Topology Optimization of a Piezoelectric Loudspeaker Coupled with the Acoustic Domain

18
Motivation Model SIMP Objective Functions Numeriacal Results Conclusions Topology Optimization of a Piezoelectric Loudspeaker Coupled with the Acoustic Domain F. Wein , M. Kaltenbacher, F. Schury, E. B¨ ansch, G. Leugering WCSMO-8 03. June 2009 Fabian Wein Acoustic Piezoelectric Loudspeaker Optimization

Transcript of Topology Optimization of a Piezoelectric Loudspeaker Coupled with the Acoustic Domain

Page 1: Topology Optimization of a Piezoelectric Loudspeaker Coupled with the Acoustic Domain

Motivation Model SIMP Objective Functions Numeriacal Results Conclusions

Topology Optimization of a PiezoelectricLoudspeaker Coupled with the Acoustic Domain

F. Wein, M. Kaltenbacher, F. Schury, E. Bansch, G. Leugering

WCSMO-803. June 2009

Fabian Wein Acoustic Piezoelectric Loudspeaker Optimization

Page 2: Topology Optimization of a Piezoelectric Loudspeaker Coupled with the Acoustic Domain

Motivation Model SIMP Objective Functions Numeriacal Results Conclusions

Motivation

Overview

• Ersatz material/ “SIMP” optimization

• Piezoelectric-mechanical laminate coupled with acoustics

• Piezoelectric layer is design domain

Topics

• Acoustic optimization vs. structural approximation

• Self-penalized piezoelectric optimization without . . .• penalization (e.g. RAMP)• volume constraint• regularization (filtering)

Fabian Wein Acoustic Piezoelectric Loudspeaker Optimization

Page 3: Topology Optimization of a Piezoelectric Loudspeaker Coupled with the Acoustic Domain

Motivation Model SIMP Objective Functions Numeriacal Results Conclusions

Piezoelectric-Mechanical Laminate

Bending due to inverse piezoelectric effect

Piezoelectric layer: PZT-5A, 5 cm×5 cm, 50 µm thick, ideal electrodes

Mechanicial layer: Aluminum, 5 cm×5 cm, 100 µm thick, no glue layer

Fabian Wein Acoustic Piezoelectric Loudspeaker Optimization

Page 4: Topology Optimization of a Piezoelectric Loudspeaker Coupled with the Acoustic Domain

Motivation Model SIMP Objective Functions Numeriacal Results Conclusions

Coupling to Acoustic Domain

• Discretization of Ωair via cair = 343 m/s = λacf

• Dimension of Ωair determined by acoustic far field

• Fine discretization of Ωpiezo and Ωplate

• Non-matching grids Ωplate → Ωair-fine and Ωair-fine → Ωair-coarse

Fabian Wein Acoustic Piezoelectric Loudspeaker Optimization

Page 5: Topology Optimization of a Piezoelectric Loudspeaker Coupled with the Acoustic Domain

Motivation Model SIMP Objective Functions Numeriacal Results Conclusions

Coupled Piezoelectric-Mechanical-Acoustic PDEs

PDEs: ρmu− BT(

[cE ]Bu + [e]T∇φ)

= 0 in Ωpiezo

BT(

[e]Bu− [εS ]∇φ)

= 0 in Ωpiezo

ρmu− BT [c]Bu = 0 in Ωplate

1

c2ψ −∆ψ = 0 in Ωair

1

c2ψ −A2 ψ = 0 in ΩPML

Interface conditions: n · u = −∂ψ∂n

on Γiface × (0,T )

σn = −n ρf ψ on Γiface × (0,T )

Full 3D FEM formulation (quadratic / linear with softening)

Fabian Wein Acoustic Piezoelectric Loudspeaker Optimization

Page 6: Topology Optimization of a Piezoelectric Loudspeaker Coupled with the Acoustic Domain

Motivation Model SIMP Objective Functions Numeriacal Results Conclusions

Solid Isotropic Material with Penalization

• Sample reference: Kogl, Silva; 2005

• Design vector ρ (pseudo density)

• ρ = (ρ1 . . . ρne )T is piecewise constant within elements

• ρe ∈ [ρmin : 1] from void (ρmin) to full (1) material

• Replace piezoelectric material constants:

