Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a...

90
Triple Integrals Math 212 Brian D. Fitzpatrick Duke University February 26, 2020 MATH

Transcript of Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a...

Page 1: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsMath 212

Brian D. Fitzpatrick

Duke University

February 26, 2020

MATH

Page 2: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Overview

Triple IntegralsMotivationIterated IntegralsNonrectangular Regions

Page 3: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsMotivation

Example

An object conforms to the shape of a solid W in R3.

P1

f (P1)=14 kg/m3

P2f (P2)=7 kg/m3

P3

f (P3)=9 kg/m3

P4 f (P4)=21 kg/m3

Suppose f ∈ C (R3) measures density (kg/m3) throughout W .

DefinitionThe triple integral of f on W is∫∫∫

Wf dV = mass of W (in kg)

Page 4: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsMotivation

Example

An object conforms to the shape of a solid W in R3.

P1

f (P1)=14 kg/m3

P2f (P2)=7 kg/m3

P3

f (P3)=9 kg/m3

P4 f (P4)=21 kg/m3

Suppose f ∈ C (R3) measures density (kg/m3) throughout W .

DefinitionThe triple integral of f on W is∫∫∫

Wf dV = mass of W (in kg)

Page 5: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsMotivation

Example

An object conforms to the shape of a solid W in R3.

P1

f (P1)=14 kg/m3

P2f (P2)=7 kg/m3

P3

f (P3)=9 kg/m3

P4 f (P4)=21 kg/m3

Suppose f ∈ C (R3) measures density (kg/m3) throughout W .

DefinitionThe triple integral of f on W is∫∫∫

Wf dV = mass of W (in kg)

Page 6: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsMotivation

Example

An object conforms to the shape of a solid W in R3.

P1

f (P1)=14 kg/m3

P2f (P2)=7 kg/m3

P3

f (P3)=9 kg/m3

P4 f (P4)=21 kg/m3

Suppose f ∈ C (R3) measures density (kg/m3) throughout W .

DefinitionThe triple integral of f on W is∫∫∫

Wf dV = mass of W (in kg)

Page 7: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsMotivation

Example

An object conforms to the shape of a solid W in R3.

P1

f (P1)=14 kg/m3

P2f (P2)=7 kg/m3

P3

f (P3)=9 kg/m3

P4 f (P4)=21 kg/m3

Suppose f ∈ C (R3) measures density (kg/m3) throughout W .

DefinitionThe triple integral of f on W is∫∫∫

Wf dV = mass of W (in kg)

Page 8: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsMotivation

Example

An object conforms to the shape of a solid W in R3.

P1

f (P1)=14 kg/m3

P2f (P2)=7 kg/m3

P3

f (P3)=9 kg/m3

P4 f (P4)=21 kg/m3

Suppose f ∈ C (R3) measures density (kg/m3) throughout W .

DefinitionThe triple integral of f on W is∫∫∫

Wf dV = mass of W (in kg)

Page 9: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsMotivation

Example

An object conforms to the shape of a solid W in R3.

P1

f (P1)=14 kg/m3

P2f (P2)=7 kg/m3

P3

f (P3)=9 kg/m3

P4 f (P4)=21 kg/m3

Suppose f ∈ C (R3) measures density (kg/m3) throughout W .

DefinitionThe triple integral of f on W is∫∫∫

Wf dV = mass of W (in kg)

Page 10: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsMotivation

ObservationTracking units allows us to interpret double integrals.∫∫∫

Wf

mass units

volume unit

dV

volume unit

=

mass of W

Page 11: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsMotivation

ObservationTracking units allows us to interpret double integrals.∫∫∫

Wf

mass units

volume unit

dV

volume unit

=

mass of W

Page 12: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsMotivation

ObservationTracking units allows us to interpret double integrals.∫∫∫

Wf

mass units

volume unit

dV

volume unit

=

mass of W

Page 13: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsMotivation

ObservationTracking units allows us to interpret double integrals.∫∫∫

Wf

mass units

volume unit

dV

volume unit

= mass of W

Page 14: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

QuestionHow can we calculate a triple integral?

AnswerUse iterated integrals!

Page 15: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

QuestionHow can we calculate a triple integral?

AnswerUse iterated integrals!

Page 16: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

Example

Suppose f = xy − z ◦C/m3 measures density throughout

W = [1, 3]× [3, 5]× [−2, 2]

The mass of W is∫∫∫W

f dV =

∫ 3

1

∫ 5

3

∫ 2

−2xy − z dz dy dx =

∫ 3

132 x dx

=

∫ 3

1

∫ 5

3xyz − 1

2z2∣∣∣∣z=2

z=−2dy dx = 16 x2

∣∣x=3

x=1

=

∫ 3

1

∫ 5

34 xy dy dx = 128 ◦C

=

∫ 3

12 xy2

∣∣y=5

y=3dx

Page 17: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

Example

Suppose f = xy − z ◦C/m3 measures density throughout

W = [1, 3]× [3, 5]× [−2, 2]

The mass of W is∫∫∫W

f dV =

∫ 3

1

∫ 5

3

∫ 2

−2xy − z dz dy dx =

∫ 3

132 x dx

=

∫ 3

1

∫ 5

3xyz − 1

2z2∣∣∣∣z=2

z=−2dy dx = 16 x2

∣∣x=3

x=1

=

∫ 3

1

∫ 5

34 xy dy dx = 128 ◦C

=

∫ 3

12 xy2

∣∣y=5

y=3dx

Page 18: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

Example

Suppose f = xy − z ◦C/m3 measures density throughout

W = [1, 3]× [3, 5]× [−2, 2]

The mass of W is∫∫∫W

f dV =

∫ 3

1

∫ 5

3

∫ 2

−2xy − z dz dy dx

=

∫ 3

132 x dx

=

∫ 3

1

∫ 5

3xyz − 1

2z2∣∣∣∣z=2

z=−2dy dx = 16 x2

∣∣x=3

x=1

=

∫ 3

1

∫ 5

34 xy dy dx = 128 ◦C

=

∫ 3

12 xy2

∣∣y=5

y=3dx

Page 19: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

Example

Suppose f = xy − z ◦C/m3 measures density throughout

W = [1, 3]× [3, 5]× [−2, 2]

The mass of W is∫∫∫W

f dV =

∫ 3

1

∫ 5

3

∫ 2

−2xy − z dz dy dx

=

∫ 3

132 x dx

=

∫ 3

1

∫ 5

3xyz − 1

2z2∣∣∣∣z=2

z=−2dy dx = 16 x2

∣∣x=3

x=1

=

∫ 3

1

∫ 5

34 xy dy dx = 128 ◦C

=

∫ 3

12 xy2

∣∣y=5

y=3dx

Page 20: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

Example

Suppose f = xy − z ◦C/m3 measures density throughout

W = [1, 3]× [3, 5]× [−2, 2]

The mass of W is∫∫∫W

f dV =

∫ 3

1

∫ 5

3

∫ 2

−2xy − z dz dy dx

=

∫ 3

132 x dx

=

∫ 3

1

∫ 5

3xyz − 1

2z2∣∣∣∣z=2

z=−2dy dx

= 16 x2∣∣x=3

x=1

=

∫ 3

1

∫ 5

34 xy dy dx = 128 ◦C

=

∫ 3

12 xy2

∣∣y=5

y=3dx

Page 21: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

Example

Suppose f = xy − z ◦C/m3 measures density throughout

W = [1, 3]× [3, 5]× [−2, 2]

