Topics onkyodo/kokyuroku/contents/pdf/1764-13.pdf · Mathematics, I-Iokkaido University, Japan...

16
Basic Topics on Tropical Geometry and Singula.rities ( ) Goo Ishikawa Department of Mathematics, I-Iokkaido University, Japan ( ) e-mail: [email protected] Motivated from real algebraic geometry, Viro, Mikhalkin, Shustin, Iten- berg, and other mathematicians have developed the ”tropical (algebraic) geometry” [8]. Algebraic curves are tropicalized to piecewise-linear curves. The method was used to construct topological types of real algebraic curves in Hilbert’s 16th problem [24]. In this rough sketch, we present several basic topics of tropical geom- etry, in particular, the notion of hyperfields introduced by Viro recently [25]. [ Tropical Limits of Operations ] Let $R+$ denote the set of non-negative real numbers. We fix $h>0$ and consider the bijection $hlog:R_{+}-RU\{-\infty\}$ defined by $urightarrow h\log u$ , $e^{\grave{7_{l}}\tau-\chi}$ . 1764 2011 149-164 149

Transcript of Topics onkyodo/kokyuroku/contents/pdf/1764-13.pdf · Mathematics, I-Iokkaido University, Japan...

Page 1: Topics onkyodo/kokyuroku/contents/pdf/1764-13.pdf · Mathematics, I-Iokkaido University, Japan (石川 剛郎 , e-mail: 北海道大学数学教室,日本) ishikawa@math.sci.hokudai.ac.jp

Basic Topics on Tropical Geometry andSingula.rities

( )トロピカル幾何と特異性に関する基本的トピックス

Goo IshikawaDepartment of Mathematics, I-Iokkaido University, Japan

(石川剛郎,北海道大学数学教室,日本)

e-mail: [email protected]

Motivated from real algebraic geometry, Viro, Mikhalkin, Shustin, Iten-berg, and other mathematicians have developed the ”tropical (algebraic)geometry” [8]. Algebraic curves are tropicalized to piecewise-linear curves.The method was used to construct topological types of real algebraic curvesin Hilbert’s 16th problem [24].

In this rough sketch, we present several basic topics of tropical geom-etry, in particular, the notion of hyperfields introduced by Viro recently[25].

[ Tropical Limits of Operations ]

Let $R+$ denote the set of non-negative real numbers.We fix $h>0$ and consider the bijection

$hlog:R_{+}-RU\{-\infty\}$

defined by$urightarrow h\log u$ , $e^{\grave{7_{l}}\tau-\chi}$ .

数理解析研究所講究録第 1764巻 2011年 149-164 149

Page 2: Topics onkyodo/kokyuroku/contents/pdf/1764-13.pdf · Mathematics, I-Iokkaido University, Japan (石川 剛郎 , e-mail: 北海道大学数学教室,日本) ishikawa@math.sci.hokudai.ac.jp

On $R\cup$ {-00}, two operations

$\{\begin{array}{l}x+hy;=h\log(e^{X}\Gamma\iota+e\mathscr{N}_{l})x\cross hy;=l\iota\log(e^{X}\cdot e^{y})=x+y\end{array}$

are induced from the summension and the multiplication on $R+\cdot$

Set $m= \max\{x,y\}.$.Then we have

$h\log(e^{\frac{\prime\prime\prime}{;_{1}}})\leq x+1\iota y\leq h\log(+e)$ ,

namely,$m\leq x$ 十/l $y\leq\uparrow n+h$ log2.

Therefore we have that

$\lim_{h\downarrow 0}(x+l\iota/t)-==\max\{x,y\}$ .

[Tropical Semi-Ring]

$R_{trop}=R\cup$ { $-$ oo} with the two operations$\prime\prime x+y’’:=\max\{x,\iota J\}$ , $\prime\prime x\cdot y’’:=x+y$ ,

is called the tropical semi-ring (or the max-plus algebra).Moreover we set”$\chi/y’’=x-y$ if $y\neq-$ oo. Note that there is no tropical

subtraction. The tropical sum is idempotent:$\prime\prime x+x’’=x$ ,

$-$ oo being the tropical zero.

