Trial Pile Design excel

68
document.xls Summary 1 DPCL East Coast Railway Scoot Wilson India Pv. Ltd. Summary Sheet INPUT DATA Bridge NO 8 Project Name DPCL Between Stn. Km Proposed Span 1 x 30.5 m PSC SLAB Chainage Loading H.M.Loading Super Str. Drg. 11521 River Common Level Individual Level Description Level ( m ) Description Abt Bottom Of Slab 18.857 Proposed Formation Level 19.444 Top of Bed Block 18.841 HFL 13.400 Bottom of Bed Block 18.091 Deepest Scour Lvl #VALUE! Top of Foundation 10.000 Front Bed Level 11.700 Bottom of Foundation-10.000 Thickness of Bed Blo 0.750 Bearing + PedestalThick ( 0.016 Observed Scour Level 11.700 Lowest Water Level ( LWL ) -11.000 10.000 Span & Load Description Abt Unit Reference / Remarks Clear Span 30.5 m Effective Span 31.926 m C/C of Bearing as per Data Given in RDS Overall Span 32.886 m O/A Length of Girder as per Data Given in ickness of Slab/ Gird 0.845 m Thickness of Super Str with Wearing Dead Wt. of Girder 65.3 t As per RDSO Drg. Wt of Track / m run 0.45 t/m Unballasted Deck Ballast Cushion 0 m As per Cl . 2 .2 . 2 Br Rule Live Load (OSL) 460.85 t As per Appendix -II Br Rule Long Load (OSL ) 120 t As per Appendix -VII Br Rule Live Load ( TSL ) - t As per Appendix -II Br Rule Long Load ( TSL ) - t As per Appendix -VII Br Rule Soil & Seismic Data Description Value Unit Refrence / Remarks Angle of Repose of Back Soi 35 deg As per table " I " of Sub Str. Code ( As per Soil report for back fill not available) Angle of friction bet. Soil & Mas 11.7 deg 1/3 of Phi (Angle of repose Coff. Of Friction 0.5 As per Soil report or tan (ø) at base of Foundation Safe Bearing Capacity 15 As per Soil report or Bore log available Seismic Zone III As per Appendix XV of Br Rule Zone Factor a = 0.04 As per Cl 2-12-3-3 Bridge Rule Soil Coff. b = 1.5 As per Cl 2-12-4-3 Bridge Rule Importance Factor I #VALUE! As per Cl 2-12-4-4 Bridge Rule Velocity of Flow 0.63 m/s As per Hydraulic Calculation sheet Maretial Specification Description Abt Pier 1 Pier 2 6 1 Compressive = NA Tensile NA Compressive = Tensile = Compressive = Tensile = Density of Masonary 2.5 Grade of Mass CC ( If Provided) 20 Grade of RCC ( If Provided ) M - 35 mPa rade of Steel to be Used fe 415 Other Misc Data Trolley Refuge to Be Provided = ( 1 = Yes , 2 =N 2 Approach Slab ( 1=Provided,2=Not Provided) 1 Type of Channel ( 1=Balancing culvert,2=Channe Top of Foundation( Back Si t/m 2 Construction Material ( 1= Stone in Lime,2=Stone in Cement, 3=Brick in Lime 4 = Brick in Cement , 5 = Cement Concrete,6= RCC) Factor for Over Stressing ( 2 = 100% 1 =0 %) As per Cl 5.16.3.3 Permissible Stress :- ( t/m 2 ) without Over stressing Permissible Stress :- ( t/m 2 ) with Over stressing in Normal Condition Permissible Stress :- ( t/m 2 ) with Over stressing in Seismic / Wind t/m 3 onal Resistance ( 1= to be taken , 2= not to be taken ) i

description

Pile design spreadsheet with all various details including calculation sheet input of different parameters.

Transcript of Trial Pile Design excel

Page 1: Trial Pile Design excel

document.xls Summary 1

DPCL East Coast Railway Scoot Wilson India Pv. Ltd.

Summary SheetINPUT DATABridge NO 8 Project Name DPCL Between Stn.

KmProposed Span 1 x 30.5 m PSC SLAB ChainageLoading H.M.Loading Super Str. Drg. No 11521 River

Common Level Individual Level

Description Level ( m ) Description Abt

Bottom Of Slab 18.857Proposed Formation Level 19.444 Top of Bed Block 18.841HFL 13.400 Bottom of Bed Block 18.091Deepest Scour Lvl #VALUE! Top of Foundation 10.000Front Bed Level 11.700 Bottom of Foundation -10.000

Thickness of Bed Block 0.750 Bearing + PedestalThick (m) 0.016 Observed Scour Level 11.700Lowest Water Level ( LWL ) -11.000 10.000

Span & Load

Description Abt Unit Reference / Remarks

Clear Span 30.5 mEffective Span 31.926 m C/C of Bearing as per Data Given in RDSO Drg.

Overall Span 32.886 m O/A Length of Girder as per Data Given in RDSO Drg.

Thickness of Slab/ Girder 0.845 m Thickness of Super Str with Wearing Coat

Dead Wt. of Girder 65.3 t As per RDSO Drg.

Wt of Track / m run 0.45 t/m Unballasted Deck

Ballast Cushion 0 m As per Cl . 2 .2 . 2 Br Rule

Live Load (OSL) 460.85 t As per Appendix -II Br Rule

Long Load (OSL ) 120 t As per Appendix -VII Br Rule

Live Load ( TSL ) - t As per Appendix -II Br Rule

Long Load ( TSL ) - t As per Appendix -VII Br Rule

Soil & Seismic DataDescription Value Unit Refrence / Remarks

Angle of Repose of Back Soil 35 deg As per table " I " of Sub Str. Code ( As per Soil report for back fill not available)

Angle of friction bet. Soil & Masonary 11.7 deg 1/3 of Phi (Angle of repose

Coff. Of Friction 0.5 As per Soil report or tan (ø) at base of Foundation

Safe Bearing Capacity 15 As per Soil report or Bore log available

Seismic Zone III As per Appendix XV of Br Rule

Zone Factor a = 0.04 As per Cl 2-12-3-3 Bridge Rule

Soil Coff. b = 1.5 As per Cl 2-12-4-3 Bridge Rule

Importance Factor I #VALUE! As per Cl 2-12-4-4 Bridge Rule

Velocity of Flow 0.63 m/s As per Hydraulic Calculation sheet

Maretial SpecificationDescription Abt Pier 1 Pier 2 Well

6

1

Compressive = NATensile = NACompressive =Tensile =Compressive =Tensile =

Density of Masonary 2.5 Grade of Mass CC ( If Provided) 20 mPaGrade of RCC ( If Provided ) M - 35 mPa Grade of Steel to be Used fe- 415 mPa

Other Misc DataTrolley Refuge to Be Provided = ( 1 = Yes , 2 =No ) 2 Approach Slab ( 1=Provided,2=Not Provided) 2

1 Type of Channel ( 1=Balancing culvert,2=Channel) 2

Top of Foundation( Back Side)

t/m2

Construction Material ( 1= Stone in Lime,2=Stone in Cement, 3=Brick in Lime 4 = Brick in Cement , 5 = Cement Concrete,6= RCC)

Factor for Over Stressing ( 2 = 100% 1 =0 %) As per Cl 5.16.3.3

Permissible Stress :- ( t/m2 ) without Over stressing

Permissible Stress :- ( t/m2 ) with Over stressing in Normal Condition

Permissible Stress :- ( t/m2 ) with Over stressing in Seismic / Wind

t/m3

Frictional Resistance ( 1= to be taken , 2= not to be taken ) if well

E5
Select from Loading
G5
Select from Loading
B6
1 :- MBG 2:- Single WDG-2
B41
1- Rock 1.2- Medium Iso & Well 1.5- Soft Well & Iso 1.0 - Pile medium 1.2- Soft Pile
Page 2: Trial Pile Design excel

document.xls RCC Abutment 2

DPCL East Coast Railway Scoot Wilson India Pv. Ltd.

1 DESIGN OF ABUTMENT ( RCC )2 Bridge No 8 Prop Formation Level 19.4443 Top of Foundation 10.0004 Prop. Span 1 x 30.500 + 0 x 0.000 PSC Top of Bed Block 18.8415 Project DPCL Bed Level 11.7006 Std. Of Loading H.M.Loading First Checking Level 18.0067 Prop 2nd Chk Level 14.5868 1 Clear Span 30.500 m9 2 Effective Span 31.926 m10 3 Loaded Length of Girder/SLAB. 32.886 m

11 4 Surcharge Dead Load= 6.200 Live Load 17.00012 5 Total Load of Girder/SLAB 65.300 t13 6 Dead Load of p.way per Running Metre 0.500 t/m14 7 Total Live load on Girder 460.850 t15 8 Total Long. load on Girder 120.000 t16 9 Barrel Length of Abutment 7.000 m17 10 Top Width of abutment 1.520 m18 11 Dist From C/c of Bearing To Front of ABT. 0.713 m19 12 Height From Formation To Bed Block...= 0.603 m20 13 Thk of Pedestal = 0.400 Bearing = 0.065 m Cap = 0.750 m21 14 Height form bottom of Cap to TOP of FOUNDATION 8.091 m22 15 Width of Bed Block 3.660

23 16 Dead Load Surcharge 6.200

24 17 Density of back fill 1.80025 18 Width of Live Load Distribution 3.000 m26 23 phi (radian) f = 35.000 Deg 0.611 radian27 24 del (radian) d = 11.667 Deg 0.204 radian28 25 Height of Passive from Top of Foundation 1.700 m29 26 Coeff. of friction for phi soil 0.50030 27 DEGREE OF CURVE 0.000 Degree31 28 SLAB ( CUSHION = 1 , CUSHION LESS = 2 ) 2.00032 30 Seismic Parameter :-33 Zone = III a = 0.040 b = 1.500 I = ###34 31 Weight of Approach Slab = 0.000 t35 32 Length of Approach Slab 0.000 m36 33 Eccentricity of Approach Slab from C/L of Abt -0.760 m37

34Abutment Cap Detail

38 Top width of cap = 1.695 m Top Length of Cap 6.850 m39 Thickness at End = 0.750 m Thickness at Face 0.750 m40

35

Detail of Dirt Wall :-41 Length of Dirt Wall = 6.850 m42 Thickness of Dirt Wall = 0.300 m43 Height of Dirt Wall = 2.210 m44

36Load from Straight Return :-

45 Load of Straight Return Wall ( 1 Return ) 0.000 t46 Eccentricity from back of Abt 1.700 m47 Type Of Bearing ( 1 = Fixed , 2 = Free ) 1

t/m2 t/m2

t/m2

t/m3

Page 3: Trial Pile Design excel

document.xls RCC Abutment 3

DPCL East Coast Railway Scoot Wilson India Pv. Ltd.

48 Distribution Diagram49

50 7.00051

52 18.84153 3.66054 155 1

56 Width of Distri. 5.330 18.00657 1st chk lvl58 1.670

59 17.17160

61

62

63

64

65 Width of Distri. 7.000 14.58666 2nd chklvl67

68

69

70

71

72

73

74

75

76

77

78

79

80

81 10.000 TOF82

83

84

85

86

87

88

89

90

91

92

93

Page 4: Trial Pile Design excel

document.xls RCC Abutment 4

DPCL East Coast Railway Scoot Wilson India Pv. Ltd.

94

2210

Formation 19.444 F.L95 Level96

97 30098 Bottom of

19.30699 Girder

100 Top of 18.841101

750

Cap102 1695103

1040

105

106

107 Bottom of 18.091108 Cap109

110

111

112 1520

113

114

115

116 1st chk 18.006117 LVL118

119

120

121 2nd CHK 14.586122 LVL123

124

125

126

127

128 Top of 10.000129 Foundation130

131

132

133

134

135

136 Area of X -section ( 1 m Width ) = 1.520

137 Section Modulus = Zxx = 0.385

m2

m3

Page 5: Trial Pile Design excel

document.xls RCC Abutment 5

DPCL East Coast Railway Scoot Wilson India Pv. Ltd.

138

139 DESIGN OF ABUTMENT140 BRIDGE NO = 8 PROJECT = DPCL141 1.000 DEAD LOAD ( SIDL )142 (i) Loaded length of Girder / Slab = 32.886 m DL @ 1stCHK LVL L :10

143 (ii) Weight of Track = 0.500 t/m 81.743 / ( 2 x 5.33 ) L :13

144 (iii) Weight of Slab / Girder = 65.300 t = 7.668 t/m (WIDTH) L :12

145 (iv) Total weight of Track = DL @ 2nd CHK LVL146 0.500 X 32.886 = 16.443 t 81.743 / ( 2 x 7 )147 Total Dead Load = 81.743 t = 5.839 t/m (WIDTH)

148 Dead Load on Each Abutment / m width ( At Top of Foundation)149 81.743 / ( 2 X 7.000 ) = 5.839t/m (WIDTH)150 2.000 LIVE LOAD 151

152 Standard Of Loading = H.M.Loading153 Loaded length of Girder / Slab = 32.886 m154 Live Load without Impact = 460.850 t L :14

155 Coff . Of Dynamic Augment as per Bridge Rule Clause No 2.4.1.1156

157CDA = 0.150 +

8= 0.15 +

8 = 0.356158 6 + L 6 + 32.886

159 (i) Dynamic Augment At First Checking Level160

161 As per Cl 5.4 ( c ) of sub str. Code full CDA to be taken 0.356162

163 (ii) Dynamic Augment At 2nd Checking Level164

165 As per Cl 5.4 ( c ) of sub str. Code full CDA to be taken 0.356166

167 (iii) Dynamic Augment At Top of Foundation168

169 As per Cl 5.4 ( c ) of sub str. Code full CDA to be taken 0.356170

171 2.(a). Live Load /m (Width)172 (i) At First Checking Level173

174 Live load with Impact 460.850 X (1 + 0.356 ) = 624.788 t175 624.788 / ( 2 X 5.330 ) = 58.611 t/m

176 (ii) At 2nd Checking Level L :56

177

178 Live load with Impact 460.850 X (1 + 0.356 ) = 624.788 t

179 624.788 / ( 2 X 7.000 ) = 44.628 t/m180 (iii) At the Top Of Foundation L :65

181

182 Live load with Impact 460.850 X (1 + 0.356 ) = 624.788 t183 624.788 / ( 2 X 7.000 ) = 44.628 t/m184 L :16

185 3.000 CALCULATION OF HORIZONTAL FORCE (LONGITUDINAL LOAD).186 Loaded Length = 32.886 m L :10

187 Total Horz. Force = 120.000 t L :15

188 Dispersion of Horz. Force on App as per Bridge Rule = Higher of 16t or 25% of Total horz. Force189 But In case of Rail Free Fastening Only .190 = 30.000 t 191 Net Horz. Force = 120.000 - 30.000 = 90.000 t192

193 (i) Long Load / m Width at First CHK LVL194 90.000 / 1 x 5.330 = 16.886 T/m (WIDTH)195 (ii) Long Load / m Width at 2nd CHK LVL196 90.000 / 1 x 7.000 = 12.857 T/m (WIDTH)197 (ii) Long Load / m Width at Top of Foundation198 90.000 / 1 x 7.000 = 12.857 T/m (WIDTH)

Page 6: Trial Pile Design excel

document.xls RCC Abutment 6

DPCL East Coast Railway Scoot Wilson India Pv. Ltd.