The mass of W is∫∫∫W

f dV =

∫ 3

1

∫ 5

3

∫ 2

−2xy − z dz dy dx

=

∫ 3

132 x dx

=

∫ 3

1

∫ 5

3xyz − 1

2z2∣∣∣∣z=2

z=−2dy dx

= 16 x2∣∣x=3

x=1

=

∫ 3

1

∫ 5

34 xy dy dx

= 128 ◦C

=

∫ 3

12 xy2

∣∣y=5

y=3dx

Page 22: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

Example

Suppose f = xy − z ◦C/m3 measures density throughout

W = [1, 3]× [3, 5]× [−2, 2]

The mass of W is∫∫∫W

f dV =

∫ 3

1

∫ 5

3

∫ 2

−2xy − z dz dy dx

=

∫ 3

132 x dx

=

∫ 3

1

∫ 5

3xyz − 1

2z2∣∣∣∣z=2

z=−2dy dx

= 16 x2∣∣x=3

x=1

=

∫ 3

1

∫ 5

34 xy dy dx

= 128 ◦C

=

∫ 3

12 xy2

∣∣y=5

y=3dx

Page 23: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

Example

Suppose f = xy − z ◦C/m3 measures density throughout

W = [1, 3]× [3, 5]× [−2, 2]

The mass of W is∫∫∫W

f dV =

∫ 3

1

∫ 5

3

∫ 2

−2xy − z dz dy dx =

∫ 3

132 x dx

=

∫ 3

1

∫ 5

3xyz − 1

2z2∣∣∣∣z=2

z=−2dy dx

= 16 x2∣∣x=3

x=1

=

∫ 3

1

∫ 5

34 xy dy dx

= 128 ◦C

=

∫ 3

12 xy2

∣∣y=5

y=3dx

Page 24: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

Example

Suppose f = xy − z ◦C/m3 measures density throughout

W = [1, 3]× [3, 5]× [−2, 2]

The mass of W is∫∫∫W

f dV =

∫ 3

1

∫ 5

3

∫ 2

−2xy − z dz dy dx =

∫ 3

132 x dx

=

∫ 3

1

∫ 5

3xyz − 1

2z2∣∣∣∣z=2

z=−2dy dx =

16 x2∣∣x=3

x=1

=

∫ 3

1

∫ 5

34 xy dy dx

= 128 ◦C

=

∫ 3

12 xy2

∣∣y=5

y=3dx

Page 25: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

Example

Suppose f = xy − z ◦C/m3 measures density throughout

W = [1, 3]× [3, 5]× [−2, 2]

The mass of W is∫∫∫W

f dV =

∫ 3

1

∫ 5

3

∫ 2

−2xy − z dz dy dx =

∫ 3

132 x dx

=

∫ 3

1

∫ 5

3xyz − 1

2z2∣∣∣∣z=2

z=−2dy dx = 16 x2

∣∣x=3

x=1

=

∫ 3

1

∫ 5

34 xy dy dx =

128 ◦C

=

∫ 3

12 xy2

∣∣y=5

y=3dx

Page 26: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

Example

Suppose f = xy − z ◦C/m3 measures density throughout

W = [1, 3]× [3, 5]× [−2, 2]

The mass of W is∫∫∫W

f dV =

∫ 3

1

∫ 5

3

∫ 2

−2xy − z dz dy dx =

∫ 3

132 x dx

=

∫ 3

1

∫ 5

3xyz − 1

2z2∣∣∣∣z=2

z=−2dy dx = 16 x2

∣∣x=3

x=1

=

∫ 3

1

∫ 5

34 xy dy dx = 128 ◦C

=

∫ 3

12 xy2

∣∣y=5

y=3dx

Page 27: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors

∫ x2

x1

∫ y2

y1

f dy dx

(x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy

(y -slicing)

Triple integrals over rectangular regions come in six flavors∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx

(x-slicing)

∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy

(y -slicing)

∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz

(z-slicing)

Page 28: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors∫ x2

x1

∫ y2

y1

f dy dx

(x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy

(y -slicing)

Triple integrals over rectangular regions come in six flavors∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx

(x-slicing)

∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy

(y -slicing)

∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz

(z-slicing)

