, Brazil. American Mineralogist, 81,

913�927.

Brod, J.A., Gaspar, J.C., de Araujo, D.P., Gibson, S.A.,

Thompson, R.N. and Junqueira-Brod, T.C. (2001)

Phlogopite and tetra-ferriphlogopite from Brazilian

carbonatite complexes: petrogenetic constraints and

implications for mineral-chemistry systematics.

Journal of Asian Earth Sciences, 19, 265�296.

Bryanchaninova, N.I., Makejev, A.B., Zubkova, N.B.

and Filippov, V.N. (2004) Sodium-strontium mica.

Na0.50Sr0.25Al2(Na0.25&0.75)Al1.25Si2.75O10(OH)2from the Rubin field. Doklady Akademii Nauk, 395,

101�107 (in Russian).

Bucher, H., Fazis, Y., de Capitani, Chr. and Grapes, R.

(2005) Blueschists, eclogites, and decompression

assemblages of the Zermatt-Saas ophiolite: High-

pressure metamorphism of subducted Thetys litho-

sphere. American Mineralogist, 90, 821�835.

Bucher-Nurminen, K. (1976) Occurrence and chemistry

of xanthophyllite in roof pendants of the Bergell

granite, Sondrio, northern Italy. Schweizerische

Mineralogische und Petrographische Mitteilungen,

56, 413�426.

Burke, E.A.J. and Ferraris, G. (2005) New minerals and

nomenclature modifications approved in 2004 by the

Commission on New Minerals and Mineral Names,

International Mineralogical Association: IMA No.

2004-012. The Canadian Mineralogist, 43, 830.

Burt, D.M. (1991) Vector representation of lithium and

other mica compositions. Pp. 113�129 in: Progress

in Metamorphic and Magmatic Petrology (L.L.

Perchuk, editor), Cambridge University Press,

Cambridge, UK.

Cerny, P. and Burt, D. M. (1984) Paragenesis, crystal-

lochemical characteristics, and geochemical evolu-

tion of micas in granite pegmatites. Pp. 257�297 in:

Micas (S.W. Bailey, editor) Reviews in Mineralogy,

13, Mineralogical Society of America, Washington,

D.C.

Cerny, P., Stanek, J., Novak, M., Baadsgaard, H.,

Rieder, M., Ottolini, L., Kavalova, M. and

Chapman, R. (1995) Geochemical and structural

evolution of micas in the Rozna and Dobra Voda

pegmatites, Czech Republic. Mineralogy and

Petrology, 55, 177�201.

Cerny, P., Chapman, R., Teertstra, D. K. and Novak, M.

(2003) Rubidium- and cesium-dominant micas in

granite pegmatites. American Mineralogist, 88,

1832�1835.

Charoy, B. and Raimbault, L. (1994) Zr-, Th-, and REE-

rich biotite differentiates in the A-type granite pluton

of Suzhou (Eastern China): the key role of fluorine.

Journal of Petrology, 35, 919�962.

Chen-Shurong and Wu-Gongbao (1987) Mineralogical

study of Mn-biotite in miarolitic granite fom Kuiqi,

306

TISCHENDORF ET AL.

Page 23: True and brittle micas: composition and solid-solution seriescnmnc.main.jp/micasolidsolutions.pdf · True and brittle micas: composition and solid-solution series G. TISCHENDORF 1,

Fujian. Dizhi Lun ping (Geol. Rev.), 33, 222�228 (in

Chinese).

Cooper, A.F., Paterson, L.A. and Reid, D.L. (1995)

Lithium in carbonatites � consequence of an

enriched mantle source. Mineralogical Magazine,

59, 401�408.

Costa, F., Dungan, M.A. and Singer, B.S. (2001)

Magmatic Na-rich phlogopite in a suite of gabbroic

crustal xenoliths from Volcan San Pedro, Chilean

Andes: Evidence for a solvus relation between

phlogopite and aspidolite. American Mineralogist,

86, 29�35.

Craig, J.R., Sandhaus, D.J. and Guy, R.E. (1985)

Pyrophanite MnTiO3 from Sterling Hill, New

Jersey. The Canadian Mineralogist, 23, 491�494.

Dasgupta, S., Chakraborti, S., Sengupta, P.,

Bhattacharya, P.K. and Banerjee, H. (1989)

Compositional characteristics of kinoshitalite from

the Sausar Group, India. American Mineralogist, 74,

200�202.

Deer, W.A., Howie, R.A. and Zussman, J. (2003) Rock-

forming Minerals. Sheet Silicates. Micas vol. 3A, 2nd

edition (M.E. Fleet, editor). The Geological Society,

London, 758 pp.

Dolezalova, H., Houzar, S. and Skoda, R. (2005) Barium

phlogopites and kinoshitalite-bearing mineral assem-

blage of forsterite marbles from Rozna uranium

deposit, Moldanubicum, western Moravia. Scientiae

Geologicae. Casopis moravskeho Muzea, 90, 75�88.

Dolezalova, H., Houzar, S., Losos, Z. and Skoda, R.

(2006) Kinoshitalite with a high magnesium content

in sulphide-rich marbles from the Rozna uranium

deposit, Western Moravia, Czech Republic. Neues

Jahrbuch fur Mineralogie, Abhandlungen, 182,

165�171.

Dymek, R.F. (1983) Titanium, aluminium and interlayer

cation substitutions in biotite from high-grade

gneisses, West Greenland. American Mineralogist,

68, 880�899.

Edgar, A.D. (1992) Barium-rich phlogopite and biotite

from some Quaternary alkali mafic lavas, West Eifel,

Germany. European Journal of Mineralogy, 4,

321�330.

Eggleton, R.A. and Ashley, P.M. (1989) Norrishite, a

new manganese mica, K(Mn3+2 Li)Si4O12, from the

Hoskins mine, New South Wales, Australia.

American Mineralogist, 74, 1360�1367.

Escuder-Viruete, J. and Perez-Estaun, A. (2006)

Subduction-related P-T path for eclogites and garnet

glaucophanites from the Samana Peninsula basement

complex, northern Hispaniola. International Journal

of Earth Sciences, 95, 995�1017.

Eugster, H.P. and Munoz J. (1966) Ammonium micas:

possible sources of atmospheric ammonia and

nitrogen. Science, 151, 683�686.

Ferry, J.M. (1981): Petrology of graphitic sulfide-rich

schists from south-central Maine: an example of

desulfidisation during prograde regional metamorph-

ism. American Mineralogist, 66, 908�930.

Filut, M.A., Rule, A.C. and Bailey, S.W. (1985) Crystal

structure refinement of anandite-2Or, a barium- and

sulfur-bearing trioctahedral mica. American

Mineralogist, 70, 1298�1308.

Foord, E.E., Martin, R.F., Fitzpatrick, J.J., Taggert, Jr., J

E. and Crock, J.G. (1991) Boromuscovite, a new

member of the mica group, from the Little Three

mine pegmatite, Ramona district, San Diego County,

California. American Mineralogist, 76, 1998�2001.

Foster, M.D. (1960a) Interpretation of the composition

of trioctahedral micas. U.S. Geological Survey,

Professional Paper, 354-B, 11�49.

Foster, M.D. (1960b) Interpretation of the composition

of lithium micas. U.S. Geological Survey,

Professional Paper, 354-E, 115�147.

Frey, M., Bucher, K., Frank, E. and Schwander, H.

(1982) Margarite in the Central Alps. Schweizerische

Mineralogische und Petrographische Mitteilungen,

62, 21�45.

Frimmel, H.E., Hoffmann, D., Watkins, R.T. and Moore,

J.M. (1995) An Fe analogue of kinoshitalite from the

Broken Hill massive sulfide deposit in the

Namaqualand Metamorphic Complex, South

Africa. American Mineralogist, 80, 833�840.

Frondel, C. and Einaudi, M. (1968) Zinc-rich micas

from Sterling Hill, New Jersey. American

Mineralogist, 53, 1752�1754.

Frondel, C. and Ito, J. (1966) Hendricksite, a new

species of mica. American Mineralogist, 51,

1107�1123.

Gibson, G.M. (1979) Margarite in kyanite- and

corundum-bearing anorthosite, amphibolite, and

hornblendite from Central Fiordland, New Zealand.

Contributions to Mineralogy and Petrology, 68,

171�179.

Gnos, E. and Armbruster, Th. (2000) Kinoshitalite,

Ba(Mg)3(Al2Si2)O10(OH,F)2, a brittle mica from a

manganese deposit in Oman: Paragenesis and crystal

chemistry. American Mineralogist, 85, 242�250.

Gnos, E., Armbruster, Th. and Villa, I.M. (2003)

Norrishite, K(Mn3+2 Li)Si4O10(O)2, an oxymica with

sugilite from the Wessels Mine, South Africa:

Crystal chemistry and 40Ar-39Ar dating. American

Mineralogist, 88, 189�194.

Godard, G. and Smith, D. (1999) Preiswerkite and Na-

(Mg,Fe)-margarite in eclogites. Contributions to

Mineralogy and Petrology, 136, 20�32.

Gottesmann, B. and Tischendorf, G. (1978)

Klassifikation, Chemismus und Optik trioktae-

drischer Glimmer. Zeitschrift fur Geologische

Wissenschaften, 6, 681�708.

