Transistor Circuits V

23
Transistor Circuits VI Two-Transistor Direct-Coupled CE Amplifier / Some basics of troubleshooting CE Amps

Transcript of Transistor Circuits V

Page 1: Transistor Circuits V

Transistor Circuits VI

Two-Transistor Direct-Coupled CE Amplifier / Some basics of troubleshooting CE Amps

Page 2: Transistor Circuits V

The Two-Transistor Direct-Coupled CE circuit configuration

Page 3: Transistor Circuits V

Formulas for same

β€’ 𝐼𝐢1 =π‘‰πΆπΆβˆ’2𝑉𝐡𝐸

𝑅𝐢1+𝑅𝐹𝛽+𝑅𝐸1

β€’ 𝐼𝐢2 =π‘‰πΆπΆβˆ’π‘‰π΅πΈβˆ’π‘…πΆ1𝐼𝐢1

𝑅𝐸2

β€’ 𝑉𝐢𝐸1 = 𝑉𝐢𝐢 βˆ’ 𝑅𝐢1 + 𝑅𝐸1 𝐼𝐢1

β€’ 𝑉𝐢𝐸2 = 𝑉𝐢𝐢 βˆ’ 𝑅𝐢2 + 𝑅𝐸2 𝐼𝐢2

β€’ 𝑉𝐢1 = 𝑉𝐢𝐢 βˆ’ 𝑅𝐢1𝐼𝐢1

β€’ 𝑉𝐢2 = 𝑉𝐢𝐢 βˆ’ 𝑅𝐢2𝐼𝐢2

Page 4: Transistor Circuits V

First example

β€’ Referring to the figure shown, find the collector current, collector-to-emitter voltage, and collector-to-ground voltage for each BJT. Each BJT has an hFE = 50 and VBE = 0.7V.

12 V

Q1

Q2

68kΞ©

330Ξ©

2.7kΞ©

1kΞ©

470kΞ©

Page 5: Transistor Circuits V

Work for first example

β€’ 𝐼𝐢1 =π‘‰πΆπΆβˆ’2𝑉𝐡𝐸

𝑅𝐢1+𝑅𝐹𝛽+𝑅𝐸1

=12βˆ’2 0.7

68k+470k

50+330

=12βˆ’1.4

68k+9.4k+330=

10.6V

77.73kΞ©= 136.37ΞΌA

β€’ 𝑉𝐢𝐸1 = 𝑉𝐢𝐢 βˆ’ 𝑅𝐢1 + 𝑅𝐸1 𝐼𝐢1 =12 βˆ’ 68k + 330 136.37ΞΌA =12 βˆ’ 68.33kΞ© 136.37ΞΌA = 12 βˆ’ 9.318 = 2.682V

β€’ 𝑉𝐢1 = 𝑉𝐢𝐢 βˆ’ 𝑅𝐢1𝐼𝐢1 = 12 βˆ’ 68kΞ© 136.37ΞΌA =12 βˆ’ 9.273 = 2.727V

Page 6: Transistor Circuits V

Work for first example (cont.)

β€’ 𝐼𝐢2 =π‘‰πΆπΆβˆ’π‘‰π΅πΈβˆ’π‘…πΆ1𝐼𝐢1

𝑅𝐸2=

12βˆ’0.7βˆ’ 68k 136.37ΞΌA

1k=

12βˆ’0.7βˆ’9.273

1k=

2.027V

1kΞ©= 2.027mA

β€’ 𝑉𝐢𝐸2 = 𝑉𝐢𝐢 βˆ’ 𝑅𝐢2 + 𝑅𝐸2 𝐼𝐢2 =12 βˆ’ 2.7k + 1k 2.027mA =12 βˆ’ 3.7kΞ© 2.027mA = 12 βˆ’ 7.499 = 4.501V

β€’ 𝑉𝐢2 = 𝑉𝐢𝐢 βˆ’ 𝑅𝐢2𝐼𝐢2 = 12 βˆ’ 2.7kΞ© 2.027mA =12 βˆ’ 5.473 = 6.527V

Page 7: Transistor Circuits V

Second example

β€’ Rework the previous problem using a 680-kΞ© resistor in place of the 470-kΞ© resistor.

