Transistor Organik – OFET (Organic Field Effect...

42
Elektronika Organik maulana.lecture.ub.ac.id maulana.lecture.ub.ac.id Transistor Transistor Organik Organik – OFET OFET (Organic Field Effect Transistor) (Organic Field Effect Transistor)

Transcript of Transistor Organik – OFET (Organic Field Effect...

Page 1: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

Elektronika Organik

maulana.lecture.ub.ac.idmaulana.lecture.ub.ac.id

Transistor Transistor OrganikOrganik –– OFETOFET

(Organic Field Effect Transistor)(Organic Field Effect Transistor)

Page 2: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

Basic Structure of OFET

(a) metal-insulator-semiconductor FET (MISFET); (b) metal-semiconductor FET (MESFET); (c) thin-film transistor (TFT).

Skematik OFET

Page 3: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

Struktur dan Mekanisme OFET

Adachi lab.-kyushu University

Page 4: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

Organic TransistorsOFET

1. Organic electrochemical transistors (OECTs)

2. Organic field effect transistors (OFETs)

3. Electrolyte-gated OFETs

4. Sensors Application based on OFET

Page 5: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

1. Organic Electrochemical Transistors (OECTs)

• Reversible oxidation and reduction switching• Electrochemical devices uses both electrons

and ions as charge carriers

PEDOT+PSS- + M+ + e- PEDOT0 + M+PSS-

Conducting Semi-conductingTransparent Deep blue colored

reduction

oxidation

Page 6: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

1.1.The dynamic configurationStructure 1 (one area of conducting polymer)• Reduction at the negatively biased side of

electrode• oxidation at the positively biased side of electrode• Dynamic behavior

- V +

M+

red ox

M+M+

e- e-e-

Page 7: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

1.2 The bi-stable configurationStructure 2 (two areas of conducting polymer)• Reduction at the negatively biased electrode• Oxidation at the positively biased electrode• Bi-stable behavior

- V +

M+

red ox

M+M+

e- e-

PEDOT+PSS- + M+ + e- PEDOT0 + M+PSS-red

ox

Page 8: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

Flexible substrates

A flexible organic electrochemical transistor

The first transistor (1947)Size: 2.5cm

Page 9: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

1.3 The three-terminal transistor

Common ground

GVG

S DVD

Structure 2

Structure 1

PEDOT:PSS

Electrolyte

Page 10: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

Pinch-off• Pinch-off due to the

decrease of charge carriers at the drain side of the channel

• Almost all resistance is located within 100µm of the channel edge

• Effect of structure 1

Potential AbsorptionSvensson et al. (2003) POLYTRONIC

S+ D-

Page 11: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

Chronoamperometric response

• Comparison between lateral and vertical design

Page 12: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

Nafion• Cation conductor, mainly

protons.• Forms inverted micelle

clusters with sulphonic acid groups on the inner surface

• The micelles are joined through canals.

• Charge transport by cations wandering between –SO3

-

groups.

• Ion conduction increases with water content due to swelling and dissociation of ions.

Increase of water content

Page 13: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

Humidity sensor

• Transducer part: EC-transistor• Sensitive part: Nafion

G+

G-

VG

S DVD

Nafion

Page 14: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

semiconductor

gateVG

source drain

insulator

VD

conducting channel

– – – – – – – – – – – – – – – – – –ID

2. Organic Field-Effect Transistors (OFETs)

+

-

Structure of an Organic Thin Film Transistor

By G. Horowitz

Page 15: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

A FET is basically a capacitor, where one plate is constituted by the gateelectrode, and the other one by the semiconductor film. When a voltageVg is applied between source and gate, majority carriers accumulate atthe insulator-semiconductor interface, leading to the formation of aconduction channel between source and drain.

2.1. Current-voltage characteristics

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

-20 0 20 40 60 80 100

Dra

in c

urre

nt (A

)

Gate voltage (V)

Vd=-25 V

2.1.1. Transfer characteristic

OFF = No conduction channel

ON = conduction channel open

A potential signal Vg is transformed in a current signal Id

The charge in the channel is modulated by adjusting Vg, so that the device behaves as a variable resistance.

Page 16: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

2, 2 TGisatD VVCL

WI

2.1.2. Current-voltage

Linear

Saturation

ID WL

Ci VG VT dV0

VD

If Vd small, the charge is nearly constant over the channel and the drain current is :

No analytical solution, unless the mobility is assumed to be constant.

If Vd > Vg, the channel is pinched-off:

DTGiD VVVCL

WI

Page 17: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

-5 10-6

-4 10-6

-3 10-6

-2 10-6

-1 10-6

0

1 10-6

-120-100-80-60-40-20020

0 V-20 V-40 V-60 V-80 V

Dra

in c

urre

nt (A

)

Drain voltage (V)

2.1.3. Output characteristic

Vg

Linear regime:

For a given Vg>0, the current provided by the conduction channel increases with Vd. The drain electrode inject the charge carriers passing through the channel, the channel let pass as many charges the drain electrode injects.

Vg controls the doping level N in the conduction channel: large Vg large current Id

No conduction channel

DTGiD VVVCL

WI

W and L= channel width and length Ci= capacitance of the insulator layerμ = field-effect mobilityVT= threshold voltage (accounts for voltage drops of various origin across the insulator-semiconductor interface)

Page 18: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

-5 10-6

-4 10-6

-3 10-6

-2 10-6

-1 10-6

0

1 10-6

-120-100-80-60-40-20020

0 V-20 V-40 V-60 V-80 V

Dra

in c

urre

nt (A

)

Drain voltage (V)

Output characteristic

Vg

Saturation regime:

For a given Vg, when Vd=Vg, the electrical potential between drain and gate is zero. This destroys the capacitor created between the doped channel and the gate : pinch off. The channel is then interrupted close to the drain.

Saturation

2, 2 TGisatD VVCL

WI

Page 19: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

2.1.4. How to get the field effect mobility?

DTGiD VVVCLZI Linear

1) If Vd small, the charge is nearly constant over the channel and the drain current is :

•The channel conductance gd can be expanded to first order:

2) A further step of the method consists of introducing a contact series resistanceRs, which leads to

Z=channel width

Page 20: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

2.2. Film morphology versus field-effect mobilityThe mobility measured with a FET is characteristic for the whole film. It is thus expected to depend on the quality of the organic film; especially the quality of the first mono-layers deposited on the insulator

Pote

ntia

ldis

tribu

tion

Page 21: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

2.2.1. The distribution of charge in the channel

(from Poisson’s equation):

εs = permittivity of the organic semiconductorq = electron chargeCi= capacitance (per unit area) of the insulator

The first molecular layer is important!

G. Horowitz, Synthetic Metals 138 (2003) 101–105

Page 22: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

Dimitrakopoulos, Adv. Mater. 2002, 14, 99

The channel reduces to the first monolayer The organic TFT is a 2D device Structural order in the first monolayer is

crucial

Monolayer thickness= 1.25 nm for tetracene

High mobility along the layers

Page 23: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

2.2.2. Grain size dependence mobility

Grain(G)

Grain boundary (GB)Polycrystalline film

0

0,2

0,4

0,6

0,8

1

0 2000 4000 6000 8000 10000

Mob

ility

(cm

2/Vs

)

Grain size (nm)

G 1cm2/Vs

GB 0.01cm2/Vs

LGB 10nmLength of the GB

Page 24: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

GB

GB

G

GGBG LLLL

Charge transport in polycrystalline media

divide the material into high (crystal grains) and low (grain boundaries) conductivity region.

