Transmission Line Induct Ance

download Transmission Line Induct Ance

of 15

Transcript of Transmission Line Induct Ance

  • 8/9/2019 Transmission Line Induct Ance

    1/33

    TransmissionLine:

    Inductanceand

    CapacitanceCalculation

    Prof S. A.Soman

    SeriesImpedance of TransmissionLines

    ShuntCapacitance of TransmissionLines

    Transmission Line: Inductance and Capacitance

    Calculation

    Prof S. A. Soman

    Visiting FacultyDepartment of Electrical and Computer Engineering

    Virginia [email protected]

    Department of Electrical EngineeringIIT-Bombay

    October 5, 2012

    Prof S. A. Soman (IIT-Bombay)   Transmission Line: Inductance and Capacitance Calculation

      October 5, 2012 1 / 33

    http://find/http://goback/

  • 8/9/2019 Transmission Line Induct Ance

    2/33

    TransmissionLine:

    Inductanceand

    CapacitanceCalculation

    Prof S. A.

    Soman

    SeriesImpedance of TransmissionLines

    ShuntCapacitance of TransmissionLines

    1   Series Impedance of Transmission Lines

    2   Shunt Capacitance of Transmission Lines

    Prof S. A. Soman (IIT-Bombay)   Transmission Line: Inductance and Capacitance Calculation

      October 5, 2012 2 / 33

    http://find/

  • 8/9/2019 Transmission Line Induct Ance

    3/33

    TransmissionLine:

    Inductanceand

    CapacitanceCalculation

    Prof S. A.

    Soman

    SeriesImpedance of TransmissionLines

    ShuntCapacitance of TransmissionLines

    AC and DC Resistance

    r DC   =  ρ

    A

    m

    ρ  of hard-drawn Cu at 20◦C   = 1.77 × 10−8 Ωm.

    ρ  of Al at 20◦C   = 2.83 × 10−8 Ωm.

    ρ  depends on temperature

    ρT 2  = M  + T 2M  + T 1

    ρT 1

    where  M  = temperature constant

    AC resistance is greater than DC resistance due to skineffect.

    Prof S. A. Soman (IIT-Bombay)   Transmission Line: Inductance and Capacitance Calculation

      October 5, 2012 3 / 33

    http://find/

  • 8/9/2019 Transmission Line Induct Ance

    4/33

    TransmissionLine:

    Inductanceand

    CapacitanceCalculation

    Prof S. A.

    Soman

    SeriesImpedance of TransmissionLines

    ShuntCapacitance of TransmissionLines

    Skin Effect

    Skin effect  - When AC current flows through a conductor, current density

    near the surface is higher than current density inside.J  = J s e 

    −d δ

    where  δ   is called the skin depth.

    Skin depth is given by

    δ =

    r 2ρ

    ωµ

    whereρ = resistivity of theconductor.ω  = angular frequency of thecurrent = 2π×   frequency.µ = absolute magneticpermeability of the

    conductor.As the AC frequency increases, skin depth decreases. At 60 Hz in copper, itis about 8.5 mm. Over 98% of the current will flow within a layer 4 timesthe skin depth from the surface. Therefore,  R AC  > R DC .

    Reference:   http://en.wikipedia.org/wiki/Skin_effect

    Prof S. A. Soman (IIT-Bombay)   Transmission Line: Inductance and Capacitance Calculation   October 5, 2012 4 / 33

    http://en.wikipedia.org/wiki/Skin_effecthttp://en.wikipedia.org/wiki/Skin_effecthttp://find/

  • 8/9/2019 Transmission Line Induct Ance

    5/33

    TransmissionLine:

    Inductanceand

    CapacitanceCalculation

    Prof S. A.

    Soman

    SeriesImpedance of TransmissionLines

    ShuntCapacitance of TransmissionLines

    Series Inductance

    Series Inductance of transmission line (per metre)It has two components

    Internal inductance

    External inductance

    Recall that

    Inductance, L

     =

     λ

    I   Henry;Energy stored,  E  =

     1

    2LI 2 Joules.

    Ampere’s law states

    ¸  −→

    H .−→

    dl   = I net  = Ni 

    linesflux

    current

    I

    Prof S. A. Soman (IIT-Bombay)   Transmission Line: Inductance and Capacitance Calculation   October 5, 2012 5 / 33

    http://find/

  • 8/9/2019 Transmission Line Induct Ance

    6/33

    TransmissionLine:

    Inductanceand

    CapacitanceCalculation

    Prof S. A.

    Soman

    SeriesImpedance of TransmissionLines

    ShuntCapacitance of TransmissionLines

    Flux density external to the conductor

    xa

    Case-I

    Let radius of conductor be  a.

    Let  x >a

    H x .2πx  =  I 

    H x   =  I 

    2πx 

    B x   = µ0.H x   =  µ0I 

    2πx Weber/m2

    where

    µ0  = 4π × 10−7 H/m

    Prof S. A. Soman (IIT-Bombay)   Transmission Line: Inductance and Capacitance Calculation   October 5, 2012 6 / 33

    http://find/http://goback/

  • 8/9/2019 Transmission Line Induct Ance

    7/33

    TransmissionLine:

    Inductanceand

    CapacitanceCalculation

    Prof S. A.

    Soman

    SeriesImpedance of TransmissionLines

    ShuntCapacitance of TransmissionLines

    Flux Density internal to the conductor I

    x

    xa

    Let  x  ≤ aAssuming uniform current density,I encl (x ) =

      πx 2

    πa2 I   =

      x 2

    a2 I 

    By Ampere’s law,

    2πx .H x  =  I encl (x )   x 

     ≤a

    =  x 2

    a2 I 

    ∴ H x  =  1

    a2I    A/m   x  ≤ a

    B x   =  µ0

    a2I    A/m

    Prof S. A. Soman (IIT-Bombay)   Transmission Line: Inductance and Capacitance Calculation   October 5, 2012 7 / 33

    http://find/

  • 8/9/2019 Transmission Line Induct Ance

    8/33

    TransmissionLine:

    Inductanceand

    CapacitanceCalculation

    Prof S. A.

    Soman

    SeriesImpedance of TransmissionLines

    ShuntCapacitance of TransmissionLines

    Overall flux density of a conductor

    µ0 I

    2  π a

    Bx

    xa

    Figure:  Plot of Flux density vs distance

    Prof S. A. Soman (IIT-Bombay)   Transmission Line: Inductance and Capacitance Calculation   October 5, 2012 8 / 33

    http://find/

  • 8/9/2019 Transmission Line Induct Ance

    9/33

    TransmissionLine:

    Inductanceand

    CapacitanceCalculation

    Prof S. A.

    Soman

    SeriesImpedance of TransmissionLines

    ShuntCapacitance of TransmissionLines

    Internal Inductance I

    1m

    a

    1   Calculate the energy stored in magnetic field inside the conductor.

    2   E int  =  1

    2

    á 0

    B x 2

    µ0(2πx .dx )J/m (2)

    ∵ (dv   = 2π×

    dx  ×

    l  where l is the length of the conductor)

    3   B x   =  µ0

    a2I    (3)

    4   Substituting  B x   from (3) in (2)

    E int  =  µ0

    16π

    I 2J/m (4)

    Prof S. A. Soman (IIT-Bombay)   Transmission Line: Inductance and Capacitance Calculation   October 5, 2012 9 / 33

    http://find/http://goback/

  • 8/9/2019 Transmission Line Induct Ance

    10/33

    TransmissionLine:

    Inductanceand

    CapacitanceCalculation

    Prof S. A.

    Soman

    SeriesImpedance of TransmissionLines

    ShuntCapacitance of 

    TransmissionLines

    Internal Inductance II

    5   Energy stored in an inductor

    E   =  1

    2LI 2J/m if L is H/m (5)

    6   Equating (5) and (4)

    Lint  =  µ0

    8π=

      4π × 10−78π

    =  1

    2 ×10−7H/m

    Prof S. A. Soman (IIT-Bombay)   Transmission Line: Inductance and Capacitance CalculationOctober 5, 2012 10 / 33

    http://find/

  • 8/9/2019 Transmission Line Induct Ance

    11/33

    TransmissionLine:

    Inductanceand

    CapacitanceCalculation

    Prof S. A.

    Soman

    SeriesImpedance of TransmissionLines

    ShuntCapacitance of 

    TransmissionLines

    External Inductance

    External Inductance in a cylindrical ring of inner diameter  D 1   and outer diameterD 2

    1   B x   =  µ0

    x x  ≥ a

    2   dv  = 2πx .dx × 1m3   For  a ≤ D 1 ≤ x  ≤ D 2

    E ext (D 1,D 2) =  µ0

    4πI 2

    D 2ˆ 

    D 1

    1

    x dx 

    =  µ0

    4πln

     D 2

    D 1I 2J/m

    4   E ext  =  1

    2Lext I 

    2 J/m

    5   Equating (3) and (4)

    Lext  =  µ0

    2πln

     D 2

    D 1

    Prof S. A. Soman (IIT-Bombay)   Transmission Line: Inductance and Capacitance CalculationOctober 5, 2012 11 / 33

    http://find/

  • 8/9/2019 Transmission Line Induct Ance

    12/33

    TransmissionLine:

    Inductanceand

    CapacitanceCalculation

    Prof S. A.

    Soman

    SeriesImpedance of TransmissionLines

    ShuntCapacitance of 

    TransmissionLines

    Inductance of a 1φ  two-wire transmission line

    D

    Path 2

    Path 1

    a

    a’

    r

    1   Path-1 encloses current I. Hence,¸ 

     H .dl  = I .

    2   Path-2 encloses zero net current. As such, it does not contribute to netinductance of a 2-wire system.

    3   Now,Lnet  due to the above two-wire system is as follows.

    Prof S. A. Soman (IIT-Bombay)   Transmission Line: Inductance and Capacitance CalculationOctober 5, 2012 12 / 33

    http://find/

  • 8/9/2019 Transmission Line Induct Ance

    13/33

  • 8/9/2019 Transmission Line Induct Ance

    14/33

    TransmissionLine:

    Inductanceand

    CapacitanceCalculation

    Prof S. A.

    Soman

    SeriesImpedance of TransmissionLines

    ShuntCapacitance of 

    TransmissionLines

    Inductance of a 1φ  two-wire transmission line

    Similarly ,La′   = 2 × 10−7 ln D 

    r ′

    2

    H/m

    Lnet   = La +  La′

    = 4 × 10−7 ln(   D q r ′

    1 r ′

    2

    )

    if (r ′

    1  =  r ′

    2  =  r ′)

    Lnet   = 4 × 10−7 ln(D 

    r ′) H/m

    Prof S. A. Soman (IIT-Bombay)   Transmission Line: Inductance and Capacitance CalculationOctober 5, 2012 14 / 33

    http://find/

  • 8/9/2019 Transmission Line Induct Ance

    15/33

    TransmissionLine:

    Inductanceand

    CapacitanceCalculation

    Prof S. A.

    Soman

    SeriesImpedance of TransmissionLines

    ShuntCapacitance of 

    TransmissionLines

    Inductance of a 1φ  two-wire transmission line

    Observation:

    1 Greater separation between transmission line implies

    greater inductance of the line.2 Greater the radius of the conductors in a transmission line,

    the lower the inductance.

    Inductive reactive,X L  = j 2πfL  Ω

    Prof S. A. Soman (IIT-Bombay)   Transmission Line: Inductance and Capacitance CalculationOctober 5, 2012 15 / 33

    T i i

    http://find/

  • 8/9/2019 Transmission Line Induct Ance

    16/33

    TransmissionLine:

    Inductanceand

    CapacitanceCalculation

    Prof S. A.

    Soman

    SeriesImpedance of TransmissionLines

    ShuntCapacitance of 

    TransmissionLines

    Inductance of a 3φ  transmission line

    We assume the following:

    Three phase currents sum to zero i.e.−→

    I a   +−→

    I b   +−→

    I c   = 0.Lines are transposed i.e. a conductor in phase  a  sees thesame average topology e.g., conductor  a  sees config 1,2and 3 equal number of times. Hence, its inductance perkm is average of the inductance of the three configs.

    a

    b

    c

    c

    a

    b

    b

    c

    a

    Config−1 Config−2 Config−3

    If the lines are not transposed then due to unsymmetricalgeometry, the phase inductances will not be equal. Thiswill lead to network unbalance.

    Prof S. A. Soman (IIT-Bombay)   Transmission Line: Inductance and Capacitance CalculationOctober 5, 2012 16 / 33

    T i i I d f 3φ i i li I

    http://find/

  • 8/9/2019 Transmission Line Induct Ance

    17/33

    TransmissionLine:

    Inductanceand

    CapacitanceCalculation

    Prof S. A.

    Soman

    SeriesImpedance of TransmissionLines

    ShuntCapacitance of 

    TransmissionLines

    Inductance of a 3φ  transmission line I

    c

    a

    b

    1

    3

    2

    D p1

    D

    D p2

    p3

    P

    Cond.b

    Cond.c

    Cond.aCond.b

    Cond.a

    Cond.cCond.a

    Cond.b

    Cond.c

    c1 c2 c3

    We compute flux linkage of phase   a   conductor in config-1 upto point P,

    λnet a,c 1   =  L(0, D p 1)I a  +  L(D 12, D p 2)I b  + L(D 13, D p 3)I c 

    λnet a,c 1   = 2 × 10−7

    [lnD p 1

    r ′I a  + I b  ln

    D p 2

    D 12+ I c   ln

    D p 3

    D 13] H/m

    Similarly,

    λnet a,c 2   = 2 × 10

    −7[ln

    D p 2

    r ′I a  + I b  ln

    D p 3

    D 23+ I c   ln

    D p 1

    D 12] H/m

    λnet a,c 3   = 2 × 10−7 [lnD 

    p 3r ′

    ]I a  + I b  lnD 

    p 1D 13

    + I c  lnD 

    p 2D 23

    ] H/m

    Due to transposition,

    λnet a   =

    λnet a,c 1  + λnet a,c 2  + λ

    net a,c 3

    3

    = 2 × 10−7

    [ln   3p 

    D p 1D p 2D p 3

    r ′I a  + I b 

    ln   3p 

    D p 1D p 2D p 33p 

    D 12D 23D 13+ I c 

    ln   3p 

    D p 1D p 2D p 33p 

    D 12D 23D 13] H/m

    Prof S. A. Soman (IIT-Bombay)   Transmission Line: Inductance and Capacitance CalculationOctober 5, 2012 17 / 33

    T a s issio I d f 3φ i i li II

    http://find/

  • 8/9/2019 Transmission Line Induct Ance

    18/33

    TransmissionLine:

    Inductanceand

    CapacitanceCalculation

    Prof S. A.

    Soman

    SeriesImpedance of TransmissionLines

    ShuntCapacitance of 

    TransmissionLines

    Inductance of a 3φ  transmission line II

    We have used following identity,

    ln(m, n) = ln m + ln n

    ln(m

    n

    ) = ln m

    −ln n

    ln mp  = p ln m

    ln(m

    n)p  = p ln(

    m

    n)

    Let  DP eq  =   3p 

    D p 1D p 2D p 3.

    Geometric Mean Distance,  GMD  =  3

    √ D 12D 23D 13Then,

    λnet a   = 2 × 10−7[I a ln DP eq 

    GMR + I b  ln

     DP eq 

    GMD + I c  ln

     DP eq 

    GMD ]

    Prof S. A. Soman (IIT-Bombay)   Transmission Line: Inductance and Capacitance CalculationOctober 5, 2012 18 / 33

    Transmission I d f 3φ i i li III

    http://find/http://goback/

  • 8/9/2019 Transmission Line Induct Ance

    19/33

    TransmissionLine:

    Inductanceand

    CapacitanceCalculation

    Prof S. A.

    Soman

    SeriesImpedance of TransmissionLines

    ShuntCapacitance of 

    TransmissionLines

    Inductance of a 3φ  transmission line III

    Since,   I b  + I c  = −I a

    λnet a   = 2 × 10−7I a[ln DP eq 

    GMR − ln  DP eq 

    GMD ]

    = 2

    ×10−7 ln

     GMD 

    GMR 

    ∴ Lnet a   = 2 × 10−7 ln GMD 

    GMR H/m

    This is net inductance per phase of a transmission line. It considers mutualcoupling with other phases.

    Transposition of lines is assumed.Ī a + Ī b  + Ī c  = 0 is assumed but not necessarily balanced currents.

    Prof S. A. Soman (IIT-Bombay)   Transmission Line: Inductance and Capacitance CalculationOctober 5, 2012 19 / 33

    Transmission C it f T i i Li I

    http://find/

  • 8/9/2019 Transmission Line Induct Ance

    20/33

    TransmissionLine:

    Inductanceand

    CapacitanceCalculation

    Prof S. A.

    Soman

    SeriesImpedance of TransmissionLines

    ShuntCapacitance of 

    TransmissionLines

    Capacitance of Transmission Lines I

    Voltage and charge relation

    +qE   − q

    Figure:  Two transmission line conductors of a 1φ line.

    Fig.2 shows that electric field exists between two conductors of atransmission line.

    This implies the existence of shunt capacitance between the conductors.Recall the following concepts

    a.   C  = Q (Charge)

    V (Volts)  Farads

    Prof S. A. Soman (IIT-Bombay)   Transmission Line: Inductance and Capacitance CalculationOctober 5, 2012 20 / 33

    Transmission C it f T i i Li II

    http://find/

  • 8/9/2019 Transmission Line Induct Ance

    21/33

    TransmissionLine:

    Inductanceand

    CapacitanceCalculation

    Prof S. A.

    Soman

    SeriesImpedance of TransmissionLines

    ShuntCapacitance of 

    TransmissionLines

    Capacitance of Transmission Lines II

    + q

    − q

    EV

    Figure:  Electric field between two conductors.

    b.  Electric Flux Density −→

    D (C /m2)−→

    D   = ǫ0ǫr −→

    whereAbsolute permittivity in vacuum (free space),

    ǫ0 = 8.85 × 10−12

    Farad/meterRelative permittivity for air,  ǫr  = 1−→

    E  = Electric field intensity at a point.

    Prof S. A. Soman (IIT-Bombay)   Transmission Line: Inductance and Capacitance CalculationOctober 5, 2012 21 / 33

    Transmission Definition of Voltage and Electric field

    http://find/

  • 8/9/2019 Transmission Line Induct Ance

    22/33

    a s ss oLine:

    Inductanceand

    CapacitanceCalculation

    Prof S. A.

    Soman

    SeriesImpedance of TransmissionLines

    ShuntCapacitance of 

    TransmissionLines

    Definition of Voltage and Electric field

    Defn-1: The voltage or potential difference,  V  measured involts between two points is the amount of work needed to

    move a Coulomb of charge from one point to another one.Defn-2: The electric field intensity

     −→

    E   (measured in N/Cor V/m)is the force exerted on a Coulomb of charge at agiven point in the electric field.

    Prof S. A. Soman (IIT-Bombay)   Transmission Line: Inductance and Capacitance CalculationOctober 5, 2012 22 / 33

    Transmission Gauss’s Law

    http://find/

  • 8/9/2019 Transmission Line Induct Ance

    23/33

    Line:Inductance

    andCapacitanceCalculation

    Prof S. A.

    Soman

    SeriesImpedance of TransmissionLines

    ShuntCapacitance of 

    TransmissionLines

    Gauss s Law

    ‚  −→D .−→

    ds  = q whereq  = the charge inside the surface in coulombs.−→

    ds  = the unit vector normal to the surface in  m2.

    Prof S. A. Soman (IIT-Bombay)   Transmission Line: Inductance and Capacitance CalculationOctober 5, 2012 23 / 33

    Transmission Electric field around a long straight conductor I

    http://find/

  • 8/9/2019 Transmission Line Induct Ance

    24/33

    Line:Inductance

    andCapacitanceCalculation

    Prof S. A.

    Soman

    SeriesImpedance of TransmissionLines

    ShuntCapacitance of 

    TransmissionLines

    Electric field around a long straight conductor I

    Gauss law at a distance ’x ’ from

    +  + + +

    +++

    +++

    +

    ++

    ++

    ++++++

    a b

    D

    D

    A

    B

    +

    Figure:  Electric field around a charge of +q 

    ǫ0¸ ¸  −→

    E  .−→ds   =  q 

    where  q  = the charge in coulomb on a unit length of wire.

    Since−→E  and

    −→ds  are in parallel, cos θ  = 1.

    Remark: Inside of a conductor is an equipotential surface.

    Prof S. A. Soman (IIT-Bombay)   Transmission Line: Inductance and Capacitance CalculationOctober 5, 2012 24 / 33

    Transmission Electric field around a long straight conductor II

    http://find/

  • 8/9/2019 Transmission Line Induct Ance

    25/33

    Line:Inductance

    andCapacitanceCalculation

    Prof S. A.

    Soman

    SeriesImpedance of TransmissionLines

    ShuntCapacitance of 

    TransmissionLines

    Electric field around a long straight conductor II

    Since−→E   is constant in magnitude at a distance x , we get for a length ’l ’ of conductor

    ǫ0E 2πx × l   =  q × l 

    E (x ) =q 

    2πǫ0 x 

    ∴  V a − V b   =

    b ˆ 

    a

    −→E −→dx 

    =q 

    2πǫ0

    b ˆ 

    a

    1

    −→dx 

    =q 

    2πǫ0ln

    D B 

    D A

    ∴  C ab   =q 

    V a − V b =

    2πǫ0

    lnD B 

    D A

    Farads/meter

    Recall that electric field is a conservative field. Therefore, the results are independent of the path of integration.

    Prof S. A. Soman (IIT-Bombay)   Transmission Line: Inductance and Capacitance CalculationOctober 5, 2012 25 / 33

    TransmissionL Capacitance of 1φ two-wire transmission line I

    http://find/

  • 8/9/2019 Transmission Line Induct Ance

    26/33

    Line:Inductance

    andCapacitanceCalculation

    Prof S. A.

    Soman

    SeriesImpedance of TransmissionLines

    ShuntCapacitance of 

    TransmissionLines

    Capacitance of 1φ  two-wire transmission line I

    +q −q

    DA B

    r r

    Figure:  Capacitance of 1φ  two-wire line.

    Charge, q is in C/m.

    V AB   = ∆V +q AB  − ∆V −q 

    AB 

    where ∆V +q AB 

      is the potential drop from  A  to  B  due to charge +q .

    Similarly, we define ∆V −q AB 

     .

    ∆V +q AB 

      =   q 2πǫ0

    ln  D r 

    Volts/metre

    Note:

    For points outside of the conductor, the charge can beimagined to be at the center of the conductor.

    Prof S. A. Soman (IIT-Bombay)   Transmission Line: Inductance and Capacitance CalculationOctober 5, 2012 26 / 33

    TransmissionLi Capacitance of 1φ two-wire transmission line II

    http://find/

  • 8/9/2019 Transmission Line Induct Ance

    27/33

    Line:Inductance

    andCapacitanceCalculation

    Prof S. A.

    Soman

    SeriesImpedance of TransmissionLines

    ShuntCapacitance of 

    TransmissionLines

    Capacitance of 1φ  two-wire transmission line II

    Surface of conductor is equipotential. So, −→

    E   is along theradius.

    Similarly, ∆V −q BA

      =  −q 2πǫ0

    ln D 

    i.e. ∆V −q 

    AB   =

      q 

    2πǫ0ln

     D 

    r .

    Hence, ∆V AB   =  q 

    πǫ0ln

     D 

    ∴ C AB   =  πǫ0

    ln D 

    Farads/meter

    Note that unlike inductance calculation, denominator does not have   r ′.

    Prof S. A. Soman (IIT-Bombay)   Transmission Line: Inductance and Capacitance CalculationOctober 5, 2012 27 / 33

    TransmissionLi e Shunt capacitance to neutral I

    http://find/

  • 8/9/2019 Transmission Line Induct Ance

    28/33

    Line:Inductance

    andCapacitanceCalculation

    Prof S. A.

    Soman

    SeriesImpedance of TransmissionLines

    ShuntCapacitance of 

    TransmissionLines

    Shunt capacitance to neutral I

    With respect to neutral plane, conductor A is on positive potential andconductor B is on negative potential.

    By symmetry,

    V an  = V AB 

    2

    ∴ C n  =  C an  = C bn  =  2πǫ

    ln

     D 

    We state the following result (without proof)

    For a 3φ  transposed transmission line, the capacitance of phase to neutral

    C  =  2πǫ0

    ln  D eq r 

    F/m

    where  D eq  =GMD between conductors.

    Prof S. A. Soman (IIT-Bombay)   Transmission Line: Inductance and Capacitance CalculationOctober 5, 2012 28 / 33

    http://find/

  • 8/9/2019 Transmission Line Induct Ance

    29/33

    http://find/

  • 8/9/2019 Transmission Line Induct Ance

    30/33

    TransmissionLine: Bundled conductors

    http://find/

  • 8/9/2019 Transmission Line Induct Ance

    31/33

    Line:Inductance

    andCapacitanceCalculation

    Prof S. A.

    Soman

    SeriesImpedance of TransmissionLines

    ShuntCapacitance of 

    TransmissionLines

    Bundled conductors

    When a big thick conductor is split into multiple conductors, it is called as a

    bundled conductor. Bundling increases the effective GMR of the conductor.

    dd

    d

    d d

    d

    d

    d

    Figure:   Bundled conductor arrangements.

    Advantages:

    Reduced reactance. For e.g., for a four-strand bundle,

    D b s   =  16q 

    (D s  × d × d  × d  × 212 )4

    where  D b s  = GMR of bundled conductor,  D s  = GMR of individual

    conductors composing the bundle.

    Reduces the effect of corona. The stress on the conductors in a bundle iscomparatively less than what it is on a single conductor.

    Prof S. A. Soman (IIT-Bombay)   Transmission Line: Inductance and Capacitance CalculationOctober 5, 2012 31 / 33

    TransmissionLine: Review Questions

    http://find/

  • 8/9/2019 Transmission Line Induct Ance

    32/33

    Line:Inductance

    andCapacitanceCalculation

    Prof S. A.

    Soman

    SeriesImpedance of TransmissionLines

    ShuntCapacitance of 

    TransmissionLines

    Q

    1 Why is shunt capacitance of cable much higher than thatof an overhead line at same kV level?

    2 Why is series reactance of overhead line higher than thatof shunt capacitance of cable at same kV level?

    3 What is a bundled conductor?

    Prof S. A. Soman (IIT-Bombay)   Transmission Line: Inductance and Capacitance CalculationOctober 5, 2012 32 / 33

    TransmissionLine:

    http://find/

  • 8/9/2019 Transmission Line Induct Ance

    33/33

    Inductanceand

    CapacitanceCalculation

    Prof S. A.

    Soman

    SeriesImpedance of TransmissionLines

    ShuntCapacitance of 

    TransmissionLines

    Thank You

    Prof S. A. Soman (IIT-Bombay)   Transmission Line: Inductance and Capacitance CalculationOctober 5, 2012 33 / 33

    http://find/