Page 29: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors∫ x2

x1

∫ y2

y1

f dy dx

(x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy

(y -slicing)

Triple integrals over rectangular regions come in six flavors∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx

(x-slicing)

∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy

(y -slicing)

∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz

(z-slicing)

Page 30: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors∫ x2

x1

∫ y2

y1

f dy dx (x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy

(y -slicing)

Triple integrals over rectangular regions come in six flavors∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx

(x-slicing)

∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy

(y -slicing)

∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz

(z-slicing)

Page 31: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors∫ x2

x1

∫ y2

y1

f dy dx (x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy

(y -slicing)

Triple integrals over rectangular regions come in six flavors∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx

(x-slicing)

∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy

(y -slicing)

∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz

(z-slicing)

Page 32: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors∫ x2

x1

∫ y2

y1

f dy dx (x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy (y -slicing)

Triple integrals over rectangular regions come in six flavors∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx

(x-slicing)

∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy

(y -slicing)

∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz

(z-slicing)

Page 33: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors∫ x2

x1

∫ y2

y1

f dy dx (x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy (y -slicing)

Triple integrals over rectangular regions come in six flavors

∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx

(x-slicing)

∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy

(y -slicing)

∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz

(z-slicing)

Page 34: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors∫ x2

x1

∫ y2

y1

f dy dx (x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy (y -slicing)

Triple integrals over rectangular regions come in six flavors∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx

(x-slicing)

∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy

(y -slicing)

∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz

(z-slicing)

Page 35: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors∫ x2

x1

∫ y2

y1

f dy dx (x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy (y -slicing)

Triple integrals over rectangular regions come in six flavors∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx

(x-slicing)

∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy

(y -slicing)

∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz

(z-slicing)

Page 36: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors∫ x2

x1

∫ y2

y1

f dy dx (x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy (y -slicing)

Triple integrals over rectangular regions come in six flavors∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx (x-slicing)∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy

(y -slicing)

∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz

(z-slicing)

Page 37: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors∫ x2

x1

∫ y2

y1

f dy dx (x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy (y -slicing)

Triple integrals over rectangular regions come in six flavors∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx (x-slicing)∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy

(y -slicing)

∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz

(z-slicing)

Page 38: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors∫ x2

x1

∫ y2

y1

f dy dx (x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy (y -slicing)

Triple integrals over rectangular regions come in six flavors∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx (x-slicing)∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy (y -slicing)∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz

(z-slicing)

Page 39: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors∫ x2

x1

∫ y2

y1

f dy dx (x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy (y -slicing)

Triple integrals over rectangular regions come in six flavors∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx (x-slicing)∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy (y -slicing)∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz

(z-slicing)

Page 40: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors∫ x2

x1

∫ y2

y1

f dy dx (x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy (y -slicing)

Triple integrals over rectangular regions come in six flavors∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx (x-slicing)∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy (y -slicing)∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz (z-slicing)

Page 41: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

QuestionHow do we compute

∫∫∫W f dV if W is not rectangular?

AnswerOur slicing method will depend on the shape of W .

Page 42: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

QuestionHow do we compute

∫∫∫W f dV if W is not rectangular?

AnswerOur slicing method will depend on the shape of W .

Page 43: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

y

z

6−x2

6−x3

x + 2 y + 3 z = 6

Each x-slice leaves an imprint on the yz-plane.

∫∫∫W

f dV =

∫ 6

0

∫ 6−x2

0

∫ 6−x−2 y3

0f dz dy dx =

∫ 6

0

∫ 6−x3

0

∫ 6−x−3 z2

0f dy dz dx

Page 44: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

y

z

6−x2

6−x3

x + 2 y + 3 z = 6

Each x-slice leaves an imprint on the yz-plane.

∫∫∫W

f dV =

∫ 6

0

∫ 6−x2

0

∫ 6−x−2 y3

0f dz dy dx =

∫ 6

0

∫ 6−x3

0

∫ 6−x−3 z2

0f dy dz dx

Page 45: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

y

z

6−x2

6−x3

x + 2 y + 3 z = 6

Each x-slice leaves an imprint on the yz-plane.

∫∫∫W

f dV =

∫ 6

0

∫ 6−x2

0

∫ 6−x−2 y3

0f dz dy dx =

∫ 6

0

∫ 6−x3

0

∫ 6−x−3 z2

0f dy dz dx

Page 46: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

y

z

6−x2

6−x3

x + 2 y + 3 z = 6

Each x-slice leaves an imprint on the yz-plane.

∫∫∫W

f dV =

∫ 6

0

∫ 6−x2

0

∫ 6−x−2 y3

0f dz dy dx =

∫ 6

0

∫ 6−x3

0

∫ 6−x−3 z2

0f dy dz dx

Page 47: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

y

z

6−x2

6−x3

x + 2 y + 3 z = 6

Each x-slice leaves an imprint on the yz-plane.

∫∫∫W

f dV =

∫ 6

0

∫ 6−x2

0

∫ 6−x−2 y3

0f dz dy dx =

∫ 6

0

∫ 6−x3

0

∫ 6−x−3 z2

0f dy dz dx

Page 48: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

y

z

6−x2

6−x3

x + 2 y + 3 z = 6

Each x-slice leaves an imprint on the yz-plane.

∫∫∫W

f dV =

∫ 6

0

∫ 6−x2

0

∫ 6−x−2 y3

0f dz dy dx =

∫ 6

0

∫ 6−x3

0

∫ 6−x−3 z2

0f dy dz dx

Page 49: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

y

z

6−x2

6−x3

x + 2 y + 3 z = 6

Each x-slice leaves an imprint on the yz-plane.

∫∫∫W

f dV =

∫ 6

0

∫ 6−x2

0

∫ 6−x−2 y3

0f dz dy dx =

∫ 6

0

∫ 6−x3

0

∫ 6−x−3 z2

0f dy dz dx

Page 50: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

y

z

6−x2

6−x3

x + 2 y + 3 z = 6

Each x-slice leaves an imprint on the yz-plane.

∫∫∫W

f dV =

∫ 6

0

∫ 6−x2

0

∫ 6−x−2 y3

0f dz dy dx =

∫ 6

0

∫ 6−x3

0

∫ 6−x−3 z2

0f dy dz dx

Page 51: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

z

6− 2 y

6−2 y3

x + 2 y + 3 z = 6

Each y -slice leaves an imprint on the xz-plane.

∫∫∫W

f dV =

∫ 3

0

∫ 6−2 y

0

∫ 6−x−2 y3

0f dz dx dy =

∫ 3

0

∫ 6−2 y3

0

∫ 6−2 y−3 z

0f dx dz dy

Page 52: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

z

6− 2 y

6−2 y3

x + 2 y + 3 z = 6

Each y -slice leaves an imprint on the xz-plane.

∫∫∫W

f dV =

∫ 3

0

∫ 6−2 y

0

∫ 6−x−2 y3

0f dz dx dy =

∫ 3

0

∫ 6−2 y3

0

∫ 6−2 y−3 z

0f dx dz dy

Page 53: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

z

6− 2 y

6−2 y3

x + 2 y + 3 z = 6

Each y -slice leaves an imprint on the xz-plane.

∫∫∫W

f dV =

∫ 3

0

∫ 6−2 y

0

∫ 6−x−2 y3

0f dz dx dy =

∫ 3

0

∫ 6−2 y3

0

∫ 6−2 y−3 z

0f dx dz dy

Page 54: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

z

6− 2 y

6−2 y3

x + 2 y + 3 z = 6

Each y -slice leaves an imprint on the xz-plane.

∫∫∫W

f dV =

∫ 3

0

∫ 6−2 y

0

∫ 6−x−2 y3

0f dz dx dy =

∫ 3

0

∫ 6−2 y3

0

∫ 6−2 y−3 z

0f dx dz dy

Page 55: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

z

6− 2 y

6−2 y3

x + 2 y + 3 z = 6

Each y -slice leaves an imprint on the xz-plane.

∫∫∫W

f dV =

∫ 3

0

∫ 6−2 y

0

∫ 6−x−2 y3

0f dz dx dy =

∫ 3

0

∫ 6−2 y3

0

∫ 6−2 y−3 z

0f dx dz dy

Page 56: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

z

6− 2 y

6−2 y3

x + 2 y + 3 z = 6

Each y -slice leaves an imprint on the xz-plane.

∫∫∫W

f dV =

∫ 3

0

∫ 6−2 y

0

∫ 6−x−2 y3

0f dz dx dy =

∫ 3

0

∫ 6−2 y3

0

∫ 6−2 y−3 z

0f dx dz dy

Page 57: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

z

6− 2 y

6−2 y3

x + 2 y + 3 z = 6

Each y -slice leaves an imprint on the xz-plane.

∫∫∫W

f dV =

∫ 3

0

∫ 6−2 y

0

∫ 6−x−2 y3

0f dz dx dy =

∫ 3

0

∫ 6−2 y3

0

∫ 6−2 y−3 z

0f dx dz dy

Page 58: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

z

6− 2 y

6−2 y3

x + 2 y + 3 z = 6

Each y -slice leaves an imprint on the xz-plane.

∫∫∫W

f dV =

∫ 3

0

∫ 6−2 y

0

∫ 6−x−2 y3

0f dz dx dy =

∫ 3

0

∫ 6−2 y3

0

∫ 6−2 y−3 z

0f dx dz dy

Page 59: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

y

6− 3 z

6−3 z2

x + 2 y + 3 z = 6

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 2

0

∫ 6−3 z

0

∫ 6−x−3 z2

0f dy dx dz =

∫ 2

0

∫ 6−3 z2

0

∫ 6−2 y−3 z

0f dx dy dz

Page 60: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

y

6− 3 z

6−3 z2

x + 2 y + 3 z = 6

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 2

0

∫ 6−3 z

0

∫ 6−x−3 z2

0f dy dx dz =

∫ 2

0

∫ 6−3 z2

0

∫ 6−2 y−3 z

0f dx dy dz

Page 61: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

y

6− 3 z

6−3 z2

x + 2 y + 3 z = 6

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 2

0

∫ 6−3 z

0

∫ 6−x−3 z2

0f dy dx dz =

∫ 2

0

∫ 6−3 z2

0

∫ 6−2 y−3 z

0f dx dy dz

Page 62: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

y

6− 3 z

6−3 z2

x + 2 y + 3 z = 6

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 2

0

∫ 6−3 z

0

∫ 6−x−3 z2

0f dy dx dz =

∫ 2

0

∫ 6−3 z2

0

∫ 6−2 y−3 z

0f dx dy dz

Page 63: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

y

6− 3 z

6−3 z2

x + 2 y + 3 z = 6

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 2

0

∫ 6−3 z

0

∫ 6−x−3 z2

0f dy dx dz =

∫ 2

0

∫ 6−3 z2

0

∫ 6−2 y−3 z

0f dx dy dz

Page 64: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

y

6− 3 z

6−3 z2

x + 2 y + 3 z = 6

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 2

0

∫ 6−3 z

0

∫ 6−x−3 z2

0f dy dx dz =

∫ 2

0

∫ 6−3 z2

0

∫ 6−2 y−3 z

0f dx dy dz

Page 65: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

y

6− 3 z

6−3 z2

x + 2 y + 3 z = 6

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 2

0

∫ 6−3 z

0

∫ 6−x−3 z2

0f dy dx dz =

∫ 2

0

∫ 6−3 z2

0

∫ 6−2 y−3 z

0f dx dy dz

Page 66: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

y

6− 3 z

6−3 z2

x + 2 y + 3 z = 6

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 2

0

∫ 6−3 z

0

∫ 6−x−3 z2

0f dy dx dz =

∫ 2

0

∫ 6−3 z2

0

∫ 6−2 y−3 z

0f dx dy dz

Page 67: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

y

z

√1− x2

x2

1

z = x2 + y2

Each x-slice leaves an imprint on the yz-plane.

