Transmitter for Quantum Encryption System

54
Transmitter for Quantum Encryption System Supervisor: Yossi Hipsh Performed by: Asaf Holzer Edward Speed Digital Systems Labora Final presentation Spring 2006

description

High Speed Digital Systems Laboratory. Transmitter for Quantum Encryption System. Final presentation Spring 2006. Supervisor: Yossi Hipsh. Performed by: Asaf Holzer Edward Shifman. Background. - PowerPoint PPT Presentation

Transcript of Transmitter for Quantum Encryption System

Page 1: Transmitter for Quantum Encryption System

Transmitter for Quantum Encryption System

Supervisor: Yossi Hipsh

Performed by: Asaf Holzer Edward Shifman

High Speed Digital Systems Laboratory

Final presentation Spring 2006

Page 2: Transmitter for Quantum Encryption System

Background

Several methods can be used for encrypting information. One of

them is the BB84 scheme, which was developed by Brassard &

Bennett. The advantage of this method is that it is impossible to

crack it, because it is based on the “No Cloning” principle.

The BB84 scheme was mathematically proved as a perfectly safe

Method, in a theoretical perfect world without noises.

Page 3: Transmitter for Quantum Encryption System

Project Objectives

•The transmitter module is part of a complex system, which

purpose is to send a digital code, which will later be used as

key for encrypting and decrypting information.

•Our goal is to produce an electrical pulse which is ~0.5ns

wide and its magnitude is 4v. The purpose of this pulse is to

activate the laser diode.

Page 4: Transmitter for Quantum Encryption System

The Overall System Block Diagram

Computer + Labview

Transmitter Reciever

Interferometers, etc.

Computer + Counter

Synchronization

Page 5: Transmitter for Quantum Encryption System

Original Plan

Pulse trigger

D.D.L TTL 2 ECLECL Programmable

Delay Chip

1:2ECL Programmable

Delay Chip

Long fiber

And Gate1:2

Bal_UN Bal_UN

Gain Gain

P_Quant P_Sync

monostable

Page 6: Transmitter for Quantum Encryption System

Original Plan – continued…

Pulse trigger

D.D.L TTL 2 ECLECL Programmable

Delay Chip

1:2ECL Programmable

Delay Chip

Long fiber

And Gate1:2

Bal_UN Bal_UN

Gain Gain

Ref P_Stab

monostable

Page 7: Transmitter for Quantum Encryption System

In order to improve the module’s performance we decided to

use ECL technology from the very beginning of the pulse

module, so we put the TTL-ECL device at the beginning.

We replaced the components so they will operate in

3.3 voltage level.

Some more advances

Page 8: Transmitter for Quantum Encryption System

Pulse trigger

TTL 2 ECL

ECL Prog. Delay Chip 1:2 And Gate

1:4

Bal_UN

Gainmonostable

ECL Prog. Delay Chip

ECL Prog. Delay Chip

P_Quant

P_Sync

P_Sync

Ref

Plan #2

Page 9: Transmitter for Quantum Encryption System

Plan #3Computer – LabView

1:4(TTL)

Mux Mux

TTL-ECL TTL-ECL TTL-ECL

Pulse-Module Pulse-Module Pulse-Module

1:4(TTL)

sel sel

counter

P_Quant P_Stab P_Sync

stab_en sync_ctrltrig

detector refref

Page 10: Transmitter for Quantum Encryption System

The Monostable (ECL) – Take #1…

Flip Flop

S

R

Q

DECL Prog.

Delay Chip 1

ECL Prog. Delay Chip 3

ECL Prog. Delay Chip 21:4

(ECL)

QCLK

MC100EP31

MC100EP31 Characteristics:

Page 11: Transmitter for Quantum Encryption System

The Monostable Timing Diagram

Data

CLK

Reset

Q

ts

tclk-Q

tR-Q

Q

400ps130ps

Min. Pulse width:

530ps

t

t

t

t

Page 12: Transmitter for Quantum Encryption System

Plan #3 – Pulse Module

monostable monostable

And Gate

1:2

Bal_UN

Bal_UN

Gain

Gain

Plan B

3ns 0.5ns

10ns

ref

Page 13: Transmitter for Quantum Encryption System

Flip Flop

S

R

Q

D

ECL Prog. Delay Chip 2

ECL Prog. Delay Chip 1

1:4(ECL)

QCLK

Plan #3 – Pulse Module

Flip Flop

S

R

Q

DECL Prog. Delay Chip 3

ECL Prog. Delay Chip 5

ECL Prog. Delay Chip 4

1:4(ECL) QCLK

3ns

0.5ns

And Gate0.5ns

Page 14: Transmitter for Quantum Encryption System

Voltage Surfaces

• Vcc - 3.3V

• Vtt – 1.3V

• GND

We ended up with one voltage source of 3.3V.

