Total Synthesis of (–)-Exiguolide · 2011. 11. 3. · Biological Activity of...

13
Total Synthesis of (–)-Exiguolide Fuwa, H.; Sasaki, M. Org. Lett. 2010, 12, 584-587. Short Literature Presentation 3/9/2010 Erika A. Crane Total Synthesis of (–)-Exiguolide Cook, C.; Guinchard, X.; Liron, F.; Roulland, E. Org. Lett. 2010, 12, 744-747.

Transcript of Total Synthesis of (–)-Exiguolide · 2011. 11. 3. · Biological Activity of...

  • Total Synthesis of (–)-ExiguolideFuwa, H.; Sasaki, M. Org. Lett. 2010, 12, 584-587.

    Short Literature Presentation 3/9/2010

    Erika A. Crane

    Total Synthesis of (–)-ExiguolideCook, C.; Guinchard, X.; Liron, F.; Roulland, E. Org. Lett. 2010, 12, 744-747.

  • (–)-exiguolide

    Isolated in 2006 by Ohta, Ikegami and coworkers from the marine sponge

    Geodia exigua

    Ohta, S.; Uy, M. M.; Yanai, M.; Ohta, E.; Hirata, T.; Ikegami, S.Tetrahedron Lett. 2006, 47, 1957-1960.

    16-membered macrolide

    two cis-2,6-disubstituted tetrahydropyran rings

    exocyclic enoate moiety and triene side chain

    7 stereogenic centers

    O

    H

    MeO2C

    H

    O

    OO

    H

    H

    H

    Me

    Me

    H

    HH

    Me

    MeO2C

    O

    H

    MeO2C

    H

    O

    OO

    H

    H

    H

    Me

    Me

    H

    HH

    Me

    MeO2C

    O

    H

    MeO2C

    H

    O

    OO

    H

    H

    H

    Me

    Me

    H

    HH

    Me

    MeO2C

    O

    H

    MeO2C

    H

    O

    OO

    H

    H

    H

    Me

    Me

    H

    HH

    Me

    MeO2C

    O

    H

    MeO2C

    H

    O

    OO

    H

    H

    H

    Me

    Me

    H

    HH

    Me

    MeO2C

  • Biological Activity of (–)-exiguolide

    Inhibit sea urchin gamete (Hemicentrotus pulcherrimus) fertilization at a 20 μM concentration

    A concentration of 100 μM did not affect the development of the already

    fertilized eggs up to gastrula stage

    Ohta, S.; Uy, M. M.; Yanai, M.; Ohta, E.; Hirata, T.; Ikegami, S. Tetrahedron Lett. 2006, 47, 1957-1960.

    Cossy, J.C. R. Chemie, 2008, 11, 1477-1482.

    O

    H

    MeO2C

    H

    O

    OO

    H

    H

    H

    Me

    Me

    H

    HH

    Me

    MeO2C

  • Biological Activity of (–)-exiguolide

    bryostatin core (–)-exiguolide

    Cossy, J.C. R. Chemie. 2008, 11, 1477-1482.

    This combined with the biological activity presents exiguolide with great potential to possess antitumor activity

    O O

    O

    O

    ORMeMe

    HOO

    MeO2C

    MeMe

    OH H

    OH

    RO OHMe

    CO2Me

    O O

    O

    O Me

    MeO2C

    MeMe

    MeO2C

    H

    Also, exiguolide is very structurally similar to the bryostatins, a class of complex molecules

    with potent antitumor activity

    O O

    O

    OOMeO2C

    MeMe

    OH H

    OH

    O OH

    CO2MeOC7H15bryologue

    Wender, P. A.; DeChristopher, B. A.; Schrier, A. J. J. Am. Chem. Soc. 2008, 130, 6658-6659.