[Tropical Polynomials]

For a finite subset $A\subset Z^{n}$ , consider a “tropical” (Laurent) polynomial

$F(x)=^{JJ} \sum_{i\in A}c_{i}x^{j\prime\prime}=\max\{c_{i}+j\cdot x|j\in A\}$,

$(c_{j}\in R)$ , which is a PL-function on $R^{\mathfrak{l}1}$ . Then the tropical hypersurface$Y_{F}\subset R^{l?}$ is defined by $F$ as the corner locus of $F$ .

150

Page 3: Topics onkyodo/kokyuroku/contents/pdf/1764-13.pdf · Mathematics, I-Iokkaido University, Japan (石川 剛郎 , e-mail: 北海道大学数学教室,日本) ishikawa@math.sci.hokudai.ac.jp

Example 1. (tropical line). We consider

$F(x_{1},x_{2})= \prime\prime ax_{1}+bx_{2}-\vdash c’’=\max\{x_{1}+a, x_{2}+b, c\}$ .

Then $Y_{F}$ consists of three half-lines meeting at one point.

[Tropical Hyperfields 1We define a multi-valued addition $Y$ on $R\cup$ {-00}: For $a,b\in R\cup$ {-00},we set

a $Yb:=\{\begin{array}{l}\max\{a,b\},\{\iota f\in R\cup\{-\infty\}|y\leq a\}, (a=b)(a\neq b)\end{array}$

The multiplication is defined by the ordinary addition.lNe set $Y=$ $(R\cup \{- 00\}, Y,+)$ and we call it the tropical hyperfield.

This implies the natural definition of ”tropical zero”.

Example 2. For $a\in R$, we define the function $xYa:Yarrow$ Y. Then we have

graph$(xYa)=\{y=a,x<a\}\cup\{y=x,a<x\}\cup\{y\leq a,x=a\}$ .

151

Page 4: Topics onkyodo/kokyuroku/contents/pdf/1764-13.pdf · Mathematics, I-Iokkaido University, Japan (石川 剛郎 , e-mail: 北海道大学数学教室,日本) ishikawa@math.sci.hokudai.ac.jp

[Definition of Hyperfields ]

Suppose there are given, on a set X, a multi-valued binary operation $T$ anda single-valued binary operation .

Then $(X, T,\cdot)$ is called a hyperfield if

$aTb=bTa$ , $aT(bTc)=(aTb)TC$

$\exists 0\in X,$ $0_{T}a=a$ , for any a $\in X$ ,

$\forall a\in X,\exists\iota-a\in X$ (minus a) $s$ uch that $0\in aT(-a)$ .. $c\in aTb=(-c)\in(-a)_{T}(-b)$

The operation . is commutative, associative and0. $a=0$ holds for any $a\in X$,

$(X\backslash \{0\}, \cdot)$ is a commutative group, which will be denoted by $X^{\cross}$ ,

the ”distributive law” holds:$a\cdot(bTc)=(a\cdot b)_{T}(a\cdot c)$ , $(bTc)\cdot a=(b\cdot a)_{T}(c\cdot a)$ .

Lemma 3. The tropical hyperfield $Y=(R\cup\{-\infty\},Y,+)$ is a $hype\phi eld$ .

In fact we have

The zero-element is-oo.

For $a\in Y,$ $-a$ equals $a,$ $since-\infty\in aYb\Leftrightarrow b=a$ .The commutative group $Y^{\cross}=(R,+)$ , the unit being $0\in$ R.

152

Page 5: Topics onkyodo/kokyuroku/contents/pdf/1764-13.pdf · Mathematics, I-Iokkaido University, Japan (石川 剛郎 , e-mail: 北海道大学数学教室,日本) ishikawa@math.sci.hokudai.ac.jp

[Tropical Hypersurfaces and Newton PolyhedralFor a tropical Laurent polynomial $F(x)= \prime\prime\sum_{j\in A}c_{\int}x^{j}$ ”, we define

$v=-c:Aarrow R$

by $v(j)$ $:=-c_{i},$ $(j\in A)$ . Then we set

$LJ(v)$ $:=$ convex hull $\{(j,\iota J)\in R^{\mathfrak{s}\iota}\cross R|j\in A,y\geqq v(j)\}\subset R^{n+1}$

We set $\Delta=\Delta_{F}=$ convex hull $(A)\subseteq R^{\mathfrak{l}l}$ , and A the union of compact facesof $U(v)$ . We call $\Delta=\Delta_{F}$ the Newton polyhedra of $F$ .

Then $\tilde{\Delta}$ projects to $\Delta$ in bijection by $\pi:\overline{\Delta}arrow R^{n},$ $\pi(j,y)$ $:=j$ . An integralsubdivision of $\Delta$ is induced from $\tilde{\Delta}$ . We obtain the convex function $\overline{v}:\Deltaarrow$

$R$ having $\tilde{\Delta}$ as its graph.

$\overline{\Delta}$

The tropical hypersurface $Y_{F}$ is an $(n-1)$ -dimensional regular polyhe-dral complex. (Regularity condition: the boundary of each i-cell is a unionof $(i-1)$ -cells.)

Along each $(n-1)$ -cell $l$ , two functions $c_{j}+j\cdot x,$ $c_{k}+k\cdot x$ have thesame value. From $c_{j}+j\cdot x=c_{k}+k\cdot x$ , we have the equation

$(k-j)x+(c_{k}-c_{f})=0$

of the hyperplane containing $I$ . Then the integer vector $k-f$ is orthogonalto $l$ . Then there exist the unique positive integer $w_{I}$ and the primitiveinteger vector $n_{l}$ such that $k-j=\tau v_{I}n_{l}$ .

For each $(n-2)$ -cell $C$ , and $(n-1)$ -cells $I_{1},l_{2},\ldots,I_{m}$ adjacent to $C$, ifwe fix a co-orientation of $C$ and take primitive orthogonal vectors $n_{I_{j}}$ , thenwe have the balanced condition

$w_{I_{1}}n_{I_{1}}+w_{l_{2}}n_{I_{2}}+\cdots+w_{I_{ll}},n_{I_{1l}},=0$.

153

Page 6: Topics onkyodo/kokyuroku/contents/pdf/1764-13.pdf · Mathematics, I-Iokkaido University, Japan (石川 剛郎 , e-mail: 北海道大学数学教室,日本) ishikawa@math.sci.hokudai.ac.jp

Thus the tropical hypersurface $Y$ is an $(n-1)$ -dimensional weightedrational polyhedral complex satisfying the regularity condition and thebalanced condition.

Tropical hypersurface $Y_{F}$ is invariant under the deformations, calledthefundamental deformations, of the tropical Laurent polynomial $F$ .

(1) Replace $c$ by $c’$ : $Aarrow R$, c’ $(j)=c(j)+$ const..(2) Replace $A$ by $A’=A+j_{0},j_{0}\in Z$“ and $c$ by $c’$ : $A’arrow R,$ $c’(j+j_{0})=$

$c(f)$ .(3) Replace $c:Aarrow R$ by $c’$ : $A^{l}arrow R$ such that convex hull $A’=\Delta$ and

the convex function $\overline{-c’}=\overline{-c}$ .

K Legendre Transformations]

Consider the contact manifold $M=R^{2\prime\iota+1}$ with coordinates

$(x,y,p)=(x_{1}, ...,x_{1l},y,pl, ...,p_{n})$

and with the contact form $\theta=d\iota J-\Sigma_{i=1}^{ll}p_{i}dx_{i}$ .Note $that-\theta=d(\Sigma_{i=1}^{l?}1$ . Then we have the double

Legendrian fibration:$R^{l1+1}R^{2\prime l+1}\underline{7t_{1}}arrow\pi_{2}R^{n+1}$ ,

$\pi_{1}(x,y,p)=(x,y),$ $\pi_{2}(x,\iota J,p)=(\tilde{y},p)$ , $\tilde{y}=\Sigma_{i=1}^{n}p_{i}x_{i}-y$.For a function $h:\Deltaarrow R$ on a convex set $\Delta\subset R^{n}$ , the Legendre transfor-

mation of $h$ is defined as the set of supporting hyperplanes of the epi-graph of$h$ .