199 4.000 ACTIVE EARTH PRESSURE200 For Calculating the Active Earth Pressure COULOMB'S Theory will Fallowed201 As Per This Theory The Active Earth Pressure Is Given As Under

202 Pa =203

204 Ka =205

206 ] ^2207

208 Fallowing values are taken for calculating the active earth pressure209 a = 0.000 Radians210 f = 0.611 Radians211 a = 0.000 Radians212 d = 0.204 Radians213 i = 0.000 Radians214 Hence Ka = 0.251215

216 Earth Pressure Due to Seismic Effect 5.12.6.1 Sub Str

217 a = b = I =218 0.040 x 1.500 x ### = ###219 2 = ### / 2 = ###220

221 a- l = =#VALUE! = ### With ( + ) ###

222 1 + ### = ###223

224

Ca =225 2226

227

228 Ca = ###229

230

231 b- l = =#VALUE! = ### With ( - ) ###

232 1 - 0.000 = ###233

234

Ca =235 2236

237

238 Ca = ###239

240 Final Ca = ### ( Max Value of above 4 i.e a,b)241

242 Dynamic Increment = Ca - Ka = ### - 0.251 = ###

243

244

245 (i) Horizontal Component Of Active Earth Pressure246 Pah =247 Acting At Y1= (H/3) Above Section Considerd248 (ii) Vertical Component Of Active Earth Pressure249 Pav =

250

251

252 (i) Active Earth Pressure at First Checking Level253 Height form Formation Level 1.438 m 94&116

254 Pa = 0.500 X 0.251 X 1.800 X ( 1.438255 Pa = 0.467 t/m L :214 L :24

256 Horizontal Component Of Active Earth Pressure257 Pah = 0.467 X Cos( 0.000 + 0.204 )258 Pah = 0.458 t/m Will act at 1.438 / 3 = 0.479 m259

260 (ii) Active Earth Pressure at 2nd Checking Level261 Height form Formation Level 4.858 m 2&7

262 Pa = 0.500 X 0.251 X 1.800 X ( 4.858263 Pa = 5.333 t/m264 Horizontal Component Of Active Earth Pressure265 Pah = 5.333 X COS( 0.000 + 0.204 )266 Pah = 5.223 t/m Will act at 4.858 / 3 = 1.619 m267

0.5 X KA X w X (H)2 per unit length of wall

Cos^2(f - a)

Cos^2(a) Cos(a + d ) [1+ Sin(f + d) Sin(f - Cos(a+ d) Cos (a - I)

a (h) =a (v) = a (h) /

tan -1a (h)

tan -1

Ca

se I

- w

ith "

+"

& "

+"

Va

lue

1 +a (v)

( 1 + a v ) Cos2(f - a - l)

Cos( l )Cos2 (a) Cos(a + d + l) 1 + Sin(f + d) Sin(f - i - l )Cos(a+ d + l) Cos (a - i)

tan -1a (h)

tan -1

Ca

se I

V-

with

" -

" &

" -"

Va

lue

1 -a (v)

( 1 - a v ) Cos2(f - a - l)

Cos( l )Cos2 (a) Cos(a + d + l) 1 + Sin(f + d) Sin(f - i - l )Cos(a+ d + l) Cos (a - i)

Pa X Cos( a + d )

Pa X Sin( a + d )ACTING AT Y1 X Cot (90-a) FROM FACE OF WALL ( Will be ignored in all calculation as Faces are Vertical )

) 2

) 2

Page 7: Trial Pile Design excel

document.xls RCC Abutment 7

DPCL East Coast Railway Scoot Wilson India Pv. Ltd.

268 (iii) Active Earth Pressure at Top Of Foundation269 Height form Formation Level 9.444 m 2&3

270 Pa = 0.500 X 0.251 X 1.800 X ( 9.444271 Pa = 20.151 t/m272 Horizontal Component Of Active Earth Pressure273 Pah = 20.151 X COS( 0.000 + 0.204 )274 Pah = 19.735 t/m Will act at 9.444 / 3 = 3.148 m275

276 5.000 EARTH PRESSURE DUE TO SURCHARGE 277

278 (i) At First Checking Level L :11

279 Height = H = 1.438 m Live Load sur =S= 17.000 t/m^2280 Length of Abutment = L = 7.000 m Dead Load Sur = V6.200 t/m^2281 Width Of Distribution = B = 3.000 m L :11

282 L :25

283 Since H < (L-B)284

285 Case no = 1 Will be Used

286 (S+V) X Ka x H287 P1 = (B+H) Will act at H / 2 m288 P1 = 1.887 t/m289

290 Horizontal Component 291 P1h = 1.887 X COS( 0.000 + 0.204 )292 P1h = 1.848 t/m Will act a 0.719 m293

294 (S+V)XKa X H^2295 P2 = 2 X B X (B+H)296

297 P2 = 0.452 t/m Will act a 2H/3298 Y2 = 0.959 Metre299 Horizontal Component 300 P2h = 0.452 X COS( 0.000 + 0.204 )301 = 0.443 t/m Will Act a 0.959 Metre302

303 (ii) At 2nd Checking Level304 Height = H = 4.858 m L :261

305 Length of Abutment = L = 7.000 m L :16

306 Width Of Distribution = B = 3.000 m L :25

307 Since H > (L-B)308 CASE NO.= 2 will be used309

310 P1 = (S+V) X Ka x H Will act at = H/2 m311 L = 2.429 m312 P1 = 4.042 t/m313 Horizontal Component 314 P1h = 4.042 X COS( 0.000 + 0.204 ) = 3.959 t/m315 WILL ACTING AT 2.429 Metre316

317 P2 = (S+V) X Ka X (L-B)^2318 2 X B X L319 P2 = 2.219 t/M(WIDTH), ACTING AT = [H-(L-B)/3)] 3.525 m320 Horizontal Component 321 P2h = 2.219 X COS( 0.000 + 0.204 ) = 2.173 t/m322 WILL ACT AT Y2 = 3.525 Metre323

324 .(iii) At the Top of Foundation325 Height = H = 9.444 m L :269

326 Length of Abutment = L = 7.000 m327 Width Of Distribution = B = 3.000 m328 Since H > (L-B)329 CASE NO.= 2 will be used330

331

332 P1 = (S+V) X Ka X H Will act at H/2333 L334 P1 = 7.857 t/m Will act a 4.722 m335 Horizontal Component 336 P1h = 7.857 X COS( 0.000 + 0.204 ) = 7.695 t/m337 WILL ACT AT Y1= (H1)/2 = 4.722 m338

339 P2 = (S+V)XKa X (L-B)^2340 2 X B X L341 P2 = 2.219 t/m Will act at = [H-(L-B)/3 = 8.111 m

) 2

Page 8: Trial Pile Design excel

document.xls RCC Abutment 8

DPCL East Coast Railway Scoot Wilson India Pv. Ltd.

342 Horizontal Component 343 P2h = 2.219 X COS( 0.000 + 0.204 ) = 2.173 t/m344 WILL ACT AT = 8.111 Metre345

346 6.000 Calculation Of Reaction from Approach Slab347

348 Load on per unit Barrel Length = 0.000 / 7.000 x 2 = 0.000 t349 L :34

350 7.000 Moment Due to Weight of Return351

352 Total Load from Return = 0.000 x 2.000 = 0.000 t353

354 Total load / Width = 0.000 / 7.000 = 0.000 t-m355

356 Eccentricity from back face of Wall = -1.700 m357

358 Total Moment = 0.000 t-m359

360 Moment / m width = 0.000 / 7.000 = 0.000 t-m361

362 8.000 Calculation of Self Weight of Abutment :-363

364 Considering 1 m Width365

366 ItemWeight (

367 Dirt Wall 0.300 2.210 2.500 1.657 -0.610 -1.011368 Bed block 1.695 0.750 2.500 3.178 0.088 0.278369 Lower Rec portion 1.520 0.000 2.500 0.000 0.000 0.000370 Lower Triangle Portion 0.175 0.000 2.500 0.000 0.818 0.000371 From bott of BB to 1st chk lvl 1.520 0.085 2.500 0.323 0.000 0.000372 from 1st chk lvl to 2nd lvl 1.520 3.421 2.500 12.998 0.000 0.000373 from 2nd chk lvl to top of Fnd 1.520 4.586 2.500 17.425 0.000 0.000374

375 Levels Weight Moment376 Load up 1st chk LVL 5.159 -0.733377 Load up to 2nd chk lvl 18.157 -0.733378 Load up to top of Foundation 35.581 -0.733379

380 9.000 SEISMIC FORCE381

382 ###383 VERT. SEISMIC COFF. (ALPHA v) =ALPHA h /2= ###384

385 1st Checking Level386 DESCRIPTION FORCE L.A Moment387 a SFH1= DUE TO Live LoaD(50 %inY direction) ### 0.835 ###388 c SFV1= DUE TO Live Load ### 0.713 ###389 e SHF3= DUE TO D.L OF SUPER STR. ### 0.835 ###390 f SFV3= DUE TO D.L OF SUPER STR. ### 0.713 ###391 I SFH5= DUE TO SELF WT. OF Abutment ### 0.418 ###392 j SFV5= DUE TO SELF WT. OF Abutment ### 0.000 ###393 k ### 0.72 = ### 5.12.6.1( c ) Sub Str.

394 Total Ver Load = ### t395 Total Horz Load = ### t396 Total Moment = ### t-m397

398 2nd Checking Level399 DESCRIPTION FORCE L.A Moment400 a SFH1= DUE TO Live Load ### 4.256 ###401 c SFV1= DUE TO Live Load ### 0.713 ###402 e SHF3= DUE TO D.L OF SUPER STR. ### 4.256 ###403 f SFV3= DUE TO D.L OF SUPER STR. ### 0.713 ###404 I SFH5= DUE TO SELF WT. OF Abutment ### 2.128 ###405 j SFV5= DUE TO SELF WT. OF Abutment ### 0.000 ###406 k ### 2.43 = ### 5.12.6.1( c ) Sub Str.

407 Total Ver Load = ### t408 Total Horz Load = ### t409 Total Moment = ### t-m

L ( Horz.)

b ( Vert. )

Density ( t /m3)

Eccentricity form Centre of Abt ( m )

Moment ( t-m )

HORZ. SEISMIC COFF. (ALPHA h ) =a o X b X I =

Due to Dynamic increment in Earth Pressure ( 0.5*(Ca-Ka)*w*h2 )

Ignoring the Seismic Effect of Live Load in Perpendicular Direction

Due to Dynamic increment in Earth Pressure ( 0.5*(Ca-Ka)*w*h2 )

Ignoring the Seismic Effect of Live Load in Perpendicular Direction

Page 9: Trial Pile Design excel

document.xls RCC Abutment 9

DPCL East Coast Railway Scoot Wilson India Pv. Ltd.

410 Top Of Foundation 411 DESCRIPTION FORCE L.A Moment412 a SFH1= DUE TO Live Load ### 8.091 ###413 c SFV1= DUE TO Live Load ### 0.713 ###414 e SHF3= DUE TO D.L OF SUPER STR. ### 4.256 ###415 f SFV3= DUE TO D.L OF SUPER STR. ### 0.713 ###416 I SFH5= DUE TO SELF WT. OF Abutment ### 2.128 ###417 j SFV5= DUE TO SELF WT. OF Abutment ### 0.000 ###418 k ### 4.72 = ### 5.12.6.1( c ) Sub Str.

419 Total Ver Load = ### t420 Total Horz Load = ### t421 Total Moment = ### t-m422

423 Passive Earth Pressure424

425 19.444426 11.700427

428 Passive Fill Line429 8.314430 18.006431

432 1.0433 0.5434 14.586435 11.130436

437

438

439

440

441 Y = 1.130442

443

444 10.000 45 0 26.491445

446 3.400447

448 X 3.400 - X449 = 2.270450

451 From first triangle Y = X452

453 0.498 3.400 - X = X X = 1.130 m454

455 ### l = ### Cl 5-126-2 sub str456 ### d = 0.204457 a = 0.000 f = 0.611

458 Density 1.200 I = 0.000459

460 Cp = 1.000 2.000

4611 -

462

463

464

465 Cp = ###x

1.000 2.000= ###

466 ### ###467

468 Taking FOS = 3.000469

470 Cp = ###471

472

Level Moment473

474 m m t m t m t-m475 1st 0.000 0.000 ### 0.000 ### 0.000 ###476 2nd 0.000 0.000 ### 0.000 ### 0.000 ###477 TOF 1.130 8.314 ### 0.377 ### 5.487 ###478

Due to Dynamic increment in Earth Pressure ( 0.5*(Ca-Ka)*w*h2 )

Ignoring the Seismic Effect of Live Load in Perpendicular Direction

ah =av =

t/m3

(1 - av ) cos2 ( f +a - l )Cos l Cos2 a Cos(d - a + l ) Sin ( f + d ) Sin ( f + I + l )1/2

Cos ( a - I ) Cos ( d- a + l)

Ht of Passive

Ht of Surcharge

Horz. Force of Passive

Leaver Arm

Horz. Force of Surcharge

Leaver Arm

Page 10: Trial Pile Design excel

document.xls RCC Abutment 10

DPCL East Coast Railway Scoot Wilson India Pv. Ltd.

479 Calculation of Bending Moment at Bottom of Dirt Wall :-480

481 Depth of Dirt wall from Formation Leve= 0.603 m482

483 (i) Active Earth Pressure at Bottom of Dirt Wall484 Height form Formation Level 0.603 m

485 Pa = 0.500 X 0.251 X 1.800 X ( 0.603486 Pa = 0.082 t/m487 Horizontal Component Of Active Earth Pressure488 Pah = 0.082 X Cos( 0.000 + 0.000 )489 Pah = 0.082 t/m Will act at 0.603 / 3 = 0.201 m490

491 (ii) Due to surcharge at bottom of Dirt Wall492 Height = H = 0.603 m493 Length of Abutment = L = 7.000 m494 Width Of Distribution = B = 3.000 m495 Since H < (L-B)496 CASE NO.= 1.000 will be used497

498 P1 = (S+V) X Ka x H Will act at = H/2 m499 (B+H) = 0.301 m500 P1 = 0.975 t/m501 Horizontal Component 502 P1h = 0.975 X COS( 0.000 + 0.204 ) = 0.955 t/m503 WILL ACTING AT 0.301 Metre504

505 P2 = (S+V) X Ka X H^2506 2 X B X (B+H)507 P2 = 0.098 t/M(WIDTH), ACTING AT = 2H/3 0.402 m508 Horizontal Component 509 P2h = 0.098 X COS( 0.000 + 0.204 ) = 0.096 t/m510 WILL ACT AT Y2 = 0.402 Metre511

512 Total Moment at Base of Dirt Wall :-513

514 Active Er Pr = 0.082 x 0.201 = 0.017 t-m515 Surcharge = 0.955 x 0.301 = 0.288 t-m516 0.096 x 0.402 = 0.039 t-m517 Total = 0.343 t-m518 Ultimate Moment 0.343 x 1.700519 = 0.583 t-m520 = 5.829 kN-m521

522 At First CHK LVL

523

SNODESCRIPTION OF LOAD L.A Ultimate Load

524 (T) (T) (M) (T-M) Fac Puh Puv Mu525 1 Dead load of girder/slab&Track 7.668 0.047 0.360 2.000 15.336 0.721526 2 Live load on Girder/Slab 58.611 0.047 2.755 2.000 117.221 5.509527 3 Horizontal Force on girder/slab 16.886 1.300 21.951 2.000 33.771 43.902528 4 Active earth pressure529 a PAH 0.458 0.479 0.219 1.700 0.778 0.373530 5 Surcharge Load531 a P1h 1.848 0.719 1.329 1.700 3.142 2.259532 b P2h 0.443 0.959 0.425 1.700 0.753 0.722533 6 Self Wt. & back fill 5.159 -0.733 1.400 7.222 -1.026534 7 Approach Slab 0.000 0.000 0.000 2.000 0.000 0.000535 8 Moment Due to Weight of Return 0.000 0.000 2.000 0.000 0.000536 Moment due to Passive ### 1.700 ###537 TOTAL ( Without Seismic Effect ) 19.634 71.437 ### 38.444 139.779 ###538 Due to Seismic Effect ### ### ### 1.600 ### ### ###539 Considering increase of 33 % in permissible stress540 Combined Forces with seismic /1.33 =( For working Laod O ### ### ### ### ### ###541 Designed Value ( Max of Above two ) ### ### ### ### ### ###542 Pu Vu Mu543

544

545 Pmax = 71.437+

#VALUE!

546 = 1.520 0.385 = ###547

548 Pmin = ###-

#VALUE! = ###549 = 1.520 0.385550

) 2

HORZ LOAD

VERT LOAD

MOMENT

t/m2

t/m2

Page 11: Trial Pile Design excel

document.xls RCC Abutment 11

DPCL East Coast Railway Scoot Wilson India Pv. Ltd.

551 STRESSES AT 2nd Checking Level

552

SNODESCRIPTION OF LOAD L.A Ultimate Load

553 (T) (T) (M) (T-M) Fac Puh Puv Mu554 1 Dead load of girder/slab&Track 5.839 0.047 0.274 2.000 11.678 0.549555 2 Live load on Girder/Slab 44.628 0.047 2.098 2.000 89.255 4.195556 3 Horizontal Force on girder/slab 12.857 4.721 60.692 2.000 25.714 121.384557 4 Active earth pressure558 a PAH 5.223 1.619 8.459 1.700 8.879 14.380559 5 Surcharge Load560 a P1h 3.959 2.429 9.617 1.700 6.730 16.349561 b P2h 2.173 3.525 7.660 1.700 3.694 13.022562 6 Self Wt. & back fill 18.157 -0.733 1.400 25.419 -1.026563 7 Approach Slab 0.000 0.000 0.000 2.000 0.000 0.000564 8 Moment Due to Weight of Return 0.000 0.000 2.000 0.000 0.000565 Moment due to Passive ### 1.700 ###566 TOTAL ( Without Seismic Effect ) 24.212 68.623 ### 45.018 126.352 ###567 Due to Seismic Effect ### ### ### 1.600 ### ### ###568 Considering increase of 33 % in permissible stress569 Combined Forces with seismic /1.33 =( For working Laod O ### ### ### ### ### ###570 Designed Value ( Max of Above two ) ### ### ### ### ### ###571 Pu Vu Mu572

573 Pmax = 68.623+

#VALUE!

574 = 1.520 0.385 = ###575

576 Pmin = ###-

#VALUE! = ###577 = 1.520 0.385578

579

580 STRESSES AT Top OF FOUNDATION

581

SNODESCRIPTION OF LOAD L.A Ultimate Load

582 (T) (T) (M) (T-M) Fac Puh Puv Mu583 1 Dead load of girder/slab&Track 5.839 0.047 0.274 2.000 11.678 0.549584 2 Live load on Girder/Slab 44.628 0.047 2.098 2.000 89.255 4.195585 3 Horizontal Force on girder/slab 12.857 8.841 113.670 2.000 25.714 227.340586 4 Active earth pressure587 a PAH 19.735 3.148 62.125 1.700 33.549 105.613588 5 Surcharge Load589 a P1h 7.695 4.722 36.337 1.700 13.082 61.773590 b P2h 2.173 8.111 17.624 1.700 3.694 29.960591 6 Self Wt. & back fill 35.581 -0.733 1.400 49.814 -1.026592 7 Approach Slab 0.000 0.000 0.000 2.000 0.000 0.000593 8 Moment Due to Weight of Return 0.000 0.000 2.000 0.000 0.000594 Moment due to Passive ### 1.700 ###595 TOTAL ( Without Seismic Effect ) 42.460 86.048 231.395 76.040 150.747 ###596 Due to Seismic Effect ### ### ### 1.600 ### ### ###597 Considering increase of 33 % in permissible stress598 Combined Forces with seismic /1.33 =( For working Laod O ### ### ### ### ### ###599 Designed Value ( Max of Above two ) ### ### ### ### ### ###600 Designed Value ( For Full Barrel Length ) ### ### ### ### ### ###601 Pu Vu Mu602

603 Pmax = 86.048+

231.395

604 = 1.520 0.385 = 657.533605

606 Pmin = ###-

231.395 = ###607 = 1.520 0.385608

609 RCC Design :-610 width of Section = b = 1000 mm Depth of the section = D = 1520 mm611 Grade of Conc = fck = 35 Grade of Steel = fy = 415612 Clear cover = 50 mm Dia of Main Bar = 25 mm613 d' = 50 + 13 = 63 mm614 d = 1520 - 63 = 1457 mm615

616 As per Cl 15-7-1-1 of CBC617 Pu = ### kN ( Load at top of Foundation )618 0.1*fck*AC = 0.1 * 35 x 1000 x 1520 / 1000 = 5320619

620 Hence Abutment will be design as Cantilever Wall & Pu will be ignored621 Checking at first Level

HORZ LOAD

VERT LOAD

MOMENT

t/m2

t/m2

HORZ LOAD

VERT LOAD

MOMENT

t/m2

t/m2

Page 12: Trial Pile Design excel

document.xls RCC Abutment 12

DPCL East Coast Railway Scoot Wilson India Pv. Ltd.

622 Mu = ### kN-m623

624 As per Cl 15-4-2-2-1625

626 taking it as Singly reinforced section627

628 Checking for effective depth = d = Mu629 0.15 x b x fck630

631d =

#VALUE! = ### mm632 0.15 x 35 x 1000633

634 1 - 1 - 4.6 Mubd

635

636

637 Here :-

638 35 Mu = ### KN - m

639 415 ###640 b = 1000 mm 32 mm641 d = 1457 mm 20 mm642

643 Spacing of Main Bar required = 804 x 1000= ### mm

644 ###645

646 So Provide Spacing = 180 mm < 3d = 4371 O.K647 % of Steel Provided = p = 4466 x 100648 1000 x 1457649 = 0.307 % > 0.200 OK650

651 Checking of Mu as per Cl 15-4-2-2-1 of C.B.C652

653 Leaver Arm = z = 1.000 - 1.1 fy Ast d654 fck b d 655

656 z =1-

20386281457 = 1399 0.95 d = 1384

657 50995000658

659 final z = 1384 mm660

661 Mur = 0.87 * fy *As * z =662

663 0.87 * 415 * 4466 * 1384 = 2231760644 N-mm 664

665

666 = 2232 kN-m ### ### kN-m ###667

668 Steel on Other side Parallel to Main Steel669

670 Area of Steel Required = 0.12 % = 0.120 X 1000 X 1457671 100672 = 1748673 Required Spacing = 314 x 1000674 1748675 180 mm676 Provide Spacing = 180 mm677

678 Checking for Shear Stress679

680 Ultimate Shear = Vu = ### kN681 b = 1000 mm682 d = 1457 mm683 As per Clause 15.4.3.1 of CBC

684 Shear stress = v = ### * 1000 = ### ### 0.75 fck = 4.437 ###685 1000* 1457686 As per Clause 15.4.3.2.1 of CBC

687 Depth factor = s = 500 or 0.7 whichever is maximum = 0.765688 d689

Ast = .5 fck

fy fck bd2

fck = N /mm2

fy = N /mm2 Ast = mm2

Dia Of Main Bar = # =Dia Of Bar on Comp Side = # =

mm2

N/mm2

1/4

Page 13: Trial Pile Design excel

document.xls RCC Abutment 13

DPCL East Coast Railway Scoot Wilson India Pv. Ltd.

690

Ultimate Shear Resistance of Concrete = vc =

0.27 100 As fck ( Cl 15-4-3-2-1)

691 Ym bd692

693 As = 4466 vc = 0.270 x 446578 35

694 Ym = 1.25 1.25 1457000

695 vc = 0.476696

697 s * vc = 1 * 0.476 = 0.364

698 v = ###699

700 Dia of Shear strippups = 10 mm having nos of leg in 1 m = 4701

702 Asv = 314703

704 As per Cl 15.4.3.2 ( Table - 14 )705

706 As v ### s vc707

708 Sv = ### = 113370 / ### = ###709

710 It should not be more than 0.75 * d or 450 mm As per Clause 15.4.3.2.4 of CBC

711

712 So provide Sv = 180 mm713

714 Checking at 2nd Level715 Mu = ### kN-m716

717 As per Cl 15-4-2-2-1718

719 taking it as Singly reinforced section720

721 Checking for effective depth = d = Mu722 0.15 x b x fck723

724d =

#VALUE! = ### mm725 0.15 x 35 x 1000726

727 1 - 1 - 4.6 Mubd

728

729

730 Here :-

731 35 Mu = ### KN - m

732 415 #VALUE!733 b = 1000 mm 32 mm734 d = 1457 mm 20 mm735

736 Spacing of Main Bar required =

804 x 1000= ### mm

737 #VALUE!738

739 So Provide Spacing = 180 mm < 3d = 4371 O.K740 % of Steel Provided = p = 4466 x 100741 1000 x 1457742 = 0.307 % > 0.200 OK743

744 Checking of Mu as per Cl 15-4-2-2-1 of C.B.C745

746Leaver Arm = z =

1 - 1.1 fy Ast d

747 fck b d 748

749 z =1-

20386281457 = 1399 0.95 d = 1384

750 50995000751

752 final z = 1384 mm753

754 Mu = 0.87 * fy *As * z =755

756 0.87 * 415 * 4466 * 1384 = 2231760644 N-mm 757

758 = 2232 kN-m ### ### kN-m ###759

1/3 x 1/3

mm2 1/3 x 1/3

N/mm2

N/mm2

mm2

Ast = .5 fck

fy fck bd2

fck = N /mm2

fy = N /mm2 Ast = mm2

Dia Of Main Bar = # =Dia Of Bar on Comp Side = # =

Page 14: Trial Pile Design excel

document.xls RCC Abutment 14

DPCL East Coast Railway Scoot Wilson India Pv. Ltd.

760 Steel on Other side Parallel to Main Steel761

762 Area of Steel Required = 0.12 % = 0.120 X 1000 X 1457763 100764 = 1748765 Required Spacing = 314 x 1000766 1748767 180 mm768 Provide Spacing = 180 mm769

770 Checking for Shear Stress771

772 Ultimate Shear = Vu = ### kN773 b = 1000 mm774 d = 1457 mm775

776 Shear stress = v = ### * 1000 = ### ### 0.75 fck = 4.437 ###777 1000* 1457778

779 Depth factor = s = 500 or 0.7 whichever is max = 0.765780 d781

782 Ultimate Shear Resistance of Concrete = vc = 0.270 100 As fck ( Cl 15-4-3-2-1)

783 Ym bd784

785 As = 4466 vc = 0.270 x 446578 35

786 Ym = 1 1.250 1457000787 vc = 0.476788

789 s * vc = 0.765 * 0.476 = 0.364

790 v = ###791

792 Dia of Shear strippups = 10 mm having nos of leg in 1 m = 4793

794 Asv = 314795

796 As per Cl 15.4.3.2 ( Table - 14 )797

798 As v ### s vc799

113370800 Sv = ### = / ### = ###801

802 It should not be more than 0.75 * d or 450 mm803

804 So provide Sv = 180 mm805

806 Checking at Top of Foundation807 Mu = ### kN-m808

809 As per Cl 15-4-2-2-1810

811 taking it as Singly reinforced section812

813 Checking for effective depth = d = Mu814 0.15 x b x fck815

816d =

#VALUE! = ### mm817 0.15 x 35 x 1000818

819 1 - 1 - 4.6 Mubd

820

821

822 Here :-

823 35 Mu = ### KN - m

824 415 #VALUE!825 b = 1000 mm 32 mm826 d = 1457 mm 20 mm827

828 Spacing of Main Bar required =

804 x 1000= ### mm

829 #VALUE!830

mm2

N/mm2

1/4

1/3 x 1/3

mm2 1/3 x 1/3

N/mm2

N/mm2

mm2

Ast = .5 fck

fy fck bd2

fck = N /mm2

fy = N /mm2 Ast = mm2

Dia Of Main Bar = # =Dia Of Bar on Comp Side = # =

Page 15: Trial Pile Design excel

document.xls RCC Abutment 15

DPCL East Coast Railway Scoot Wilson India Pv. Ltd.

831 So Provide Spacing = 90 mm < 3d = 4371 O.K832 % of Steel Provided = p = 8932 x 100833 1000 x 1457834 = 0.613 % > 0.200 OK835

836 Checking of Mu as per Cl 15-4-2-2-1 of C.B.C837

838Leaver Arm = z =

1 - 1.1 fy Ast d

839 fck b d 840

841 z =1-

40772551457 = 1341 0.95 d = 1384

842 50995000843

844 final z = 1341 mm845

846 Mu = 0.87 * fy *As * z =847

848 0.87 * 415 * 8932 * 1341 = 4322784031 N-mm 849

850 = 4323 kN-m ### ### kN-m ###851

852

853 Steel on Other side Parallel to Main Steel854

855 Area of Steel Required = 0.12 % = 0.12 X 1000 X 1457856 100857 = 1748858 Required Spacing = 314 x 1000859 1748860 180 mm861 Provide Spacing = 180 mm862

863 Checking for Shear Stress864

865 Ultimate Shear = Vu = ### kN866 b = 1000 mm867 d = 1457 mm868

869 Shear stress = v = ### * 1000 = ### ### 0.75 fck = 4.437 ###870 1000* 1457871

872 Depth factor = s = 500 or 0.7 whichever is max = 1873 d874

875 Ultimate Shear Resistance of Concrete = vc = 0.270 100 As fck ( Cl 15-4-3-2-1)

876 Ym bd877

878 As = 8932 vc = 0.270 x 893156 35

879 Ym = 1.250 1 1457000880 vc = 0.600881

882 s * vc = 0.765 * 0.600 = 0.459

883 v = ###884

885 Dia of Shear strippups = 10 mm having nos of leg in 1 m = 4886

887 Asv = 314888

889 As per Cl 15.4.3.2 ( Table - 14 )890

891 As v ### s vc892

893 Sv = ### = 113370 / ### = ###894

895 It should not be more than 0.75 * d or 450 mm896

897 So provide Sv = 180 mm898

mm2

N/mm2

1/4

1/3 x 1/3

mm2 1/3 x 1/3

N/mm2

N/mm2

mm2

Page 16: Trial Pile Design excel

document.xls RCC Abutment 16

DPCL East Coast Railway Scoot Wilson India Pv. Ltd.