  • Fuwa and Sasakiʼs Retrosynthesis

    O

    H

    MeO2C

    H

    O

    OO

    H

    H

    H

    Me

    Me

    H

    HH

    Me

    MeO2C

    Suzuki-Miyaura coupling

    O

    H

    O

    OO

    H

    H

    H

    Me

    Me

    H

    HH

    Julia-Kocienskiolefination

    O

    H

    OOHC

    H

    H

    Me

    HH

    oxa-conjugate addition

    B

    Me

    MeO2C OO

    Me MeMe

    Me

    IYamaguchi macrolactonization

    TBDPSO

    I

    OMPM

    MeS

    N NN

    NO O Ph

    cross-methathesisreductive etherification

    OH

    TIPSO

    OOTES

    Me

    OBnOTBDPS

    OH

    TIPSO

    OOTES

    Me

    OBn

    OTBDPS

    TIPSO

    MeO2C

    H

  • Fuwa and Sasakiʼs Forward Synthesis

    6 stepsfrom the Roche ester

    asymmetric Brown allylation

    cross-metathesis

    chelate-controlled allylation

    OH

    TIPSO

    OTBDPS

    OH

    OTBDPS

    OMPM

    OTBDPS

    OH

    1.) MPMOC(=NH)CCl3, Sc(OTf)3, toluene, rt

    2.) OsO4, NMO, THF/ H2O, rt; NaIO4 69% (over 2 steps)

    1.) allylSiMe3, MgBr2•OEt2, CH2Cl2, 0 °C 84%, > 20:1 dr

    2.) TIPSOTf, 2,6-lutidine, CH2Cl2, 0 °C3.) DDQ, pH 7 buffer, CH2Cl2, rt 97% (over 2 steps)

    OOTES

    Me

    OBn

    CHOMe

    OBnMe

    OBn

    HO

    CO2Me

    Me

    OBn

    TESO

    O NMe

    OMe

    1.)(+)-Ipc2BOMe, allylMgBr, Et2O, –78 °C

    2.) methyl acrylate, G-II, CH2Cl2, 35 °C 72% (over 2 steps)

    1.) H2, Pd/C, EtOAc, rt

    2.) MeONHMe•HCl, AlMe3, CH2Cl2, 0 °C3.) TESCl, NEt3, DMAP, CH2Cl2, rt 92% yield (over 3 steps)

    tetra(vinyl)tin,MeLi, Et2O

    –80 °C96%

  • Fuwa and Sasakiʼs Forward Synthesis

    available in 10 stepsfrom the Roche ester

    reductive etherification

    cross-metathesis oxa-conjugate additionOH

    TIPSO

    OTBDPS

    OOTES

    Me

    OBnOH

    TIPSO

    OOTES

    Me

    OBnOTBDPS

    O

    H

    TESO

    O

    H

    Me

    HH

    TBDPSOHG-II, CH2Cl235 °C

    93%, > 20:1 dr

    O

    H

    OOHC

    H

    H

    Me

    HH

    TBDPSO

    BnOKOt-Bu, THF, 0 °C

    95% > 20:1 dr

    1.) BF3•OEt2, Et3SiH, CH2Cl2, –60 to –25 °C 98%, 10:1 dr2.) H2, Pd/C, EtOAc, MeOH, rt, 90%3.) DMP, CH2Cl2, rt, 97%

    I

    OMPM

    MeS

    N NN

    NO O Ph

    TIPSO

    TIPSO

    LiHMDS, THF, HMPA,–78 °C to rt, 63%

    O

    H

    O

    H

    H

    Me

    HHTIPSO

    MPMO

    MeTBDPSO

    IJulia-Kocienski olefination

  • Fuwa and Sasakiʼs Forward Synthesis

    asymmetric Horner-Wadsworth-Emmons

    yamaguchi macrolactonization

    O

    H

    O

    OO

    H

    H

    H

    Me

    Me

    H

    HH

    I

    TIPSO

    O

    H

    O

    H

    H

    Me

    HHTIPSO

    MPMO

    MeTBDPSO

    I1.) 10% KOH/MeOH, THF, 60 °C, 94%2.) DMP, CH2Cl2, rt

    3.) NaClO2, NaH2PO4, 2-methyl-2-butene, tBuOH, H2O, rt4.) TMSCHN2, MeOH, C6H6, rt 94% (over 2 steps)