154

Page 7: Topics onkyodo/kokyuroku/contents/pdf/1764-13.pdf · Mathematics, I-Iokkaido University, Japan (石川 剛郎 , e-mail: 北海道大学数学教室,日本) ishikawa@math.sci.hokudai.ac.jp

Lemma 4. The graph of tropical polynomial function$F(x)=^{JJ} \sum_{i\in A}c_{i}x^{j\prime\prime}$

and the graph of the convex function $\overline{-c}:R^{n}arrow R$ are the Legendre transforma-tions to each other.

$\backslash$$\cdot$

$rightarrow$ $\sim$$\}l$ $|$

$\sqrt{}$

$-^{:::}::$:

We consider the topological classification problem of tropical polyno-mial functions preserving corner loci.

Definition 5. Two tropical polynomials $F(x)$ and $G(x)$ are called topologi-cally equivalent if there exist homeomorphisms $\Phi:R^{n}arrow R^{n}$ and $\Psi:Rarrow R$

such that$\Psi(F(x))--\cdot G(\Phi(x)),$ $\Phi(Y_{F})=Y_{G}$ .

Proposition 6. There exis $ts$ a sein ialgebraic set $\Sigma\subset R^{A}$ of codim $>0$ such that,

for any $c\in R^{A}\backslash \Sigma$ , the decomposition of $\Delta$ is simplicial.For each connected component $U$ of $R^{A}\backslash \Sigma$, thefamily $F_{c}(x),c\in U$ oftropical

polynomial functions is topologically trivial.

[Topological Bifurcations of Singularities]

The topology of a tropical polynomial with a non-simplicial decomposi-tion bifurcates into a generic tropical polynomial.

Example 7. Let us consider the tropical polynomial

$F=”$ $0+0x_{1}+0x_{2} \cdot-\vdash 0x_{1}x_{2’’}=\max\{0,x_{1},x_{2},x_{1}+x_{2}\}$ .

155

Page 8: Topics onkyodo/kokyuroku/contents/pdf/1764-13.pdf · Mathematics, I-Iokkaido University, Japan (石川 剛郎 , e-mail: 北海道大学数学教室,日本) ishikawa@math.sci.hokudai.ac.jp

Then $F$ has the deformation:

$F_{\lambda}=\prime\prime\lambda+0x_{1}+0\chi_{2}+0x_{1}x_{2}$ $”= \max\{\lambda,x_{1},x_{2},x_{1}+x_{2}\}$ , $(A \in R,\lambda\neq 0)$ .

The tropical curve $Y_{F}$ bifurcates into $J_{F_{\lambda}}’(\lambda>0,\lambda<0)$ . The decompo-sition of Newton polyhedron $\Lambda_{F}$ bifurcates into $\Delta_{F_{\lambda}}$ $(A>0,\lambda<0)$ .

$Y_{F_{\lambda}}$

$0$ $0$

$rightarrow$

$\lambda$ $0$

$\lambda<0$

$0$ $0$ $0$ $0$

$rightarrow$

$0$ $0$ $\lambda$ $0$

$\lambda=0$ $\lambda>0$

[Amoeba and Pachworking]

For a complex Laurent polynomial

$f(z)= \sum_{j\in A}b;z^{\int}$c-: $C[z_{1}^{\pm},\ldots,z_{n}^{\pm}]$ , $b_{j}\in C^{\cross}$ ,

we have a hypersurface

$Z_{f}=\{\angle’\in(C^{\cross})^{1l}|f(z)=0\}\subset(C^{\cross})^{n}$

in the complex torus $(C^{\cross})^{t1}$ .For a given function $v:A-arrow R$, consider the family of polynomials,

$f_{t}=f_{t^{\overline{t}^{)}}}(z):= \sum_{j\in A}b_{1}t^{-v(j)_{Z}j}$, $(t>0)$ .

We call it the patchworking polynomial induced by $f$ and $v$ . Note that $f_{1}=f$ .

156

Page 9: Topics onkyodo/kokyuroku/contents/pdf/1764-13.pdf · Mathematics, I-Iokkaido University, Japan (石川 剛郎 , e-mail: 北海道大学数学教室,日本) ishikawa@math.sci.hokudai.ac.jp

Let us define Log, : $C”arrow(R\cup\{-\infty\})^{tl}$ by${\rm Log}_{t}(z_{1}, \ldots,z_{l})=(\log_{t}|z_{1}|,\log_{i}|z_{n}|)$ .

