Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray...

78
Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy, Politecnico di Milano Alessandro Montanaro CNR Istituto Motori, Naples

Transcript of Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray...

Page 1: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Topic 1.3: Evaporative spray and parametric studies

Tommaso Lucchini, Roberto Torelli

Department of Energy, Politecnico di Milano

Alessandro Montanaro

CNR Istituto Motori, Naples

Page 2: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

1) Motivations

2) Experiments

3) Validation of numerical models

4) Conclusions

Summary

Page 3: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Motivations

• Fuel air mixing governs Diesel combustion process, hence understanding and properly describing the related phenomena is very important both on numerical and experimental side.

• Diesel engines operate in a wide range of speed and loads and also new combustion modes are under investigation:

- Injection pressure variation: 500 – 2000 bar - Ambient conditions: 700 – 1100 K, 40 – 100 bar

• Understanding spray vaporization, mixing with air and effects of operating conditions is very important.

Page 4: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Objectives

Define a set of operating conditions to build a database of experiments for Spray-A and Spray-B configuration.

Experiments • Understanding results repeatability in different institutions.

• Understanding influence of different nozzle serial numbers on spray evolution (Spray A and Spray B).

Simulation • To compare “ready to be used in engines” approaches (Eulerian-

Lagrangian, Eulerian-Eulerian, …) and, within the same approach, different sub-models.

• How different models reproduce the effects of different operating conditions on spray evolution?

Page 5: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Test matrix

• On the basis of the objectives of the session, a test matrix was built to carry out both experiments and simulations.

- Spray-A: large number of points (11) to be tested and simulated.

- Spray-B: let’s start and see what happens (4 points)

One fuel: dodecane

Page 6: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Test matrix – Spray A

Priority level

T [K] density [kg/m3]

Pressure [MPa]

Fuel T fuel [K] Injection duration

[ms]

1 900 22.8 150 n-dodecane 363 ≥1.5

2 900 22.8 100 n-dodecane 363 ≥1.5

3 900 22.8 50 n-dodecane 363 ≥1.5

4 900 7.6 150 n-dodecane 363 ≥1.5

5 900 15.2 150 n-dodecane 363 ≥1.5

6 700 22.8 150 n-dodecane 363 ≥1.5

7 1000 22.8 150 n-dodecane 363 ≥1.5

8 1100 22.8 150 n-dodecane 363 ≥1.5

9 700 22.8 50 n-dodecane 363 ≥1.5

10 440 22.8 150 n-dodecane 363 ≥1.5

11 303 22.8 150 n-dodecane 363 ≥1.5

Page 7: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Test matrix – Spray A

Priority level

T [K] density [kg/m3]

Pressure [MPa]

Fuel T fuel [K] Injection duration

[ms]

1 900 22.8 150 n-dodecane 363 ≥1.5

2 900 22.8 100 n-dodecane 363 ≥1.5

3 900 22.8 50 n-dodecane 363 ≥1.5

4 900 7.6 150 n-dodecane 363 ≥1.5

5 900 15.2 150 n-dodecane 363 ≥1.5

6 700 22.8 150 n-dodecane 363 ≥1.5

7 1000 22.8 150 n-dodecane 363 ≥1.5

8 1100 22.8 150 n-dodecane 363 ≥1.5

9 700 22.8 50 n-dodecane 363 ≥1.5

10 440 22.8 150 n-dodecane 363 ≥1.5

11 303 22.8 150 n-dodecane 363 ≥1.5

Baseline condition Widely tested by all institutions

Page 8: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Test matrix – Spray A

T [K] density [kg/m3]

Pressure [MPa]

Fuel T fuel [K] Injection duration

[ms]