    O

    H

    O

    MeO2C

    H

    H

    Me

    HHTIPSO

    MPMO

    Me

    I

    1.) BF3•OEt2, Et3SiH, CH2Cl2, 0 °C, 89%2.) TMSOK, THF, rt3.) 2,4,6-trichlorobenzoyl chloride, NEt3, THF; DMAP, toluene, 80 °C, 94% (over 2 steps)

    O

    H

    O

    OO

    H

    H

    H

    Me

    Me

    H

    HH

    I

    MeO2C

    1.) HF•pyr, THF, rt2.) DMP, CH2Cl2, rt 100% (over 2 steps)

    3.) NaHMDS, THF,

    –40 °C, 94% 5:1 Z:E

    OO P

    OCO2Me

    B

    Me

    MeO2C OO

    Me MeMe

    MePd2(dba)3, Ph3As,Ag2O, THF, rt, 73% (–)-exiguolide

    Suzuki-Miyaura coupling

  • Roulland et al. Retrosynthesis

    O

    H

    MeO2C

    H

    O

    OO

    H

    H

    H

    Me

    Me

    H

    HH

    Me

    MeO2C

    Sonogashira coupling

    O

    H

    MeO2C

    H

    O

    OO

    H

    H

    H

    Me

    Me

    H

    HH

    I

    Yamaguchi macrolactonization

    ene-yne cross coupling reaction/oxa-conjugate addition

    Me

    MeO2C

    O

    H

    MeO2C

    H

    O

    HO2C

    H

    H

    Me

    HH

    HO Me

    HHPrOi

    O

    OH

    TMS

    OTBS

    Me

    Me

    TBSO

    O

  • Roulland et al. Forward Synthesis

    SN2ʼ reaction of activated phosphate

    Jacobsen hydrolytic kinetic resolution

    must be Z-allylic alcohol in order to get anti attack and full transfer of chirality

    OTBS

    Me

    Me

    TBSO

    O

    OTBDPS OTBDPSO

    OTBDPSOTBSOTBDPSOTBS

    OH

    Me

    OTBS

    OTBS

    Me

    TBSO

    TBDPSO

    Me

    1.) mCPBA, CH2Cl2, rt 99%

    2.) (S,S)-CoII-salen, AcOH, air, toluene; H2O, 0 °C to rt 47%, 99.5% ee

    1.) TMS acetylene, n-BuLi, BF3•OEt2, THF, 75%

    2.) K2CO3, MeOH, rt, 95%3.) TBSCl, imidazole, DMF, rt, 94%

    1.) n-BuLi,

    THF, –78 °C to rt, 95%

    2.) NaBH4, CeCl3•7H2O, EtOH

    –78 to 15 °C, 99%, 96:4 dr

    OTBS

    MeN

    O

    Me

    OMe

    1.) H2, Lindlar's, quinoline, EtOAc, rt, 100%2.) KHMDS, Et2O, -78 °C; ClPO(OEt)2; –40 °C, MeCuLi, 96% 95:5 dr

    1.) NaOH, MeOH, reflux, 92%2.) (COCl)2, DMSO, CH2Cl2, –78°C; NEt3

    3.) allyl bromide, Zn, NH4Cl, THF, H2O, rt, 1;1 dr 99% (over 2 steps)4.) DMP, CH2Cl2, rt, 100%

  • Roulland et al. Forward Synthesis

    Trostʼs ene-yne coupling/oxa-conjugate addition

    Jacobsen hydrolytic kinetic resolution

    OTBS

    Me

    Me

    TBSO

    O

    1.) iPrOH, NEt3, 0 °C to rt2.) mCPBA, CH2Cl2, rt 55% (over 2 steps)