We set $\mathcal{A}_{f}={\rm Log}(Z_{f})\subset R^{tl}$ and we call it the amoeba of $z_{f}$ .

Proposition 8. (Viro, Kapranov)

$\lim_{farrow\infty}$ Hausdorff-dist $({\rm Log}_{f}(Z_{ft}),Y_{f_{t^{v}rop}})=0$

where$f_{trop}(x):= \sum_{j\in A}(-v(j))x^{j\prime\prime}=_{j\in A}\max(j\cdot x-v(j))$

(Legendre transformation of $v$).

Example 9. Amoeba of $f(z_{1},z_{2})\cdot 1+1$ .

[Puiseux Series and Non-Archimedean AmoebalLet us denote by $C[R]$ the group algebra of the additive group $R$ over C.We consider its formal version:

A Puiseux-Laurent series of real power (Hahn series[4]) is given by

$a$ — $a$$(s)= \sum_{p\in I}\alpha_{p}s^{p}$

where $\alpha_{p}\in C^{\cross}$ and the support $I=I_{a}\subset R$ of $a$ is a well-ordered subset.We set

$C((R))$ $:=$ {$a(s)|a(s)$ : Puiseux-Laurent series of real power} $\cup\{0\}$ .

157

Page 10: Topics onkyodo/kokyuroku/contents/pdf/1764-13.pdf · Mathematics, I-Iokkaido University, Japan (石川 剛郎 , e-mail: 北海道大学数学教室,日本) ishikawa@math.sci.hokudai.ac.jp

Lemma 10. $K=C((R))$ is an $nlg_{CJ}b\dagger’aicall\iota$ closedfield.Define the valuation val: $C((R))arrow$ RU $\{\infty\}$ on $C((R))$ by

val $(a)$ $:= \min I_{a}\in R,$ $(a\in C((R))\backslash \{0\})$ , val(O) $=\infty$,

Then we have that val $(a)=\infty$ if and only if $a=0$, and that

val $(ab)=$ val $(a)+$ val $(b)$ , val $(a+b) \geq\min${val $(a)$ , val $(b)$ }.

We define the non-Archimedes norm on $C((R))$ by

$\Vert a\Vert:=e^{-va1(a)}$ $(a\in C((R))^{\cross})$ , $\Vert 0\Vert=0$ .

Then we have the tropical triangular inequality

$\Vert a+b\Vert\leq\max\{\Vert a\Vert, \Vert b\Vert\}="$ $\Vert a\Vert+\Vert b\Vert$‘’

Define $Log:C((R))^{rl}arrow(R\cup\{-\infty\})^{l}$ by

${\rm Log}(a_{1\prime\cdots\prime}.a_{\dagger\iota})$ $:^{---}$ $(\log\Vert a_{1}\Vert,\ldots,\log\Vert a_{n}\Vert)$

$–$ $(-\cdot va1(a_{1}),\ldots,-va1(a_{n}))$ .

Given a Laurent polynomial $f(z)=\Sigma_{i}a_{j}z^{j}\in K[z,z^{-1}]$, we define

$Z_{f}:=\{z\in(K^{\cross})^{\prime\iota}|f(z)=0\}\subset(K^{\cross})^{n}$ .

Its Log-image $A_{f}:={\rm Log}(Z_{f})\subseteq($ RU $\{-\infty\})^{n}$ is called the non-Archimedeanamoeba of $z_{f}$ .

Define a tropical Laurent polynomial

$f_{trop}(x)$ $:=\prime\prime\Sigma_{j\in A}\log\Vert a_{j}\Vert xf^{\prime\prime\prime\prime}=\Sigma_{j\in A}$ (-val $(a_{j})$ ) $x^{j\prime}$

$= \max_{j\in\Lambda}(j\cdot x-va1(a_{j}))$ .

We call $f_{trop}(x)$ the tropicalization of $f(z)$ .

Proposition 11. (Kapranov) Non-Archimedean amoeba is a tropical hypersur-face: We have $A_{[}=Y_{f_{trop}}$ .