1 900 22.8 150 n-dodecane 363 ≥1.5

2 900 22.8 100 n-dodecane 363 ≥1.5

3 900 22.8 50 n-dodecane 363 ≥1.5

4 900 7.6 150 n-dodecane 363 ≥1.5

5 900 15.2 150 n-dodecane 363 ≥1.5

6 700 22.8 150 n-dodecane 363 ≥1.5

7 1000 22.8 150 n-dodecane 363 ≥1.5

8 1100 22.8 150 n-dodecane 363 ≥1.5

9 700 22.8 50 n-dodecane 363 ≥1.5

10 440 22.8 150 n-dodecane 363 ≥1.5

11 303 22.8 150 n-dodecane 363 ≥1.5

Injection pressure variation 1 – 2 – 3

Very important for engine operation: variation of load and speeds

Page 9: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Test matrix – Spray A

Priority level

T [K] density [kg/m3]

Pressure [MPa]

Fuel T fuel [K] Injection duration

[ms]

1 900 22.8 150 n-dodecane 363 ≥1.5

2 900 22.8 100 n-dodecane 363 ≥1.5

3 900 22.8 50 n-dodecane 363 ≥1.5

4 900 7.6 150 n-dodecane 363 ≥1.5

5 900 15.2 150 n-dodecane 363 ≥1.5

6 700 22.8 150 n-dodecane 363 ≥1.5

7 1000 22.8 150 n-dodecane 363 ≥1.5

8 1100 22.8 150 n-dodecane 363 ≥1.5

9 700 22.8 50 n-dodecane 363 ≥1.5

10 440 22.8 150 n-dodecane 363 ≥1.5

11 303 22.8 150 n-dodecane 363 ≥1.5

Ambient density variation 1 – 4 – 5

Engine load variation at same speed

Page 10: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Test matrix – Spray A

Priority level

T [K] density [kg/m3]

Pressure [MPa]

Fuel T fuel [K] Injection duration

[ms]

1 900 22.8 150 n-dodecane 363 ≥1.5

2 900 22.8 100 n-dodecane 363 ≥1.5

3 900 22.8 50 n-dodecane 363 ≥1.5

4 900 7.6 150 n-dodecane 363 ≥1.5

5 900 15.2 150 n-dodecane 363 ≥1.5

6 700 22.8 150 n-dodecane 363 ≥1.5

7 1000 22.8 150 n-dodecane 363 ≥1.5

8 1100 22.8 150 n-dodecane 363 ≥1.5

9 700 22.8 50 n-dodecane 363 ≥1.5

10 440 22.8 150 n-dodecane 363 ≥1.5

11 303 22.8 150 n-dodecane 363 ≥1.5

Ambient temperature variation 1 – 6 – 7 - 8

Different conditions at SOI

Page 11: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Test matrix – Spray A

Priority level

T [K] density [kg/m3]

Pressure [MPa]

Fuel T fuel [K] Injection duration

[ms]

1 900 22.8 150 n-dodecane 363 ≥1.5

2 900 22.8 100 n-dodecane 363 ≥1.5

3 900 22.8 50 n-dodecane 363 ≥1.5

4 900 7.6 150 n-dodecane 363 ≥1.5

5 900 15.2 150 n-dodecane 363 ≥1.5

6 700 22.8 150 n-dodecane 363 ≥1.5

7 1000 22.8 150 n-dodecane 363 ≥1.5

8 1100 22.8 150 n-dodecane 363 ≥1.5

9 700 22.8 50 n-dodecane 363 ≥1.5

10 440 22.8 150 n-dodecane 363 ≥1.5

11 303 22.8 150 n-dodecane 363 ≥1.5

Low-mid temperature conditions 9-10 Important condition for modelers: spray breakup expected to play a big role due to reduced ambient temperatures and injection pressure (only 9)

Page 12: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Test matrix – Spray A

Priority level

T [K] density [kg/m3]

Pressure [MPa]

Fuel T fuel [K] Injection duration

[ms]

1 900 22.8 150 n-dodecane 363 ≥1.5

2 900 22.8 100 n-dodecane 363 ≥1.5

3 900 22.8 50 n-dodecane 363 ≥1.5

4 900 7.6 150 n-dodecane 363 ≥1.5

5 900 15.2 150 n-dodecane 363 ≥1.5

6 700 22.8 150 n-dodecane 363 ≥1.5

7 1000 22.8 150 n-dodecane 363 ≥1.5

8 1100 22.8 150 n-dodecane 363 ≥1.5

9 700 22.8 50 n-dodecane 363 ≥1.5

10 440 22.8 150 n-dodecane 363 ≥1.5

11 303 22.8 150 n-dodecane 363 ≥1.5

Non-evaporating condition

Important condition for modelers: 1. Is my high-temperature nice spray working well also at

non-evaporating conditions?

2. Does spray tuning at non-evaporating conditions make sense for high temperature cases?

Page 13: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Test matrix – Spray B

Priority level

T [K] density [kg/m3]

Pressure [MPa]

Fuel T fuel [K] Injection duration

[ms]

1 900 22.8 150 n-dodecane 363 1.5

2 440 22.8 150 n-dodecane 363 1.5

3 303 22.8 150 n-dodecane 363 1.5

4 1100 22.8 150 n-dodecane 363 1.5

Reduced version of the spray-A test matrix to understand quickly effects of ambient temperature. Both matrixes were created after a detailed investigation of what different institutions planned to test by the data submission deadline.

Page 14: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Contibutors

Experiments

- CMT

- IM/MTU

- IFPEN

- KAIST

- SANDIA

- TU/E

Simulations

- ANL

- CHALMERS

- CMT

- POLIMI

- SANDIA

Page 15: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Contributions: experiments – Spray A

Operating point

CMT IFPEN SANDIA TU/E

1 Ls V Mf Ve L V Mf Ve L V Mf Ve L V Mf Ve

2 Ls V L V L V L V

3 Ls V L V L V L V

4 Ls V L V L V L V

5 Ls V L V L V L V

6 Ls V Mf Ve L V Mf Ve L V Mf Ve L V Mf Ve

7 L V L V L V L V

8 L V L V L V L V

9 Ls V L V L V L V

10 L V Mf Ve L V Mf Ve L V Mf Ve L V Mf Ve

11 L V L V L V L V

L : liquid penetration vs time; V : vapor penetration vs time; Ls: steady-state liquid length Mf : mixture fraction distribution; Ve : velocity distribution

Page 16: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Contributions: simulations – Spray A

L : liquid penetration; V : vapor penetration; Mf : mixture fraction distribution; Ve : velocity distribution

Operating point

ANL CHALMERS CMT POLIMI SANDIA

1 L V Mf Ve L V Mf Ve L V Mf Ve L V Mf Ve L V Mf Ve

2 L V L V L V L V L V

3 L V L V L V L V L V

4 L V L V L V L V L V

5 L V L V L V L V L V

6 L V Mf Ve L V Mf Ve L V Mf Ve L V Mf Ve L V Mf Ve

7 L V L V L V L V L V

8 L V L V L V L V L V

9 L V L V L V L V L V

10 L V Mf Ve L V Mf Ve L V Mf Ve L V Mf Ve L V Mf Ve

11 L V L V L V L V L V

Page 17: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Contributions: experiments – Spray B

Operating point

SANDIA IM/MTU KAIST IFPEN CMT

1 L V Mf Ve L V Mf Ve L V L V Mf Ve L V Mf Ve

2 L V L V L V L V L V

3 L V L V L V L V L V

4 L V L V L V L V L V

L : liquid penetration; V : vapor penetration; Mf : mixture fraction distribution; Ve : velocity distribution

Page 18: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Experiments

Page 19: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Introduction and background

Two main parameters aim at describing the development and vaporization of sprays: liquid and vapor penetration

Recommendations regarding experimental methods available to measure these parameters have been provided after the first workshop

Liquid length measurements: The standard liquid length measurement methodology should be diffused back-illumination

(DBI) to reduce the experimental setup sensitivity for liquid boundary detection

Vapor penetration experiments: Vapor boundary should be measured using focused shadowgraph technique with high

sensitivity and Sandia-developed processing algorithm

Page 20: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Diffused back-illumination (DBI) arrangement

High pressure and high temperature spray vessel (pre-burn or constant flow types)

Ambient temperature: 300 - 1100 K

Ambient density: 7.6 - 22.8 kg/m3

ECN injector A: Single axial hole (Nozzle 210675, 210677, 210678 and 210679)

ECN injector B: Three holes (Nozzle 211196, 211198, 211199 and 211200)

High-speed imaging system (12-bit, up to 150000 frames per second)

Background light is efficiently diffused via engineered diffuser and field lens

High-speed LED designed at Sandia provides a short time-gated illumination

Light extinction is used to extract liquid boundary (penetration)

SANDIA

Page 21: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

CMT-TU/e

DBI optical setups

IFPEN

Page 22: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Sandia and IFPEN use laser extinction to detect the extinction of the spray near the liquid. The measured extinction (optical thickness) provides a measure of light extinction because of liquid scatter and/or absorption. This extinction is the used measure to evaluate how much light has been attenuated through the spray droplets.

Liquid length procedure

-1.5 -1 -0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Radial distance (mm)

Op

tica

l th

ickn

ess

T = 700K

X=6mm

X=8mm

X=10mm

-1.5 -1 -0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Radial distance (mm)

Op

tica

l th

ickn

ess

T = 900K

X=6mm

X=8mm

X=10mm

-1.5 -1 -0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Radial distance (mm)

Op

tica

l th

ickn

ess

T = 1200K

X=6mm

X=8mm

X=10mm

Liquid boundary is processed at an optical thickness of 0.6, which targets the optical thickness at the traditional Mie-scatter Siebers threshold (3% of maximum)

Page 23: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Liquid length procedure

-1.5 -1 -0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Radial distance (mm)

Op

tical th

ickn

ess

X = 8mm

700K

900K

1200K

-1.5 -1 -0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Radial distance (mm)

Op

tical th

ickn

ess

X = 10mm

700K

900K

1200K

The extinction peak decreases with increasing of the ambient temperature because of evaporation process

Page 24: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

High-speed schlieren arrangement

High-speed imaging setups are relatively close between institutions

CMT used a line-of-sight schlieren

IFPEN used dark-field schlieren while the others used bright-field schlieren (Z-type)

Page 25: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

IFPEN dark-field schlieren setup

Sandia bright-field schlieren setup

High-speed schlieren arrangements

Page 26: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

• Constant volume pre-burn vessels (CVP)

• Constant flow/pressure facilities(CFP)

IFPEN

CMT

SNL MTU

The facilities

TU/e

Page 27: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Spray-A test matrix

Required experimental test Received experimental data

Priority level

T [K] density [kg/m3]

Pressure [MPa]

T fuel [K] Injection

duration [ms] Contributors Nozzle # Data

1 900 22.8 150 363 ≥1.5

Sandia TU/e IFPEN CMT

210675 210679 210678 210675

Liquid&Vapor penetration

2 900 22.8 100 363 ≥1.5 CMT 210675 Liquid&Vapor penetration

3 900 22.8 50 363 ≥1.5 CMT 210675 Liquid&Vapor penetration

4 900 7.6 150 363 ≥1.5 Sandia CMT

210675 Liquid penetration

Liquid&Vapor penetration

5 900 15.2 150 363 ≥1.5 IFPEN CMT

210678 210675

Liquid&Vapor penetration

6 700 22.8 150 363 ≥1.5 Sandia CMT

210675 Liquid penetration

Liquid&Vapor penetration

7 1000 22.8 150 363 ≥1.5 IFPEN 210678 Liquid penetration

8 1100 22.8 150 363 ≥1.5 IFPEN 210678 Liquid penetration

9 700 22.8 50 363 ≥1.5

10 440 22.8 150 363 ≥1.5 Sandia 210675 Liquid penetration

11 300 22.8 150 363 ≥1.5

Page 28: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Expected differences between injectors - Spray A

The ECN injectors present some significant scatter in actual internal geometry and outlet diameters

ROI measurements for 3 injectors show variation on quasi-steady mass flow as high as 15%

Such differences are expected based on outlet diameter dispersion (≈ 5 - 6 µm)

Page 29: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Experimental liquid length of “Spray A” injectors

• Liquid length has been tested in the same configuration at Sandia for the 5 injectors of the ECN dataset

• The liquid length for all the injectors follow the expected trend and keep a certain relationship as ambient temperature is changed

• Nozzle 210675 shows longer liquid-phase penetration than the others (≈1 mm) due to the largest hole diameter

• These differences have to be taken into consideration when comparing experimental results using a different injector of the set

ramb = 22.8 kg/m3

Page 30: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

0 300 600 900 1200 1500 18000

2

4

6

8

10

12

14

16

18

20p

inj: 150 MPa

ramb

: 22.8 kg/m3

Tamb

: 900 K

liquid

penetr

ation [

mm

]

time [s]

Sandia-675

IFPEN-678

TU/e-679

Institutions comparison: Liquid penetration –Spray A

Liquid-phase penetration results show some variations that fall within the expectations

The shapes look very similar

Good agreement beetwen IFPEN, TU/e and CMT in terms of steady-state liquid value

The SNL one is higher than the others (≈10%)

Steady-state liquid length

Sandia CMT IFPEN TU/e

11.7 9.74 10.54 10.33

Page 31: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Sandia results: Liquid penetration – Spray A

0 300 600 900 1200 1500 1800 21000

5

10

15

20

25

30

35

40

Tamb

900 K -ramb

7.6 kg/m3

Tamb

700 K - ramb

22.8 kg/m3

pinj

: 150 MPa

liquid

penetr

ation [

mm

]

time [s]

Sandia The trends of the liquid

length is according to the ambient conditions

Steady liquid values from CMT are lower than Sandia ones

The reason could be a different used methodology to calculate the liquid length and different nozzle temperature

Steady-state liquid length

Point CMT Sandia

900/7.6 15.98 22.8

700/22.8 14.49 17.6

Page 32: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Institutions comparison: Vapor penetration – Spray A

0 600 1200 1800 2400 3000 3600 4200 4800 54000

10

20

30

40

50

60

70

80

90

100

110

va

po

r p

ene

tratio

n [

mm

]

time [s]

Sandia-675

IFPEN-678

TU/e-679

CMT-675

pinj

: 150 MPa

ramb

: 22.8 kg/m3

Tamb

: 900 K

0 300 600 900 1200 1500 1800 21000

10

20

30

40

50

60

70

80

90

100

110

pinj

: 150 MPa

ramb

: 15.2 kg/m3

Tamb

: 900 K

IFPEN

CMT

va

po

r p

en

etr

atio

n [m

m]

time [s]

• Sandia and CMT measured almost identical penetration with the same injector

• Light differences with other institutions, in agreement with the different ROI

Page 33: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

0 600 1200 1800 2400 3000 3600 4200 4800 54000

20

40

60

80

100

120

vap

or

pe

ne

tratio

n [m

m]

time [s]

pinj

: 150 MPa

pinj

: 100 MPa

pinj

: 50 MPa

Tamb

: 900 K

ramb

: 22.8 kg/m3

0 600 1200 1800 2400 3000 3600 4200 4800 54000

20

40

60

80

100

120 Tamb

: 900 K

pinj

: 150 MPa

vap

or

pe

ne

tratio

n [m

m]

time [s]

ramb

: 22.8 kg/m3

ramb

: 15.2 kg/m3

ramb

: 7.6 kg/m3

0 600 1200 1800 2400 3000 3600 4200 4800 54000

20

40

60

80

100

120 Tamb

: 700K

ramb

: 22.8 kg/m3

vap

or

pe

ne

tratio

n [m

m]

time [s]

pinj

: 150 MPa

pinj

: 50 MPa

CMT: Vapor penetration – Spray A

0 600 1200 1800 2400 3000 3600 4200 4800 54000

20

40

60

80

100

120

vapo

r pen

etr

ation

[m

m]

pinj

50 MPa

ramb

: 22.8 kg/m3

time [s]

Tamb

: 900 K

Tamb

: 700 K

pinj

150 MPa

Page 34: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Spray B injector nozzle specifications

3

1

2

Luminosity imaging

y

y [mm]

x

Diffused back-illumination of hole 3

The hole of main interest is the one drilled opposite to the fuel tube (hole #3)

Specifications for Spray B injectors

Common rail fuel injector Bosch solenoid-actived, generation 2.4

Fuel injector nominal nozzle outlet diameter 0.090 mm

Nozzle k-factor k = (dinlet – doutlet)/10 = 1.5

Nozzle shaping Smoothed by hydro-erosion

Mini-sac volume 0.2 mm3

Discharge coefficient at 10 MPa pressure drop Cd = 0.86 (room temperature using diesel fuel)

Number of holes 3

Hole angular position θ = 36.4°, -63.2° and 180°

Orefice orientation relative to injector axis Ψ = 72.5° (145° full included angle)

Spray B is a three-hole Bosch injector with the same orefice specifications as Spray A

Page 35: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Required experimental test Received experimental data

Priority level

T [K] density [kg/m3]

Pressure [MPa]

T fuel [K]

Injection duration [ms]

Contributors Nozzle # Data

1 900 22.8 150 363 1.5 Sandia 211200 Liquid&vapor penetration,

Spray # 3

2 440 22.8 150 363 1.5

3 300 22.8 150 363 1.5 Istituto Motori/

MTU 211198

Liquid penetration all plumes

4 1100 22.8 150 363 1.5

Spray-B test matrix

Page 36: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Additional Spray-B tests

T [K] density [kg/m3]

Pressure [MPa]

T fuel [K]

Injection duration [ms]

Contributors Nozzle # Data

930 23.15 150-100-50 363 1.5 KAIST 211196 Liquid penetration spray #3

850 23.15 150-100-50 363 1.5 KAIST 211196 Liquid penetration spray #3

750 23.15 150-100-50 363 1.5 KAIST 211196 Liquid penetration spray #3

300 22.8 100-50 363 1.5 Istituto Motori/

MTU 211198 Liquid penetration all plumes

300 15.2 150-100-50 363 1.5 Istituto Motori/

MTU 211198 Liquid penetration all plumes

Page 37: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

The vapor boundary was extracted from DBI high-speed movies

-500 0 500 1000 1500 2000 25000

5

10

15

20

25

30

35

40

700 K

900 K

time [s]

pen

etra

tio

n [

mm

]

pinj 150 Mpa ramb: 22.8 kg/m3

Spray B results - Sandia

Page 38: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Spray A vs Spray B - Sandia

0 300 600 900 1200 1500 1800 2100 24000

10

20

30

40

50

60

70

80

liquid

vapor

pinj

150 MPa

Tamb

: 900 K

ramb

: 22.8 kg/m3

pe

ne

tra

tio

n [m

m]

time [s]

Spray A-675

Spray B-200 Same orifice specifications for

Spray A and Spray B injectors

Excellent agreement in terms of liquid and vapor penetration trend

Spray B profiles look more fluctuating than Spray A ones, it could be related to a different flow in the injector

Page 39: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

tASOI = 74 s tASOI = 259 s tASOI = 518 s tASOI = 999 s tASOI = 1591 s

pinj 50 MPa

pinj 100 MPa

pinj 150 MPa

Liquid spray sequence @ r:22.8 kg/m3 – IM/MTU

Page 40: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

0 500 1000 1500 2000 2500 30000

10

20

30

40

50

60

70

80

90

100

liqu

id p

ene

tratio

n [

mm

]

time [s]

# 1

# 2

# 3

r 22.8 kg/m3

pinj

: 50 MPa

Tamb

= 300 K

0 500 1000 1500 2000 2500 30000

10

20

30

40

50

60

70

80

90

100

r 22.8 kg/m3

pinj

: 100 MPa

Tamb

= 300 K

liqu

id p

en

etr

ation

[m

m]

time [s]

# 1

# 2

# 3

0 500 1000 1500 2000 2500 30000

10

20

30

40

50

60

70

80

90

100

r 22.8 kg/m3

pinj

: 150 MPa

Tamb

= 300 K

liqu

id p

en

etr

ation

[m

m]

time [s]

# 1

# 2

# 3

1

2

3

Liquid penetration @ ramb: 22.8 kg/m3 – IM/MTU

Page 41: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

0 500 1000 1500 2000 2500 30000

10

20

30

40

50

60

70

80

90

100

r15.2 kg/m3

pinj

: 50 MPa

Tamb

: 300 K

liqu

id p

en

etr

ation

[m

m]

time [s]

# 1

# 2

# 3

0 500 1000 1500 2000 2500 30000

10

20

30

40

50

60

70

80

90

100

r15.2 kg/m3

pinj

: 100 MPa

Tamb

: 300 K

liqu

id p

en

etr

ation

[m

m]

time [s]

# 1

# 2

# 3

0 500 1000 1500 2000 2500 30000

10

20

30

40

50

60

70

80

90

100

r15.2 kg/m3

pinj

: 150 MPa

Tamb

: 300 K

liqu

id p

en

etr

ation

[m

m]

time [s]

# 1

# 2

# 3

1

2

3

Liquid penetration @ ramb: 15.2 kg/m3 – IM/MTU

Page 42: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

0 600 1200 1800 2400 3000 3600 4200 4800 54000

20

40

60

80

100 IM/MTU spray B

pinj

: 150 MPa

ramb

: 22.8 kg/m3

Tamb

: 300 K

liqu

id p

en

etr

ation

[m

m]

time [s]

0 600 1200 1800 2400 3000 3600 4200 4800 54000

20

40

60

80

100

va

po

r p

en

etr

atio

n [m

m]

time [s]

Sandia-675

IFPEN-678

TU/e-679

CMT-675

pinj

: 150 MPa

ramb

: 22.8 kg/m3

Tamb

: 900 K

Vapor Spray A vs Liquid Spray B

0 600 1200 1800 2400 3000 3600 4200 4800 54000

20

40

60

80

100

pe

ne

tra

tio

n [m

m]

time [s]

Sandia 675

IFPEN 678

TU/e 679

CMT 675

pinj

: 150 MPa

ramb

: 22.8 kg/m3

Spray A - vapor

IM/MTU

Spray B

liquid

The liquid penetration in non evaporating conditions (Spray B) reproduces exactly the trend of the vapor penetration (Spray A) due to the momentum conservation

Page 43: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

0 600 1200 1800 2400 3000 3600 4200 4800 54000

20

40

60

80

100

120

pe

ne

tratio

n [m

m]

time [s]

pinj

: 150 MPa

pinj

: 100 MPa

pinj

: 50 MPa

ramb

: 22.8 kg/m3

dotted: IM/MTU liquid "B"

continuous: CMT vapor "A"

Vapor Spray A vs Liquid Spray B

0 600 1200 1800 2400 30000

20

40

60

80

100

pinj

: 150 MPa

ramb

: 15.2 kg/m3

IFPEN spray A vapor

CMT spray A vapor

IM/MTU spray B liquid

pe

ne

tra

tio

n [m

m]

time [s]

Page 44: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Conclusions

• Diffused back-illumination and schlieren have been used as the reference diagnostics to measure liquid and vapor penetration, respectively, in order to quantify and compare the results between the institutions for both Spray “A” and “B”.

• The differences measured in spray penetration can be explained mainly by the nozzle diameter differences.

• