Transport in atomic-scale doped silicon nanowires

9
TRANSPORT IN ATOMIC- SCALE DOPED SILICON NANOWIRES Bent Weber 1 , S. Mahapatra 1,2 , W, Clarke 1 , M. Y. Simmons 1,2 1) School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia 2) Australian Research Counsel Centre of Excellence for Quantum Computer Technology, Sydney, Australia H. Ryu, S. Lee, G. Klimeck Network for Computational Nanotechnology, Purdue University, West Lafayette, IN 47907, USA L. C. L. Hollenberg Center for Quantum Computer Technology, School of Physics, University of Melbourne, VIC 3010, Australia

description

Bent Weber 1 , S. Mahapatra 1,2 , W, Clarke 1 , M. Y. Simmons 1,2 1) School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia 2) Australian Research Counsel Centre of Excellence for Quantum Computer Technology, Sydney, Australia H. Ryu , S. Lee, G. Klimeck - PowerPoint PPT Presentation

Transcript of Transport in atomic-scale doped silicon nanowires

Recent measurements on atomic-scale dopant wires in Si

Transport in atomic-scale doped silicon nanowiresBent Weber1, S. Mahapatra1,2, W, Clarke1, M. Y. Simmons1,2 1) School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia2) Australian Research Counsel Centre of Excellence for Quantum Computer Technology, Sydney, Australia

H. Ryu, S. Lee, G. KlimeckNetwork for Computational Nanotechnology, Purdue University, West Lafayette, IN 47907, USA

L. C. L. HollenbergCenter for Quantum Computer Technology, School of Physics, University of Melbourne, VIC 3010, Australia

1Applications of Silicon Nanowires

In-plane gates / leads for silicon donor-based quantum computingSilicon nanowire transistors

Fuhrer et al.,NanoLetters 9 (2), 707 (2009)Fuechsle et al., Nat. Nanotech., advance online publication (2010)

SiNWoxidepoly gate5 nm

Singh et al., IEEE Electron Device Letters 27 (5), 383 (2006)

Cui et al., NanoLetters 3 (2), 149 (2003)2As the diameter reaches the nano-scale:Surface scattering (< 4 nm)Carrier depletion due to surface/interface statesDoping challengingLimited to (~ 1020 cm-3) (VLS)Dopant-segregation (< 5 nm)Quantum confinement ( NMott ~ 3 x 1018 cm-3

Atomistic Modeling of Si Nanowires

T = 4KElectronic structure modeling with atomistic representation, using NEMO-3D

PhosphorusSiliconDirection of transportdlith=1.7 nmdleff=3.4 nm

Aeff6

Diarra et al., Phys. Rev. B 75 (4), 045301 (2007)

Diameter-Independent Resistivity

9x10183x10191.5x1020bulk resistivity (T= 4 K)Yamada et al., Jap. J. Appl. Phys. 28 (12), L2284 (1989)

6 nm

Bjork et al., Nat. Nanotech., 4 (2), 103 (2009)7ConclusionsNarrowest doped silicon nanowires, showing Ohmic conduction

Diameter-independent resistivity, comparable to bulk value full dopant activation down to ~2 nm

Atomistic tight-binding calculations (NEMO-3D) to compute electronic structure

T = 4K

8Thanks to Dr. A. Fuhrer (now IBM Rueschlikon, Switzerland) and Dr. T.C.G. Reusch (now OSRAM Opto Semiconductors, Regensburg, Germany)

The UNSW Quantum Electronic Devices group of Prof. A. R . Hamilton (especially Dr. T. Martin, Dr. O. Klochan, A/Prof A. P. Micolich)

This work was supported by the Australian Research Council, the Army Research Office under contract number W911NF-08-1-0527 and the National Science Foundation (NSF). Computational resources on nanoHUB.org, NICS, TACC, and Oak Ridge National Lab were utilized.

9