Graeser, S., Hetherington, C.L. and Giere, R. (2003)

Ganterite, a new barium-dominant analogue of

CLASSIFICATION OF MICAS

307

Page 24: True and brittle micas: composition and solid-solution seriescnmnc.main.jp/micasolidsolutions.pdf · True and brittle micas: composition and solid-solution series G. TISCHENDORF 1,

muscovite from the Berisal Complex, Simplon

Region, Switzerland. The Canadian Mineralogist,

41, 1271�1280.

Grambling, J.A. (1984) Coexisting paragonite and

quartz in sillimanitic rocks from New Mexico.

American Mineralogist, 69, 79�87.

Greenwood, J.C. (1998) Barian-titanian micas from the

Ilha da Trinidade, South Atlantic. Mineralogical

Magazine, 62, 687�695.

Grew, E.S., Yates, M.G., Adams, P.M., Kirkby, R. and

Wiedenbeck, M. (1999) Harkerite and associated

minerals in marble and skarn from Cresmore quarry,

Riverside County, California and Cascade Slide,

Adirondack Mountains, New York. The Canadian

Mineralogist, 37, 277�296.

Guggenheim, S. and Frimmel, H.E. (1999)

Ferrokinoshitalite, a new species of brittle mica

from the Broken Hill mine, South Africa: Structural

and mineralogical characterization. The Canadian

Mineralogist, 37, 1445�1452.

Guggenheim, S., Schulze, W.A., Harris, G.A. and Lin,

J.-C. (1983) Concentric layer silicates: An optical

second harmonic generation, chemical and X-ray

study. Clays and Clay Minerals, 31, 251�260.

Guidotti, C.V. and Sassi, F.P. (1998) Miscellaneous

isomorphous substitutions in Na-K white micas: a

review, with special emphasis to metamorphic

micas. Rendiconti Lincei Scienze Fisiche e

Naturali, 9, 57�78.

Guidotti, C.V., Post, J.L. and Cheney, J.T. (1979)

Margarite pseudomorphs after chiastolite in the

George town area , Ca l i fo rn ia . Amer ican

Mineralogist, 64, 728�732.

Guidotti C.V., Sassi F.P., Sassi R. and Blencoe J.G.

(1994) The effects of ferromagnesian components on

the paragonite–muscovite solvus: a semiquantitative

analysis based on chemical data for natural

pa ragon i t e–muscov i t e pa i r s . Journa l o f

Metamorphic Geology, 12, 779�788.

Harada, K., Honda, M., Nagashima, K. and Kanisawa, S.

(1976) Masutomilite, manganese analogue of zinn-

waldite, with special reference to masutomilite-

lepidolite-zinnwaldite series. Mineralogical

Journal, 8, 95�109.

Harlow, G.E. (1994) Jadeitites, albitites and related

rocks from the Motagua Fault Zone, Guatemala.

Journal of Metamorphic Geology, 12, 49�68.

Harlow, G.E. (1995) Crystal chemistry of barian

enrichment in micas from metasomatized inclusions

in serpentinite, Motagua Fault Zone, Guatemala.

European Journal of Mineralogy, 7, 775�789.

Hawthorne, F.C., Teertstra, D.K. and Cerny, P. (1999)

Crystal-structure refinement of a rubidian cesian

phlogopite. American Mineralogist, 84, 778�781.

Henderson, C.M.B. and Foland, K.A. (1996) Ba- and Ti-

rich primary biotite from the Brome alkaline igneous

complex, Monteregian Hills, Quebec: mechanisms of

substitution. The Canadian Mineralogist, 34,

1241�1252.

Henderson, C.M.B., Martin, J.S. and Mason, R.A.

(1989) Compositional relations in Li-micas from

S.W. England and France: an ion- and electron-

microprobe study. Mineralogical Magazine, 53,

427�449.

Hetherington, C.J., Giere, R. and Graeser, S. (2003)

Composition of barium-rich white micas from the

Berisal complex, Simplon region, Switzerland. The

Canadian Mineralogist, 41, 1281�1291.

Higashi, S. (1978) Dioctahedral mica minerals with

ammonium ions. Mineralogical Journal, 9, 16�27.

Higashi, S. (1982) Tobelite, a new ammonium

dioctahedral mica. Mineralogical Journal, 11,

138�146.

Higashi, S. (2000) Ammonium-bearing mica and mica/

smectite of several pottery stone and pyrophyllite

deposits in Japan: their mineralogical properties and

utilization. Applied Clay Science, 16, 171�184.

Hock, V. (1974) Coexisting phengite, paragonite and

margarite in metasediments of the Mittlere Hohe

Tauern, Austria. Contributions to Mineralogy and

Petrology, 43, 261�273.

Hoffer, E. (1978) On the ‘late’ formation of paragonite

and its breakdown in pelitic rocks of the southern

Damara Orogen (Namibia). Contributions to

Mineralogy and Petrology, 67, 209�219.

Hofmann, B.A. (1990) Reduction spheroids from

northern Switzerland: Mineralogy, geochemistry

and genetic models. Chemical Geology, 81, 55�81.

Ishida, K., Hawthorne, F.C. and Hirowatari, F. (2004)

Shirozulite, KMn2+3 (Si3Al)O10(OH)2, a new manga-

nese-dominant trioctahedral mica: Description and

crystal structure. American Mineralogist, 89,

232�238.

Jiang, S.-Y., Palmer, M.R., Li, Y.-H. and Xue, C.-J.

(1996) Ba-rich micas from the Yindongzi-Daxigou

Pb-Zn-Ag and Fe deposits, Qinling, northwestern

China. Mineralogical Magazine, 60, 433�445.

Jolliff, B.L., Papike, J.J. and Shearer, C.K. (1987)

Fractionation trends in mica and tourmaline as

indicator of pegmatite internal evolution: Bob

Ingersoll pegmatite, Black Hills, South Dakota.

Geochimica et Cosmochimica Acta, 51, 519�534.

Katagas, C. and Baltatzis, E. (1980) Coexisting

celadonitic muscovite and paragonite in chlorite

zone metapelites. Neues Jahrbuch fur Mineralogie,

Monatshefte, No. 5, 206�214.

Keusen, H.R. and Peters, Tj. (1980) Preiswerkite, an Al-

rich trioctahedral sodium mica from the Geisspfad

ultramafic complex (Pennic Alps). American

Mineralogist, 65, 1134�1137.

Kile, D.E. and Foord, E.E. (1998) Micas from the Pikes

Peak batholith and its cogenetic granitic pegmatites,

308

TISCHENDORF ET AL.

Page 25: True and brittle micas: composition and solid-solution seriescnmnc.main.jp/micasolidsolutions.pdf · True and brittle micas: composition and solid-solution series G. TISCHENDORF 1,

Colorado: Optical properties, composition, and

correlation with pegmatite evolution. The Canadian

Mineralogist, 36, 463�482.

Kogarko, L.N., Uvarova, Y.A., Sokolova, E.,

Hawthorne, F.C., Ottolini, L. and Grice, J.D.

(2005) Oxykinoshitalite, a new mica from

Fernando-de-Noronha island, Pernambuco, Brazil:

Occurrence and crystal structure. The Canadian

Mineralogist, 43, 1501�1510.

Konzett, J., Miller, Chr., Armstrong, R. and Thoni, M.

(2005) Metamorphic evolution of iron-rich mafic

cumulates from the Otztal-Stubai crystalline com-

plex, Eastern Alps, Austria. Journal of Petrology, 46,

717�747.

Koval, P.V., Kovalenko, V.I., Kuz’min, M.I.,

Pisarskaya, V.A. and Yurchenko, S.A. (1972)

Mineral parageneses, composition and nomenclature

of micas from rare-metal albite-bearing granitoids.

Doklady Akademii Nauk SSSR, 202, 1174�1177 (in

Russian).

Kuznetsova, L.G. and Zagorskiy, V.E. (1984) The micas

of the metasomatic rocks in the rare-metal province

of a spodumen pegmatite. Doklady Akademii Nauk

SSSR, 275, 151�155 (in Russian).

Lagache, M. and Quemeneur, J. (1997) The Volta

Grande pegmatites, Minas Gerais, Brazil: an

example of rare-element granitic pegmatites ex-

ceptionally enriched in lithium and rubidium. The

Canadian Mineralogist, 35, 153�165.

Lahti, S.I. (1988) Occurrence and mineralogy of the

margarite- and muscovite-bearing pseudomorphs

after topaz in Juurako pegmatite, Orivesi, southern

Finland. Bulletin of the Geological Society of

Finland, 60, 27�43.

Lahti, S.I. and Saikkonen, R. (1985) Bityite 2M1 from

Erajarvi compared with related Li-Be brittle micas.

Bulletin of the Geological Society of Finland, 57,

207�215.

Le Bas, M.J., Keller, J., Tao, K.J., Wall, F., Williams,

C.T. and Zhang, P.S. (1992) Carbonatite dykes at

Bayan Obo, Inner Mongolia, China. Mineralogy and

Petrology, 46, 195�228.

Li, G., Peacor, D.R., Coombs, D.S. and Kawach, Y.

(1997) Solid solution in the celadonite family: The

new minerals ferroceladonite, K2Fe2+2 Fe3+

2

Si8O20(OH)4, and ferroaluminoceladonite,

K2Fe2+2 Al2Si8O20(OH)4. American Mineralogist, 82,

503�511.

Lin, J.-Ch. and Guggenheim, S. (1983) The crystal

structure of a Li, Be-rich brittle mica: a dioctahedral-

trioctahedral intermediate. American Mineralogist,

68, 130�142.

Lovering, F.J. and Widdowson, J.R. (1968) Electron-

microprobe analysis of anandite. Mineralogical

Magazine, 36, 871�874.