Using a regulator to get 1.3V and a DC/DC

converter to get 5V.

Page 15: Transmitter for Quantum Encryption System

Voltage Surfaces

Page 16: Transmitter for Quantum Encryption System

The Original Bal-UN

INOUT

68Ω

68Ω 68Ω

68Ω

140Ω 140Ω

150Ω

150Ω1nF

1nF

100nF

100nF

+

-

Vtt=1.3v

Vtt=1.3v

Page 17: Transmitter for Quantum Encryption System

The Final Bal-UN

INOUT

68Ω

68Ω 68Ω

68Ω

140Ω 140Ω+

-

Vtt=1.3v

Page 18: Transmitter for Quantum Encryption System

The Final ORCAD Design

Page 19: Transmitter for Quantum Encryption System

The Final ORCAD Design

Page 20: Transmitter for Quantum Encryption System

The Final ORCAD Design:Pulse-Module:

Page 21: Transmitter for Quantum Encryption System

The Final ORCAD DesignTest Points:

•Counter_tp – The detector has detected p_quan.

•Splitter14_tp – A pulse trigger has been received.

•Quan_tp

•Stab_tp

•Sync_tp

Testing each Pulse Module

Page 22: Transmitter for Quantum Encryption System

Connectors

•Power Connector

•SMA Connector

•Flat-Cable Connector

Page 23: Transmitter for Quantum Encryption System

The Final Layout

Page 24: Transmitter for Quantum Encryption System

Component ListComponent Description Manufacturer Quantity

NB3L553_D 1:4 TTL ON Semi 1

MC100EP11_DT 1:2 PECL ON Semi 6

SN74F74_N FF (monostable) TI 2

MC100EPT20_DT TTL to PECL ON Semi 3

MC100EPT21_DT PECL to TTL ON Semi 1

MC100EP58_DT Multiplexer ON Semi 1

MC100EP195_FA ECL Prog. Delay ON Semi 9

SN7LVC1G125_DCK Enable Buffer TI 1

MC100EP05_DT AND Gate ON Semi 3

PTH04000WAH_EUS Regulator TI 1

DC/DC Step-Up Converter DC/DC Converter Tekgear 1

ZPUL-30P Amplifier Mini Circuits 6

Page 25: Transmitter for Quantum Encryption System

Power & Connectors ListComponent Description Manufacturer Quantity

HWS10-3/A Power Supplier Lambda 1

SMA8410L-9000 SMA Connector JYEBAO 12

CTB9300/6A Power Connector Camden 1

17978-150 Flat Connector FCI 1

Page 26: Transmitter for Quantum Encryption System

PART B

Page 27: Transmitter for Quantum Encryption System

Stack & Lines Design:

Raw material used – Fr4

W = 7mil 1.8323W

h

Calculated using Microstrip equations, to achieve

Page 28: Transmitter for Quantum Encryption System

Stack & Lines Design:

Raw material used – Fr4

W = 7mil

Calculated using Stripline equations, to achieve

Page 29: Transmitter for Quantum Encryption System

Stack & Lines Design:

Page 30: Transmitter for Quantum Encryption System

HyperLynx Simulation

First AssumingDesign File: 1_ 2_ _ _ 1_ 2.ffsHyperLynx LineS im V7.5

U1

MC100EP11DT_33D

2

1

U2

MC100EP11DT_33Q

2

1

TL1

50.1 ohms30.756 ps0.200 inCoupled Stackup

TL2

50.1 ohms30.756 ps0.200 inCoupled Stackup

R1

50.0 ohms

R2

50.0 ohms

Vtt1.3V

Page 31: Transmitter for Quantum Encryption System

HyperLynx Simulation

Simulation Results for various frequencies

OSCILLOSCOPEDesign file: 1_2___1_2.FFS Designer: Shifman

HyperLynx V7.5

Date: Monday Apr. 16, 2007 Time: 16:11:59Show Latest Waveform = YES

-2000.0

-1500.0

-1000.0

-500.0

0.000

500.0

1000.0

1500.0

2000.0

2500.0

0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000 10.000Time (ns)

Vol

tag

e -m

V-

Probe 1:U1.1 (at pin)Probe 2:U2.1 (at pin)

@500MHzOSCILLOSCOPE

Design file: 1_2___1_2.FFS Designer: ShifmanHyperLynx V7.5

Date: Monday Apr. 16, 2007 Time: 16:13:51Show Latest Waveform = YES

-2000.0

-1500.0

-1000.0

-500.0

0.000

500.0

1000.0

1500.0

2000.0

2500.0

0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000 10.000Time (ns)

Vol

tag

e -m

V-

Probe 1:U1.1 (at pin)Probe 2:U2.1 (at pin)

@2000MHz

Page 32: Transmitter for Quantum Encryption System

HyperLynx Simulation

Falling Edge SimulationOSCILLOSCOPE

Design file: 1_2___1_2.FFS Designer: ShifmanHyperLynx V7.5

Date: Monday Apr. 16, 2007 Time: 16:21:33Show Latest Waveform = YES

-2000.0

-1500.0

-1000.0

-500.0

0.000

500.0

1000.0

1500.0

2000.0

2500.0

0.000 200.0 400.0 600.0 800.0 1000.0 1200.0 1400.0 1600.0 1800.0 2000.0Time (ps)

Vol

tag

e -m

V-

Probe 1:U1.1 (at pin)Probe 2:U2.1 (at pin)

Page 33: Transmitter for Quantum Encryption System

HyperLynx Simulation

Simulation Results for various frequencies

@500MHz @2000MHz

Now Assuming

OSCILLOSCOPEDesign file: 1_2___1_2.FFS Designer: Shifman

HyperLynx V7.5

Date: Tuesday Apr. 17, 2007 Time: 12:49:38Show Latest Waveform = YES

-2500.0

-2000.0

-1500.0

-1000.0

-500.0

0.000

500.0

1000.0

1500.0

2000.0

2500.0

1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000 10.000 11.000Time (ns)

Vol

tag

e -m

V-

Probe 1:U1.1 (at pin)Probe 2:U2.1 (at pin)

OSCILLOSCOPEDesign file: 1_2___1_2.FFS Designer: Shifman

HyperLynx V7.5

Date: Tuesday Apr. 17, 2007 Time: 12:46:56Show Latest Waveform = YES

-2500.0

-2000.0

-1500.0

-1000.0

-500.0

0.000

500.0

1000.0

1500.0

2000.0

2500.0

1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000 10.000 11.000Time (ns)

Vol

tag

e -m

V-

Probe 1:U1.1 (at pin)Probe 2:U2.1 (at pin)

Delay =

Page 34: Transmitter for Quantum Encryption System

HyperLynx Simulation

Simulation until now usingS – distance between the lines

HyperLynx V7.5

GND1

HyperLynx V7.5

GND1

Field Influence @ S=8mil Field Influence @ S=20mil

Page 35: Transmitter for Quantum Encryption System

HyperLynx Simulation - Vias

HyperLynx does not support Vias, so we had to model the via, using a capacitor & a resistor.

Design File: 1_2___1_2_up_only_via.ffsHyperLynx LineSim V7.5

U1

MC100EP11DT_33D

2

1

U2

MC100EP11DT_33Q

2

1

TL1

49.9 ohms153.179 ps1.000 inCoupled Stackup

TL2

50.0 ohms153.560 ps1.000 inCoupled Stackup

R1

50.0 ohms

R2

50.0 ohms

Vtt1.3V

TL4

50.0 ohms153.582 ps1.000 inCoupled Stackup

TL3

49.8 ohms183.679 ps1.000 inCoupled Stackup

TL5

49.8 ohms183.680 ps1.000 inCoupled Stackup

TL6

49.9 ohms153.171 ps1.000 inCoupled Stackup

C1

3.0 fF

C2

3.0 fF

C3

3.0 fF

C4

3.0 fF

R3

2.0 milliohms

R4

2.0 milliohms

R5

2.0 milliohms

R6

2.0 milliohms

Page 36: Transmitter for Quantum Encryption System

HyperLynx Simulation - Vias

Simulation results for various frequencies

OSCILLOSCOPEDesign file: 1_2___1_2_UP_ONLY_VIA.FFS Designer: Shifman

HyperLynx V7.5

Date: Wednesday Apr. 18, 2007 Time: 18:03:51Show Latest Waveform = YES

-2500.0

-2000.0

-1500.0

-1000.0

-500.0

0.000

500.0

1000.0

1500.0

2000.0

2500.0

0.000 2.000 4.000 6.000 8.000 10.000Time (ns)

Vol

tag

e -m

V-

Probe 1:U1.1 (at pin)Probe 2:U2.1 (at pin)

@500MHzOSCILLOSCOPE

Design file: 1_2___1_2_UP_ONLY_VIA.FFS Designer: ShifmanHyperLynx V7.5

Date: Wednesday Apr. 18, 2007 Time: 18:02:12Show Latest Waveform = YES

-2500.0

-2000.0

-1500.0

-1000.0

-500.0

0.000

500.0

1000.0

1500.0

2000.0

2500.0

0.000 2.000 4.000 6.000 8.000 10.000Time (ns)

Vol

tag

e -m

V-

Probe 1:U1.1 (at pin)Probe 2:U2.1 (at pin)

@1000MHz

Page 37: Transmitter for Quantum Encryption System

HyperLynx Simulation - Vias

Running a simulation without modeling the vias(with same total length of the transmission line)

OSCILLOSCOPEDesign file: 1_2___1_2_UP_ONLY.FFS Designer: Shifman

HyperLynx V7.5

Date: Wednesday Apr. 18, 2007 Time: 17:47:21Show Latest Waveform = YES

-2500.0

-2000.0

-1500.0

-1000.0

-500.0

0.000

500.0

1000.0

1500.0

2000.0

2500.0

0.000 2.000 4.000 6.000 8.000 10.000Time (ns)

Vol

tag

e -m

V-

Probe 1:U1.1 (at pin)Probe 2:U2.1 (at pin)

OSCILLOSCOPEDesign file: 1_2___1_2_UP_ONLY.FFS Designer: Shifman

HyperLynx V7.5

Date: Wednesday Apr. 18, 2007 Time: 17:46:27Show Latest Waveform = YES

-2500.0

-2000.0

-1500.0

-1000.0

-500.0

0.000

500.0

1000.0

1500.0

2000.0

2500.0

0.000 2.000 4.000 6.000 8.000 10.000Time (ns)

Vol

tag

e -m

V-

Probe 1:U1.1 (at pin)Probe 2:U2.1 (at pin)

@500MHz @1000MHz

Page 38: Transmitter for Quantum Encryption System

HyperLynx Simulation - Conclusion

• Impedance Coordination & Reflections

• Delays

• Crosstalk

• Via’s influence

Page 39: Transmitter for Quantum Encryption System

The FPGA

Field Programmable Gate Array

Page 40: Transmitter for Quantum Encryption System

FPGA Design

Opcode structure:

Mode (1bit) Pulse_editmode (2bit) Pulse_width (10bit) Pulse_offset (11bit)

Mode (1bit)Pulse_workmode (3bit)

Edit Mode:

Work Mode:

0

1

Page 41: Transmitter for Quantum Encryption System

Field Size(bit) Name Comment

Opcode(23)1 Mode 0 – Edit mode

1 – Work mode

Opcode(22-21) 2 Pulse_editmode Chosen Pulse module

Opcode(20-11) 10 Pulse_width [500ps . . 4000ps]

Opcode(10-0) 11 Pulse_offset [4500ps . . 18500ps]

Opcode(22-20) 3 Pulse_workmode Chosen pulse-module/s

FPGA Design

Page 42: Transmitter for Quantum Encryption System

The FPGA – VHDL Design

Page 43: Transmitter for Quantum Encryption System

The FPGA – VHDL Design

Page 44: Transmitter for Quantum Encryption System

The FPGA – VHDL Design

Delay 1

Delay 2

Delay 3

LEN

LEN

LEN

offset_temp <= pulse_offset - const_440; PROCESS(clk) BEGIN if (offset_temp(10) = '1') then first_offset <= const_1023; second_offset <= offset_temp(9 downto 0) + "0000000001"; else first_offset <= offset_temp(9 downto 0); second_offset <= const_0; end if; END PROCESS;

delay1 <= first_offset; delay2 <= second_offset; delay3 <= second_offset +const_450- pulse_width;

Delay Decode

Page 45: Transmitter for Quantum Encryption System

The FPGA – Delay Set:

Page 46: Transmitter for Quantum Encryption System

The FPGA – TESTBENCH:

Page 47: Transmitter for Quantum Encryption System

The FPGA – TESTBENCH:

Page 48: Transmitter for Quantum Encryption System

VHDL Simulation:

Page 49: Transmitter for Quantum Encryption System

VHDL Simulation:

Page 50: Transmitter for Quantum Encryption System

VHDL Simulation:

Page 51: Transmitter for Quantum Encryption System

Supplemental Value:

The project gave us experience in performing a large scale product, which involves several development groups, and provided us systemic vision.

In the process of developing the project we enriched ourselves with techniques of high-speed systems and high-frequency phenomena.

We experienced working with design & simulation tools such as: ORCAD, HDL Designer and HyperLynx.

One of the most valuable principles we’ve learned is board design.

Page 52: Transmitter for Quantum Encryption System

Future possibilities:

The elementary step now would be sending our design to printing and testing it when it’s ready.

In order to make the product user-friendly, we would have now built a graphical interface which translates the desired pulses shapes to appropriate sets of opcodes. The opcodes should be sent to the FPGA via USB connection.

Page 53: Transmitter for Quantum Encryption System

Supplemental Value:

The project gave us experience in performing a large scale product, which involves several development groups, and provided us systemic vision.

In the process of developing the project we enriched ourselves with techniques of high-speed systems and high-frequency phenomena.

We experienced working with design & simulation tools such as: ORCAD, HDL Designer and HyperLynx.

One of the most valuable principles we’ve learned is board design.

Page 54: Transmitter for Quantum Encryption System