899 Checking at Bottom of Dirt Wall900 Mu = 6 kN-m901

902 As per Cl 15-4-2-2-1903

904 taking it as Singly reinforced section905

906 Checking for effective depth = d = Mu907 0.15 x b x fck908

909d =

5829149 = 33 mm910 0.15 x 35 x 1000911

912 Provide Over all Depth = 300 mm913

914 Hence Effective Depth = 300 - 30 = 270 mm915

916 1 - 1 - 4.6 Mubd

917

918

919 Here :-

920 35 Mu = 6 KN - m

921 415 60922 b = 1000 mm 16 mm923 d = 270 mm 8 mm924

925 Spacing of Main Bar required =

201 x 1000= 3350 mm

926 60927

928 So Provide Spacing = 130 mm < 3d = 810 O.K929 % of Steel Provided = p = 1546 x 100930 1000 x 270931 = 1 % > 0 OK932

933 Distribution Steel934

935 Area of Steel Required = 0.12 % = 0 X 1000 X 270936 100937 = 324938 Required Spacing = 50 x 1000939 324940 155 mm941 Provide Spacing = 150 mm

Ast = .5 fck

fy fck bd2

fck = N /mm2

fy = N /mm2 Ast = mm2

Dia Of Main Bar = # =Dia Of Bar on Comp Side = # =

mm2

Page 17: Trial Pile Design excel

document.xls Pile and Pile Cap 17

Design Of Pile & Pile Cap

A

1 Dia Of Pile 1.200 m

2 Depth of Pile Below Cap ( Based on Soil Reprt ) 25 m

3 Load Carrying Capacity of Single Pile as per Soil Report 2250 kN

4 Total nos of Pile in a Group 9

5 Scour Below Bottom of Pile Cap ( L1 ) 0 m

B PILE CAP

1 Width of Pile Cap ( Across the Track ) 8.5 m

2 Length of Pile Cap ( Along the Track ) 8.5 m

3 Thickness of Pile Cap 1.8 m

4 C/C of Pile along the Track 3.5 m

5 C/C of Pile across the Track 3.5 m

C Material

1 Grade of Concrete 35

2 Grade of Steel 415

3 Clear Cover to Nominal Reinforcement 60 mm

D External Load Ultimate Load Actual Load

1 Vertical Load Pu = #VALUE! P= #VALUE! kN

2 Moment about Major Axis Mux = #VALUE! Mx= #VALUE! kN-m

3 Moment about Minor Axis Muy = 0.000 My= 0.000 kN-m

4 Horz. Force Along Track Vuy = #VALUE! Vy= #VALUE! kN

D Abutment

1 Length of Abutment at Top of Cap 7000 mm

2 Width of Abutment at Top of Cap 1520.0 mm

2 Weight Calculation :-

Note :-

Actual Weight of Pile Cap = 8.50 x 8.50 x 1.80 x 25 = 3251.25 kN

Ultimate Weight of Pile Cap = 1.4 x 3251.25 = 4551.75 kN

Design of Pile Cap

Max Vertical Load on Column = P = #VALUE! kN

Moment in Column = M = #VALUE! kN-m

Weight of Pile Cap = 3251.25 kN

Total Vertical Load = P = #VALUE! 3251.25 = #VALUE! kN

Load Carrying Capacity of Pile will be check on Actual Load Basis & RCC Design on Ultimate Load Basis

Page 18: Trial Pile Design excel

document.xls Pile and Pile Cap 18

Total Nos of Pile Provided 9

8500 x

y y85

00

990

1520

3500

#REF!

750 3500 x

r1

Checking of Load Carrying Capacity of Pile With Actual Load

Load on Each Pile due to P = #VALUE!

= #VALUE! kN9

M=

Spacing of outer pile x Nos of Pile in a row

#VALUE!= #VALUE! kN

7 x 3

Max Load on Pile = #VALUE! + #VALUE! = #VALUE! kN

#VALUE! 2250 #VALUE!Actual Capacity

Min Load On Pile= #VALUE! - #VALUE! = #VALUE! kN

#VALUE! 0 #VALUE!No uplift

Load on Each Pile due to M = ( on Outer Pile )

Load on Each Pile due to Mu = ( on Outer Pile )

Page 19: Trial Pile Design excel

document.xls Pile and Pile Cap 19

Calculation of Load on Pile With Ultimate Load

Load on Each Pile due to P = #VALUE!

= #VALUE! kN9

Load on Each Pile due to M = Mu

Spacing of pile x Nos of Pile in a row

Load due to Mx = #VALUE!= #VALUE! kN

7 x 3

Max Load on Pile = #VALUE! + #VALUE! = #VALUE! kN

Min Load on Pile = #VALUE! - #VALUE! = #VALUE! kN

1520

900=D/2

3320

1840

#VALUE!

-330.96

3500

Taking Moment at Face of Wall with dispersion at 45 degress

Bending Moment At the Face of Column About y-y =

= #VALUE! x 3 x 1.84 #VALUE! kN-m Muy

Page 20: Trial Pile Design excel

document.xls Pile and Pile Cap 20

RCC Design Of Pile Cap

35

( For Depth Checking considering 1 m width ) Max of Both Direction

Muy = #VALUE! / 8.5 = #VALUE! kN-m/m width

Ultimate Bending Moment = Mu ( Per meter ) #VALUE! KN - m

Minimum Depth Required = sqrt ( Mu / 0.15 x b x fck )

Minimum Depth Required == #VALUE! x

0.15 x 1000 x 35

Minimum Depth Required = = #VALUE! mm

Over all depth required = #VALUE! mm

So Provide Over all Depth = D = 1800 mm ( Should Not be Less than 1.5*pile Dia)

So Effective Depth Provided = d = 1715 mm

Calculation Area of Steel Required ( For Under Reinforced Section )

1 - 1 -4.6 Mu

bd

Here :-

35

415

Reinforcement Parallel to X-X ( For Muy)

b = 1000 mm

d = 1715 mm

Muy = #VALUE! KN - m Muy

#VALUE!

25 mm

Spacing of Main Bar required = 490.625 x 1000

#VALUE!

= #VALUE! mm

So Provide Spacing = 140 mm < 3d = 5145 O.K

% of Steel Provided = p = 3504.4643 x 100

1000 x 1715

= 0.204 % > 0.20% O.K

f CK = N /mm2

10 6

Ast =.5 fck

fy fck bd2

fck = N /mm2

fy = N /mm2

Ast = mm2

Dia Of Main Bar = # =

Page 21: Trial Pile Design excel

document.xls Pile and Pile Cap 21

Reinforcement Parallel to Y-Y ( For Mux)

25 mm

So Provide Spacing = 140 mm < 3d = O.K

% of Steel Provided = p = 0.20% O.K

Checking for Shear Stress

Ultimate Shear = Vu = #VALUE! kN

b = 8500 mm

d = 1715 mm

#VALUE! * 1000 = #VALUE! #VALUE! 0.75 fck =

8500 x 1715 4.4370598 #VALUE!

Depth factor = s = 500 or 0.7 whichever is Max =

d 0.735

0.27 100 Asfck

( Cl 15-4-3-2-1)

Ym bd

100*As/ b d = 0.204

Ym = 1.25

vc = 0.27 x 0.20 35

1.25

vc = 0.416

s * vc = 0.7348124 * 0.416 = 0.3056004

v = #VALUE!

Dia of Shear strippups = 12 mm having nos of leg in total width =

25

Asv = 2826 Hence 3 legged in 1m width

As per Cl 15.4.3.2 ( Table - 14 )

As v #VALUE! s vc

Sv = #VALUE!

= 1020327.3 / #VALUE! = #VALUE! mm c/ c

It should not be more than 0.75 * d or 450 mm

So provide Sv = 140 mm

Dia Of Bar = # =

Shear stress = v =

N/mm2

1/4

Ultimate Shear Resistance of Concrete = vc =

1/3 x 1/3

1/3 x 1/3

N/mm2

N/mm2

mm2

Page 22: Trial Pile Design excel

document.xls Pile and Pile Cap 22

Temperature Reinforcement At Top ( Min 0.12 % in both Direction)

Assumed Dia of Bar = 16 mm

Area of Steel Required = 0.12 % = 0.12 X 1000 X 1715

( As per Cl 26.5.2 IS 456) 100

= 2058

Required Spacing = 200.96 x 1000

2058.00

= 195 mm

Provide Spacing = 140 mm

Summary Of Reinforcement :-- (For 9- Piles)

1- Bottom Main Steel in Long Span Direction = 25 # @ 140 mm c/c

2- Bottom Dist. Steel in Short Span Direction = 25 # @ 140 mm c/c

3- Top Temp. Steel = 16 # @ 140 mm c/c

4- Shear Reinforcement 3 legged 12 # Stirrups @ 140 mm

R.C.C Design of Pile :-

Max ultimate Load = #VALUE! N

Dia of Stem = 1200 mm

Calculation of Depth of Fixity as Per IS Code 2911 ( Part 1/Sec -2)

As per Appendix " C" amendments 3

Type Of Soil = 2 hence Medium Sand

(Loose Sand = 1 , Medium Sand = 2 , Dense Sand = 3)

k1 = 0.525 As per table 1 of above code For Submerged Condition

Modulus of Elasticity = E = 31 310000 As per Clause 5.2.2.1 of C.B.C

Dia of Pile = D = 120 cm

0.0490625 x 207360000

= 10173600

T =EI 310000 x 10173600 359.53 cm

k1 0.525 = 3.60 m

L1 = 0 cm L1 /T = 0 / 359.53 = 0.00

mm2

kN/mm2 = kg/cm2

Moment of Inertia = I = p D2 / 64 =

cm4

1/5 = 1/5 =

Page 23: Trial Pile Design excel

document.xls Pile and Pile Cap 23

From Fig 2 of Appendix C of Above Code

For L1 /T = 0.00 Lf / T = 2

Hence Lf = 2 x 359.53 = 719.06 cm = 7.19 m

Now Embaded Length = Le = 25 - 7.19 = 17.81 m

> 4T 14.38 OK

Length of Fixity = Lf = 7.191 m

Depth of Scour = L1 = 0 m

total Leaver arm = Lf + L1 = 7.191 + 0.000 = 7.191 m

Ultimate Horz. Force on Each Pile = #VALUE! / 9

= #VALUE! kN

Check for Deflection ( As per App C )

Assuming Fixed Head Pile

Y (cm) = = #VALUE! x 719.1 3

12 E I 12 x 310000 x 10173600

= #VALUE! cm

As per Clause C-2.1 For Fixed Head Pile

Hence Moment =Mu #VALUE! x 7.19 = #VALUE! kN-m

2

Assuming effective Cover d' = 60 mm

d' / D = 60 / 1200 = 0.10

Hence Used chart 56 of SP 16

#VALUE! / 6.048E+10 = #VALUE!

#VALUE! / 50400000 = #VALUE!

p / fck = 0.02

p = 35 x 0.02 = 0.7 %

As = 7912.8

Q (L1 + Lf )3

Mu / fck D3 =

Pu / fck D2 =

p p D2 / 400 = mm2

Page 24: Trial Pile Design excel

document.xls Pile and Pile Cap 24

Steel Provided Below Depth of fixity = 5338

( Calculation Given Below )

Extra Steel to be Provided in the length of Fixity = 7912.8 - 5338

= 2574.8

Dia of Bar = 16 mm

Nos of Bar Required = 12.8125 Say 16 Nos

So Provide 16 bar ( 2 extra bar between General spacing)

As per Cl 5-11-1 of IS-2911 (Part I/ Sec 2)

Minimum % of Reinforcement =0.4 % of Gross Area

Asc min = 4521.6

So Provide main Reinforcement = 4521.6

Dia of Main Bar = 20 mm

Nos of Bar Required = 14.4

Nos of Bar Provided = 17

Provided Area of Steel = 5338

Check for Min Spacing of Bar As Per Cl 5-11-3 of IS-2911

Dia of Core ( Effective Dia ) = 1100 mm (Assuming Clear cover=40mm)

Periphery of Core = 3454 mm

Spacing Between Bars = 203.17647 mm > 100 mm Okay

Horizontal Ties

Dia of Ties = 8

Dia of Main Reinforcement = 20

Spacing of Lateral Ties

Min of the fallowing =

a) Least Lateral Dimension = 1200 mm

]b) 16 times the dia of Main Bar = 320 mm As per Cl 26.5.3.2

c) 300 mm of IS-456

So Provide ties of 8 mm Dia at the Spacing of 300 mm

Say 200 mm

mm2

mm2

mm2

mm2

mm2

Page 25: Trial Pile Design excel

document.xls Wing Wall 25

DPCL East Coast Railway Scoot Wilson India Pv. Ltd.

Wing WallBridge No 8

Standard of Loading H.M.LoadingLevel (m)

Top of Wing Wall 19.444 Formation Level 19.444Top of Foundation 11.100 R.L of Bed Level 11.700Bottom of Foundation 9.100 Deepest Scour Level #VALUE!

1 Height of Wall From Top of Foundation 8.344 m2 Proposed Top Width 0.450 m3 124 Intermediate Front Batter (1H:?V) ( 1000 = For Vertical face ) 10005 Second Front Batter (1H:?V) ( 1000 = for Vertical face ) 10006 Sloping Thickness of Toe 0.907 Length of Toe Projection. 4.800 m8 End Thickness of Foundation 0.500 m9 Heel Projection 4.800 m

10 11.67 Deg 0.204 rad11 Height of Second Batter (Intermediate Level) above Top of Foundation 4.172 m12 Front Offset in Wall 0.000 m13 Passive Height from Bottom of Foundation 2.600 m14 0.50015 Distance form C/L of track to Back Face of Wall 3.500 m16 Width of Sleeper 2.750 m17 Depth of Ballast Cushion 0.300 m18 Depth From Formation Level to Top of Wall 0.000 m

19 Live Load Surcharge 17.000

20 Dead Load Surcharge 6.20021 35.00 Deg 0.611 rad22 6.000 rad

23 Cohesion (c) 1.50024 11.67 Deg 0.204 rad

25 Density of Front Soil 1.000

26 Density of Back Fill 1.800

27Seismic Parameter

Zone = III a = 0.04 b = 1.5 ###

28 Density of Masonry 2.500

29 Density of Submerged Soil 1.00030 F.O.S. for Passive Earth Pressure 331 Front Delta 0.210 rad32 0.083 rad

33 Safe Bearing Capacity 15.034 Grade of Concrete fck = 35 Grade of Steel = 415

CHECKMax Min

Foundation Pressure #VALUE! #VALUE! ###Stability Check OK

Back Batter (Equivalent for existing) (1H:?V) (1000 = For Vertical Face )

Angle of Friction of Wall with Soil (d)

Coefficient of Friction (m)

t/m2

t/m2

Angle of Repose of Soil (f)Angle of Surcharge (i)

t/m2

Angle of internal friction of Soil (f)t/m2

t/m2

i =t/m2

t/m2

Angle of Back Batter (a)t/m2

t/m2

Page 26: Trial Pile Design excel

document.xls Wing Wall 26

DPCL East Coast Railway Scoot Wilson India Pv. Ltd.

