Tracking of Animals Using Airborne...

98
Tracking of Animals Using Airborne Cameras Clas Veibäck

Transcript of Tracking of Animals Using Airborne...

Page 1: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

Tracking of AnimalsUsing Airborne CamerasClas Veibäck

Page 2: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

1 Introduction2 Background3 Constrained Motion Model4 Uncertain Timestamp Model5 Mode Observations6 Conclusions

Page 3: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 2

Introduction

• Tracking of animals

• Overhead cameras

• Applicable to other target

types

• Applications to demonstrate

theory

Page 4: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 2

Introduction

• Tracking of animals

• Overhead cameras

• Applicable to other target

types

• Applications to demonstrate

theory

Page 5: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 2

Introduction

• Tracking of animals

• Overhead cameras

• Applicable to other target

types

• Applications to demonstrate

theory

Page 6: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 2

Introduction

• Tracking of animals

• Overhead cameras

• Applicable to other target

types

• Applications to demonstrate

theory

Page 7: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 3

Main Contributions

Uncertain Timestamps

Constrained Motion Model Mode Observations

M1

M2

M1

M2

M1

M2

k− 1 k k+ 1

Page 8: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 3

Main Contributions

Uncertain Timestamps

Constrained Motion Model

Mode Observations

M1

M2

M1

M2

M1

M2

k− 1 k k+ 1

Page 9: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 3

Main Contributions

Uncertain Timestamps

Constrained Motion Model Mode Observations

M1

M2

M1

M2

M1

M2

k− 1 k k+ 1

Page 10: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 4

Dolphin Application

• Dolphinarium at Kolmården

Wildlife Park

• Fisheye camera with

occlusions

• Reflections and changing

light conditions

• Constrained to basin

Page 11: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 4

Dolphin Application

• Dolphinarium at Kolmården

Wildlife Park

• Fisheye camera with

occlusions

• Reflections and changing

light conditions

• Constrained to basin

Page 12: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 4

Dolphin Application

• Dolphinarium at Kolmården

Wildlife Park

• Fisheye camera with

occlusions

• Reflections and changing

light conditions

• Constrained to basin

Page 13: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 4

Dolphin Application

• Dolphinarium at Kolmården

Wildlife Park

• Fisheye camera with

occlusions

• Reflections and changing

light conditions

• Constrained to basin

Page 14: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 5

Bird Application

• Recording of birds in Emlen

funnels

• Detect take-off times

• Estimate take-off directions

Page 15: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 5

Bird Application

• Recording of birds in Emlen

funnels

• Detect take-off times

• Estimate take-off directions

Page 16: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 5

Bird Application

• Recording of birds in Emlen

funnels

• Detect take-off times

• Estimate take-off directions

Page 17: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 6

Orienteering Application

• GPS trajectory

• Control position known

• Improve position estimate

Page 18: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 6

Orienteering Application

• GPS trajectory

• Control position known

• Improve position estimate

Page 19: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 6

Orienteering Application

• GPS trajectory

• Control position known

• Improve position estimate

Page 20: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

1 Introduction2 Background3 Constrained Motion Model4 Uncertain Timestamp Model5 Mode Observations6 Conclusions

Page 21: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 8

Target Tracking

Tracker

Presentation

Pre-processing Association TrackManagement

Estimation

Sensor Data

Page 22: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 9

Target Model

Linear Gaussian state-space model

xk = Fkxk−1 +wk,

wk ∼ N (0,Qk),

yj = Hjxj + vj , vj ∼ N (0,Rj),

x0 ∼ N (x0,P0).

Page 23: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 9

Target Model

Linear Gaussian state-space model

xk = Fkxk−1 +wk, wk ∼ N (0,Qk),

yj = Hjxj + vj , vj ∼ N (0,Rj),

x0 ∼ N (x0,P0).

Page 24: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 9

Target Model

Linear Gaussian state-space model

xk = Fkxk−1 +wk, wk ∼ N (0,Qk),

yj = Hjxj + vj ,

vj ∼ N (0,Rj),

x0 ∼ N (x0,P0).

Page 25: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 9

Target Model

Linear Gaussian state-space model

xk = Fkxk−1 +wk, wk ∼ N (0,Qk),

yj = Hjxj + vj , vj ∼ N (0,Rj),

x0 ∼ N (x0,P0).

