Trig 4.5 Worksheet Intro to Graphing π (π) and π (π)Β Β· 2020. 11. 5.Β Β· Trig 4.5C...
Embed Size (px)
Transcript of Trig 4.5 Worksheet Intro to Graphing π (π) and π (π)Β Β· 2020. 11. 5.Β Β· Trig 4.5C...

Trig 4.5 β Worksheet Intro to Graphing πππ(π) and πππ(π)
Name ________________________________
Graph each on the grid provided.
1) π¦ = β2πππ (π₯)
A = ___________
P = ___________
D: ___________
R: ___________
2) π¦ = β3π ππ(π₯) + 1
A = ___________
P = ___________
D: ___________
R: ___________
3) π¦ = 2π ππ (π₯ βπ
2)
A = ___________
P = ___________
D: ___________
R: ___________
P.S. ___________
4) π¦ = 3πππ (π₯ β π)
A = ___________
P = ___________
D: ___________
R: ___________
P.S. ___________
2
2
,
2,2
3
2
,
2,5
2
2
,
2,2
2
3
2
,
3,3

Write an equation for the given graph.
5)
6)
Analyze the πππ (π₯) and π ππ(π₯) graphs above and use a phase shift to write π ππ(π₯) in terms of πππ (π₯)β¦
πππ(π) = _________________
Then do the same for πππ (π₯)β¦
πππ(π) = ________________________
Find the amplitude, phase shift, and vertical shift of each.
7) π¦ = 2π ππ (π₯ βπ
4) + 2 8) π¦ = β7πππ (π₯ +
π
9) β 4 9) π¦ = 1.6π ππ(π₯ + 5π) + 3
2sin
2cos2
y x
or
y x
cos2
y x
sin2
y x
2
4
2
A
PS
VS
7
9
4
A
PS
VS
1.6
5
4
A
PS
VS

Trig 4.5A Worksheet β Graphing πππ(π) and πππ(π)
Compressions and Stretches
Graph each on the grid provided.
1) π¦ = β2πππ (2π₯)
A = ___________
P = ___________
D: ___________
R: ___________
GAP: ___________
2) π¦ = β3π ππ(0.5π₯) + 1
A = ___________
P = ___________
D: ___________
R: ___________
GAP: ___________
3) π¦ = 2π ππ(4π₯)
A = ___________
P = ___________
D: ___________
R: ___________
GAP: ___________
2
,
2,2
4
3
4
,
2,5
2
2
,
2,2
4

4) π¦ = 3πππ (π₯
3 ) β 1
A = ___________
P = ___________
D: ___________
R: ___________
GAP: ___________
5) π¦ = 2π ππ(ππ₯)
A = ___________
P = ___________
D: ___________
R: ___________
GAP: ___________
Find the period of each.
6) π¦ = β4πππ (0.2π₯) 7) π¦ = β16π ππ2 (π₯ βπ
9) 8) π¦ = 7πππ (3π₯ β π)
9) Write an equation of a sine function with amplitude 4, a range of [0,8] and a period of 4π.
10) Write an equation of a cosine function with amplitude 7, a range of [β8, 6] and a period of π
6
3
6
,
4,2
3
2
2
2
,
2,2
10
1
2
2
3
14sin 4
2y x
7cos 12 1y x

Trig 4.5B Worksheet β Graphing πππ(π) and πππ(π)
Compressions, Stretches, and Vertical Shifts Graph each on the grid provided.
1) π¦ = βπππ (2π₯) + 1
A = ___________
P = ___________
D: ___________
R: ___________
Midline: ___________
GAP: ___________
2) π¦ = βπ ππ(0.5ππ₯) β 1
A = ___________
P = ___________
D: ___________
R: ___________
Midline: ___________
GAP: ___________
3) π¦ = 2π ππ3(π₯) β 2
A = ___________
P = ___________
D: ___________
R: ___________
Midline: ___________
GAP: ___________
1
,
0,2
1y
4
1
4
,
2,0
1y
1
22
3
,
4,0
2y
6

4) π¦ = β2π ππ (π
3π₯)
A = ___________
P = ___________
D: ___________
R: ___________
Midline: ___________
GAP: ___________
Find the period and write an equation for the midline of each.
5) π¦ = β4πππ (0.1π₯) + 2 6) π¦ = β14π ππ (4π₯ βπ
9) β 12 7) π¦ = 7πππ (5π₯ + π) + 10
8) Write an equation of a sine function with amplitude 3, a range of [0,6] and a period of 8.
9) Write an equation of a cosine function with amplitude 12, a range of [β14, 10] and a period of π
8
10) Write an equation for the following graph as a sine and cosine function. .
2
6
,
2,2
0y
3
2
: 20
: 2
P
M y
:
2
: 12
P
M y
2:
5
: 10
P
M y
3sin 34
y x
12cos 16 2y x
2sin(2 )
2cos 24
y x
or
y x