158

Page 11: Topics onkyodo/kokyuroku/contents/pdf/1764-13.pdf · Mathematics, I-Iokkaido University, Japan (石川 剛郎 , e-mail: 北海道大学数学教室,日本) ishikawa@math.sci.hokudai.ac.jp

[Triangle hyperfield]

On $R+$ , define the multi-valued addition$a\nabla b;=$ $\{c$ 欧 $R\dashv-||a-b|\leq c\leq a+b\}$

$=$ $\{|z+\cdot w|||z|=a, |w|=b\}$ .This reminds us the superposition of waves.

Then $R_{+}^{tri}=(R_{+},\nabla, \cdot)$ is a hyperfield.

[Amoeba hyperfield ]

By the bijection $log:R+arrow R\cup$ { $-$ oo}, we have the hyperfield$\log(R_{+}^{tri})-=(R\cup\{-\infty\}, Y’+)$ ,

which is called the amoeba hyperfield:a $Yb:=\{c\in R\cup\{-\infty\}|\log(|e^{0}-e^{b}|)\leq c\leq\log(e^{a}+e^{b})\}$ .

[Tropical Limits of Amoeba Hyperfield]

Define, on $R\cup\{-\infty\}$ ,

$a$ $Y_{1z}b;=h(\frac{a}{h}Y_{f_{1}}^{b}\cdot)$

$=$ $\{c\in R(\lrcorner\{-\infty\}|$

$h\log(|e^{l1}\gamma, -e^{l?}\tau_{l}|)\leq c\leq h\log(e\tau_{l}+e\pi)ab,$ $\}$

$a$ $Y_{h}b$ $=$ $\{c\in$ RU {-00} $|-\infty\leq c\leq a+h$ log2 $\}$

$=$ $[-\infty, a]=:aYa$ .

If $a\neq b$, then a $Y\prime_{2}barrow\{\max\{a,b\}\}$ .

$\varliminf_{?*0}$$a$ $Y_{2}b=aYb$ ,

$\lim_{/2arrow 0}\log(R_{+}^{tri})_{l\iota}arrow Y$ (: tropical hyperfield).

159

Page 12: Topics onkyodo/kokyuroku/contents/pdf/1764-13.pdf · Mathematics, I-Iokkaido University, Japan (石川 剛郎 , e-mail: 北海道大学数学教室,日本) ishikawa@math.sci.hokudai.ac.jp

[Complex Tropical hypetfield 1We define a multi-valued addition - on $C$ : Let $a,b\in$ C. If $|a|\neq|b|$ , thenwe set $aarrow b:=a$ if $|a|>|b|$ , and $aarrow b:=b$ if $|a|<|b|$ .

Suppose $|a|=|b|$ . If $b\neq-(l$ , then

$a-b$ $:=$ [the shortest arc connecting a and $b$

on the circle $\{z\in C||z|=|a|\}]$ .

If $b=-a$ , then set

$a-b$ $:–=$ $\{z\in C||z|\leq|a|\}$ .

We define the $com$plex tropical $h\iota J$perfield by$\mathcal{T}C:=$ ( $C,$ $arrow$ , the usual multiplication).

On $C$ , we consider the bijcction $S_{ll}$ : $Carrow C$ defined by

$S_{h}(z)::\{\begin{array}{ll}|z|^{\frac{1}{\prime_{1}}}\frac{z}{|z|} (z\neq 0),0 (z=0).\end{array}$

and we define$z+hw::^{-}=S_{h}^{-1}(S_{h}(z)+S_{h}(w))$ .

Then we have a family of fields $(C,+h, \cross),$ $h>0$ .

Theorem 12. (Viro [25]) Let

$\Gamma=\{(z,w,z+hw,h)\in C^{3}\cross R+|(z,w,h)\in C^{2}\cross R_{+}\}$ .

Then$\overline{\Gamma}\cap(C^{3}\cross\{0\})\cdot.\cdot:=\{(a, b, aarrow b, 0)|(a,b)\in C^{2}\}$ .