[cEe ] = ρe [cE ], ρm

e = ρeρm, [ee ] = ρe [e], [εS

e ] = ρe [εS ]

• Intermediate values are non-physical!• Small ρ → low stiffness• Large ρ → high piezoelectric coupling

Fabian Wein Acoustic Piezoelectric Loudspeaker Optimization

Page 7: Topology Optimization of a Piezoelectric Loudspeaker Coupled with the Acoustic Domain

Motivation Model SIMP Objective Functions Numeriacal Results Conclusions

Linear Systems

• Piezoelectric-mechanical-acoustic couplingSψ ψ Cψ um 0 0

CTψ um

Sumum Sumup(ρ) 0

0 ST

umup(ρ) Supup(ρ) Kupφ(ρ)

0 0 KT

upφ(ρ) −Kφφ(ρ)

ψ(ρ)um(ρ)up(ρ)φ(ρ)

=

000qφ

• Piezoelectric-mechanical laminate Sumum Sumup (ρ) 0

STumup

(ρ) Supup (ρ) Kupφ(ρ)

0 KTupφ(ρ) −Kφφ(ρ)

um(ρ)

up(ρ)φ(ρ)

=

00qφ

• Harmonic excitation: S(ω) = K + jω(αKK + αMM)− ω2M

• Short form: S u = f

Fabian Wein Acoustic Piezoelectric Loudspeaker Optimization

Page 8: Topology Optimization of a Piezoelectric Loudspeaker Coupled with the Acoustic Domain

Motivation Model SIMP Objective Functions Numeriacal Results Conclusions

Sound Power

• What one wants to optimize

Pac =1

2

∫Γopt

Rep v∗n dΓ

Sound power Pac, pressure p, normal particle velocity vn

• Acoustic impedance Z

Z (x) =p(x)

vn(x)

• Z can bee assumed to be constant on Γopt

• For plane waves• In the acoustic far field (some wavelengths)

Fabian Wein Acoustic Piezoelectric Loudspeaker Optimization

Page 9: Topology Optimization of a Piezoelectric Loudspeaker Coupled with the Acoustic Domain

Motivation Model SIMP Objective Functions Numeriacal Results Conclusions

Optimizing for the Sound Power

Use∫

ΓoptRep v∗

n dΓ with Z = p/vn and u = (ψ um up φ)T

Optimization framework

• J = uTL u∗ with L selecting from u ≈ Sigmund, Jensen; 2003

∂J

∂ρe= 2 ReλT ∂S

∂ρeu where λ solves ST λ = −Lu∗

Acoustic optimization assume Z constant on Γopt

• Jac = ω2ψTLψ∗ with vn = p/Z and p = ρf ψ

• ≈ Duhring, Jensen, Sigmund; 2008

Structural optimization assume Z constant on Γiface

• Jst = ω2umTLu∗m with p = vn Z and v = u

• ≈ Du, Olhoff; 2007 (approximation is discussed!)

Fabian Wein Acoustic Piezoelectric Loudspeaker Optimization

Page 10: Topology Optimization of a Piezoelectric Loudspeaker Coupled with the Acoustic Domain

Motivation Model SIMP Objective Functions Numeriacal Results Conclusions

Eigenfrequency Analysis

We want resonating structures, so consider eigenmodes

(a) 1. mode (b) 2./3. m (c) 4. mode (d) 5. mode

(e) 6. mode (f) 7./8. m (g) 9./10. m (h) 11. mode

• Only (a) and (e) can be excited electrically• Acoustic short circuits for all patterns but (a) and (e)

Fabian Wein Acoustic Piezoelectric Loudspeaker Optimization

Page 11: Topology Optimization of a Piezoelectric Loudspeaker Coupled with the Acoustic Domain

Motivation Model SIMP Objective Functions Numeriacal Results Conclusions

Structural Optimization

• Objective function Jst = ω2umTLu∗m

• Several hundred mono-frequent optimizations

10-1100101102103104105

0 500 1000 1500 2000Obj

ectiv

e F

unct

ion

(m2 /s

2 )

Target Frequency (Hz)

Jst (max Jst)Jst (max Jac)

Jst (Sweep full plate)

• Robust shifting/ creation of resonances

• KKT-condition often not reached

Fabian Wein Acoustic Piezoelectric Loudspeaker Optimization

Page 12: Topology Optimization of a Piezoelectric Loudspeaker Coupled with the Acoustic Domain

Motivation Model SIMP Objective Functions Numeriacal Results Conclusions

Validate Acoustic Approximation

• Validate Jac = ω2ψTLψ∗ against∫

ΓoptRep v∗

n dΓ

• Use one mesh (23 cm height)

10-1100101102103104105106107

0 500 1000 1500 200010-810-710-610-510-410-310-210-1100

Obj

ectiv

e F

unct

ion

(Pa2 )

Aco

ustic

Pow

er (

W)

Target Frequency (Hz)

Jac (Sweep full plate)Pac (Sweep full plate)

• Good approximation above 1000 Hz (0.64 wave length)

• Two antiresonances (acoustic short circuits)

• Approximation detects only one antiresonance!

Fabian Wein Acoustic Piezoelectric Loudspeaker Optimization

Page 13: Topology Optimization of a Piezoelectric Loudspeaker Coupled with the Acoustic Domain

Motivation Model SIMP Objective Functions Numeriacal Results Conclusions

Acoustic Optimization

• Objective function Jac = ω2ψTLψ∗

10-1100101102103104105106107

0 500 1000 1500 200010-710-610-510-410-310-210-1100

Obj

ectiv

e F

unct

ion

(Pa2 )

Aco

ustic

Pow

er (

W)

Target Frequency (Hz)

Jac (max Jac)Pac (max Jst)

Jac (Sweep full plate)

• Jac avoids acoustic short circuits

• Structural approximation unfeasible (above first mode)

• Note Jac approximation unfeasible below 1000 Hz

Fabian Wein Acoustic Piezoelectric Loudspeaker Optimization

Page 14: Topology Optimization of a Piezoelectric Loudspeaker Coupled with the Acoustic Domain

Motivation Model SIMP Objective Functions Numeriacal Results Conclusions

Grayness and Volumes

• Remember No penalization, no volume constraint

• Normalized grayness: g(ρ) = 4∫

Ω(1− ρ) ρ dx ,

0

0.05

0.1

0.15

0.2

0.25

0.3

0 500 1000 1500 2000

Grayness over Target Frequenzy (Hz)

g(Jst)g(Jac)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000

Volume over Target Frequenzy (Hz)

Vol(Jst)Vol(Jac)

• Good avoidance of grayness

• Optimal volumes 25% . . . 100%

Fabian Wein Acoustic Piezoelectric Loudspeaker Optimization

Page 15: Topology Optimization of a Piezoelectric Loudspeaker Coupled with the Acoustic Domain

Motivation Model SIMP Objective Functions Numeriacal Results Conclusions

Selected Results

(a) 565Hz (b) 575 Hz (c) 875 Hz (d) 975 Hz

(e) 985 Hz (f) 1405Hz (g) 1585 Hz (h) 2160 Hz

Legend: black = full material; white = void material

Fabian Wein Acoustic Piezoelectric Loudspeaker Optimization

Page 16: Topology Optimization of a Piezoelectric Loudspeaker Coupled with the Acoustic Domain

Motivation Model SIMP Objective Functions Numeriacal Results Conclusions

Experimental Prototype (200 µm Piezoceramic)

(a) Original (b) Sputter (c) Lasing

(d) Temper (e) Polarize (f) Prototype

Fabian Wein Acoustic Piezoelectric Loudspeaker Optimization

Page 17: Topology Optimization of a Piezoelectric Loudspeaker Coupled with the Acoustic Domain

Motivation Model SIMP Objective Functions Numeriacal Results Conclusions

Conclusions and Future Work

Conclusions

• Structural approximation does not handle acoustic shortcircuits

• Piezoelectric-mechanical laminate allows optimization . . .• without penalization and regularization• without constraints (especially volume)

Future Work

• Use Taylor-Hood elements to compute p and v simultanuously

• Find suitable structural approximation

• Create more resonance patterns

Fabian Wein Acoustic Piezoelectric Loudspeaker Optimization

Page 18: Topology Optimization of a Piezoelectric Loudspeaker Coupled with the Acoustic Domain

Motivation Model SIMP Objective Functions Numeriacal Results Conclusions

The End

Thank you for listening and for questions!

Fabian Wein Acoustic Piezoelectric Loudspeaker Optimization