Trig 4.5C Worksheet β Graphing πππ(π) and πππ(π)
Compressions, Stretches, and Vertical Shifts
Graph each on the grid provided. The domain of all πππ(π) and πππ(π) graphs is all real numbers so I
took that off.
1) π¦ = βπππ (2π₯ β π)
A = ___________
P = ___________
Phase Shift: ___________
R: ___________
GAP: ___________
2) π¦ = 2sin (0.5ππ₯ + π)
A = ___________
P = ___________
Phase Shift: ___________
R: ___________
GAP: ___________
3) π¦ = β4π ππ3 (π₯ +π
6)
A = ___________
P = ___________
Phase Shift: ___________
R: ___________
GAP: ___________
**Use the scale of π
6 **
1
1,1
4
2
4
2
3
4,4
6
6
2
4
2,2
1
2

4) π¦ = 2πππ (ππ₯ β 4π) + 1
A = ___________
P = ___________
Phase Shift: ___________
R: ___________
GAP: ___________
Midline: ___________
Find the period and phase shift.
5) π¦ = β4πππ (.2π₯ β 1) + 2 6) π¦ = β14π ππ2 (π₯ βπ
9) 7) π¦ = 7πππ (0.5π₯ + π)
8) Write an equation of a sine function with amplitude 7, a range of [10,24] and a period of 8π.
9) Write an equation of a cosine function with amplitude 13, a range of [β13, 13] and a period of π
13
2
2
1,3
1
2
4
1y
:10
: 5
P
PS
:
:9
P
PS
: 4
: 2
P
PS
7sin 174
xy
13cos 26y x

10) Find the value of k that will produce a phase shift of 2π
7 given π¦ = 14πππ (3π₯β π).
11) What is the maximum value of the function π(π₯) = 12πππ (4π₯) + 19?
12) What is the minimum value of the function π(π₯) = β15π ππ(2π₯ + π) β 20?
6
7k
31Max
35Min

Trig 4.6 Worksheet β Graphing πππ(π) and πππ(π)
Graph each on the grid provided.
1) π¦ = βπ ππ(2π₯) + 1
P = ___________
D = ___________
R: ___________
VS: ___________
GAP: ___________
2) π¦ = βππ π(0.5ππ₯)
P = ___________
D = ___________
R: ___________
VS: ___________
GAP: ___________
3) π¦ = 2ππ π3 (π₯ +π
6)
P = ___________
D = ___________
R: ___________
VS: ___________
GAP: ___________
**Use the scale of π
6 **

4) π¦ = β2π ππ (π
3π₯) + 1
P = ___________
D = ___________
R: ___________
VS: ___________
GAP: ___________
Find the range and phase shift for each.
5) π¦ = β4π ππ(.1π₯ β π) + 2 6) π¦ = β14ππ π4 (π₯ βπ
9) β 14 7) π¦ = 7π ππ(5π₯ + π) + 10
Write equations for the following graphs.
8)
9)

Trig 4.6A Worksheet β Graphing πππ(π) and πππ(π)
Graph the following functions. Please use a different color for each function.
1) π¦ = 2π‘ππ(π₯) and π¦ = β2π‘ππ(π₯)
P = ___________
D = ___________
R: ___________
GAP: ___________
2) π¦ = 3πππ‘(π₯) and π¦ = β3πππ‘(π₯)
P = ___________
D = ___________
R: ___________
GAP: ___________
3) π¦ = βπ‘ππ(π₯ + π)
P = ___________
D = ___________
R: ___________
VS: ___________
GAP: ___________

4) π¦ = βπππ‘ (π₯ βπ
4)
P = ___________
D = ___________
R: ___________
Phase Shift: ___________
GAP: ___________
What is another equation for this graph?
5) π¦ = πππ‘ (π₯ +π
4)
P = ___________
D = ___________
R: ___________
Phase Shift: ___________
GAP: ___________
What is another equation for this graph?
6) π¦ = 2π‘ππ (π₯ βπ
2) + 1
P = ___________
D = ___________
R: ___________
Phase Shift: ___________
GAP: ___________
VS: _____________
What is another equation for this graph?
Find phase shift of each and state whether the graph is increasing or decreasing.
7) π¦ = β8π‘ππ(2π₯ β π) 8) π¦ = 7πππ‘3 (π₯ βπ
3) 9) π¦ = βπππ‘ (4π₯ β
π
16)
10) π¦ = 3π‘ππ9(π₯ β π) 11) π¦ = βπ‘ππ (3π₯ βπ
4) 12) π¦ = 4πππ‘(4π₯ + 5)
13) Write an equation for an increasing tangent graph with a period of π and a phase shift π
7
14) Write an equation for a decreasing cotangent graph with a period of π and a phase shift of β2π
9