160

Page 13: Topics onkyodo/kokyuroku/contents/pdf/1764-13.pdf · Mathematics, I-Iokkaido University, Japan (石川 剛郎 , e-mail: 北海道大学数学教室,日本) ishikawa@math.sci.hokudai.ac.jp

[Viro’s Diagram $2010\beta$

Thus we have the diagram:

[Real Tropical Hyperfield]

$?Question$ : What is the real counterpart of the complex tropical hyperfield

We are naturally led to define the multi-valued addition $arrow R$ on $R$ in-duced from -on $C$ : For $a,b\epsilon:$

.$R$ , we set

$\{\begin{array}{ll}a-Rb := a if a|>|b|,a-Rb := b if |a|<|b|,a\sim 1\mathfrak{i}a ;=a,a-n(-0) ;= [-a,a].\end{array}$

$\infty\inftyarrowrightarrow$$0ba$ $b0$ $\mathfrak{g}$ $0a=b-\alpha$ $0$ $\mathfrak{g}$

Theorem 13. $(R,-R, \cross)$ is a $h|J$perfield. Moreover let

$\Gamma_{R}=\{(a,b,a+hb,h)\in R^{3}\cross R+|(a,b,h)\in R^{2}\cross R_{+}\}$ .Then we have

$\overline{\Gamma_{R}}\cap(R^{3}\cross\{0\})\cdot-\cdot=\{(a, b, aarrow Rb, 0)|(a,b)\in R^{2}\}$ .

161

Page 14: Topics onkyodo/kokyuroku/contents/pdf/1764-13.pdf · Mathematics, I-Iokkaido University, Japan (石川 剛郎 , e-mail: 北海道大学数学教室,日本) ishikawa@math.sci.hokudai.ac.jp

The real tropical hyperfie]d is, in some sense, a ”double covering” ofthe tropical hyperfield via $x\vdash\rangle\log|x|$ . Therefore, “real tropical geometry”can be constructed as a ”double covering” of tropical geometry.

K Several Questions 1Question: Is the complex tropical hyperfield $\mathcal{T}C$ is algebraically closed, inan appropriate sense ?Question: Are the real tropi $(a1$ hyperfield and the tropical hyperfield $Y$

real closed ?Question: What is the real tropical algebraic geometry ?

In Amoeba geometry, it is known the Ronkin function

$N_{f}(x):= \frac{1}{(2\pi\sqrt{-}}1^{\cdot}\overline{)}^{\prime l}-\int_{{\rm Log}^{-1}(x)}\log|f(z)|\frac{dz_{1}}{z_{1}}\cdots\frac{dz_{n}}{z_{n}}$

is linear on each connected component of $R^{n}\backslash \mathcal{A}_{f}$ . We have $gradN_{f}$ : $R^{n}\backslash$

$\mathcal{A}_{f}^{f}\mathcal{A}.arrow\Delta\cap Z^{n}$

and $gradN_{f}$ separates every connected components of $R^{n}\backslash$

Question: Can the Ronkin function be described in terms of the amoebahyperfield ?

References[1] S. Bosch, U. $G$\"untzer, R. Remmert, Non-Archimedean Analysis, Grund. math.

Wiss., 261, Springer-Verlag Berlin, (1984).

[2] A.D. Bruno, Pozver Geometry in Algebraic and Differential Equations, North-Holland Math. Library 57, Flsevier, (2000).

[3] J. Draisma, A tropical approach to secant diinensions, $arXiv:math.AG/0605345$,(2006).

[4] P. Ehrlich, Hahn’s \"Uber die nichtarchimedischen Grossensysteme and the develope-ment of the modem theory of $\dagger 7I$agnitudes and numbers to measure them, in Essays

162

Page 15: Topics onkyodo/kokyuroku/contents/pdf/1764-13.pdf · Mathematics, I-Iokkaido University, Japan (石川 剛郎 , e-mail: 北海道大学数学教室,日本) ishikawa@math.sci.hokudai.ac.jp

on the Development of the Foundations of Mathematics, ed. by Jaakko Hin-tikka; Kluwer Academic Publishers, (1995), pp. 165-213.

[5] M. Einsiedler, M. Kapranov, I). Lind, Non-Archimedean amoebas and tropicalvarieties, J. reine angew. Ma th., 601 (2006), 139-157.