    2.) (S,S)-CoII-salen, AcOH, air, toluene; H2O, 0 °C to rt 44%

    TMS acetylene, n-BuLi,THF; Et2AlCl, 0 °C to rt

    Me

    O

    Cl

    O

    iPr-O

    O80%, 99.5% ee

    PrOi

    O

    OH

    TMS

    RuMeCNMeCN

    MeCNPF6

    7 mol %

    5 mol % AcOH, acetone,rt, 47%, 8:1 dr

    OTMS

    H

    TBSO

    iPrO2C

    O

    H

    Me

    HH

    TBSO Me

    HH

    1.) NIS, MeCN, 0 °C, 94%2.) CSA, 2,2-dimethoxypropane, MeOH, reflux; Et3SiH, BF3•OEt2, CH2Cl2, – 40 °C 82% > 20:1 dr

    OI

    H

    O

    iPrO2C

    H

    H

    Me

    HH

    HO Me

    HH O

    H

    MeO2C

    H

    O

    OO

    H

    H

    H

    Me

    Me

    H

    HH

    1.) NaOH, MeOH, H2O, rt 89%2.) PdCl2(dppf), Et3N, CO, MeOH, reflux, 83% 92:8 Z:E

    3.) 2,4,6-trichlorobenzoyl chloride, NEt3, THF, rt; DMAP, toluene, 60 °C, 75% Yamaguchi macrolactonization

    reductive etherification

  • Roulland et al. Forward Synthesis

    Trostʼs ene-yne coupling/oxa-conjugate addition

    Jacobsen hydrolytic kinetic resolution

    OTBS

    Me

    Me

    TBSO

    O

    1.) iPrOH, NEt3, 0 °C to rt2.) mCPBA, CH2Cl2, rt 55% (over 2 steps)

    2.) (S,S)-CoII-salen, AcOH, air, toluene; H2O, 0 °C to rt 44%

    TMS acetylene, n-BuLi,THF; Et2AlCl, 0 °C to rt

    Me

    O

    Cl

    O

    iPr-O

    O80%, 99.5% ee

    PrOi

    O

    OH

    TMS

    RuMeCNMeCN

    MeCNPF6

    7 mol %

    5 mol % AcOH, acetone,rt, 47%, 8:1 dr

    OTMS

    H

    TBSO

    iPrO2C

    O

    H

    Me

    HH

    TBSO Me

    HH

    1.) NIS, MeCN, 0 °C, 94%2.) CSA, 2,2-dimethoxypropane, MeOH, reflux; Et3SiH, BF3•OEt2, CH2Cl2, – 40 °C 82% > 20:1 dr

    OI

    H

    O

    iPrO2C

    H

    H

    Me

    HH

    HO Me

    HH O

    H

    MeO2C

    H

    O

    OO

    H

    H

    H

    Me

    Me

    H

    HH

    1.) NaOH, MeOH, H2O, rt 89%2.) PdCl2(dppf), Et3N, CO, MeOH, reflux, 83% 92:8 Z:E

    3.) 2,4,6-trichlorobenzoyl chloride, NEt3, THF, rt; DMAP, toluene, 60 °C, 75% Yamaguchi macrolactonization

    reductive etherification

  • Roulland et al. Forward Synthesis

    Takai-Utimoto olefination

    Sonogashira coupling

    O

    H

    MeO2C

    H

    O

    OO

    H

    H

    H

    Me

    Me

    H

    HH

    Me

    MeO2C

    O

    H

    MeO2C

    H

    O

    OO

    H

    H

    H

    Me

    Me

    H

    HH

    I

    OMeO2C

    H

    O

    OO

    H

    H

    H

    Me

    Me

    H

    HH

    Me

    MeO2C

    1.) OsO4, NMO, acetone, H2O; Pb(OAc)4, benzene 20% (31% recov.)

    2.) CHI3, CrCl2, THF, rt 94%

    1.) Pd(PPh3)4, CuI, NEt3, THF, rt, 51%

    2.) H2, Lindlar's, quinoline, EtOAc, rt, 62%

    (–)-exiguolide

    originally wanted to do a cross-methathesis to append triene side-chain but could not get to work