As grains and grain boundaries are connected in series: Rtot=RG+RGB

R=ρL/S (ρ=resistivity)

for the same surface SG=SGB (active thickness in the FET), we can write ρL= ρGLG+ ρGBLGB

Conductivity σ= 1/ρ÷ pμe

if the concentration in charge carrier ”p” is similar in both regions, the effective mobility of the medium is given by

Page 25: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

2.3. Mobility and architecture evolution Organic material can have a mobility larger than amorphous silicon

Saturation with oligoacene maybe with another molecule, mobility will go higher…

Mobility for OTFT (at RT)

Page 26: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

Discotic liquid crystals

A. M. van de Craats et al, Adv. Mater., 2003, 15, 495

Page 27: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

Fig. 1. (A) Schematic diagram of high-resolution IJP onto a prepatterned substrate. (B) AFM showing accurate alignment of inkjet-printed PEDOT/PSS source and drain electrodes separated by a repelling polyimide (PI) line with L = 5 µm. (C) Schematic diagram of the top-gate IJP TFT configuration with an F8T2 semiconducting layer (S, source; D, drain; and G, gate). (D) Optical micrograph of an IJP TFT (L = 5 µm). The image was taken under crossed polarizers so that the TFT channel appears bright blue because of the uniaxial monodomain alignment of the F8T2 polymer on top of rubbed polyimide. Unpolarized background illumination is used to make the contrast in the remaining areas visible, where the F8T2 film is in anisotropic multidomain configuration. The arrow indicates pronounced roughness of the unconfined PEDOT boundary.

Ink-jet Printed OFET’s

H. Sirringhaus, Science,290 (2000)

Page 28: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

A) Transfer characteristics of an IJP TFT with F8T2 aligned uniaxially parallel to the current flow (L = 5 µm, W = 3000 µm) measured under an N2 atmosphere. Subsequent measurements with increasing (solid symbols) and decreasing (open symbols) gate voltage are shown. (B) Scaling of the output characteristics of IJP F8T2 TFTs normalized by multiplying the drain current by the channel length (dashed lines with open symbols, L = 20 µm; solid lines with solid symbols, L = 5 µm). Subsequent measurements with increasing (upward triangles) and decreasing (downward triangles) gate voltage are shown.

H. Sirringhaus, Science,290 (2000)

Page 29: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

3. Electrolyte-gated OFETs

The use of a polyelectrolyte allowscombining the advantages of theelectrochemical transistors (low-voltage <1V, robustness, lesssensitive to thickness) and theadvantage of the OFETs (fastresponse < 0.3ms).

Page 30: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

Low-cost plastic transistors•1) For portable applications: compatible with printable batteries (~1.5V)

Low voltage

• 2) For “one-use” applications: compatible with roll-to-roll printing techniques

Robustness, printable electrodes, thicker layers

• 3) For logic applications:

Fast response, low capacitive currents

The Challenge: To combine those properties

Page 31: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

Electric double layer capacitors (EDLCs)

102 103 104 105 10610-6

10-5

0

30

60

90

Effe

ctiv

e ca

paci

tanc

e (F

/cm

2 )

Frequency (Hz)

- Pha

se a

ngle

(deg

ree)

C

Capacitive behaviorEDLC builds up at the electrodes

Resistive behaviorProtons migrate away from the polymer chains

170 kHz

(6 μs)

R

~0.1 V

polyelectrolyte

-45°

P(VPA-AA)

Proton migration

Page 32: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

Electric double layer capacitor gated OFETs

1. Protons migrate to the gate and form an EDLC

2. Simultaneously, holes injection at Au/P3HT contact and formation of an EDLC at the P3HT-polyanion interface

3. The channel is open

Page 33: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

0.0 -0.2 -0.4 -0.6 -0.8 -1.00.0

-0.5

-1.0

-1.5

I D (µ

A)

VD (V)

-0.2 V-0.4 V

0.0 V

-0.6 V

-0.8 V

VG =-1.0 V

54 nm P(VPA-AA)

AuRR-P3HT

AuAu

Si waferSiO2

Ti

L = 9 µm, W = 200 µm

0.0

0.5

1.0

1.5

0.0 -0.2 -0.4 -0.6 -0.8 -1.0

10-8

10-7

10-6 VD sweep rate: 0.03 V s-1

VT

Ion

/Ioff

= ~140 VD = -1 V

-I D (A

)

VG (V)

(-I D

)½ (1

0-3 A

½) 2

2 TGisatD VVC

LWI

Extracted mobility:~0.012 cm2 V-1 s-1

Transistor characteristics

Page 34: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

0.0 0.2 0.4 0.6 0.8 1.00.0

-0.5

-1.0

-1.5

-2.0

I D (µ

A)

Time (s)

0 1 20

-1

-2

500 501 5020

-1

-2

Time (ms)

switch-off

VD = -1 V; VG = -1 V when 0 s ≤ t ≤ 0.5 s-0 V otherwise

Rise:

60% in ~0.1 ms

Fall:

90% in <0.3 ms

Response Time

Page 35: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

0 5 10 15 200.00

-0.05

-0.10

0 5 10 15 200.0

-0.5

-1.0

-1.5 P(VPA-AA)

I D (µ

A)

Time (s)

-1

0

1

VG (V

)

Towards the mechanismA. Field-effect vs. Electrochemistry

H+

OFET is ON

Immobile anionsD

S

OFET is OFF

Immobile anionsD

S

Page 36: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

0 5 10 15 200.00

-0.05

-0.10

0 5 10 15 200.0

-0.5

-1.0

-1.5 P(VPA-AA)

I D (µ

A)

Time (s)

-1

0

1

VG (V

)

0 5 10 15 200.00

-0.05

-0.10

0 5 10 15 200.0

-0.5

-1.0

-1.5 P(VPA-AA) P(VPA-AA) + 1wt% LiClO4

I D (µ

A)

Time (s)

-1

0

1

VG (V

)

Towards the mechanismA. Field-effect vs. Electrochemistry

VG=0, but not completely OFF

ClO4-

S

D

Electrochemical transistor is ON

Li+

ClO4-

Penetration of anions

S

D

Page 37: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

0.0 -0.2 -0.4 -0.6 -0.8 -1.00.0

-0.1

-0.2

-0.3

-0.2 V-0.4 V

I D (µ

A)

VD (V)

0.0 V

-0.6 V

-0.8 V

VG =-1.0 V

0.0 -0.2 -0.4 -0.6 -0.8 -1.00

-10

-20

-30

I D (n

A)

VD (V)

-0.2 V-0.4 V

0.0 V

-0.6 V-0.8 V

VG =-1.0 V

DS

G

~0.2 mm

Laterally gated OFET Hemispherical PE

DS

G

1.1 mm

B. EDLC builds independently of the channel-gate distance

Page 38: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

Organic Electronics, Volume 15, Issue 3, March 2014, Pages 646-653

Planar water gated organic field effect transistor

Organic Electronics, Volume 12, Issue 11, November 2011, Pages 1815-1821

Organic field-effect transistor with extended indium tin oxide gate structure for selective pH sensing

Page 39: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

Fabrication Method

Organic Electronics, Volume 15, Issue 3, March 2014, Pages 646-653

Planar water gated Organic Field Effect Transistor

Page 40: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

Design and Fabrication

Organic Electronics, Volume 15, Issue 3, March 2014, Pages 646-653

Planar Water Gated Organic Field Effect Transistor

Page 41: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

Organic Electronics, Volume 12, Issue 11, November 2011, Pages 1815-1821

Organic Electronics, Volume 13, Issue 4, April 2012, Pages 533-540

Transparent and flexible organic field-effect transistor for multi-modal sensing

Organic field-effect transistor with extended indium tin oxide gate structure for selective pH sensing

Page 42: Transistor Organik – OFET (Organic Field Effect Transistor)maulana.lecture.ub.ac.id/files/2014/04/08-OFET-Organic-Field-Effect-Transistor.pdf · Elektronika Organik maulana.lecture.ub.ac.id

Organic field-effect transistor and its photoresponse

Organic Electronics, Volume 15, Issue 5, May 2014, Pages 1050-1055

Organic Electronics, Volume 14, Issue 12, December 2013, Pages 3453-3459

Polymer dielectric layer functionality in organic field-effect transistor based ammonia gas sensor