Ma Cha and Rossman, G.R. (2006) Ganterite, the

barium mica Ba0.5K0.5Al2(Al1.5Si2.5)O10(OH)2, from

Oreana, Nevada. American Mineralogist, 91,

702�705.

MacKinney, J.A., Mora, C.I. and Bailey, S.W. (1988)

Structure and crystal chemistry of clintonite.

American Mineralogist, 73, 365�375.

Mansker, W.L., Ewing, R.C. and Keil, K. (1979) Barian-

titanian biotites in nephelinites from Oahu, Hawaii.

American Mineralogist, 64, 156�159.

Meunier, J.D. (1994) The composition and origin of

vanadium-rich clay minerals in Colorado plateau

Jurassic sandstones. Clays and Clay Minerals, 42,

391�401.

Mesto, E., Schingaro, E., Cordari, F. and Ottolini, L.

(2006) An electron microprobe analysis, secondary

ion mass spectrometry, and single-crystal X-ray

diffraction study of phlogopites from Mt. Vulture,

Potenza, Italy: Consideration of cation partitioning.

American Mineralogist, 91, 182�190.

Mohamed, F.H., Abdalla, H.M. and Helba, H. (1999)

Chemistry of micas in rare-metal granitoids and

associated rocks, Eastern Desert , Egypt.

International Geological Review, 41, 932�948.

Monier, G. and Robert, J.-L. (1986) Evolution of the

miscibility gap between muscovite and biotite solid

solutions with increasing lithium content: an

experimental study in the system K2O–

Li2O�MgO�FeO–Al2O3–SiO2–H2O–HF at 600ºC,

2 kbar PH2O: comparison with natural lithium micas.

Mineralogical Magazine, 50, 641�651.

Morand, V.J. (1990) High chromium and vanadium in

andalusite, phengite and retrogressive margarite in

contact metamorphosed Ba-rich black slate from the

Abercrombie Beds, New South Wales, Australia.

Mineralogical Magazine, 54, 381�391.

Morgan VI, G.B. and London, D. (1987) Alteration of

amphibolitic wallrocks around the Tanco rare-

element pegmatite, Bernic Lake, Manitoba.

American Mineralogist, 72, 1097�1121.

Motoyoshi, Y. and Hensen, B.J. (2001) F-rich

phlogopite stability in ultra-high-temperature meta-

pelites from the Napier Complex, East Antarctica.

American Mineralogist, 86, 1404�1413.

Ni, Y. and Hughes, J.M. (1996) The crystal structure of

nanpingite-2M2, the Cs end-member of muscovite.

American Mineralogist, 81, 105�110.

Nickel, E.H. (1992) Solid solutions in mineral

nomenclature. The Canadian Mineralogist, 30,

231�234.

Nieto, F. (2002) Characterization of coexisting NH4-

and K-micas in very low-grade metapelites.

American Mineralogist, 87, 205�216.

Novak, M., Cerny, P., Cooper, M., Hawthorne, F.C.,

Ottolini, L., Xu Zhi and Liang, J.J. (1999) Boron-

bearing 2M1 polylithionite and 2M1 + 1M boromus-

covite from an elbaite pegmatite at Recice, western

CLASSIFICATION OF MICAS

309

Page 26: True and brittle micas: composition and solid-solution seriescnmnc.main.jp/micasolidsolutions.pdf · True and brittle micas: composition and solid-solution series G. TISCHENDORF 1,

Moravia, Czech Republic. European Journal of

Mineralogy, 11, 669�678.

Oberti, R., Ungaretti, L., Tlili, A., Smith, D.C. and

Robert, J.-L. (1993) The crystal structure of

preiswerkite. American Mineralogist , 78 ,

1290�1298.

Oen, I.S. and Lustenhouwer, W.J. (1992) Cl-rich biotite,

Cl-K hornblende, and Cl-rich scapolite in meta-

exhalites: Nora, Bergslagen, Sweden. Economic

Geology, 87, 1638�1648.

Pan, Y. and Fleet, M.E. (1991) Barian feldspar and

barian-chromian muscovite from the Hemlo area,

Ontario. The Canadian Mineralogist, 29, 481�498.

Pattiaratchi, D.B., Saari, E. and Sahama, Th.G. (1967)

Anandite, a new barium iron silicate from

Wilagedera, North Western Province, Ceylon.

Mineralogical Magazine, 36, 1�4.

Pekov, I.V., Chukanov, N.V., Ferraris, G., Ivaldi, G.,

Pushcharovsky, D.Yu. and Zadov, A.E. (2003)

Shirokshinite, K(NaMg2)Si4O10F2, a new mica with

octahedral Na from Khibiny massif, Kola peninsula:

descriptive data and structural disorder. European

Journal of Mineralogy, 15, 447�454.

Peretyazhko, I.S., Zagorskiy, V.Ye., Smirnov, S.Z. and

Mikhailov, M.Y. (2004) Conditions of pocket

formation in the Oktyabrskaya tourmaline-rich gem

pegmatite (the Malkhan field, Central Transbaikalia,

Russia). Chemical Geology, 210, 91�111.

Pesquera, A., Torres-Ruiz, J., Gil-Crespo, P.P. and

Velilla, N. (1999) Chemistry and genetic implica-

tions of tourmaline and Li-F-Cs micas from the

Valdeflores area (Caceres, Spain). American

Mineralogist, 84, 55�69.

Poter, B., Gottschalk, M. and Heinrich, W. (2007):

Crystal chemistry of synthetic K-feldspar–budding-

tonite and muscovite–tobelite solid solutions.

American Mineralogist, 92, 151�165.

Reznitskiy, L.Z., Sklyarov, Ye.V., Ushchapovskaya, Z.

F., Nartova, N.V., Yevsyunin, V.G, Kashayev, A.A.

and Suvorova, L.F. (1997) Chromphyllite

KCr2[AlSi3O10](OH,F)2 � a new dioctahedral mica.

Zapiski Vserossiyskogo Mineralogicheskogo

Obshchestva, 126, 110�119 (in Russian).

Rieder, M., Huka, M., Kucerova, D., Minarık, L.,

Obermajer, J. and Povondra, P. (1970) Chemical

composition and physical properties of lithium-iron

micas from the Krusne hory Mts. (Erzgebirge). Part

A: Chemical Composition. Contributions to

Mineralogy and Petrology, 27, 131�158.

Rieder, M. and Cavazzini, G., D’yakonov, Yu.S., Frank-

Kamenetskii, V.A., Gottardi, G., Guggenheim, S.,

Koval’, P.V., Muller, G., Neiva, A.M.R.,

Radoslovich, E.W., Robert, J.-L., Sassi, F.P.,

Takeda, H., Weiss, Z. and Wones, D.R. (1998)

Nomenclature of the micas. The Canadian

Mineralogist, 36, 905�912.

Robert, J.-L. and Maury, R.C. (1979) Natural occurrence

of a (Fe, Mn, Mg) tetrasilicic potassium mica.

Contributions to Mineralogy and Petrology, 68,

117�123.

Ruiz Cruz, M.D. (2004) Na biotite and intermediate Na-

K biotite in schists from the Betic Cordilleras

(Spain). Clay and Clay Minerals, 52, 603�612.

Schaller, W.T., Carron, M.K. and Fleischer, M. (1967)

Ephesite, Na(LiAl2)(Al2Si2)O10(OH)2, a trioctahe-

dral member of the margarite group, and related

brittle micas. American Mineralogist , 52 ,

1689�1696.

Schreyer, W., Abraham, K. and Kulke, H. (1980)

Natural sodium phlogopite coexisting with potass-

sium phlogopite and sodian aluminian talc in a

metamorphic evaporite sequence from Derrag, Tell

Atlas, Algeria. Contributions to Mineralogy and

Petrology, 74, 223�233.

Semenov, E.I. and Shmakin, B.M. (1988) On the

composition of mica rocks in exocontacts of rare-

metal pegmatites from the Bastar area (India).

Doklady Akademii Nauk SSSR, 303, 199�202 (in

Russian).

Shannon R.D. (1976) Revised effective ionic radii and

systematic studies of interatomic distances in halides

and chalcogenides. Acta Crystallographica, A32,

751�767.

Shannon R.D. and Prewitt C.T. (1969) Effective ionic

radii in oxides and fluorides. Acta Crystallographica,

B25, 925�946.

Shaw, C.S.J. and Penczak, R.S. (1996) Barium- and

titanium-rich biotite and phlogopite from the western

and eastern gabbro, Coldwell alkaline complex,

northwestern Ontario. The Canadian Mineralogist,

34, 967�975.

Shen, G., Lu, Q. and Xu, J. (2000) Fluorannite: A new

mineral of mica group from Western suburb of

Suzhou City. Acta Petrologica et Mineralogica, 19,

355�362.

Skosyreva, M.V. and Vlasova, E.V. (1983) First

occurrence of polylithionite from rare-metal granite

pegmatites. Doklady Akademii Nauk SSSR, 272,

694�697 (in Russian).

Solie, D.N. and Su, S.-Ch. (1987) An occurrence of Ba-

rich micas from the Alaska Range. American

Mineralogist, 72, 995�999.

Stoppa, F., Sharygin, V.V. and Cundari, A. (1997) New

mineral data from the kamafugite–carbonatite

association: the melilitolite from Pian di Celle,

Italy. Mineralogy and Petrology, 61, 27�45.