Page 8: Transistor Circuits V

Work for second example

β€’ 𝐼𝐢1 =π‘‰πΆπΆβˆ’2𝑉𝐡𝐸

𝑅𝐢1+𝑅𝐹𝛽+𝑅𝐸1

=12βˆ’2 0.7

68k+680k

50+330

=12βˆ’1.4

68k+13.6k+330=

10.6V

81.93kΞ©= 129.379ΞΌA

β€’ 𝑉𝐢𝐸1 = 𝑉𝐢𝐢 βˆ’ 𝑅𝐢1 + 𝑅𝐸1 𝐼𝐢1 =12 βˆ’ 68k + 330 129.379ΞΌA =12 βˆ’ 68.33kΞ© 129.379ΞΌA = 12 βˆ’ 8.84 = 3.16V

β€’ 𝑉𝐢1 = 𝑉𝐢𝐢 βˆ’ 𝑅𝐢1𝐼𝐢1 = 12 βˆ’ 68kΞ© 129.379ΞΌA =12 βˆ’ 8.798 = 3.202V

Page 9: Transistor Circuits V

Work for second example (cont.)

β€’ 𝐼𝐢2 =π‘‰πΆπΆβˆ’π‘‰π΅πΈβˆ’π‘…πΆ1𝐼𝐢1

𝑅𝐸2=

12βˆ’0.7βˆ’ 68k 129.379ΞΌA

1k=

12βˆ’0.7βˆ’8.798

1k=

2.502V

1kΞ©= 2.502mA

β€’ 𝑉𝐢𝐸2 = 𝑉𝐢𝐢 βˆ’ 𝑅𝐢2 + 𝑅𝐸2 𝐼𝐢2 =12 βˆ’ 2.7k + 1k 2.502mA =12 βˆ’ 3.7kΞ© 2.502mA = 12 βˆ’ 9.528 = 2.472V

β€’ 𝑉𝐢2 = 𝑉𝐢𝐢 βˆ’ 𝑅𝐢2𝐼𝐢2 = 12 βˆ’ 2.7kΞ© 2.502mA =12 βˆ’ 6.756 = 5.224V

Page 10: Transistor Circuits V

TROUBLESHOOTING CE CIRCUITS

Page 11: Transistor Circuits V

First example

β€’ If the 180-kΞ© (R2) resistor became open in the circuit shown, what would the collector-to-ground voltage be?

12V

12V

33kΞ© 180kΞ©

2.2kΞ©

10kΞ©

10.7V

Page 12: Transistor Circuits V

Normal operation

β€’ Normal operation (Q point):

β€’ 𝑉𝐡 = 𝑉𝑅2 =𝑅2

𝑅1+𝑅2𝑉𝐢𝐢 =

180k

33k+180k12 =

180k

213k12 = 0.845 12V = 10.14V

β€’ 𝑉𝐡𝐸 = 𝑉𝐡 βˆ’ 𝑉𝐸 = 10.17 βˆ’ 10.7 = βˆ’0.56V

β€’ 𝐼𝐢 = 𝐼𝐸 =π‘‰πΆπΆβˆ’π‘‰πΈ

𝑅𝐸=

12βˆ’10.7

2.2k=

1.3V

2.2kΞ©= 590.91ΞΌA

β€’ 𝑉𝐢 = 𝐼𝐢𝑅𝐢 = 590.91ΞΌA 10kΞ© = 5.909V

Page 13: Transistor Circuits V

Circuit evaluation

β€’ If R2 opens, VB β‰ˆ12V ∴ VBE is reverse biased.

β€’ If VBE is reverse biased, transistor is cutoff (IC = 0mA).This means VC = 0V as VE = VCC = VCE.

Page 14: Transistor Circuits V

Second example

β€’ If the 33-kΞ© (R1) resistor became open instead in the figure shown, what would the collector-to-ground voltage be?

12V

12V

33kΞ© 180kΞ©

2.2kΞ©

10kΞ©

10.7V

Page 15: Transistor Circuits V

Circuit evaluation

β€’ If R1 opens, VB = 0V ∴ transistor is biased full on (saturation)

β€’ 𝐼𝐢 = 𝐼𝐸 =𝑉𝐢𝐢

𝑅𝐢+𝑅𝐸=

12

2.2k+10k=

12

12.2kΞ©=

983.607ΞΌA

β€’ 𝑉𝐢 = 𝐼𝐢𝑅𝐢 = 983.607ΞΌA 10kΞ© = 9.836V

Page 16: Transistor Circuits V

Third example

β€’ Referring to the figure shown, if the BJT’s hFE = 80, find its IC and VCE. Assume that VBE and ICEO are negligible. Hint: The equation for VCE is the same as the voltage-divider-biased circuits.

VCC = 20V

RC = 5.6k

RB = 390k

RE = 1k

𝐼𝐢 =𝑉𝐢𝐢

𝑅𝐸 + 𝑅𝐢 +π‘…π΅β„ŽπΉπΈ

If VBE β‰ˆ 0V and ICEO β‰ˆ 0A

Page 17: Transistor Circuits V

Work for third example

β€’ 𝐼𝐢 =𝑉𝐢𝐢

𝑅𝐸+𝑅𝐢+π‘…π΅β„ŽπΉπΈ

=20

1k+5.6k+390k

80

=

20

1k+5.6k+4.875k=

20V

11.475kΞ©= 1.743mA

β€’ 𝑉𝐢𝐸 = 𝑉𝐢𝐢 + 𝑅𝐢 + 𝑅𝐸 𝐼𝐢 =20 βˆ’ 5.6k + 1k 1.743mA = 20 βˆ’6.6kΞ© 1.743mA = 20 βˆ’ 11.503 =8.497V

Page 18: Transistor Circuits V

Circuit revision

β€’ Work the previous problem using hFE = 160 instead of 80.

Page 19: Transistor Circuits V

Work for revision

β€’ 𝐼𝐢 =𝑉𝐢𝐢

𝑅𝐸+𝑅𝐢+π‘…π΅β„ŽπΉπΈ

=20

1k+5.6k+390k

160

=

20

1k+5.6k+2.438k=

20V

9.038kΞ©= 2.213mA

β€’ 𝑉𝐢𝐸 = 𝑉𝐢𝐢 + 𝑅𝐢 + 𝑅𝐸 𝐼𝐢 =20 βˆ’ 5.6k + 1k 2.213mA = 20 βˆ’6.6kΞ© 2.213mA = 20 βˆ’ 14.606 =5.394V

Page 20: Transistor Circuits V

Common issues (CE Amp – 2 Supply biased)

12V

-12V

RB33kΞ©

RC4.7kΞ©

RE10kΞ©

6.5V

-0.3V

DC collector-to-ground

voltage

DC emitter-to-ground

voltage

Page 21: Transistor Circuits V

Chart of changes/outcomes Change

in

Value

IC VC VE

(1) VCC ↑ ↔ ↑ ↔

(2) VCC ↓ ↔ ↓ ↔

(3) RB ↑ ↔ ↔ ↔

(4) RB ↓ ↔ ↔ ↔

(5) RB ∞ ↓ ↑ ↓

(6) RC ↑ ↔ ↓ ↔

(7) RC ↓ ↔ ↑ ↔

(8) RC ∞ ↓ ↓ ↓

(9) RE ↑ ↓ ↑ ↔

(10) RE ↓ ↑ ↓ ↔

(11) RE ∞ ↓ ↑ ↑

(12) VEE ↑ ↑ ↓ ↔

(13) VEE ↓ ↓ ↑ ↔

Page 22: Transistor Circuits V

Any questions?

β€’ Contact us at:

– 1-800-243-6446

– 1-216-781-9400

β€’ Email:

– [email protected]

Page 23: Transistor Circuits V