Trig 4.6B Worksheet β Graphing πππ(π) and πππ(π)
Stretching and Compressing Graph the following functions.
1) π¦ = 2π‘ππ(2π₯) P = ___________
D = ___________
R: ___________
GAP: ___________
2) π¦ = πππ‘(3π₯) + 1 P = ___________
D = ___________
R: ___________
GAP: ___________
V.S.: __________
3) π¦ = βπ‘ππ2(π₯ + π)
P = ___________
D = ___________
R: ___________
Phase Shift: ___________
GAP: ___________
4) π¦ = βπππ‘4 (π₯ βπ
4)
P = ___________
D = ___________
R: ___________
Phase Shift: ___________
GAP: ___________ What is another equation for this graph?

5) π¦ = βπππ‘2 (π₯ +π
4)
P = ___________
D = ___________
R: ___________
Phase Shift: ___________
GAP: ___________ What is another equation for this graph?
6) π¦ = π‘ππ (π₯
2β
5
8) + 5
P = ___________
D = ___________
R: ___________
GAP: ___________
V.S.: __________
What is another equation for this graph?
Find the period of each.
7) π¦ = β8π‘ππ(2π₯ β π) 8) π¦ = 7πππ‘3 (π₯ βπ
3) 9) π¦ = βπππ‘4 (4π₯ β
π
16)
10) π¦ = 3π‘ππ9(π₯ β π) 11) π¦ = βπ‘ππ (3π₯ βπ
4) 12) π¦ = 4πππ‘(4π₯ + 5)
13) Write an equation for an increasing tangent graph with a period of 4π and a phase shift π
7
14) Write an equation for a decreasing cotangent graph with a period of 3π and a phase shift of β2π
9

Trig 4.6C Worksheet β Graphing All Trig Functions
Graph each and list the important information.
1) π¦ = β2π‘ππ(2π₯) β1
P = ___________
D = ___________
R: ___________
GAP: ___________
V.S.: __________
Write a πππ(π) equation for this graph _________________________
2) π¦ = 3πππ‘ (π₯
4)
P = ___________
D = ___________
R: ___________
GAP: ___________
Write a πππ(π) equation for this graph __________________________
3) πΊπππβ π¦ = βπ ππ (1
2π₯ β
π
4) + 1
A = ___________
P = ___________
D = ___________
R = ___________
VS: ___________
PS: ___________

4) π¦ = 2πππ (2π₯ β π)
A = ___________
P = ___________
D = ___________
R = ___________
PS: ___________
GAP: ___________
5) π¦ = β3ππ π2 (π₯ βπ
4)
P = ___________
D = ___________
R: ___________
Phase Shift: ___________
GAP: ___________ What is another equation for this graph?
6) π¦ = βπ ππ(4π₯ β π) β 1
P = ___________
D = ___________
R: ___________
Phase Shift: ___________
GAP: ___________ What is another equation for this graph?
7) The period of a decreasing π‘ππ(π₯) graph is 3π with a phase shift of βπ
6. The graph passes through
(7π
12, β3). Write an equation to represent this situation.

Trig 7B Worksheet β Trig Inverses Worksheet Find each without a calculator.
1) π ππβ1(1) + πππ β1(0) β π‘ππβ1(1)
2) πππ β1(β1) β 2π ππβ1 (β1
2) + 3π ππβ1 (
1
2)
3) π ππβ1(β1) + 15π ππβ1(0)
4) ππ πβ1(2) + 16π ππβ1(β1) β 2πππ β1(β1)
5) π ππβ1 [πππ (π
6)]
6) πππ β1 [π‘ππ (π
4)]
7) π ππ [πππ β1 (3
5)]
8) π‘ππβ1 [π ππ (βπ
2)] + cos(0) β 17 sin(0)
9) πππ‘ [πππ β1 (12
13)]
10) π ππ[π ππβ1(β1)] + πππ [πππ β1(β1)] + π‘ππ[π‘ππβ1(β1)]

Use a right triangle to write each expression as an algebraic expression. Assume that π is positive and
that the given inverse trig function is defined for the expression in π.
11) π‘ππ[πππ β1(π₯)] 12) πππ [π ππβ1(2π₯)]
13) πππ [π ππβ1 (1
π₯)] 14) π ππ [πππ β1 (
1
π₯)]
Determine the domain and range of each function.
15) π(π₯) = π ππ[π ππβ1(π₯)] 16) π(π₯) = π ππβ1[π ππ(π₯)]
17) π(π₯) = πππ [πππ β1(π₯)] 18) π(π₯) = πππ β1[π ππ(π₯)]