Page 26: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 9

Target Model

Linear Gaussian state-space model

xk = Fkxk−1 +wk, wk ∼ N (0,Qk),

yj = Hjxj + vj , vj ∼ N (0,Rj),

x0 ∼ N (x0,P0).

Page 27: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 10

Camera Model

z

yx

p

xr

xc

yx

f

• Camera extrinsics

• Camera intrinsics

• Projection

• Perspective compensation

• Lens distortion

Page 28: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 10

Camera Model

z

yx

p

xr

xc

yx

f

• Camera extrinsics

• Camera intrinsics

• Projection

• Perspective compensation

• Lens distortion

Page 29: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 10

Camera Model

z

yx

p

xr

xc

yx

f

• Camera extrinsics

• Camera intrinsics

• Projection

• Perspective compensation

• Lens distortion

Page 30: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 10

Camera Model

z

yx

p

xr

xc

yx

f

• Camera extrinsics

• Camera intrinsics

• Projection

• Perspective compensation

• Lens distortion

Page 31: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 10

Camera Model

z

yx

p

xr

xc

yx

f

• Camera extrinsics

• Camera intrinsics

• Projection

• Perspective compensation

• Lens distortion

Page 32: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 11

Dolphin Camera z

yx

p

xr

xc

yx

f

Page 33: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 12

Bird Camera z

yx

p

xr

xc

yx

f

Page 34: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

1 Introduction2 Background3 Constrained Motion Model4 Uncertain Timestamp Model5 Mode Observations6 Conclusions

Page 35: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 14

Constrained Motion Model

Page 36: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 15

Constrained Motion Model

• Targets constrained to

region

• Feasible predictions

• Similar behaviour

Page 37: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 15

Constrained Motion Model

• Targets constrained to

region

• Feasible predictions

• Similar behaviour

Page 38: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 15

Constrained Motion Model

• Targets constrained to

region

• Feasible predictions

• Similar behaviour

Page 39: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 16

Turning Model

ω(x) = dr(x)

∫N

(βd + βa

(p⊥ · l(n)

))w(x, n) dn

• Nearly constant speed

• Influence by edges

• Avoid collision with edges

• Align with edges

• Preferred direction

• Polygon region

Page 40: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 16

Turning Model

ω(x) = dr(x)

∫N

(βd + βa

(p⊥ · l(n)

))w(x, n) dn

x =

(pp

)=

xyxy

• Nearly constant speed

• Influence by edges

• Avoid collision with edges

• Align with edges

• Preferred direction

• Polygon region

Page 41: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 16

Turning Model

ω(x) = dr(x)

∫N

(βd + βa

(p⊥ · l(n)

))w(x, n) dn

w(x, n) =1

‖p− n‖2

• Nearly constant speed

• Influence by edges

• Avoid collision with edges

• Align with edges

• Preferred direction

• Polygon region

Page 42: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 16

Turning Model

ω(x) = dr(x)

∫N

(βd + βa

(p⊥ · l(n)

))w(x, n) dn

• Nearly constant speed

• Influence by edges

• Avoid collision with edges

• Align with edges

• Preferred direction

• Polygon region

Page 43: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 16

Turning Model

ω(x) = dr(x)

∫N

(βd + βa

(p⊥ · l(n)

))w(x, n) dn

• Nearly constant speed

• Influence by edges

• Avoid collision with edges

• Align with edges

• Preferred direction

• Polygon region

Page 44: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 16

Turning Model

ω(x) = dr(x)

∫N

(βd + βa

(p⊥ · l(n)

))w(x, n) dn

Clockwise

or

Counterclockwise

• Nearly constant speed

• Influence by edges

• Avoid collision with edges

• Align with edges

• Preferred direction

• Polygon region

Page 45: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 16

Turning Model

ω(x) = dr(x)

N∑i=1

(βd + βa(p⊥ · li)

)wi(x)

l1lN

v1

v2

vN

©2015

IEEE

• Nearly constant speed

• Influence by edges

• Avoid collision with edges

• Align with edges

• Preferred direction

• Polygon region

Page 46: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 17

Potential Field

Page 47: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 18

Dolphin - Model Simulation

Page 48: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 19

Dolphin - Model Comparisons

Detection regionConstraint regionConstant Velocity modelCoordinated Turn modelConstrained Motion model

Page 49: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 20

Dolphin - Complete Framework

Page 50: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

1 Introduction2 Background3 Constrained Motion Model4 Uncertain Timestamp Model5 Mode Observations6 Conclusions

Page 51: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 22

Uncertain Timestamp Model

Page 52: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 23

Uncertain Timestamp Model

• Traditional measurements

• Observations sampled at an

uncertain time

• Crime scene investigations

• Traces from animals

• Bottlenecks in mines

Page 53: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 23

Uncertain Timestamp Model

• Traditional measurements

• Observations sampled at an

uncertain time

• Crime scene investigations

• Traces from animals

• Bottlenecks in mines

Page 54: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 23

Uncertain Timestamp Model

• Traditional measurements

• Observations sampled at an

uncertain time

• Crime scene investigations

• Traces from animals

• Bottlenecks in mines

Page 55: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 23

Uncertain Timestamp Model

• Traditional measurements

• Observations sampled at an

uncertain time

• Crime scene investigations

• Traces from animals

• Bottlenecks in mines

Page 56: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 23

Uncertain Timestamp Model

• Traditional measurements

• Observations sampled at an

uncertain time

• Crime scene investigations

• Traces from animals

• Bottlenecks in mines

Page 57: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 24

Uncertain Timestamp Model

Consider a linear Gaussian state-space model,

xk = Fkxk−1 +wk, wk ∼ N (0,Qk),

yj = Hyjxj + vy

j , vyj ∼ N (0,Ry

j ),

x0 ∼ N (x0,P0),

Extend the model with

z = Hzxτ + vz, vz ∼ N (0,Rz), τ ∼ p(τ).

Page 58: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 24

Uncertain Timestamp Model

Consider a linear Gaussian state-space model,

xk = Fkxk−1 +wk, wk ∼ N (0,Qk),

yj = Hyjxj + vy

j , vyj ∼ N (0,Ry

j ),

x0 ∼ N (x0,P0),

Extend the model with

z = Hzxτ + vz, vz ∼ N (0,Rz), τ ∼ p(τ).

Page 59: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 25

Simple Uncertain Time Scenario

Consider the simple model,

xk = xk−1 + wk, wk ∼ N (0, Q),

yj = xj + vyj , vyj ∼ N (0, Ry)

for k ∈ {1, . . . , N} and two measurements y1 and yN .

Extend the model with

z = xτ + vz, vz ∼ N (0, Rz), τ ∼ p(τ).

Page 60: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 25

Simple Uncertain Time Scenario

Consider the simple model,

xk = xk−1 + wk, wk ∼ N (0, Q),

yj = xj + vyj , vyj ∼ N (0, Ry)

for k ∈ {1, . . . , N} and two measurements y1 and yN .

Extend the model with

z = xτ + vz, vz ∼ N (0, Rz), τ ∼ p(τ).

Page 61: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 26

Simple Uncertain Time Scenario

Time

0 0.2 0.4 0.6 0.8 1

Positio

n

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6Y

z (first case)z (second case)

The measurements are

• y1 = 0,

• yN = 1.

The two cases of

observations are

• z = 0.5 with flat prior.

• z = 1.5 with non-flatprior.

Page 62: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 26

Simple Uncertain Time Scenario

Time

0 0.2 0.4 0.6 0.8 1

Positio

n

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6Y

z (first case)z (second case)

The measurements are

• y1 = 0,

• yN = 1.

The two cases of

observations are

• z = 0.5 with flat prior.

• z = 1.5 with non-flatprior.

Page 63: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 27

Posterior Distributions - Time

The posterior distribution of the uncertain time is

wτ , p(τ |Y, z) ∝ p(τ)N (z| zτ , Sτ ).

Page 64: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 28

Posterior Distributions - Time

p(τ |Y, z)maxX p(X , τ |Y, z)p(τ)

τ

0 0.5 1

Pro

babili

ty

×10-3

0

0.5

1

1.5

2

τ

0 0.2 0.4 0.6 0.8 1

Pro

ba

bili

ty

×10-3

0

2

4

6

8

Page 65: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 29

Posterior Distributions - States

The posterior distribution of the state is

p(xk|Y, z) =

N∑τ=1

wτ · N (xk|xτk,P

τk).