Sun Shihua and Yu Jie (1999) Fe-Li micas: a new

approach to the substitution series. Mineralogical

Magazine, 63, 933�945.

Sun Shihua and Yu Jie (2000) Actual Fe-Li mica series

as a series with &VI constant but not with AlIV or

AlVI. Mineralogical Magazine, 64, 755�775.

310

TISCHENDORF ET AL.

Page 27: True and brittle micas: composition and solid-solution seriescnmnc.main.jp/micasolidsolutions.pdf · True and brittle micas: composition and solid-solution series G. TISCHENDORF 1,

Thomas, R., Forster, H.-J. and Heinrich, W. (2003) The

behaviour of boron in a peraluminous granite-

pegmatite system and associated hydrothermal

solutions: a melt and fluid-inclusion study.

Contributions to Mineralogy and Petrology, 144,

457�472.

Tischendorf, G., Gottesmann, B., Forster, H.-J. and

Trumbull, R.B. (1997) On Li-bearing micas:

estimating Li from electron microprobe analysis

and an improved diagram for graphical representa-

tion. Mineralogical Magazine, 61, 809�834.

Tischendorf, G., Forster, H.-J. and Gottesmann, B.

(1999) The correlation between lithium and magne-

sium in trioctahedral micas: Improved equations for

Li2O estimation from MgO data. Mineralogical

Magazine, 63, 57�74.

Tischendorf, G., Forster, H.-J. and Gottesmann, B.

(2001a) Minor- and trace-element composition of

trioctahedral micas: a review. Mineralogical

Magazine, 65, 249�276.

Tischendorf, G., Forster, H.-J. and Gottesmann, B.

(2001b) Tri- und dioktaedrische Glimmer: ein

komplexes chemisches System. Zeitschrift fur

Geologische Wissenschaften, 29, 275�298.

Tischendorf, G., Rieder, M., Forster, H.-J., Gottesmann,

B. and Guidotti, C.V. (2004) A new graphical

presentation and subdivision of potassium micas.

Mineralogical Magazine, 68, 649�667.

Tombolini, F., Brigatti, M.F., Marcelli, A., Cibin, G.,

Mottana, A. and Giuli, G. (2002) Local and average

Fe distribution in trioctahedral micas: Analysis of Fe

K-edge XANES spectra in the phlogopite–annite and

phlogopite–tetraferriphlogopite joins on the basis of

single-crystal XRD refinements. European Journal

of Mineralogy, 14, 1075�1085.

Tracy, R.J. (1991) Ba-rich micas from the Franklin

Marble, Lime Crest and Sterling Hill, New Jersey.

American Mineralogist, 76, 1683�1693.

Tracy, R.J. and Beard, J.S. (2003) Manganoan

kinoshitalite in Mn-rich marble and skarn from

Virginia. American Mineralogist, 88, 740�747.

Treolar, P.J. (1987) Chromian muscovites and epidotes

from Outokumpu, Finland. Mineralogical Magazine,

51, 593�599.

Troger, W.E. (1962) Uber Protholithionit und

Zinnwaldit � Ein Beitrag zur Kenntnis von

Chemismus und Optik der Lithiumglimmer.

Beitrage zur Mineralogie und Petrographie, 8,

418�431.

Visser, D., Nijland, T.G., Lieftink, D.J. and Maijer, C.

(1999) The occurrence of preiswerkite in a tourma-

line–biotite–scapolite rock from Blengsvatn,

Norway. American Mineralogist, 84, 977�982.

Voncken, J.H.L., van der Eerden, A.M.J. and Jansen,

J.B.H. (1987) Synthesis of a Rb analogue of 2M1

muscovite. American Mineralogist, 72, 551�554.

Wang, R.C., Hu, H., Zhang, A.C., Huang, X.L. and Ni,

P. (2004) Pollucite and the cesium-dominant

analogue of polylithionite as expressions of extreme

Cs enrichment in the Yichun topaz–lepidolite

gran i te , sou thern China . The Canadian

Mineralogist, 42, 883�896.

Weiss, Z., Rieder, M., Chmelova, M. and Krajıcek, J.

(1985) Geometry of the octahedral coordination in

micas: a review of refined structures. American

Mineralogist, 70, 747�757.

Wilson, P.N., Parry, W.T. and Nash, W.P. (1992)

Characterization of hydrothermal tobelitic veins

from black shale, Oquirrh Mountains, Utah. Clays

and Clay Minerals, 40, 405�420.

Wones, D.R. (1963) Phase equilibria of ‘ferriannite’,

KFe3+2Fe+3Si3O10(OH)2. American Journal of

Science, 261, 581�596.

Yang, Y., Ni, Y., Wang, L. and Wang, W. (1988)

Nanpingite: a new cesium mineral. Acta Petrologica

et Mineralogica (China), 7, 49�58.

Yoshii, M., Togashi, Y. and Maeda, K. (1973) On the

intensity changes of basal reflections with relation to

barium content in manganoan phlogopites and

kinoshitalite. Bulletin of the Geological Survey of

Japan, 24, 543�550.

Zagorskiy, V.E. and Makrygin, A.I. (1976) The

evolution of the mica composition at the exocontacts

of Ta-bearing pegmatites (Russ.). Geokhimiya, 9,

1362�1369.

Zhang, M., Suddaby, P., Thompson, R.N. and Dungan,

M.A. (1993) Barian titanian phlogopite from potassic

lavas in northeast China: Chemistry, substitutions,

and paragenesis. American Mineralogist, 78,

1056�1065.

AppendicesThe crystallo-chemical formulae were calculated on the basis of 22 cation charges. The content of water was

calculated assuming the (OH+F+Cl) site is completely filled; av = average, s = 1-Sigma standard deviation,

n = number of determinations, Mg# = Mg/(Mg+Fetot) (a.p.f.u.), Fe# = Fetot/(Fetot+Li) (a.p.f.u.), Al# =VIAl/(VIAl+Fetot+Mg) (a.p.f.u.), mgli = Mg minus Li (a.p.f.u.), feal = VIFetot+Mn+Ti minus VIAl (a.p.f.u.).

CLASSIFICATION OF MICAS

311

Page 28: True and brittle micas: composition and solid-solution seriescnmnc.main.jp/micasolidsolutions.pdf · True and brittle micas: composition and solid-solution series G. TISCHENDORF 1,

APPEN

DIX

1a.Com

position

(wt.%

)ofphlo

gopite

and

its

var

ieties

.