450TOP 19.444 Formation Level 19.444

20 # @ 200

16 # @ 200 BACK SIDE

417

2

774

4

Curtailment Section16 # @ 100

Bed Level 11.700

417

2

25 # @ 100

120

0

16 # @ 100 32 # @ 100 TOF = 10.500

900

140

0

500

BOF = 9.100

20 # @ 10032 # @ 100

4800 1145 4800

Page 27: Trial Pile Design excel

document.xls Wing Wall 27

DPCL East Coast Railway Scoot Wilson India Pv. Ltd.

DETAIL CALCULATION

1.0 ACTIVE EARTH PRESSURE

For Calculating the Active Earth Pressure COULOMB's theory is followed.

= h

Where :-

Coeff. of Active Earth Pressureh = Height of Soil w = Unit Weight of Soil

5.7.1 Sub Str

1 +2

Following values are taken for calculating the active earth pressure.Level Int. Chk & TOF BOFSlope of Batter with Vert. 0.083 radCoff. of internal friction of Soil 0.611 radAngle of friction bet. Wall & earth 0.204 radAngle of slope of fill with Horz. 0.000 rad

0.284

i Horizontal Component Of Active Earth Pressure

=

aVertical Component Of Active Earth Pressure

=

a

d

f

1.1 At Intermediate Checking Level FL

Height from Formation Level, h = 4.071 m 0.000 m

0.5 x 0.284 x 1.800 x 4.071 x 4.07083 = 4.238 t/m (Width)Int. Lvl

Horizontal Component

4.238 x Cos( 0.083+ 0.204 ) = 4.065 t/m (Width)

4.071 / 3 = 1.357 m TOF

Vertical Component BOF

4.238 x Sin( 0.083+ 0.204 ) = 1.199 t/m (Width)

= 1.357 x Cot(90 - 0.083 ) = 0.113 m

1.2 At Top of Foundation

Height from Formation Level, h = 8.142 m 0.000 m

0.5 x 0.284 x 1.800 x 8.142 x 8.14165 = 16.951 t/m (Width)

Horizontal Component

16.951 x Cos( 0.083+ 0.204 ) = 16.258 t/m (Width)

8.14165 / 3 = 2.714 m

Vertical Component

16.951 x Sin( 0.083+ 0.204 ) = 4.798 t/m (Width)

= 2.714 x Cot(90 - 0.083 ) = 0.226 m

1.3 At Bottom of Foundation

Height from Formation Level, h = 8.745 m 0.000 m

0.5 x 0.284 x 1.800 x 8.745 x 8.74482 = 19.556 t/m (Width)

Horizontal Component

19.556 x Cos( 0.083+ 0.204 ) = 18.756 t/m (Width)

8.74482 / 3 = 2.915 m

Vertical Component

19.556 x Sin( 0.083+ 0.204 ) = 5.535 t/m (Width)

2.915 x Cot(90 - 0.083 ) = 0.243

Pa 0.5Kawh

Ka =

Ka =Cos2(f - a)

Cos2(a)Cos(a + d)Sin(f - d)Sin(f - i)Cos(a+ d)Cos (a - i)

a =f =d =i =

Ka =

(Effect of sloping Surcharge has been taken as per CL 5.8.4 of Sub Str. Code, So "i" is taken = 0 for calculation of Ka)

Pah Pa Cos(a + d)

Acting at Y1= (h/3) above section considered

Pav Pa Sin(a + d)

Pah Acting at X1 = Y1Cot (90-a) from face of Wall

Y1 =h/3

Pa

Pav

h3 =

Pa =

Pah =

Will act at Y1

Pav =

Will act at X1 = Y1Cot(90-a)

h3 =

Pa =

Pah =

Will act at Y2

Pav =

Will act at X2 = Y2Cot(90-a)

h3 =

Pa =

Pah =

Will act at Y2

Pav =

Will act at X2 = Y2Cot(90-a)

Page 28: Trial Pile Design excel

document.xls Wing Wall 28

DPCL East Coast Railway Scoot Wilson India Pv. Ltd.

2.0 EARTH PRESSURE DUE TO SURCHARGE

As per Cl 5.8.3 of Sub Str. Code

Earth pressure due to surcharge is assumed to be dispersed below formation level at an angle of 45°.

(B + 2D)

Live Load Surcharge per m, S= 17.000

Dead Load Surcharge per m, V = 6.200Width of Distribution, B = 2.750 m

2.1 At Intermediate Checking Level

3.5000.348 1.777 2.750 Formation Level

B

D 1.777

4.1

72

2.695

Checking Level

2.695 mDepth of Dispersion, D = 1.777 m

17.000+ 6.200 2.695 x 0.284= 2.817 t/m 1.347 m2.750+ 3.555

2.2 At Top of Foundation

3.5000.695 1.430 2.750 Formation Level

B

D 1.430

8.3

44

7.214

Top of Foundation

7.214 mWidth of Distribution, B = 2.750 mDepth of Dispersion, D = 1.430 m

17.000+ 6.200 7.214 x 0.284= 8.478 t/m 3.607 m2.750+ 2.859

2.3 At Bottom of Foundation

3.5005.495 0.000 2.750 Formation Level

B

D 0.000

10.

344

10.644

Bottom of Foundation

10.644 mDepth of Dispersion, D = 0.000 m

17.000+ 6.200 10.644 x 0.284= 25.515 t/m 5.322 m2.750+ 0.000

P1 =(S + V) x h1 x Ka Will act at h1/2

t/m2

t/m2

450

h1

Height, h1 =

P1 = Will act at h1/2

450

h1

Height, h1 =

P1 = Will act at h1/2

450

h1

Height, h1 =

P1 = Will act at h1/2

Page 29: Trial Pile Design excel

document.xls Wing Wall 29

DPCL East Coast Railway Scoot Wilson India Pv. Ltd.

3.0 PASSIVE EARTH PRESSURE

For Calculation Of Passive Earth Pressure On Substructure Coulomb Theory Is Used

=

1 - 2

f = 0.204 rad d = 0.210 rad a = 0.000 rad 0.000 rad

1.936 Factor of Safety for Passive = 3

Considering only Horizontal component because Vertical Component will be ineffective.

3.1 At Top of FoundationPassive Height = Bed Lvl or Scour Lvl - TOF = #VALUE! 11.100 = ### m

0.5 x 1.936 x 1.000 x ### 2 = ### t/m

Safe Passive Pressure = ### / 3 = ### t/m

### x Cos( 0.210- 0.000 ) = ### t/m Will act @ h/3 = ### mResisting Moment = #VALUE! ### ### t-m

3.2 At Bottom of FoundationPassive Height = Bed Lvl or Scour Lvl - BOF = #VALUE! 9.100 = ### m

0.5 x 1.936 x 1.000 x ### 2 = ### t/m

Safe Passive Pressure = ### / 3 = ### t/m

### x Cos( 0.210- 0.000 ) = ### t/m Will act @ h/3 = ### mResisting Moment = #VALUE! ### ### t-m

4.0 SELF WEIGHT

4.1 At Intermediate Checking LevelFL

0.0005 Top of Wall0.450

Back Fill0.000

1 Passive 4.1726

3 2 0.000

A 0.348 0.000

No. Vert. (m)

W1 1.0 x 0.450 x 4.172 x 2.500 = 4.694 0.573 2.688 2.086 9.791W2 0.5 x 0.000 x 4.172 x 2.500 = 0.000 0.798 0.000 1.391 0.000W3 0.5 x 0.348 x 4.172 x 2.500 = 1.813 0.232 0.420 1.391 2.521W4 0.5 x 0.348 x 4.172 x 1.800 = 1.305 0.116 0.151 2.781 3.631W5 0.5 x 0.348 x -0.10 x 1.800 = -0.032 0.116 -0.004 4.138 -0.131

Passive W6 0.5 x 0.000 x 0.000 x 1.000 = 0.000 0.798 0.000Sum 7.780 3.256 15.812

CG of Total Mass from A = Moment/Weight = WX /W = 3.256 /7.780 = 0.418 mCG of Total Mass above Intermediate Level = WY /W = 15.812 /7.780 = 2.032 m

FL0.00011 Top of Wall

Back Fill 0.450 Passive

0.000 0.0001 4.172

0.000

2

0.0005 1.200

3 1.200 4.1724

11.1004.800 0.695 0.000

0.9006 7 1.400

80.500

C9.100

5.945 4.800

Pp 0.5 Kp w h2

Kp=Cos2(f+ a)

Cos2a Cos(a - d)Sin(f + d) Sin(f + i)Cos(a- d) Cos (a - i)

i =

Kp=

Pph = Pp Cos(d - a) Acting at (h/3) above section. Ppv = Pp Sin(d - a) Acting at X=Y Cot(90 - a)

Pp =

Ph =

Pp =

Ph =

Shape Factor

Horz. (m)

Density (t/m3)

Weight W(t)

L.A. from A (m)

Moment W X (tm)

L.A. above A (m)

Moment W Y (tm)

Active

Fill

4

6

9

12

14

13

16

15

10

B

Page 30: Trial Pile Design excel

document.xls Wing Wall 30

DPCL East Coast Railway Scoot Wilson India Pv. Ltd.

10.745

4.2 At Top of Foundation

No. Shape Vert. (m)

W1 1.0 x 0.450 x 8.344 x 2.500 = 9.387 0.920 8.639 4.172 39.163W2 0.5 x 0.000 x 4.172 x 2.500 = 0.000 1.145 0.000 5.563 0.000W3 1.0 x 0.000 x 4.172 x 2.500 = 0.000 1.145 0.000 2.086 0.000W4 0.5 x 0.000 x 4.172 x 2.500 = 0.000 1.145 0.000 1.391 0.000W5 0.5 x 0.695 x 8.344 x 2.500 = 7.252 0.464 3.362 2.781 20.171W9 0.5 x 0.695 x 8.344 x 1.800 = 5.222 0.232 1.210 5.563 29.046W11 0.5 x 0.695 x -0.20 x 1.800 = -0.127 0.232 -0.029 8.277 -1.048W12 0.5 x 0.000 x 0.000 x 1.000 = 0.000 1.145 0.000W13 1.0 x 0.000 x 0.000 x 1.000 = 0.000 1.145 0.000W14 0.5 x 0.001 x 1.200 x 1.000 = 0.001 5.945 0.004

Sum 21.735 13.186 87.332CG of Total Mass from B = Moment/Weight = WX /W = 13.186 /21.735 = 0.607 mCG of Total Mass above Top of Foundation = WY /W = 87.332 /21.735 = 4.018 m

4.3 At Bottom of Foundation

No. Shape Vert. (m)

W1 1.0 x 0.450 x 8.344 x 2.500 = 9.387 5.720 53.697 5.572 52.304W2 0.5 x 0.000 x 4.172 x 2.500 = 0.000 5.945 0.000 6.963 0.000W3 1.0 x 0.000 x 4.172 x 2.500 = 0.000 5.945 0.000 3.486 0.000W4 0.5 x 0.000 x 4.172 x 2.500 = 0.000 5.945 0.000 2.791 0.000W5 0.5 x 0.695 x 8.344 x 2.500 = 7.252 5.264 38.173 4.181 30.324W6 1.0 x 5.945 x 1.400 x 2.500 = 20.809 2.973 61.857 0.700 14.566W7 0.5 x 4.800 x 0.900 x 2.500 = 5.400 7.545 40.745 0.800 4.320W8 1.0 x 4.800 x 0.500 x 2.500 = 6.000 8.345 50.072 0.250 1.500W9 0.5 x 0.695 x 8.344 x 1.800 = 5.222 5.032 26.274 6.963 36.357W10 1.0 x 4.800 x 8.344 x 1.800 = 72.092 2.400 173.021 5.572 401.698W11 1.0 x 5.495 x -1.599 x 1.800 = -15.818 1.832 -28.976 9.211 -145.70W12 0.5 x 0.000 x 0.000 x 1.000 = 0.000 5.945 0.000W13 1.0 x 0.000 x 0.000 x 1.000 = 0.000 5.945 0.000W14 0.5 x 0.001 x 1.200 x 1.000 = 0.001 10.745 0.008W15 1.0 x 4.800 x 1.200 x 1.000 = 5.760 8.345 48.069W16 0.5 x 4.800 x 0.900 x 1.000 = 2.160 9.145 19.754

Sum 118.264 482.694 395.367C.G. of mass from C = Moment/Weight = WX /W = 482.694 ### = 4.081 mC.G. of Total Mass above Bott of Foundation = WY /W = 395.367 ### = 3.343 m

5.0 SEISMIC FORCE

Earth Pressure Due to Seismic Effect 5.12.6.1 Sub Str

0.0 x ### 1.500 = ### ### / 2 = ###

Level Int. Chk & TOF BOFSlope of Batter with Vert. 0.083 radCoff. of internal friction of Soil 0.611 radAngle of friction bet. Wall & earth 0.204 radAngle of slope of fill with Horz. 0.000 rad

TOF

a=

###= ###

With (+) Pt I ###

1 + ### Pt II ###

x1 2

###

1 + =

b=

###= ###

With (-) Pt I ###

1 - ### Pt II ###

x1 2

###

1 + =

At Int. Chk & TOF BOF

### (Max Value of above, i.e., a and b)

0.284

###

5.1 At Intermediate Checking Level

DESCRIPTION FORCE L.A. MomentSFH 1 to 5 = DUE TO SELF WT. OF Wall ### 2.032 ###SFV 1 to 5 = DUE TO SELF WT. OF Wall ### 0.000 ###

### 2.086 ###Total Ver Load = ### t

Horz. (m)

Density (t/m3)

Weight W(t)

L.A. from B (m)

Moment W X (tm)

L.A. above B (m)

Moment W Y (tm)

Horz. (m)

Density (t/m3)

Weight W(t)

L.A. from C (m)

Moment W X (tm)

L.A. above C (m)

Moment W Y (tm)

a h = b x I x a o

a h = a v =

a =f =d =i =

l =tan-1a h tan-1

Ca

se I

: W

ith

"+"

& "

+"

valu

e 1 + a v

Ca =(1 + a v) Cos2(f - a - l)

Cosl Cos2a Cos(a + d + l)Sin(f + d)Sin(f - i - l)

Cos(a+ d + l)Cos(a - i)

l =tan-1a h tan-1

Ca

se I

I:

With

"-

" &

"-"

va

lue 1 - a v

Ca =(1 + a v) Cos2(f - a - l)

Cosl Cos2a Cos(a + d + l)Sin(f + d)Sin(f - i - l)

Cos(a+ d + l)Cos(a - i)

Final Ca =

Ka =

Dynamic Increment (Ca - Ka) =

Increment in Earth Pressure [0.5gh2(Ca-Ka)]

Active

Fill

Passiv

e

Fill

Active

Fill

Passiv

e Fill

Page 31: Trial Pile Design excel

document.xls Wing Wall 31

DPCL East Coast Railway Scoot Wilson India Pv. Ltd.

Total Horz Load = ### tTotal Moment = ### t-m

5.2 At Top of Foundation

DESCRIPTION FORCE L.A. MomentSFH 1 to 5 = DUE TO SELF WT. OF Wall ### 4.018 ###SFV 1 to 5 = DUE TO SELF WT. OF Wall ### 0.000 ###

### 4.172 ###Total Ver Load = ### tTotal Horz Load = ### tTotal Moment = ### t-m

5.3 At Bottom of Foundation

DESCRIPTION FORCE L.A. MomentSFH 1 to 5 = DUE TO SELF WT. OF Wall ### 3.343 ###SFV 1 to 5 = DUE TO SELF WT. OF Wall ### 0.000 ###

### 5.172 ###Total Ver Load = ### tTotal Horz Load = ### tTotal Moment = ### t-m

6.0 STRESS CALCULATION

6.1 At Intermediate Checking Level

S.No. DESCRIPTION OF LOADLOAD L.A. (m)

FacUltimate Load

VERT HORZ. Puh Mu

1 Active Earth Pressure

4.065 1.357 5.515 1.70 6.90968 9.38

1.199 0.113 0.136 1.70 0 0.23

2 2.817 1.347 3.796 1.70 4.78975 6.453 Self Weight & Back Fill 7.780 3.256 1.40 0 4.56

TOTAL 8.980 12.703 11.699 20.618Due to seismic Effect ### ### ###Combined Load with Seismic ### ###

6.91 ###Pu Mu

Width of the section = 798 mmCover = 70 mm ( Effective )Effective Depthj = 798 - 70 = 728 mmChecking at first LevelMu = ### kN-m

Checking for effective depth = d = Mu0.15 x b x fck

d =#VALUE! = ### mm

0.15 x 35 x 1000

1 - 1 - 4.6 Mubd

Here :-

35 Mu = ### KN - m

415 ###

b = 1000 mm 20 mmd = 728 mm 16 mm

Spacing of Main Bar required = 314 x 1000= ### mm

###

So Provide Spacing = 200 mm < 3d = 2183 O.K % of Steel Provided = p = 1570 x 100

1000 x 727.667= 0.216 % > 0.20% OK

Checking of Mu as per Cl 15-4-2-2-1 of C.B.C

Leaver Arm = z = 1 - 1.1 fy Ast dfck b d

z =1-

716705728 = 707 0.95 d = 69125468333

final z = 691 mm

Mur = 0.87 * fy *As * z =

Increment in Earth Pressure [0.5gh2(Ca-Ka)]

Increment in Earth Pressure [0.5gh2(Ca-Ka)]

Moment (t-m)

Horizontal Component Pah

Vertical Component Pav

Earth Pressure due to Surcharge Ph

Ast = .5 fck

fy fck bd2

fck = N /mm2

fy = N /mm2 Ast = mm2

Dia Of Main Bar = # =Dia Of Bar on Comp Side = # =

Page 32: Trial Pile Design excel

document.xls Wing Wall 32

DPCL East Coast Railway Scoot Wilson India Pv. Ltd.

0.87 * 415 * 1570 * 691 = 391852920.575 N-mm

= 391.853 kN-m ### ### kN-m ###

Steel on Other side Parallel to Main Steel

Area of Stee Required = 0.12 % = 0.12 X 1000 X 727.7100

= 873.2Required Spacing = 200.96 x 1000

873230 mm

Provide Spacing = 200 mm

Checking for Shear Stress

Ultimate Shear = Vu = 69.1 kNb = 1000 mmd = 728 mm

Shear stress = v = 69.1 * 1000 = 0.09496 < 0.75 fck = 4.43706 OK1000* 728

Depth factor = s = 500 or 0.7 whichever is maximum = 0.91046d

Ultimate Shear Resistance of Concrete = vc =

0.27 100 As fck ( Cl 15-4-3-2-1)

Ym bd

As = 1570 vc = 0.27 x 157000 35

Ym = 1.25 1.25 727667

vc = 0.423

s * vc = 0.91046 * 0.423 = 0.38557

v = 0.09496

Hence NO Shear Reinforcement Required

6.2 At Top of Foundation

S.No. DESCRIPTION OF LOADLOAD L.A. (m)

FacUltimate Load

VERT HORZ. Puh Mu

1 Active Earth Pressure

16.258 2.714 44.123 1.70 27.6387 75.01

4.798 0.226 1.085 1.70 0 1.84

2 8.478 3.607 30.582 1.70 14.413 51.993 Passive Earth Pressure ### ### ### 1.70 ### ###4 Self Weight & Back Fill 21.735 0.607 13.186 1.40 0 18.46

TOTAL 26.533 ### ### ###Due to seismic Effect ### ### ###Combined Load with Seismic ### ### 27.64 ###

Pu Mu

Width of the section = 1.145 m = 1145 mmCover = 70 mm ( Effective )Effective Depthj = 1145 - 70 = 1075 mm

Mu = ### kN-m

Checking for effective depth = d = Mu0.15 x b x fck

d =#VALUE! = ### mm

0.15 x 35 x 1000

1 - 1 - 4.6 Mubd

Here :-

35 Mu = ### KN - m

415 ###

b = 1000 mm 25 mmd = 1075 mm 16 mm

Spacing of Main Bar required = 490.625 x 1000= ### mm

###

mm2

N/mm2

1/4

1/3 x 1/3

mm2 1/3 x 1/3

N/mm2

N/mm2

Moment (t-m)

Horizontal Component Pah

Vertical Component Pav

Earth Pressure due to Surcharge Ph

Ast = .5 fck

fy fck bd2

fck = N /mm2

fy = N /mm2 Ast = mm2

Dia Of Main Bar = # =Dia Of Bar on Comp Side = # =

Page 33: Trial Pile Design excel

document.xls Wing Wall 33

DPCL East Coast Railway Scoot Wilson India Pv. Ltd.

So Provide Spacing = 100 mm < 3d = 3226 O.K % of Steel Provided = p = 4906.25 x 100

1000 x 1075.33= 0.456 % > 0.20% OK

Checking of Mu as per Cl 15-4-2-2-1 of C.B.C

Leaver Arm = z = 1 - 1.1 fy Ast dfck b d

z =1-

22397031075 = 1011 0.95 d = 102237636667

final z = 1011 mm ( Min of above )

Mur = 0.87 * fy *As * z =

0.87 * 415 * 4906.25 * 1011 = 1791492472.1561 N-mm

= 1791.49 kN-m ### ### kN-m ###

Steel on Other side Parallel to Main Steel

Area of Stee Required = 0.12 % = 0.12 X 1000 X 1075.3100

= 1290.4Required Spacing = 200.96 x 1000

1290156 mm

Provide Spacing = 100 mm

Checking for Shear Stress

Ultimate Shear = Vu = 276.4 kNb = 1000 mmd = 1075 mm

Shear stress = v = 276.4 * 1000 = 0.25702 < 0.75 fck = 4.43706 OK1000* 1075

Depth factor = s = 500 or 0.7 whichever is maximum = 0.82577d

Ultimate Shear Resistance of Concrete = vc =

0.27 100 As fck ( Cl 15-4-3-2-1)

Ym bd

As = 4906.25 vc = 0.27 x 490625 35

Ym = 1.25 1.25 1075333

vc = 0.543

s * vc = 0.82577 * 0.543 = 0.44875

v = 0.25702

Hence NO Shear Reinforcement Required

6.3 At Bottom of Foundation

S.No. DESCRIPTION OF LOADLOAD L.A. (m) Moment (t-m)

VERT HORZ. Front L.A.

1 Active Earth Pressure

18.756 2.915 54.673

5.535 0.243 1.345 10.502 58.130

2 25.515 5.322 135.7903 Passive Earth Pressure ### ### ###4 Self Weight & Back Fill 118.264 4.081 482.694 6.664 788.093

TOTAL 123.799 ### 846.224Due to seismic Effect ### ###Combined Load with Seismic ### ### 846.224

6.2.1 Stresses at Bottom of Foundation

CaseZ (m)

B (m)e (m)

W M M/W Z-B/2 W/B(1+6e/B) W/B(1-6e/B)Without Seismic 123.799 #VALUE! ###

10.745### #VALUE! #VALUE!

With Seismic ### #VALUE! ### ### #VALUE! #VALUE!

mm2

N/mm2

1/4

1/3 x 1/3

mm2 1/3 x 1/3

N/mm2

N/mm2

Moment (t-m) Ms

Horizontal Component Pah

Vertical Component Pav

Earth Pressure due to Surcharge Ph

Vert. Load (t)

Moment (t-m)

Pmax (t/m2) Pmin (t/m2)

Page 34: Trial Pile Design excel

document.xls Wing Wall 34

DPCL East Coast Railway Scoot Wilson India Pv. Ltd.

Design of Toe Slab

Max Projection of Toe Slab = 4.800 m

On safer side Taking Max Foundation Pressure as UDL ( Though it will be Trapezoidal )

Max Pressure = ### kN/m ( Taking Unit Width in Consideration )

Max Moment =### x 4.800 2

= ###2

Ultimate Moment = 1.700 x ### = ### kN-m

Mu = ### kN-m

Checking for effective depth = d = Mu0.15 x b x fck

d =#VALUE! = ### mm

0.15 x 35 x 1000

1 - 1 - 4.6 Mubd

Here :-

35 Mu = ### KN - m

415 ###

b = 1000 mm 32 mmd = 1330 mm 16 mm

Spacing of Main Bar required = 803.84 x 1000= ### mm

###

So Provide Spacing = 100 mm < 3d = 3990 O.K % of Steel Provided = p = 8038.4 x 100

1000 x 1330= 0.604 % > 0.20% OK

Steel on Other side Parallel to Main Steel

Area of Stee Required = 0.12 % = 0.12 X 1000 X 1330.0100

= 1596Required Spacing = 200.96 x 1000

1596126 mm

Provide Spacing = 100 mm

Design of Heel Slab

Max Projection of Toe Slab = 4.800 m

Total Weight of Soil / m Run = 8.344 x 18.000 = 150.192 kN/m

Surcharge = 84.782 kN/m

Total Vertical UDL = 150.192 + 84.782 = 234.974 kN/m

Vertical UDL 234.974 kN/m ( Taking Unit Width in Consideration )

Max Moment =234.974 x 4.800 2

= 2706.902

Ultimate Moment = 1.700 x 2706.90 = 4601.74 kN-m

Mu = 4601.7 kN-m

Checking for effective depth = d = Mu0.15 x b x fck

d =4601738200 = 936.2 mm

0.15 x 35 x 1000

1 - 1 - 4.6 Mubd

Here :-

35 Mu = 4601.7 KN - m

415 6899.6

b = 1000 mm 32 mm

Ast = .5 fck

fy fck bd2

fck = N /mm2

fy = N /mm2 Ast = mm2

Dia Of Main Bar = # =Dia Of Bar on Comp Side = # =

mm2

Ast = .5 fck

fy fck bd2

fck = N /mm2

fy = N /mm2 Ast = mm2

Dia Of Main Bar = # =

Page 35: Trial Pile Design excel

document.xls Wing Wall 35

DPCL East Coast Railway Scoot Wilson India Pv. Ltd.

d = 1930 mm 20 mm

Spacing of Main Bar required = 803.84 x 1000= 117 mm

6899.6

So Provide Spacing = 100 mm < 3d = 5790 O.K % of Steel Provided = p = 8038.4 x 100

1000 x 1930= 0.416 % > 0.20% OK

Steel on Other side Parallel to Main Steel

Area of Stee Required = 0.12 % = 0.12 X 1000 X 1930.0100

= 2316Required Spacing = 314 x 1000

2316136 mm

Provide Spacing = 100 mm

7.0 STABILITY CALCULATION

7.1

Moment due to [E.P. (Horz. Component) + Surcharge (Horz. Component)]

Without seismic, 54.673 + 135.790 = 190.463 t-m

With seismic, 54.673 + 135.790 + ### = ### t-m

Moment due to [E.P. (Vert. Component) + Surcharge (Vert. Component)] +Moment due to self Wt. & Earth Fill

Without seismic, 846.224 t-m

With seismic, 846.224 t-m

Description FOS (Reqd.)Without Seismic 846.224 190.463 4.4 2.0With Seismic 846.224 #VALUE! #VALUE! 1.5

7.2

Total Horz. Force, H = 18.756 + 25.515 - ### = ### t

Total Vert. Force, W = 123.799

0.500Base Width = 10.745 m

Cohesion, c = 1.500

###

Total Resisting Force, R =61.900 + 16.118 + ###

= ###

Factor of Safety = Resisting Force=

###= ### ### 1.500Horz. Force ###

###

Dia Of Bar on Comp Side = # =

mm2

Against Overturning (Sub Structure Code Clause 5.10.1.1 and 6.8)

Mo =

Mo =

Mo =

Ms =

Ms = (Calculated in Table 6.3)

Ms = (Calculated in Table 6.3)

Restoring moment (Ms) Overturning moment (Mo) Factor of Safety (Ms/Mo)

Against Sliding (Sub Structure Code Clause 6.8)

Coff of Friction, m =

t/m2

Passive Force, Pp = (Ref. 9.2)

mW+Bc+Pp

Page 36: Trial Pile Design excel

document.xls Return Wall 36

DPCL East Coast Railway Scoot Wilson India Pv. Ltd.

Return WallBridge No 8

Standard of LoadingLevel (m)

Top of Wing Wall 13.200 Formation Level 19.444Top of Foundation 11.100 R.L of Bed Level 11.700Bottom of Foundation 9.100 Deepest Scour Level #VALUE!

1 Height of Wall From Top of Foundation 2.100 m2 Proposed Top Width 0.450 m3 124 Intermediate Front Batter (1H:?V) ( 1000 = For Vertical face ) 10005 Second Front Batter (1H:?V) ( 1000 = for Vertical face ) 10006 Sloping Thickness of Toe 0.207 Length of Toe Projection. 1.100 m8 End Thickness of Foundation 0.500 m9 Heel Projection 1.000 m

10 11.67 Deg 0.204 rad11 Height of Second Batter (Intermediate Level) above Top of Foundation 1.050 m12 Front Offset in Wall 0.000 m13 Passive Height from Bottom of Foundation 2.600 m14 0.50015 Distance form C/L of track to Back Face of Wall 16.000 m16 Width of Sleeper 2.750 m17 Depth of Ballast Cushion 0.300 m18 Depth From Formation Level to Top of Wall 6.244 m

19 Live Load Surcharge 17.000

20 Dead Load Surcharge 6.20021 35.00 Deg 0.611 rad22 6.000 rad

23 Cohesion (c) 1.50024 11.67 Deg 0.204 rad

25 Density of Front Soil 1.000

26 Density of Back Fill 1.800

27Seismic Parameter

Zone = III a = 0.04 b = 1.5 ###

28 Density of Masonry 2.500

29 Density of Submerged Soil 1.00030 F.O.S. for Passive Earth Pressure 331 Front Delta 0.210 rad32 0.083 rad

33 Safe Bearing Capacity 15.034 Grade of Concrete fck = 35 Grade of Steel = 415

CHECKMax Min

Foundation Pressure #VALUE! #VALUE! ###Stability Check OK

Back Batter (Equivalent for existing) (1H:?V) (1000 = For Vertical Face )

Angle of Friction of Wall with Soil (d)

Coefficient of Friction (m)

t/m2

t/m2

Angle of Repose of Soil (f)Angle of Surcharge (i)

t/m2

Angle of internal friction of Soil (f)t/m2

t/m2

i =t/m2

t/m2

Angle of Back Batter (a)t/m2

t/m2

Page 37: Trial Pile Design excel

document.xls Return Wall 37

DPCL East Coast Railway Scoot Wilson India Pv. Ltd.