∫∫∫W

f dV =

∫ 1

0

∫ √1−x20

∫ 1

x2+y2

f dz dy dx =

∫ 1

0

∫ 1

x2

∫ √z−x20

f dy dz dx

Page 68: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

y

z

√1− x2

x2

1

z = x2 + y2

Each x-slice leaves an imprint on the yz-plane.

∫∫∫W

f dV =

∫ 1

0

∫ √1−x20

∫ 1

x2+y2

f dz dy dx =

∫ 1

0

∫ 1

x2

∫ √z−x20

f dy dz dx

Page 69: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

y

z

√1− x2

x2

1

z = x2 + y2

Each x-slice leaves an imprint on the yz-plane.

∫∫∫W

f dV =

∫ 1

0

∫ √1−x20

∫ 1

x2+y2

f dz dy dx =

∫ 1

0

∫ 1

x2

∫ √z−x20

f dy dz dx

Page 70: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

y

z

√1− x2

x2

1

z = x2 + y2

Each x-slice leaves an imprint on the yz-plane.

∫∫∫W

f dV =

∫ 1

0

∫ √1−x20

∫ 1

x2+y2

f dz dy dx =

∫ 1

0

∫ 1

x2

∫ √z−x20

f dy dz dx

Page 71: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

y

z

√1− x2

x2

1

z = x2 + y2

Each x-slice leaves an imprint on the yz-plane.