Page 66: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 30

Posterior Distributions - States

Time

0 0.2 0.4 0.6 0.8 1

Po

sitio

n

-0.5

0

0.5

1

1.5

2

Time

0 0.2 0.4 0.6 0.8 1

Po

sitio

n

-0.5

0

0.5

1

1.5

2

Page 67: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 31

Estimators - Minimum Mean Squared Error

Yz

XMMSE |Y, z

XMMSE |Y

Time

0 0.5 1

Positio

n

0

0.5

1

1.5

Time

0 0.5 1

Positio

n

0

0.5

1

1.5

Page 68: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 32

Orienteering

• Adjusted trajectory

• Single control point

Page 69: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 32

Orienteering

• Adjusted trajectory

• Single control point

Page 70: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

1 Introduction2 Background3 Constrained Motion Model4 Uncertain Timestamp Model5 Mode Observations6 Conclusions

Page 71: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 34

Mode Observations

M1

M2

M1

M2

M1

M2

k− 1 k k+ 1

Page 72: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 35

Mode Observations

M1

M2

M1

M2

M1

M2

k− 1 k k+ 1

• Jump Markov model

• Model target behaviour

• Probability of switching

• Direct mode observation

Page 73: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 35

Mode Observations

M1

M2

M1

M2

M1

M2

k− 1 k k+ 1

• Jump Markov model

• Model target behaviour

• Probability of switching

• Direct mode observation

Page 74: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 35

Mode Observations

M1

M2

M1

M2

M1

M2

k− 1 k k+ 1

• Jump Markov model

• Model target behaviour

• Probability of switching

• Direct mode observation

Page 75: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 35

Mode Observations

M1

M2

M1

M2

M1

M2

k− 1 k k+ 1

• Jump Markov model

• Model target behaviour

• Probability of switching

• Direct mode observation

Page 76: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 36

Jump Markov ModelThe jump Markov linear model is

xk = Fk(δk)xk−1 +wk, wk ∼ N (0, Qk(δk)),

yj = Hj(δj)xj + vj , vj ∼ N (0, Rj(δj)).

The mode is modelled as

p(δk | δk−1) = Πδk,δk−1

k , δk ∈ S.

Augmented is the direct mode observation,

zk ∼ p(zk | δk).

M1

M2

Page 77: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 36

Jump Markov ModelThe jump Markov linear model is

xk = Fk(δk)xk−1 +wk, wk ∼ N (0, Qk(δk)),

yj = Hj(δj)xj + vj , vj ∼ N (0, Rj(δj)).

The mode is modelled as

p(δk | δk−1) = Πδk,δk−1

k , δk ∈ S.

Augmented is the direct mode observation,

zk ∼ p(zk | δk).

M1

M2

Page 78: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 36

Jump Markov ModelThe jump Markov linear model is

xk = Fk(δk)xk−1 +wk, wk ∼ N (0, Qk(δk)),

yj = Hj(δj)xj + vj , vj ∼ N (0, Rj(δj)).

The mode is modelled as

p(δk | δk−1) = Πδk,δk−1

k , δk ∈ S.

Augmented is the direct mode observation,

zk ∼ p(zk | δk).

M1

M2

Page 79: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 36

Jump Markov ModelThe jump Markov linear model is

xk = Fk(δk)xk−1 +wk, wk ∼ N (0, Qk(δk)),

yj = Hj(δj)xj + vj , vj ∼ N (0, Rj(δj)).

The mode is modelled as

p(δk | δk−1) = Πδk,δk−1

k , δk ∈ S.

Augmented is the direct mode observation,

zk ∼ p(zk | δk).

M1

M2

Page 80: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 37

Posterior Distribution - Mode Sequence

The posterior probability of a mode sequence {δij}kj=1 is

computed recursively by

wik ∝ wi

k−1 ·Πδik,δ

ik−1

k · N (yk | yik, S

ik) · p(zk | δik).

M1

M2

Page 81: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 37

Posterior Distribution - Mode Sequence

The posterior probability of a mode sequence {δij}kj=1 is

computed recursively by

wik ∝ wi

k−1 ·Πδik,δ

ik−1

k · N (yk | yik, S

ik) · p(zk | δik).

M1

M2

Page 82: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 38

Posterior Distribution - State

The posterior distribution of the state is given by

p(xk | {yj}kj=1, {zj}kj=1) =

|S|k∑i=1

wik · N (xk | xi

k, Pik).