Formation Level 19.444450

TOP 13.20016 # @ 140

12 # @ 140 BACK SIDE

10

50

15

00

Curtailment Section12 # @ 140

Bed Level 11.700

10

50

16 # @ 140

19

00

12 # @ 140 16 # @ 140 TOF = 9.800

20

0

70

0

50

0

BOF = 9.100

12 # @ 14016 # @ 140

1100 625 1000

Page 38: Trial Pile Design excel

document.xls Return Wall 38

DPCL East Coast Railway Scoot Wilson India Pv. Ltd.

DETAIL CALCULATION

1.0 ACTIVE EARTH PRESSURE

For Calculating the Active Earth Pressure COULOMB's theory is followed.

= (h+2h3)

Where :-

Coeff. of Active Earth Pressureh = Height of Soil w = Unit Weight of Soil

5.7.1 Sub Str

1 +2

Following values are taken for calculating the active earth pressure.Level Int. Chk & TOF BOFSlope of Batter with Vert. 0.083 radCoff. of internal friction of Soil 0.611 radAngle of friction bet. Wall & earth 0.204 radAngle of slope of fill with Horz. 0.000 rad

0.284

i Horizontal Component Of Active Earth Pressure

=

aVertical Component Of Active Earth Pressure

=

a

d

f

1.1 At Intermediate Checking Level FL

Height from Formation Level, h = 1.025 m 0.000 m

0.5 x 0.284 x 1.800 x 1.025 x 1.02454 = 0.268 t/m (Width)Int. Lvl

Horizontal Component

0.268 x Cos( 0.083+ 0.204 ) = 0.257 t/m (Width)

1.025 / 3 = 0.342 m TOF

Vertical Component BOF

0.268 x Sin( 0.083+ 0.204 ) = 0.076 t/m (Width)

= 0.342 x Cot(90 - 0.083 ) = 0.028 m

1.2 At Top of Foundation

Height from Formation Level, h = 2.049 m 0.000 m

0.5 x 0.284 x 1.800 x 2.049 x 2.04907 = 1.074 t/m (Width)

Horizontal Component

1.074 x Cos( 0.083+ 0.204 ) = 1.030 t/m (Width)

2.04907 / 3 = 0.683 m

Vertical Component

1.074 x Sin( 0.083+ 0.204 ) = 0.304 t/m (Width)

= 0.683 x Cot(90 - 0.083 ) = 0.057 m

1.3 At Bottom of Foundation

Height from Formation Level, h = 3.758 m 0.000 m

0.5 x 0.284 x 1.800 x 3.758 x 3.75807 = 3.612 t/m (Width)

Horizontal Component

3.612 x Cos( 0.083+ 0.204 ) = 3.464 t/m (Width)

3.75807 / 3 = 1.253 m

Vertical Component

Pa 0.5Kawh

Ka =

Ka =Cos2(f - a)

Cos2(a)Cos(a + d)Sin(f - d)Sin(f - i)Cos(a+ d)Cos (a - i)

a =f =d =i =

Ka =

(Effect of sloping Surcharge has been taken as per CL 5.8.4 of Sub Str. Code, So "i" is taken = 0 for calculation of Ka)

Pah Pa Cos(a + d)

Acting at Y1= (h/3) above section considered

Pav Pa Sin(a + d)

Pah Acting at X1 = Y1Cot (90-a) from face of Wall

Y1 =h/3

Pa

Pav

h3 =

Pa =

Pah =

Will act at Y1

Pav =

Will act at X1 = Y1Cot(90-a)

h3 =

Pa =

Pah =

Will act at Y2

Pav =

Will act at X2 = Y2Cot(90-a)

h3 =

Pa =

Pah =

Will act at Y2

Page 39: Trial Pile Design excel

document.xls Return Wall 39

DPCL East Coast Railway Scoot Wilson India Pv. Ltd.

3.612 x Sin( 0.083+ 0.204 ) = 1.022 t/m (Width)

1.253 x Cot(90 - 0.083 ) = 0.104

2.0 EARTH PRESSURE DUE TO SURCHARGE

As per Cl 5.8.3 of Sub Str. Code

Earth pressure due to surcharge is assumed to be dispersed below formation level at an angle of 45°.

(B + 2D)

Live Load Surcharge per m, S= 17.000

Dead Load Surcharge per m, V = 6.200Width of Distribution, B = 2.750 m

2.1 At Intermediate Checking Level

16.0000.087 14.538 2.750 Formation Level

B

D 14.538

7.2

94

0.000

Checking Level

0.000 mDepth of Dispersion, D = 14.538 m

17.000+ 6.200 0.000 x 0.284= 0.000 t/m 0.000 m2.750+ 29.075

2.2 At Top of Foundation

16.0000.175 14.450 2.750 Formation Level

B

D 14.450

8.3

44

0.000

Top of Foundation

0.000 mWidth of Distribution, B = 2.750 mDepth of Dispersion, D = 14.450 m

17.000+ 6.200 0.000 x 0.284= 0.000 t/m 0.000 m2.750+ 28.900

2.3 At Bottom of Foundation

16.0001.175 13.450 2.750 Formation Level

B

D 13.450

10

.34

4

0.000

Pav =

Will act at X2 = Y2Cot(90-a)

P1 =(S + V) x h1 x Ka Will act at h1/2

t/m2

t/m2

450

h1

Height, h1 =

P1 = Will act at h1/2

450

h1

Height, h1 =

P1 = Will act at h1/2

450

h1

Page 40: Trial Pile Design excel

document.xls Return Wall 40

DPCL East Coast Railway Scoot Wilson India Pv. Ltd.

Bottom of Foundation

0.000 mDepth of Dispersion, D = 13.450 m

17.000+ 6.200 0.000 x 0.284= 0.000 t/m 0.000 m2.750+ 26.900

3.0 PASSIVE EARTH PRESSURE

For Calculation Of Passive Earth Pressure On Substructure Coulomb Theory Is Used

=

1 - 2

f = 0.204 rad d = 0.210 rad a = 0.000 rad 0.000 rad

1.936 Factor of Safety for Passive = 3

Considering only Horizontal component because Vertical Component will be ineffective.

3.1 At Top of FoundationPassive Height = Bed Lvl or Scour Lvl - TOF = #VALUE! 11.100 = ### m

0.5 x 1.936 x 1.000 x ### 2 = ### t/m

Safe Passive Pressure = ### / 3 = ### t/m

### x Cos( 0.210- 0.000 ) = ### t/m Will act @ h/3 = ### mResisting Moment = #VALUE! ### ### t-m

3.2 At Bottom of FoundationPassive Height = Bed Lvl or Scour Lvl - BOF = #VALUE! 9.100 = ### m

0.5 x 1.936 x 1.000 x ### 2 = ### t/m

Safe Passive Pressure = ### / 3 = ### t/m

### x Cos( 0.210- 0.000 ) = ### t/m Will act @ h/3 = ### mResisting Moment = #VALUE! ### ### t-m

4.0 SELF WEIGHT

4.1 At Intermediate Checking LevelFL

6.2445 Top of Wall0.450

Back Fill0.001

1 Passive 1.0506

3 2 0.850

A 0.087 0.000

No.

W1 1.0 x 0.450 x 1.050 x 2.500 = 1.181 0.313 0.369 0.525 0.620W2 0.5 x 0.000 x 1.050 x 2.500 = 0.000 0.538 0.000 0.350 0.000W3 0.5 x 0.087 x 1.050 x 2.500 = 0.115 0.058 0.007 0.350 0.040W4 0.5 x 0.087 x 1.050 x 1.800 = 0.083 0.029 0.002 0.700 0.058W5 0.5 x 0.087 x -0.03 x 1.800 = -0.002 0.029 0.000 1.042 -0.002

Passive W6 0.5 x 0.001 x 0.850 x 1.000 = 0.000 0.537 0.000Sum 1.377 0.378 0.716

CG of Total Mass from A = Moment/Weight = WX /W = 0.378 /1.377 = 0.275 mCG of Total Mass above Intermediate Level = WY /W = 0.716 /1.377 = 0.520 m

FL6.24411 Top of Wall

Back Fill 0.450 Passive

0.001 0.0001 1.050

Height, h1 =

P1 = Will act at h1/2

Pp 0.5 Kp w h2

Kp=Cos2(f+ a)

Cos2a Cos(a - d)Sin(f + d) Sin(f + i)Cos(a- d) Cos (a - i)

i =

Kp=

Pph = Pp Cos(d - a) Acting at (h/3) above section. Ppv = Pp Sin(d - a) Acting at X=Y Cot(90 - a)

Pp =

Ph =

Pp =

Ph =

Shape Factor

Horz. (m)

Vert. (m)

Density (t/m3)

Weight W(t)

L.A. from A (m)

Moment W X (tm)

L.A. above A (m)

Moment W Y (tm)

Active

Fill

4

6

9

12 13 15

10

B

Page 41: Trial Pile Design excel

document.xls Return Wall 41

DPCL East Coast Railway Scoot Wilson India Pv. Ltd.

0.850

2

0.0005 1.900

3 1.050 1.0504

11.1001.000 0.175 0.000

0.2006 7 0.700

80.500

C9.100

1.625 1.1002.725

4.2 At Top of Foundation

No. Shape

W1 1.0 x 0.450 x 2.100 x 2.500 = 2.363 0.400 0.945 1.050 2.481W2 0.5 x 0.000 x 1.050 x 2.500 = 0.000 0.625 0.000 1.400 0.000W3 1.0 x 0.000 x 1.050 x 2.500 = 0.000 0.625 0.000 0.525 0.000W4 0.5 x 0.000 x 1.050 x 2.500 = 0.000 0.625 0.000 0.350 0.000W5 0.5 x 0.175 x 2.100 x 2.500 = 0.459 0.117 0.054 0.700 0.322W9 0.5 x 0.175 x 2.100 x 1.800 = 0.331 0.058 0.019 1.400 0.463W11 0.5 x 0.175 x -0.05 x 1.800 = -0.008 0.058 0.000 2.083 -0.017W12 0.5 x 0.001 x 0.850 x 1.000 = 0.000 0.625 0.000W13 1.0 x 0.000 x 0.850 x 1.000 = 0.000 0.625 0.000W14 0.5 x 0.001 x 1.050 x 1.000 = 0.001 1.625 0.001

Sum 3.146 1.019 3.249CG of Total Mass from B = Moment/Weight = WX /W = 1.019 /3.146 = 0.324 mCG of Total Mass above Top of Foundation = WY /W = 3.249 /3.146 = 1.033 m

4.3 At Bottom of Foundation

No. Shape

W1 1.0 x 0.450 x 2.100 x 2.500 = 2.363 1.400 3.307 1.750 4.134W2 0.5 x 0.000 x 1.050 x 2.500 = 0.000 1.625 0.000 2.100 0.000W3 1.0 x 0.000 x 1.050 x 2.500 = 0.000 1.625 0.000 1.225 0.000W4 0.5 x 0.000 x 1.050 x 2.500 = 0.000 1.625 0.000 1.050 0.000W5 0.5 x 0.175 x 2.100 x 2.500 = 0.459 1.117 0.513 1.400 0.643W6 1.0 x 1.625 x 0.700 x 2.500 = 2.844 0.813 2.311 0.350 0.995W7 0.5 x 1.100 x 0.200 x 2.500 = 0.275 1.992 0.548 0.567 0.156W8 1.0 x 1.100 x 0.500 x 2.500 = 1.375 2.175 2.991 0.250 0.344W9 0.5 x 0.175 x 2.100 x 1.800 = 0.331 1.058 0.350 2.100 0.695W10 1.0 x 1.000 x 2.100 x 1.800 = 3.780 0.500 1.890 1.750 6.615W11 1.0 x 1.175 x -0.342 x 1.800 = -0.723 0.392 -0.283 2.686 -1.94W12 0.5 x 0.001 x 0.850 x 1.000 = 0.000 1.625 0.001W13 1.0 x 0.000 x 0.850 x 1.000 = 0.000 1.625 0.000W14 0.5 x 0.001 x 1.050 x 1.000 = 0.001 2.625 0.001W15 1.0 x 1.100 x 1.900 x 1.000 = 2.090 2.175 4.546W16 0.5 x 1.100 x 0.200 x 1.000 = 0.110 2.358 0.259

Sum 12.904 16.433 11.639C.G. of mass from C = Moment/Weight = WX /W = 16.433 /12.904 = 1.273 mC.G. of Total Mass above Bott of Foundation = WY /W = 11.639 /12.904 = 0.902 m

5.0 SEISMIC FORCE

Earth Pressure Due to Seismic Effect 5.12.6.1 Sub Str

0.0 x ### 1.500 = ### ### / 2 = ###

Level Int. Chk & TOF BOFSlope of Batter with Vert. 0.083 radCoff. of internal friction of Soil 0.611 radAngle of friction bet. Wall & earth 0.204 radAngle of slope of fill with Horz. 0.000 rad

TOF

a=

###= ###

With (+) Pt I ###

1 + ### Pt II ###

x1 2

###

1 + =

Horz. (m)

Vert. (m)

Density (t/m3)

Weight W(t)

L.A. from B (m)

Moment W X (tm)

L.A. above B (m)

Moment W Y (tm)

Horz. (m)

Vert. (m)

Density (t/m3)

Weight W(t)

L.A. from C (m)

Moment W X (tm)

L.A. above C (m)

Moment W Y (tm)

a h = b x I x a o

a h = a v =

a =f =d =i =

l =tan-1a h tan-1

Ca

se I

: W

ith

"+"

& "

+"

valu

e 1 + a v

Ca =(1 + a v) Cos2(f - a - l)

Cosl Cos2a Cos(a + d + l)Sin(f + d)Sin(f - i - l)

Active

Fill

Passiv

e

Fill

Active

Fill

Passiv

e Fill

9

12

14

13

16

15

10

B

Page 42: Trial Pile Design excel

document.xls Return Wall 42

DPCL East Coast Railway Scoot Wilson India Pv. Ltd.