Al-rich

phlo

gopite

Phlo

gopitesensu

stricto

Ti-rich

phlo

gopite

Fe-

rich

phlo

gopite

Ti-Fe-

rich

phlo

gopite

Al-Fe-

rich

phlo

gopite

avs

nav

sn

avs

nav

sn

avs

nav

sn

SiO

239.0

3.3

18

40.1

2.7

512

38.4

2.8

74

37.6

2.0

903

36.9

1.9

221

36.6

1.9

86

TiO

20.4

50.4

118

1.2

01.6

1485

8.0

92.0

674

2.9

01.3

6896

6.6

81.7

9221

1.6

40.8

785

SnO

20.0

01

10.0

04

0.0

07

80.0

02

0.0

04

38

0.0

01

0.0

01

20.0

01

1A

l 2O

319.3

1.7

18

13.3

3.8

509

11.4

2.5

74

14.6

2.7

903

14.5

2.7

221

19.1

1.4

86

Ga 2

O3

0.0

08

10.0

03

0.0

02

10

0.0

05

0.0

04

76

0.0

05

0.0

02

90.0

02

0.0

01

2Sc 2

O3

0.0

02

10.0

02

0.0

01

90.0

04

0.0

03

58

0.0

10

10.0

10

0.0

05

8V

2O

30.0

37

10.0

20

2.9

00

11

0.0

60

0.6

07

118

0.0

50

0.0

40

90.0

45

0.0

42

18

Fe 2

O3

0.1

80.9

14

0.6

83.9

4120

2.1

81.3

33

1.1

03.2

8423

0.3

03.1

949

0.4

52.1

423

Cr 2

O3

0.4

00

0.8

00

40.7

20

0.5

90

267

0.3

50

0.5

60

42

0.1

20

0.3

18

386

0.1

30

0.2

60

67

0.0

75

0.1

20

27

FeO

2.0

91.0

718

3.5

02.5

6470

4.4

02.3

074

11.9

4.8

896

11.5

3.8

220

14.5

3.3

86

MnO

0.4

52.8

213

0.1

51.9

9353

0.0

60.0

447

0.1

90.5

0797

0.1

30.1

3173

0.1

90.2

871

CoO

0.0

00

10.0

01

0.0

00

80.0

08

0.0

05

61

0.0

10

0.0

05

20.0

07

0.0

04

9N

iO0.0

08

10.1

05

0.1

07

125

0.1

20

0.0

60

32

0.0

04

0.0

73

167

0.0

45

0.0

74

25

0.0

17

0.0

32

15

ZnO

0.0

50

10.0

55

0.0

14

12

0.0

60

1.8

96

133

0.0

27

0.0

40

15

0.0

64

0.0

43

25

MgO

22.0

1.6

18

24.3

2.3

512

19.7

2.4

74

16.4

4.1

903

14.5

2.4

221

13.0

2.3

86

Li 2O

0.0

11

0.0

08

30.0

06

0.0

79

125

0.0

19

0.0

16

49

0.0

35

0.0

74

683

0.0

50

0.0

26

190

0.0

70

0.1

99

50

CaO

0.1

00.3

10

0.0

90.1

9294

0.0

80.2

149

0.2

50.4

9628

0.1

30.2

5142

0.1

20.2

357

SrO

0.0

01

0.0

01

20.0

13

0.0

11

19

00.0

33

0.0

05

0.0

62

96

0.0

10

0.0

15

90.0

01

0.0

64

14

BaO

2.5

04.6

28

0.9

52.9

7339

1.1

03.2

861

0.6

22.0

3533

1.2

52.7

8138

0.5

51.3

235

PbO

0.0

02

10.0

01

0.0

01

90

02

0.0

01

0.0

01

40

0.0

02

0.0

04

8N

a 2O

0.1

60.6

717

0.4

50.4

7477

0.2

70.3

572

0.3

20.4

2829

0.5

30.2

9212

0.2

80.3

677

K2O

8.9

31.5

218

9.8

51.1

5512

9.4

71.4

674

9.2

20.8

9903

8.9

71.0

4221

8.7

20.9

586

Rb

2O

0.0

20

10.0

20.0

92

96

0.0

25

0.0

15

40.0

70

0.1

49

228

0.0

50

0.0

26

35

0.0

80

1.4

711

Cs 2

O0.0

07

10.0

02

0.0

35

15

0.0

10

0.5

90

79

0.0

08

0.0

10

80.0

10

1.9

79

H2O

4.0

73.4

53.3

23.5

73.5

53.7

1F

0.3

40.3

36

1.5

52.0

2275

1.7

21.5

119

0.9

31.2

5576

0.9

51.2

1123

0.5

01.0

436

Cl

0.0

21

0.0

40.6

838

0.0

30.0

34

0.1

10.2

5226

0.1

40.2

231

0.3

70.4

822

Sum

100.1

100.6

100.7

100.1

100.4

100.1

�O

=F+Cl

0.1

50.6

60.7

30.4

20.4

30.2

9

Tota

l100.0

99.9

100.0

99.7

100.0

99.8

312

TISCHENDORF ET AL.

Page 29: True and brittle micas: composition and solid-solution seriescnmnc.main.jp/micasolidsolutions.pdf · True and brittle micas: composition and solid-solution series G. TISCHENDORF 1,

APPEN

DIX

1b.A

ver

age

form

ula

eof

phlo

gopite

and

its

var

ieties

.

Al-rich

phlo

gopite

Phlo

gopite

Ti-rich

phlo

gopite

Fe-

rich

phlo

gopite

Ti-Fe-ric

hphlo

gopite

Al-Fe-ric

hphlo

gopite

0.3�

0.5

VI A

lsensu

stricto

0.3�

0.7

5Ti

0.3�

1.4

Fe t

ot

0.3�

0.7

Ti

0.3�

0.5

VI A

l0.3�

1.2

Fe t

ot

0.3�

1.2

Fe t

ot

Si

2.7

60

2.8

68

2.7

78

2.7

89

2.7

35

2.7

17

IVA

l1.2

40

1.1

21

0.9

90

1.2

11

1.2

62

1.2

83

IVFe3

+0.0

11

0.1

19

0.0

03

IVTi

0.1

13

SIVR

4.000

4.000

4.000

4.000

4.000

4.000

VI T

i0.0

24

0.0

65

0.4

40

0.1

62

0.3

72

0.0

91

Sn

0.0

000

0.0

001

0.0

001

0.0

000

0.0

000

VI A

l0.3

69

0.0

00

0.0

00

0.0

66

0.0

00

0.3

89

Ga

0.0

004

0.0

001

0.0

002

0.0

002

0.0

001

Sc

0.0

001

0.0

001

0.0

003

0.0

006

0.0

006

V0.0

021

0.0

011

0.0

036

0.0

030

0.0

027

VI F

e3+

0.0

10

0.0

27

0.0

00

0.0

61

0.0

14

0.0

25

Cr

0.0

22

0.0

41

0.0

20

0.0

07

0.0

08

0.0

04

Fe2

+0.1

24

0.2

09

0.2

66

0.7

38

0.7

13

0.9

00

Mn

0.0

27

0.0

09

0.0

04

0.0

12

0.0

08

0.0

12

Co

0.0

000

0.0

001

0.0

005

0.0

006

0.0

004

Ni

0.0

005

0.0

060

0.0

070

0.0

002

0.0

027

0.0

010

Zn

0.0

026

0.0

029

0.0

033

0.0

015

0.0

035

Mg

2.3

20

2.5

90

2.1

24

1.8

13

1.6

01

1.4

38

Li

0.0

03

0.0

02

0.0

06

0.0

10

0.0

15

0.0

21

SV

I R2.905

2.953

2.867

2.877

2.740

2.888

Ca

0.0

08

0.0

07

0.0

06

0.0

20

0.0

10

0.0

09

Ba

0.0

693

0.0

266

0.0

312

0.0

180

0.0

363

0.0

160

Na

0.0

22

0.0

62

0.0

38

0.0

46

0.0

76

0.0

40

K0.8

06

0.8

99

0.8

74

0.8

72

0.8

48

0.8

26

Rb

0.0

009

0.0

009

0.0

012

0.0

033

0.0

024

0.0

038

Cs

0.0

002

0.0

001

0.0

003

0.0

003

0.0

003

SX

IIR

0.906

0.996

0.950

0.960

0.973

0.895

OH

1.9

22

1.6

44

1.6

02

1.7

68

1.7

59

1.8

37

F0.0

76

0.3

51

0.3

94

0.2

18

0.2

23

0.1

17

Cl

0.0

02

0.0

05

0.0

04

0.0

14

0.0

18

0.0

46

S2.000

2.0

00

2.0

00

2.0

00

2.0

00

2.0

00

Mg#

0.9

45

0.9

16

0.8

89

0.6

94

0.6

88

0.6

09

mgli

2.3

22.5

92.1

21.8

01.5

91.4

2feal

�0.1

80.3

10.6

20.9

11.1

10.6

4

CLASSIFICATION OF MICAS

313

Page 30: True and brittle micas: composition and solid-solution seriescnmnc.main.jp/micasolidsolutions.pdf · True and brittle micas: composition and solid-solution series G. TISCHENDORF 1,

APPR

EN

DIX

2a.Com

position

(wt.%

)of

annite

and

its

var

ieties

.

Ti-M

g-r

ich

annite

Mg-r

ich

annite

Al-M

g-r

ich

annite

Al-rich

annite

Annitesensu

stricto

Li-rich

annite

Li-A

l-rich

annite

avs

nav

sn

avs

nav

sn

avs

nav

sn

avs

n

SiO

235.4

1.6

75

35.4

1.7

690

35.2

1.3

453

34.9

1.8

46

34.7

2.1

89

36.5

2.1

10

37.5

1.2

9

TiO

25.5

01.4

075

3.2

70.8

5689

2.6

50.8

0450

1.9

70.8

445

3.0

61.1

387

1.8

50.9

210

1.0

80.8

99

SnO

20.0

08

0.0

02

50.0

09

0.0

11

137

0.0

08

0.0

09

110

0.0

39

0.0

22

19

0.0

21

0.0

12

13

0.0

51

10.0

57

0.0

06

2

Al 2O

314.4

2.5

75

15.3

2.2

690

19.1

1.1

453

17.7

1.8

46

12.8

2.8

89

12.7

2.5

10

16.1

2.2

9

Ga 2

O3

0.0

08

10.0

10.0

1142

0.0

07

0.0

04

68

0.0

21

0.0

14

30.0

15

0.0

03

4

Sc 2

O3

0.0

04

10.0

08

0.0

1102

0.0

05

0.0

04

108

0.0

05

0.0

03

30.0

07

0.0

04

2

V2O

30.0

21

0.0

40

10

0.0

34

0.0

20

254

0.0

30

0.0

37

162

0.0

06

0.0

12

60.0

05

0.0

02

6

Fe 2

O3

0.9

02.7

420

3.0

03.5

4497

1.8

82.4

2302

4.3

03.1

433

4.5

03.5

266

3.8

55.4

35

1.3

04.1

23

Cr 2

O3

0.0

27

0.0

46

20

0.0

18

0.0

33

338

0.0

18

0.0

21

216

0.0

06

0.0

03

70.0

04

0.0

01

6

FeO

21.5

4.4

75

20.7

4.2

685

20.0

2.8

452

25.2

4.3

46

29.1

6.0

89

27.7

8.2

10

26.5

5.7

9

MnO

0.1

80.1

574

0.4

10.4

9680

0.3

20.3

0448

0.6

10.2

746

0.6

10.6

889

1.3

32.2

510

1.0

20.4

87

CoO

0.0

05

0.0

02

60.0

06

0.0

02

169

0.0

04

0.0

02

118

0.0

01

0.0

01

60.0

03

0.0

01

4

NiO

0.0

08

0.1

16

10

0.0

08

0.0

17

227

0.0

06

0.0

07

171

0.0

01

0.0

00

60.0

01

0.0

00

5

ZnO

0.0

66

0.0

36

13

0.0

65

0.8

14

260

0.0

65

0.0

49

227

0.1

35

0.0

98

90.1

20

0.1

49

11

MgO

7.8

61.8

475

7.7

82.1

8690

6.9

11.9

0453

0.9

10.7

646

1.2

50.6

989

0.3

51.7

710

0.2

20.8

89

Li 2O

0.1

70.0

605

60

0.1

70.1

5639

0.2

00.1

9358

0.4

80.1

945

0.4

00.2

084

1.0

10.8

410

1.3

50.5

79

CaO

0.2

10.5

049

0.3

70.4

4538

0.1

70.3

1320

0.2

60.3

230

0.3

20.6

270

0.2

70.3

07

0.9

40.6

45

SrO

0.0

01

0.0

01

80.0

02

0.0

43

206

0.0

01

0.0

06

115

0.0

01

0.0

01

50.0

02

0.0

00

2

BaO

0.3

52.5

146

0.1

52.3

6392

0.0

10.0

6250

0.0

20.0

210

0.0

94.4

912

PbO

0.0

02

0.0

01

70.0

02

0.0

1122

0.0

02

0.0

01

89

0.0

04

0.0

02

30.0

02

0.0

03

Na 2

O0.1

90.2

570

0.1

90.2

2673

0.2

20.1

8415

0.2

20.1

846

0.2

20.3

184

0.2

90.2

810

0.3

51.2

28

K2O

9.0

51.0

575

8.7

91.1

1690

8.8

90.7

8453

8.5

20.8

046

8.5

61.0

189

8.8

50.4

910

8.9

01.2

59

Rb

2O

0.1

05

0.0

35

11

0.0

95

0.1

00

394

0.1

60

0.6

00

223

0.2

50

0.0

82

28

0.2

00

0.0

89

41

0.8

50

1.3

58

30.3

60

0.1

70

2

Cs 2

O0.0

11

0.0

04

70.0

20.2

6208

0.0

35

0.6

27

171

0.0

21

0.0

21

18

0.0

15

0.0

13

30

0.1

10.0

68

0.0

52

2

H2O

3.4

73.4

43.5

52.9

13.0

32.0

01.8

4

F0.8

10.5

160

0.7

70.7

0469

0.7

40.6

3230

1.7

71.0

044

1.1

41.1

972

3.5

01.4

99

4.0

31.1

38

Cl

0.0

70.4

93

24

0.2

50.9

4137

0.1

10.1

464

0.1

90.0

98

0.4

50.7

616

0.2

01

0.2

41

Tota

l100.3

100.3

100.3

100.4

100.6

101.4

101.9

�O

=F+C

l0.3

50.3

80.3

40.7

90.5

81.5

21.7

5

Tota

l100.0

99.9

99.9

99.7

100.0

99.9

100.1

314

TISCHENDORF ET AL.

Page 31: True and brittle micas: composition and solid-solution seriescnmnc.main.jp/micasolidsolutions.pdf · True and brittle micas: composition and solid-solution series G. TISCHENDORF 1,

APPEN

DIX

2b.A

ver

age

form

ula

eofan

nite

and

its

var

ieties

.

Ti-M

g-ric

han

nite

Mg-ric

han

nite

Al-M

g-r

ich

annite

Al-rich

annite

Annite

Li-rich

annite

Li-A

l-rich

annite

0.3�

0.6

5Ti

0.3�

1.3

Mg

0.3�

0.5

VI A

l0.3�

0.5

VI A

lsensu

stricto

0.3�

1.0

Li

0.3�

0.8

Li

0.3�

1.2

Mg

0.3�

1.2

Mg

0.3�

0.5

VI A

l

Si

2.7

37

2.7

39

2.6

85

2.7

61

2.8

17

2.9

53

2.9

50

IVA

l1.2

63

1.2

61

1.3

15

1.2

39

1.1

83

1.0

47

1.0

50

SIVR

4.000

4.000

4.000

4.000

4.000

4.000

4.000

Ti

0.3

23

0.1

90

0.1

52

0.1

17

0.1

87

0.1

13

0.0

64

Sn

0.0

003

0.0

003

0.0

002

0.0

012

0.0

007

0.0

016

0.0

018

VI A

l0.0

49

0.1

34

0.4

00

0.4

11

0.0

42

0.1

64

0.4

43

Ga

0.0

004

0.0

004

0.0

003

0.0

011

0.0

008

Sc

0.0

003

0.0

006

0.0

003

0.0

003

0.0

005

V0.0

013

0.0

021

0.0

018

0.0

004

0.0

003

Fe3

+0.0

52

0.1

75

0.1

08

0.2

56

0.2

75

0.2

34

0.0

77

Cr

0.0

020

0.0

010

0.0

010

0.0

003

0.0

003

Fe2

+1.3

90

1.3

39

1.2

75

1.6

67

1.9

75

1.8

74

1.7

43

Mn

0.0

12

0.0

27

0.0

21

0.0

41

0.0

42

0.0

91

0.0

68

Co

0.0

003

0.0

003

0.0

002

0.0

001

0.0

002

Ni

0.0

005

0.0

005

0.0

004

0.0

000

0.0

000

Zn

0.0

038

0.0

037

0.0

037

0.0

079

0.0

072

Mg

0.9

05

0.8

97

0.7

85

0.1

07

0.1

51

0.0

42

0.0

26

Li

0.0

53

0.0

53

0.0

61

0.1

53

0.1

31

0.3

29

0.4

27

SV

I R2.793

2.824

2.810

2.763

2.813

2.849

2.850

Ca

0.0

17

0.0

31

0.0

14

0.0

22

0.0

28

0.0

23

0.0

79

Ba

0.0

106

0.0

046

0.0

002

0.0

006

0.0

029

Na

0.0

28

0.0

29

0.0

33

0.0

34

0.0

35

0.0

45

0.0

53

K0.8

92

0.8

68

0.8

65

0.8

68

0.8

87

0.9

13

0.8

93

Rb

0.0

052

0.0

047

0.0

078

0.0

127

0.0

104

0.0

442

0.0

182

Cs

0.0

004

0.0

005

0.0

011

0.0

007

0.0

005

0.0

033

0.0

023

SX

IIR

0.953

0.938

0.921

0.938

0.964

1.028

1.046

OH

1.7

91

1.7

78

1.8

08

1.5

33

1.6

45

1.0

78

0.9

65

F0.2

00

0.1

89

0.1

78

0.4

42

0.2

93

0.8

95

1.0

03

Cl

0.0

09

0.0

33

0.0

14

0.0

25

0.0

62

0.0

27

0.0

32

S2.000

2.000

2.000

2.000

2.000

2.000

2.000

Mg#

0.3

86

0.3

72

0.3

62

0.0

53

0.0

63

0.0

20

0.0

14

mgli

0.8

50.8

40.7

2�

0.0

50.0

2�

0.2

9�

0.4

0feal

1.7

31.6

01.1

61.6

72.4

42.1

51.5

1

CLASSIFICATION OF MICAS

315

Page 32: True and brittle micas: composition and solid-solution seriescnmnc.main.jp/micasolidsolutions.pdf · True and brittle micas: composition and solid-solution series G. TISCHENDORF 1,

APPEN

DIX

3a.Com

position

(wt.%

)of

sider

ophyllite

and

poly

lith

ionite

and

thei

rvar

ieties

.