∫∫∫W

f dV =

∫ 1

0

∫ √1−x20

∫ 1

x2+y2

f dz dy dx =

∫ 1

0

∫ 1

x2

∫ √z−x20

f dy dz dx

Page 72: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

y

z

√1− x2

x2

1

z = x2 + y2

Each x-slice leaves an imprint on the yz-plane.∫∫∫W

f dV =

∫ 1

0

∫ √1−x20

∫ 1

x2+y2

f dz dy dx =

∫ 1

0

∫ 1

x2

∫ √z−x20

f dy dz dx

Page 73: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

y

z

√1− x2

x2

1

z = x2 + y2

Each x-slice leaves an imprint on the yz-plane.∫∫∫W

f dV =

∫ 1

0

∫ √1−x20

∫ 1

x2+y2

f dz dy dx =

∫ 1

0

∫ 1

x2

∫ √z−x20

f dy dz dx

Page 74: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

y

z

√1− x2

x2

1

z = x2 + y2

Each x-slice leaves an imprint on the yz-plane.∫∫∫W

f dV =

∫ 1

0

∫ √1−x20

∫ 1

x2+y2

f dz dy dx =

∫ 1

0

∫ 1

x2

∫ √z−x20

f dy dz dx

Page 75: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

x

y

√z

√z

z = x2 + y2

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 1

0

∫ √z0

∫ √z−x20

f dy dx dz =

∫ 1

0

∫ √z0

∫ √z−y2

0f dx dy dz

Page 76: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

x

y

√z

√z

z = x2 + y2

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 1

0

∫ √z0

∫ √z−x20

f dy dx dz =

∫ 1

0

∫ √z0

∫ √z−y2

0f dx dy dz

Page 77: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

x

y

√z

√z

z = x2 + y2

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 1

0

∫ √z0

∫ √z−x20

f dy dx dz =

∫ 1

0

∫ √z0

∫ √z−y2

0f dx dy dz

Page 78: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

x

y

√z

√z

z = x2 + y2

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 1

0

∫ √z0

∫ √z−x20

f dy dx dz =

∫ 1

0

∫ √z0

∫ √z−y2

0f dx dy dz

Page 79: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

x

y

√z

√z

z = x2 + y2

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 1

0

∫ √z0

∫ √z−x20

f dy dx dz =

∫ 1

0

∫ √z0

∫ √z−y2

0f dx dy dz

Page 80: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

x

y

√z

√z

z = x2 + y2

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 1

0

∫ √z0

∫ √z−x20

f dy dx dz =

∫ 1

0

∫ √z0

∫ √z−y2

0f dx dy dz

Page 81: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

x

y

√z

√z

z = x2 + y2

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 1

0

∫ √z0

∫ √z−x20

f dy dx dz =

∫ 1

0

∫ √z0

∫ √z−y2

0f dx dy dz

Page 82: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

x

y

√z

√z

z = x2 + y2

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 1

0

∫ √z0

∫ √z−x20

f dy dx dz =

∫ 1

0

∫ √z0

∫ √z−y2

0f dx dy dz

Page 83: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the region 2 x2 + 2 z2 ≤ y ≤ x2 + z2 + 4.

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

x2 + z2 = 4

x

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

√4− z2−

√4− z2

Each z-slice leaves an imprint on the xy -plane.∫∫∫W

f dV =

∫ 2

−2

∫ √4−z2−√4−z2

∫ x2+z2+4

2 x2+2 z2f dy dx dz

Page 84: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the region 2 x2 + 2 z2 ≤ y ≤ x2 + z2 + 4.

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

x2 + z2 = 4

x

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

√4− z2−

√4− z2

Each z-slice leaves an imprint on the xy -plane.∫∫∫W

f dV =

∫ 2

−2

∫ √4−z2−√4−z2

∫ x2+z2+4

2 x2+2 z2f dy dx dz

Page 85: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the region 2 x2 + 2 z2 ≤ y ≤ x2 + z2 + 4.

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

x2 + z2 = 4

x

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

√4− z2−

√4− z2

Each z-slice leaves an imprint on the xy -plane.∫∫∫W

f dV =

∫ 2

−2

∫ √4−z2−√4−z2

∫ x2+z2+4

2 x2+2 z2f dy dx dz

Page 86: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the region 2 x2 + 2 z2 ≤ y ≤ x2 + z2 + 4.

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

x2 + z2 = 4

x

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

√4− z2−

√4− z2

Each z-slice leaves an imprint on the xy -plane.∫∫∫W

f dV =

∫ 2

−2

∫ √4−z2−√4−z2

∫ x2+z2+4

2 x2+2 z2f dy dx dz

Page 87: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the region 2 x2 + 2 z2 ≤ y ≤ x2 + z2 + 4.

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

x2 + z2 = 4

x

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

√4− z2−

√4− z2

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 2

−2

∫ √4−z2−√4−z2

∫ x2+z2+4

2 x2+2 z2f dy dx dz

Page 88: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the region 2 x2 + 2 z2 ≤ y ≤ x2 + z2 + 4.

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

x2 + z2 = 4

x

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

√4− z2−

√4− z2

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 2

−2

∫ √4−z2−√4−z2

∫ x2+z2+4

2 x2+2 z2f dy dx dz

Page 89: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the region 2 x2 + 2 z2 ≤ y ≤ x2 + z2 + 4.

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

x2 + z2 = 4

x

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

√4− z2−

√4− z2

Each z-slice leaves an imprint on the xy -plane.∫∫∫W

f dV =

∫ 2

−2

∫ √4−z2−√4−z2

∫ x2+z2+4

2 x2+2 z2f dy dx dz

Page 90: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the region 2 x2 + 2 z2 ≤ y ≤ x2 + z2 + 4.

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

x2 + z2 = 4

x

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

√4− z2−

√4− z2

Each z-slice leaves an imprint on the xy -plane.∫∫∫W

f dV =

∫ 2

−2

∫ √4−z2−√4−z2

∫ x2+z2+4

2 x2+2 z2f dy dx dz