1 + =

b=

###= ###

With (-) Pt I ###

1 - ### Pt II ###

x1 2

###

1 + =

At Int. Chk & TOF BOF

### (Max Value of above, i.e., a and b)

0.284

###

5.1 At Intermediate Checking Level

DESCRIPTION FORCE L.A. MomentSFH 1 to 5 = DUE TO SELF WT. OF Wall ### 0.520 ###SFV 1 to 5 = DUE TO SELF WT. OF Wall ### 0.000 ###

### 0.525 ###Total Ver Load = ### tTotal Horz Load = ### tTotal Moment = ### t-m

5.2 At Top of Foundation

DESCRIPTION FORCE L.A. MomentSFH 1 to 5 = DUE TO SELF WT. OF Wall ### 1.033 ###SFV 1 to 5 = DUE TO SELF WT. OF Wall ### 0.000 ###

### 1.050 ###Total Ver Load = ### tTotal Horz Load = ### tTotal Moment = ### t-m

5.3 At Bottom of Foundation

DESCRIPTION FORCE L.A. MomentSFH 1 to 5 = DUE TO SELF WT. OF Wall ### 0.902 ###SFV 1 to 5 = DUE TO SELF WT. OF Wall ### 0.000 ###

### 2.050 ###Total Ver Load = ### tTotal Horz Load = ### tTotal Moment = ### t-m

6.0 STRESS CALCULATION

6.1 At Intermediate Checking Level

S.No. DESCRIPTION OF LOADLOAD L.A. (m)

FacUltimate Load

VERT HORZ. Puh Mu

1 Active Earth Pressure

0.257 0.342 0.088 1.70 0.43767 0.15

0.076 0.028 0.002 1.70 0 0.00

2 0.000 0.000 0.000 1.70 0 0.003 Self Weight & Back Fill 1.377 0.378 1.40 0 0.53

TOTAL 1.453 0.468 0.438 0.683Due to seismic Effect ### ### ###Combined Load with Seismic ### ###

0.44 ###Pu Mu

Width of the section = 538 mmCover = 70 mm ( Effective )Effective Depthj = 538 - 70 = 468 mmChecking at first LevelMu = ### kN-m

Checking for effective depth = d = Mu0.15 x b x fck

d =#VALUE! = ### mm

0.15 x 35 x 1000

1 - 1 - 4.6 Mubd

Ca

se I

: W

ith

"+"

& "

+"

valu

e

Cosl Cos2a Cos(a + d + l) Cos(a+ d + l)Cos(a - i)

l =tan-1a h tan-1

Ca

se I

I:

With

"-

" &

"-"

va

lue 1 - a v

Ca =(1 + a v) Cos2(f - a - l)

Cosl Cos2a Cos(a + d + l)Sin(f + d)Sin(f - i - l)

Cos(a+ d + l)Cos(a - i)

Final Ca =

Ka =

Dynamic Increment (Ca - Ka) =

Increment in Earth Pressure [0.5gh2(Ca-Ka)]

Increment in Earth Pressure [0.5gh2(Ca-Ka)]

Increment in Earth Pressure [0.5gh2(Ca-Ka)]

Moment (t-m)

Horizontal Component Pah

Vertical Component Pav

Earth Pressure due to Surcharge Ph

Ast = .5 fck

fy fck bd2

Page 43: Trial Pile Design excel

document.xls Return Wall 43

DPCL East Coast Railway Scoot Wilson India Pv. Ltd.

Here :-

35 Mu = ### KN - m

415 ###

b = 1000 mm 16 mmd = 468 mm 12 mm

Spacing of Main Bar required = 200.96 x 1000= ### mm

###

So Provide Spacing = 140 mm < 3d = 1402.5 O.K % of Steel Provided = p = 1435.43 x 100

1000 x 467.5= 0.307 % > 0.20% OK

Checking of Mu as per Cl 15-4-2-2-1 of C.B.C

Leaver Arm = z = 1 - 1.1 fy Ast dfck b d

z =1-

655273468 = 449 0.95 d = 44416362500

final z = 444 mm

Mur = 0.87 * fy *As * z =

0.87 * 415 * 1435.43 * 444 = 230172882.34286 N-mm

= 230.173 kN-m ### ### kN-m ###

Steel on Other side Parallel to Main Steel

Area of Stee Required = 0.12 % = 0.12 X 1000 X 467.5100

= 561Required Spacing = 113.04 x 1000

561201 mm

Provide Spacing = 140 mm

Checking for Shear Stress

Ultimate Shear = Vu = 4.4 kNb = 1000 mmd = 468 mm

Shear stress = v = 4.4 * 1000 = 0.00936 < 0.75 fck = 4.43706 OK1000* 468

Depth factor = s = 500 or 0.7 whichever is maximum = 1.01694d

Ultimate Shear Resistance of Concrete = vc =

0.27 100 As fck ( Cl 15-4-3-2-1)

Ym bd

As = 1435.43 vc = 0.27 x 143543 35

Ym = 1.25 1.25 467500

vc = 0.476

s * vc = 1.01694 * 0.476 = 0.48435

v = 0.00936

Hence NO Shear Reinforcement Required

6.2 At Top of Foundation

S.No. DESCRIPTION OF LOADLOAD L.A. (m)

FacUltimate Load

VERT HORZ. Puh Mu

1 Active Earth Pressure

1.030 0.683 0.703 1.70 1.75068 1.20

0.304 0.057 0.017 1.70 0 0.03

2 0.000 0.000 0.000 1.70 0 0.003 Passive Earth Pressure ### ### ### 1.70 ### ###

fck = N /mm2

fy = N /mm2 Ast = mm2

Dia Of Main Bar = # =Dia Of Bar on Comp Side = # =

mm2

N/mm2

1/4

1/3 x 1/3

mm2 1/3 x 1/3

N/mm2

N/mm2

Moment (t-m)

Horizontal Component Pah

Vertical Component Pav

Earth Pressure due to Surcharge Ph

Page 44: Trial Pile Design excel

document.xls Return Wall 44

DPCL East Coast Railway Scoot Wilson India Pv. Ltd.

4 Self Weight & Back Fill 3.146 0.324 1.019 1.40 0 1.43TOTAL 3.449 ### ### ###Due to seismic Effect ### ### ###Combined Load with Seismic ### ### 1.75 ###

Pu Mu

Width of the section = 0.625 m = 625 mmCover = 70 mm ( Effective )Effective Depthj = 625 - 70 = 555 mm

Mu = ### kN-m

Checking for effective depth = d = Mu0.15 x b x fck

d =#VALUE! = ### mm

0.15 x 35 x 1000

1 - 1 - 4.6 Mubd

Here :-

35 Mu = ### KN - m

415 ###

b = 1000 mm 16 mmd = 555 mm 12 mm

Spacing of Main Bar required = 200.96 x 1000= ### mm

###

So Provide Spacing = 140 mm < 3d = 1665 O.K % of Steel Provided = p = 1435.43 x 100

1000 x 555= 0.259 % > 0.20% OK

Checking of Mu as per Cl 15-4-2-2-1 of C.B.C

Leaver Arm = z = 1 - 1.1 fy Ast dfck b d

z =1-

655273555 = 536 0.95 d = 52719425000

final z = 527 mm ( Min of above )

Mur = 0.87 * fy *As * z =

0.87 * 415 * 1435.43 * 527 = 273253368.34286 N-mm

= 273.253 kN-m ### ### kN-m ###

Steel on Other side Parallel to Main Steel

Area of Stee Required = 0.12 % = 0.12 X 1000 X 555.0100

= 666Required Spacing = 113.04 x 1000

666170 mm

Provide Spacing = 140 mm

Checking for Shear Stress

Ultimate Shear = Vu = 17.5 kNb = 1000 mmd = 555 mm

Shear stress = v = 17.5 * 1000 = 0.03154 < 0.75 fck = 4.43706 OK1000* 555

Depth factor = s = 500 or 0.7 whichever is maximum = 0.97425d

Ast = .5 fck

fy fck bd2

fck = N /mm2

fy = N /mm2 Ast = mm2

Dia Of Main Bar = # =Dia Of Bar on Comp Side = # =

mm2

N/mm2

1/4

Page 45: Trial Pile Design excel

document.xls Return Wall 45

DPCL East Coast Railway Scoot Wilson India Pv. Ltd.

Ultimate Shear Resistance of Concrete = vc =

0.27 100 As fck ( Cl 15-4-3-2-1)

Ym bd

As = 1435.43 vc = 0.27 x 143543 35

Ym = 1.25 1.25 555000

vc = 0.450

s * vc = 0.97425 * 0.450 = 0.43825

v = 0.03154

Hence NO Shear Reinforcement Required

6.3 At Bottom of Foundation

S.No. DESCRIPTION OF LOADLOAD L.A. (m) Moment (t-m)

VERT HORZ. Front L.A.

1 Active Earth Pressure

3.464 1.253 4.339

1.022 0.104 0.107 2.621 2.679

2 0.000 0.000 0.0003 Passive Earth Pressure ### ### ###4 Self Weight & Back Fill 12.904 1.273 16.433 1.452 18.730

TOTAL 13.926 ### 21.409Due to seismic Effect ### ###Combined Load with Seismic ### ### 21.409

6.2.1 Stresses at Bottom of Foundation

CaseZ (m)

B (m)e (m)

W M M/W Z-B/2 W/B(1+6e/B) W/B(1-6e/B)Without Seismic 13.926 #VALUE! ###

2.725### #VALUE! #VALUE!

With Seismic ### #VALUE! ### ### #VALUE! #VALUE!

Design of Toe Slab

Max Projection of Toe Slab = 1.100 m

On safer side Taking Max Foundation Pressure as UDL ( Though it will be Trapezoidal )

Max Pressure = ### kN/m ( Taking Unit Width in Consideration )

Max Moment =### x 1.100 2

= ###2

Ultimate Moment = 1.700 x ### = ### kN-m

Mu = ### kN-m

Checking for effective depth = d = Mu0.15 x b x fck

d =#VALUE! = ### mm

0.15 x 35 x 1000

1 - 1 - 4.6 Mubd

Here :-

35 Mu = ### KN - m

415 ###

b = 1000 mm 16 mmd = 630 mm 12 mm

Spacing of Main Bar required = 200.96 x 1000= ### mm

###

So Provide Spacing = 140 mm < 3d = 1890 O.K % of Steel Provided = p = 1435.43 x 100

1000 x 630= 0.228 % > 0.20% OK

Steel on Other side Parallel to Main Steel

1/3 x 1/3

mm2 1/3 x 1/3

N/mm2

N/mm2

Moment (t-m) Ms

Horizontal Component Pah

Vertical Component Pav

Earth Pressure due to Surcharge Ph

Vert. Load (t)

Moment (t-m)

Pmax (t/m2) Pmin (t/m2)

Ast = .5 fck

fy fck bd2

fck = N /mm2

fy = N /mm2 Ast = mm2

Dia Of Main Bar = # =Dia Of Bar on Comp Side = # =

Page 46: Trial Pile Design excel

document.xls Return Wall 46

DPCL East Coast Railway Scoot Wilson India Pv. Ltd.

Area of Stee Required = 0.12 % = 0.12 X 1000 X 630.0100

= 756Required Spacing = 113.04 x 1000

756150 mm

Provide Spacing = 140 mm

Design of Heel Slab

Max Projection of Toe Slab = 1.000 m

Total Weight of Soil / m Run = 8.344 x 18.000 = 150.192 kN/m

Surcharge = 0.000 kN/m

Total Vertical UDL = 150.192 + 0.000 = 150.192 kN/m

Vertical UDL 150.192 kN/m ( Taking Unit Width in Consideration )

Max Moment =150.192 x 1.000 2

= 75.102

Ultimate Moment = 1.700 x 75.10 = 127.66 kN-m

Mu = 127.7 kN-m

Checking for effective depth = d = Mu0.15 x b x fck

d =127663200 = 155.9 mm

0.15 x 35 x 1000

1 - 1 - 4.6 Mubd

Here :-

35 Mu = 127.7 KN - m

415 567.6

b = 1000 mm 16 mmd = 630 mm 12 mm

Spacing of Main Bar required = 200.96 x 1000= 354 mm

567.6

So Provide Spacing = 140 mm < 3d = 1890 O.K % of Steel Provided = p = 1435.43 x 100

1000 x 630= 0.228 % > 0.20% OK

Steel on Other side Parallel to Main Steel

Area of Stee Required = 0.12 % = 0.12 X 1000 X 630.0100

= 756Required Spacing = 113.04 x 1000

756150 mm

Provide Spacing = 140 mm

7.0 STABILITY CALCULATION

7.1

Moment due to [E.P. (Horz. Component) + Surcharge (Horz. Component)]

Without seismic, 4.339 + 0.000 = 4.339 t-m

With seismic, 4.339 + 0.000 + ### = ### t-m

Moment due to [E.P. (Vert. Component) + Surcharge (Vert. Component)] +Moment due to self Wt. & Earth Fill

Without seismic, 21.409 t-m

With seismic, 21.409 t-m

mm2

Ast = .5 fck

fy fck bd2

fck = N /mm2

fy = N /mm2 Ast = mm2

Dia Of Main Bar = # =Dia Of Bar on Comp Side = # =

mm2

Against Overturning (Sub Structure Code Clause 5.10.1.1 and 6.8)

Mo =

Mo =

Mo =

Ms =

Ms = (Calculated in Table 6.3)

Ms = (Calculated in Table 6.3)

Page 47: Trial Pile Design excel

document.xls Return Wall 47

DPCL East Coast Railway Scoot Wilson India Pv. Ltd.

Description FOS (Reqd.)Without Seismic 21.409 4.339 4.9 2.0With Seismic 21.409 #VALUE! #VALUE! 1.5

7.2

Total Horz. Force, H = 3.464 + 0.000 - ### = ### t

Total Vert. Force, W = 13.926

0.500Base Width = 2.725 m

Cohesion, c = 1.500

###

Total Resisting Force, R =6.963 + 4.088 + ###

= ###

Factor of Safety = Resisting Force=

###= ### ### 1.500Horz. Force ###

###

Restoring moment (Ms) Overturning moment (Mo) Factor of Safety (Ms/Mo)

Against Sliding (Sub Structure Code Clause 6.8)

Coff of Friction, m =

t/m2

Passive Force, Pp = (Ref. 9.2)

mW+Bc+Pp

Page 48: Trial Pile Design excel

document.xls Detailing 48

DPCL East Coast Railway Scoot Wilson India Pv. Ltd.

1000 5000 1000Fromation Level 19.44 300

Dirt Wall 16 # @ 130 mm c/c

###

8 # @ 150 mm c/c

Top ofAbutment18.84

32 # @ 90 mm c/c 32 # @ 90 mm c

20 # @ 180 mm c/c 20 # @ 180 mm c/c

X X

16 # @ 140mm c/cTop of Cap

10.00

1800

25 # @ 140 mm c/c 25 # @ 140mm c/c

1200 mm Dia Pile 25000Y Y 1200

20 # 17 Nos

### 3500 3500 ###8 # dia Ring @ 200 mm 3500 750

8500 20 # 17 Nos

Details of Abutment20 # @ 180 mm c/c Section at Y-Y 8500

7000 20 # 8 nos

###

Bridge NO 8Section @ X-X 32 # @ 90 mm c/c

12 # 3 Legged Stirrups @ 140

8 # dia Ring @ 200 mm c/c

10 # 4 Leg @ 180 mm c/c