Mg-ric

hsider

ophyllite

Sid

erophyllitesensu

stricto

Li-rich

sider

ophyllite

Fe-

rich

poly

lith

ionite

Poly

lith

ionitesensu

stricto

avs

nav

sn

avs

nav

sn

avs

n

SiO

235.0

1.9

184

35.9

2.2

131

40.0

2.6

429

46.2

2.5

325

51.0

3.4

318

TiO

22.1

80.8

9182

1.2

10.8

1126

0.6

70.5

6415

0.2

10.2

9286

0.0

90.4

2189

SnO

20.0

13

0.0

11

43

0.0

49

0.0

39

56

0.0

47

0.0

34

117

0.0

35

0.0

40

55

0.0

25

0.0

27

27

Al 2

O3

21.4

1.5

184

20.2

2.1

131

21.6

1.9

429

21.2

2.3

325

23.8

4.4

318

Ga 2

O3

0.0

09

0.0

03

29

0.0

14

0.0

07

20

0.0

16

0.0

10

80

0.0

125

0.0

05

45

0.0

14

0.0

08

22

Sc 2

O3

0.0

04

0.0

02

47

0.0

06

0.0

06

20

0.0

06

0.0

04

68

0.0

06

0.0

04

29

0.0

27

0.0

04

11

V2O

30.0

23

0.0

15

57

0.0

05

0.0

08

26

0.0

02

0.0

04

81

0.0

01

0.0

02

31

0.0

01

0.0

02

8Fe 2

O3

1.5

01.5

877

2.2

52.6

566

1.9

52.0

0209

1.1

21.7

6162

0.3

50.6

1159

Cr 2

O3

0.0

02

0.0

14

83

0.0

04

0.0

13

27

0.0

05

0.0

25

98

0.0

01

0.0

16

44

0.0

003

0.0

04

9FeO

19.5

4.6

184

23.7

4.1

131

17.4

4.4

429

9.7

82.6

1322

0.8

81.2

9273

MnO

0.4

10.5

1179

0.6

40.4

7130

0.6

10.6

5419

0.9

01.4

6312

0.7

21.1

6301

CoO

0.0

03

0.0

01

25

0.0

02

0.0

01

21

0.0

01

0.0

01

77

0.0

01

0.0

01

27

0.0

001

0.0

00

8N

iO0.0

05

0.0

04

55

0.0

01

0.0

02

23

0.0

01

0.0

01

82

0.0

02

0.0

04

39

0.0

03

0.0

06

16

ZnO

0.0

07

0.0

55

79

0.0

85

0.0

68

36

0.0

90

0.1

10

107

0.0

90

0.0

71

58

0.0

37

0.0

49

27

MgO

6.0

03.3

4184

1.1

00.7

0131

0.4

11.0

5427

0.1

70.8

6315

0.1

20.5

6264

Li 2O

0.2

30.3

8172

0.8

0.2

1128

1.7

90.6

0429

3.6

00.8

5325

4.9

11.0

0318

CaO

0.1

20.3

0147

0.2

20.3

693

0.2

50.3

9263

0.1

80.3

3214

0.2

30.6

9177

SrO

0.0

01

0.0

01

53

0.0

01

0.0

01

18

0.0

03

0.0

12

82

0.0

02

0.0

04

49

0.0

05

0.0

07

30

BaO

0.0

59

0.1

43

108

0.0

14

0.0

22

40

0.0

15

0.0

27

139

0.0

09

0.0

21

57

0.0

16

0.0

26

48

PbO

0.0

02

0.0

01

28

0.0

02

0.0

02

18

0.0

01

0.0

04

81

0.0

02

0.0

04

28

0.0

01

0.0

01

9N

a 2O

0.2

40.2

1168

0.2

50.1

8124

0.3

10.2

8423

0.3

20.3

9312

0.4

40.4

6308

K2O

8.9

00.9

3184

8.9

50.7

4131

9.3

10.6

9429

9.8

20.8

4325

10.2

0.7

316

Rb

2O

0.2

40

0.3

40

84

0.3

50

0.1

70

88

0.6

30

0.2

88

307

1.0

30

0.5

90

218

1.3

10

0.8

11

262

Cs 2

O0.0

15

0.7

87

79

0.0

40

0.0

35

48

0.0

90

0.3

47

193

0.1

20

0.3

67

197

0.2

50

0.5

89

212

H2O

3.1

82.6

41.7

91.1

71.3

5F

1.6

31.0

9106

2.5

11.4

0121

4.6

61.6

2412

6.4

51.7

5304

6.6

01.6

9313

Cl

0.0

08

0.0

60

37

0.1

40.1

049

0.0

90.4

5152

0.0

18

0.0

25

31

0.0

17

0.0

14

22

Tota

l100.7

101.1

101.7

102.4

102.4

�O

=F+Cl

0.6

91.0

91.9

82.7

22.7

8

Tota

l100.0

100.0

99.8

99.7

99.6

316

TISCHENDORF ET AL.

Page 33: True and brittle micas: composition and solid-solution seriescnmnc.main.jp/micasolidsolutions.pdf · True and brittle micas: composition and solid-solution series G. TISCHENDORF 1,

APPEN

DIX

3b.A

ver

age

form

ula

eofsider

ophyllite

and

poly

lith

ionite

and

thei

rvar

ieties

.

Mg-r

ich

sider

ophyllite

Sid

erophyllite

Li-rich

sider

ophyllite

Fe-

rich

poly

lith

ionite

Poly

lith

ionite

0.3�

2.2

Mg

sensu

stricto

0.3�

1.3

Li

0.3�

1.1

Fe t

ot

sensu

stricto

Si

2.6

54

2.7

82

2.9

82

3.2

76

3.4

26

IVA

l1.3

46

1.2

18

1.0

18

0.7

24

0.5

74

SIVR

4.000

4.000

4.000

4.000

4.000

Ti

0.1

24

0.0

71

0.0

38

0.0

11

0.0

04

Sn

0.0

004

0.0

015

0.0

014

0.0

010

0.0

007

VI A

l0.5

66

0.6

28

0.8

80

1.0

48

1.3

10

Ga

0.0

004

0.0

007

0.0

008

0.0

006

0.0

006

Sc

0.0

002

0.0

004

0.0

004

0.0

004

0.0

016

V0.0

014

0.0

003

0.0

001

0.0

001

0.0

001

Fe3

+0.0

86

0.1

31

0.1

09

0.0

60

0.0

18

Cr

0.0

012

0.0

002

0.0

003

0.0

001

0.0

000

Fe2

+1.2

36

1.5

36

1.0

84

0.5

80

0.0

49

Mn

0.0

26

0.0

42

0.0

39

0.0

54

0.0

41

Co

0.0

002

0.0

001

0.0

000

0.0

000

0.0

000

Ni

0.0

003

0.0

001

0.0

001

0.0

001

0.0

002

Zn

0.0

004

0.0

049

0.0

050

0.0

047

0.0

018

Mg

0.6

78

0.1

27

0.0

46

0.0

18

0.0

12

Li

0.0

70

0.2

49

0.5

37

1.0

26

1.3

23

SVI R

2.791

2.792

2.741

2.804

2.761

Ca

0.0

10

0.0

18

0.0

20

0.0

14

0.0

17

Ba

0.0

017

0.0

004

0.0

004

0.0

002

0.0

004

Na

0.0

35

0.0

38

0.0

46

0.0

44

0.0

57

K0.8

61

0.8

85

0.8

86

0.8

88

0.8

74

Rb

0.0

117

0.0

174

0.0

302

0.0

470

0.0

566

Cs

0.0

005

0.0

013

0.0

029

0.0

036

0.0

072

SXIIR

0.9

20

0.9

60

0.9

86

0.9

97

1.0

12

OH

1.6

08

1.3

67

0.8

69

0.5

52

0.6

03

F0.3

91

0.6

15

1.1

20

1.4

46

1.3

95

Cl

0.0

01

0.0

18

0.0

11

0.0

02

0.0

02

S2.000

2.000

2.000

2.000

2.000

Fe#

0.9

50

0.8

70

0.6

90

0.3

84

0.0

48

mgli

0.6

1�

0.1

2�

0.4

9�

1.0

1�

1.3

1feal

0.9

11.1

50.3

9�

0.3

4�

1.2

0

CLASSIFICATION OF MICAS

317

Page 34: True and brittle micas: composition and solid-solution seriescnmnc.main.jp/micasolidsolutions.pdf · True and brittle micas: composition and solid-solution series G. TISCHENDORF 1,

APPEN

DIX

4.Com

position

(wt.%

)an

dfo

rmula

eofta

inio

lite

sensu

stricto,ta

inio

litic

mic

asan

dce

ladonite.

Tai

nio

lite

sensu

stricto

Fe-

rich

tain

iolitic

mic

asA

l-rich

tain

iolitic

mic

asCel

adonite

Tai

nio

lite

sensu

stricto

Fe-

rich

tain

iolitic

mic

asA

l-rich

tain

iolitic

mic

asCel

adonite

avs

nav

sn

avs

nav

sn

Mg6

Li

=1.5

8M

g6

Li

=0.3

8M

g6

Li

=0.5

0A

l#=

0.1

34

SiO

256.2

3.5

28

37.7

3.0

17

41.6

1.3

14

54.2

2.3

61

Si

3.8

63

2.8

54

2.9

95

3.8

48

TiO

20.2

00.5

022

1.4

91.2

017

1.2

30.7

113

0.1

70.1

430

IVA

l0.1

37

1.1

46

1.0

05

0.1

52

Al 2

O3

1.9

02.7

026

16.0

4.3

17

20.7

1.6

14

5.0

53.1

759

SIVR

4.000

4.000

4.000

4.000

Fe 2

O3

0.2

51.2

43

1.5

03.9

07

1.0

01.2

09

16.4

4.9

58

Ti

0.0

10

0.0

85

0.0

67

0.0

09

FeO

0.9

70.1

628

17.5

5.9

17

10.4

2.3

14

4.1

23.4

348

VI A

l0.0

14

0.2

82

0.7

52

0.2

70

MnO

0.2

90.4

822

0.3

30.1

517

0.2

60.1

814

0.1

30.0

917

Fe3

+0.0

13

0.0

85

0.0

54

0.8

76

MgO

19.6

1.9

028

9.6

63.7

217

6.4

61.8

814

5.9

81.4

961

Fe2

+0.0

56

1.1

08

0.6

26

0.2

45

Li 2O

2.8

50.6

928

1.1

40.5

517

2.5

11.0

014

Mn

0.0

17

0.0

21

0.0

16

0.0

08

CaO

0.2

60.7

39

0.0

90.1

215

0.2

20.4

411

0.4

30.7

754

Mg

2.0

07

1.0

90

0.6

93

0.6

33

Na 2

O0.4

10.5

823

0.1

70.2

114

0.1

90.1

814

0.2

40.6

339

Li

0.7

88

0.3

47

0.7

27

K2O

10.6

0.7

28

8.5

41.8

017

8.4

91.1

614

8.9

31.5

261

SV

I R2.905

3.018

2.935

2.041

Rb

2O

0.9

01

0.7

52.3

614

1.1

21.1

99

Ca

0.0

19

0.0

07

0.0

17

0.0

33

Cs 2

O0.1

31

0.6

52.2

012

0.9

91.2

114

Na

0.0

55

0.0

25

0.0

27

0.0

33

H2O

0.7

12.8

11.8

63.9

6K

0.9

29

0.8

25

0.7

80

0.8

09

F7.7

01.8

726

2.1

50.9

514

4.8

61.6

314

0.5

50.9

58

Rb

0.0

40

0.0

37

0.0

52

Cl

0.0

21

0.5

2.7

20.0

30.0

27

Cs

0.0

04

0.0

21

0.0

30

SX

IIR

1.047

0.915

0.906

0.875

OH

0.3

24

1.4

24

0.8

93

1.8

73

F1.6

74

0.5

12

1.1

07

0.1

23

Cl

0.0

02

0.0

64

0.0

04

Tota

l103.0

101.0

101.9

100.2

S2.000

2.000

2.000

2.000

�O

=F+Cl

3.2

51.0

22.0

50.2

4mgli

1.2

20.7

4�

0.0

30.6

3

Tota

l99.7

100.0

99.8

100.0

feal

0.0

81.0

20.0

10.8

7

318

TISCHENDORF ET AL.

Page 35: True and brittle micas: composition and solid-solution seriescnmnc.main.jp/micasolidsolutions.pdf · True and brittle micas: composition and solid-solution series G. TISCHENDORF 1,

APPEN

DIX

5a.Com

position

(wt.%

)ofm

usc

ovite

and

its

var

ieties

.

Li-rich

musc

ovite

Musc

ovite

sensu

stricto

Fe-

rich

musc

ovite

Li-Fe-

rich

musc

ovite

Mg-ric

hm

usc

ovite

Mg-F

e-ric

hm

usc

ovite

avs

nav

sn

avs

nav

sn

avs

nav

sn

SiO

247.2

2.9

71

46.0

2.0

862

45.7

2.1

251

45.9

1.8

97

51.0

3.7

252

50.5

3.9

31

TiO

20.0

90.3

853

0.3

60.4

4791

0.3

30.3

4231

0.2

20.2

988

0.2

70.8

0214

0.1

90.3

127

SnO

20.0

38

0.0

31

10

0.0

19

0.0

32

113

0.0

22

0.0

33

37

0.0

32

0.0

22

12

0.0

26

0.0

80

3A

l 2O

331.8

3.6

71

34.6

2.4

862

30.8

2.8

251

27.7

3.8

97

26.8

4.2

252

23.7

4.0

31

Ga 2

O3

0.0

31

0.0

16

50.0

18

0.0

14

57

0.0

24

0.0

11

24

0.0

46

0.0

21

90.0

13

0.0

02

3Sc 2

O3

0.0

02

10.0

05

0.0

047

125

0.0

02

0.0

01

12

0.0

02

0.0

01

40.0

01

0.0

01

3V

2O

30.0

02

0.0

01

20.0

30

2.4

08

144

0.0

09

2.7

96

23

0.0

05

0.0

02

90.0

80

5.9

71

13

Fe 2

O3

0.4

00.9

140

0.1

50.8

7207

1.5

01.4

8134

1.3

52.4

848

0.7

01.1

741

2.0

51.7

812

Cr 2

O3

0.0

00

30.0

30

2.4

17

210

0.0

20

0.2

83

33

0.0

04

0.0

03

40.0

90

3.8

17

86

0.0

90

3.0

53

7FeO

1.3

01.0

663

1.3

30.8

4812

4.0

02.2

7244

6.2

43.0

195

1.7

00.9

3208

4.2

01.8

627

MnO

0.3

30.5

067

0.0

50.1

5668

0.1

60.3

7219

0.3

70.6

089

0.0

40.1

4139

0.1

30.3

022

CoO

0.0

02

0.0

01

66

0.0

01

0.0

01

60.0

01

0.0

01

3N

iO0.0

01

0.0

03

30.0

02

0.0

02

94

0.0

01

0.0

01

25

0.0

02

0.0

01

60.0

01

0.7

41

60.0

20

1ZnO

0.0

64

0.0

55

70.0

10

0.1

25

220

0.0

20

0.0

56

27

0.0

90

0.1

55

60.0

40

0.2

03

20

MgO

0.2

60.7

471

1.2

00.4

6844

1.0

70.7

6249

0.3

70.7

196

3.8

51.6

0252

3.4

00.9

431

Li 2O

1.7

20.8

671

0.1

80.1

8440

0.2

20.2

0192

1.3

80.5

097

0.0

30.0

824

0.0

40.3

54

CaO

0.1

50.4

053

0.0

50.1

7593

0.0

70.2

0189

0.0

80.3

555

0.0

60.1

3152

0.1

50.3

422

SrO

0.0

04

0.0

11

13

0.0

05

0.0

40

145

0.0

50

0.1

08

39

0.0

02

0.0

02

70.0

02

0.0

02

3BaO

0.0

06

0.0

11

21

0.2

00

2.5

30

412

0.0

90

2.6

57

77

0.0

17

0.0

16

26

0.4

00

3.1

56

63

0.1

30

0.2

10

8PbO

0.0

03

0.0

03

34

0.0

01

0.0

01

17

0.0

03

0.0

08

11

0.0

01

0.0

01

3N

a 2O

0.4

90.3

071

0.7

40.4

7846

0.4

00.3

3247

0.4

40.5

793

0.3

80.2

9212

0.1

80.1

929

K2O

10.0

0.8

71

9.9

81.2

0862

10.5

1.2

251

10.1

0.9

97

10.0

1.2

252

10.4

1.0

31

Rb

2O

1.0

40

0.9

30

47

0.1

90

0.3

34

282

0.2

20

0.3

03

127

0.5

70

0.3

77

54

0.0

20

0.0

33

30.0

30

0.2

10

3Cs 2

O0.1

20

0.2

38

47

0.0

25

0.4

18

187

0.0

20

0.1

99

64

0.0

40

0.2

79

39

0.0

03

0.0

03

30.0

05

0.0

08

3H

2O

3.3

24.2

83.9

62.9

34.3

74.2

5F

2.3

51.6

861

0.4

50.5

7409

0.9

01.0

8174

2.9

41.4

387

0.2

50.4

145

0.3

11.2

48

Cl

0.1

20.5

910

0.0

50.4

1111

0.0

30.5

450

0.1

00.7

731

0.0

30.0

715

0.0

41

Tota

l100.8

100.0

100.1

100.9

100.2

99.8

�O

=F+Cl

1.0

20.2

00.3

91.2

60.1

10.1

4Tota

l99.8

99.8

99.7

99.7

100.0

99.7

CLASSIFICATION OF MICAS

319

Page 36: True and brittle micas: composition and solid-solution seriescnmnc.main.jp/micasolidsolutions.pdf · True and brittle micas: composition and solid-solution series G. TISCHENDORF 1,

APPEN

DIX

5b.A

ver

age

form

ula

eof

musc

ovite

and

its

var

ieties

.

Li-rich

musc

ovite

Musc

ovite

sensu

stricto

Fe-

rich

musc

ovite

Li-Fe-ric

hm

usc

ovite

Mg-ric

hm

usc

ovite

Mg-F

e-rich

musc

ovite

0.2�

1.0

Li

0.2�

1.0

Fe t

ot

0.2�

0.9

Li

0.2�

1.0

Mg

0.2�

0.7

Mg

0.2�

0.9

Fe t

ot

0.2�

0.5

Fe t

ot

Si

3.1

68

3.0

74

3.1

23

3.1

80

3.3

98

3.4

41

IVA

l0.8

32

0.9

26

0.8

77

0.8

20

0.6

02

0.5

59

SIVR

4.000

4.000

4.000

4.000

4.000

4.000

Ti

0.0

04

0.0

18

0.0

17

0.0

11

0.0

14

0.0

10

Sn

0.0

010

0.0

005

0.0

006

0.0

009

0.0

007

VI A

l1.6

83

1.8

00

1.6

04

1.4

41

1.5

03

1.3

45

Ga

0.0

013

0.0

008

0.0

011

0.0

002

0.0

006

Sc

0.0

001

0.0

003

0.0

001

0.0

001

0.0

000

V0.0

001

0.0

016

0.0

005

0.0

003

0.0

043

Fe3

+0.0

20

0.0

08

0.0

77

0.0

70

0.0

35

0.1

05

Cr

0.0

016

0.0

011

0.0

002

0.0

047

0.0

048

Fe2

+0.0

73

0.0

74

0.2

29

0.3

61

0.0

95

0.2

39

Mn

0.0

19

0.0

03

0.0

09

0.0

22

0.0

02

0.0

08

Co

0.0

001

0.0

000

0.0

000

Ni

0.0

001

0.0

001

0.0

001

0.0

001

0.0

001

0.0

011

Zn

0.0

032

0.0

005

0.0

010

0.0

046

0.0

020

Mg

0.0

26

0.1

20

0.1

09

0.0

38

0.3

82

0.3

45

Li

0.4

64

0.0

48

0.0

60

0.3

84

0.0

08

0.0

11

SVI R

2.295

2.077

2.110

2.333

2.051

2.069

Ca

0.0

11

0.0

04

0.0

05

0.0

06

0.0

04

0.0

11

Ba

0.0

002

0.0

052

0.0

024

0.0

005

0.0

105

0.0

035

Na

0.0

64

0.0

96

0.0

53

0.0

59

0.0

49

0.0

24

K0.8

56

0.8

51

0.9

15

0.8

92

0.8

50

0.9

04

Rb

0.0

449

0.0

081

0.0

097

0.0

253

0.0

009

0.0

013

Cs

0.0

034

0.0

007

0.0

006

0.0

012

0.0

001

0.0

001

SXIIR

0.979

0.965

0.986

0.984

0.9

14

0.944

OH

1.4

87

1.8

99

1.8

03

1.3

47

1.9

44

1.9

28

F0.4

99

0.0

95

0.1

94

0.6

42

0.0

53

0.0

67

Cl

0.0

14

0.0

06

0.0

03

0.0

11

0.0

03

0.0

05

S2.000

2.000

2.000

2.000

2.000

2.000

Al#

0.9

34

0.8

99

0.7

94

0.7

54

0.7

46

0.6

61

mgli

�0.4

40.0

70.0

5�

0.3

50.3

70.3

3feal

�1.5

7�

1.7

0�

1.2

7�

0.9

8�

1.3

6�

0.9

8

320

TISCHENDORF ET AL.