M1

M2

Page 83: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 39

Bird - ModelThe modes are S = {s, f}.

The state variables are x =

xybs

bf

=

pbs

bf

.

The state-space model is

xk = xk−1 +wk, wk ∼ N (0, Q(δk)),

yk =

(h(pk)

bδkk

)+ vk, vk ∼ N (0, R),

M1

M2

Page 84: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 39

Bird - ModelThe modes are S = {s, f}.

The state variables are x =

xybs

bf

=

pbs

bf

.

The state-space model is

xk = xk−1 +wk, wk ∼ N (0, Q(δk)),

yk =

(h(pk)

bδkk

)+ vk, vk ∼ N (0, R),

M1

M2

Page 85: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 39

Bird - ModelThe modes are S = {s, f}.

The state variables are x =

xybs

bf

=

pbs

bf

.

The state-space model is

xk = xk−1 +wk, wk ∼ N (0, Q(δk)),

yk =

(h(pk)

bδkk

)+ vk, vk ∼ N (0, R),

M1

M2

Page 86: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 40

Bird - Model ExtensionThe direct mode observation is the radial position

zk =√x2k + y2k,

where p(zk|δk) is given by:

Radius(mm)

0 100 200 300

Pro

babili

ty D

ensity

0

0.2

0.4

0.6

0.8

1

M1

M2

Page 87: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 40

Bird - Model ExtensionThe direct mode observation is the radial position

zk =√x2k + y2k,

where p(zk|δk) is given by:

Radius(mm)

0 100 200 300

Pro

babili

ty D

ensity

0

0.2

0.4

0.6

0.8

1

M1

M2

Page 88: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 41

Bird - Results

Time(s)

0 1000 2000 3000

Mode P

robabili

ty

0

0.5

1

Cage 1

Time(s)

0 1000 2000 3000

Mode P

robabili

ty

0

0.5

1

Cage 4

Time(s)

0 1000 2000 3000

Mode P

robabili

ty

0

0.5

1

Cage 2

Time(s)

0 1000 2000 3000

Mode P

robabili

ty

0

0.5

1

Cage 3

• Estimated modes

• Extracted takeoffs

• Takeoff directions

• Matched takeoffs

M1

M2

Page 89: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 41

Bird - Results

Time(s)

0 1000 2000 3000

Cage 1

Time(s)

0 1000 2000 3000

Cage 4

Time(s)

0 1000 2000 3000

Cage 2

Time(s)

0 1000 2000 3000

Cage 3

• Estimated modes

• Extracted takeoffs

• Takeoff directions

• Matched takeoffs

M1

M2

Page 90: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 41

Bird - Results

Cage 1 Cage 4

Cage 2 Cage 3

• Estimated modes

• Extracted takeoffs

• Takeoff directions

• Matched takeoffs

M1

M2

Page 91: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 41

Bird - Results

Cage 1 Cage 4

Cage 2 Cage 3

• Estimated modes

• Extracted takeoffs

• Takeoff directions

• Matched takeoffs

M1

M2

Page 92: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 42

Bird - Complete Framework M1

M2

Page 93: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

1 Introduction2 Background3 Constrained Motion Model4 Uncertain Timestamp Model5 Mode Observations6 Conclusions

Page 94: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 44

Conclusions

Theory is presented on

• a constrained motion model

• an uncertain timestamp model

• mode observations

Theory is demonstrated to work in applications

Page 95: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 44

Conclusions

Theory is presented on

• a constrained motion model

• an uncertain timestamp model

• mode observations

Theory is demonstrated to work in applications

Page 96: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 44

Conclusions

Theory is presented on

• a constrained motion model

• an uncertain timestamp model

• mode observations

Theory is demonstrated to work in applications

Page 97: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

LINK-SIC Presentation Clas Veibäck November 7, 2016 44

Conclusions

Theory is presented on

• a constrained motion model

• an uncertain timestamp model

• mode observations

Theory is demonstrated to work in applications

Page 98: Tracking of Animals Using Airborne Camerasusers.isy.liu.se/rt/clave42/presentations/presentation_linksic2016.pdf · LINK-SICPresentation ClasVeibäck November7,2016 2 Introduction

Questions?www.liu.se