[6] M. Forsberg, M. Passare, A. T’sikh, Laurent determinants and arrangemenis ofhyperplane amoebas, Advances in Math., 151 (2000), 45-70.

[7] I.M. Gelfand, M.M. Kapranov, A.V. Zelevinsky, $D$iscriminants, Resultants, andMultidimensional Determinants, (Mathematics : Theory and Applications).Springer Verlag; ISBN: 0817636609; (1996/07/10).

[S] I. Itenberg, G. Mikhalkin, E. Shustin, Tropical Algebraic Geometry, Oberbol-fach Seminars 35, $Bi\iota kh_{C}\urcorner \mathfrak{U}SC^{Y}1^{\cdot}$ (2007).

[9] V.N. Kolokoltsov, $lde\prime npote\dagger r\grave{c}y$ structures in optimization, Journal Math. Sci.,104-1 (2001), 847-880.

[10] M. Kontsevich, Y. Soibelman, Affine structure and non-archmedean analyticspaces, arXiv: math.AG/0406564 vl2004/6/28.

[11] G.L. Litvinov, V.P. Maslov (cd.), fdempotent Mathematics and Mathematical$Ph\iota\sqrt{}$sics, Contemporary Mathematics, 377 (2005), ISBN 0-8218-3538-6.

[12] G. Mikhalkin, Real algebraic $cn$ rves, moment map and amoebas, Ann. of Math.,151 (2000), 309-326.

[13] G. Mikhalkin, Counting curves via lattice paths in polygons, C. R. Math. Acad.Sci. Paris 336-8 (2003), 629-634.

[14] G. Mikhalkin, Amoebas of algebmic varieties and tropical geometry, arXiv:math.AG/0403015. Different Faces of Geometry, International MathematicalSeries,Vol.3(Donaldson, Simon; Eliashberg,Yakov; Gromov, Mikhael(Eds.))(2004), 257-300.

[15] G. Mikhalkin, Decoinposition into pairs-of-pants for complex algebraic hypersur-faces, Topology 43-5 (2004), 1035-1065.

[16] G. Mikhalkin, $Em.lmerati_{\overline{(})}c$ fropical algebraic geometry in $R^{2}$ , arXiv:math.$AG/0312530$ . Journal of Amer. Math. Soc., 18 (2005), 313-377.

[17] G. Mikhalkin, Tropical $gcomc?-f7^{\cdot}y$ and its application, $arXiv:math.AG/0601041$,(2006). Proceedings of the ICM 2006, Madrid.

163

Page 16: Topics onkyodo/kokyuroku/contents/pdf/1764-13.pdf · Mathematics, I-Iokkaido University, Japan (石川 剛郎 , e-mail: 北海道大学数学教室,日本) ishikawa@math.sci.hokudai.ac.jp

[18] M. Passare, H. Rullgard, Amoebas, Monge-Amp\‘ere measures, and triangulation$s$

of the Newton polytope, Duke Math. J. 121–3 (2004), 481-507.

[19] J.-E. Pin, Tropical semirings, Idempotency, Publ. Newton Inst., 11, CambridgeUniv. Press, Cambridge, (1998), 50-69.

[20] P. Ribenboim, Fields: Algebrn$ically$ closed and others, manuscripts math., 75(1992), 115-150.

[21] J. Richter-Geber, B. Sturmfcls, T. $r\Gamma heobald$, First steps in tropical geometry,arXiv: math.$AG/0306366$ . in [11], 289-317.

[22] F.J. Rayner, Algebraically closed.fields analogous $fo$fields ofPuiseux series, J. Lon-don Math. Soc., 8 (1974), $504\cdot-506$ .

[23] E. Shustin, Patchworking sirlgnlar algebraic curves, non-Archimedean amoebasand enumerative geometry, $arXi\nwarrow.r$ math.$AG/0211278$.

[24] O. Viro, Dequantizaiion of real algebraic geometry on logarithmic paper, Euro-pean Congress Math., 1 Progress in Math., 201, Birkhauser, Basel, (2001), pp.135-146.

[25] O. Viro, Hypcrfields for $t$ ropical geomeiiy $l$ . Hyperfields and dequantization,arXiv: math.AG 1006.3034.

164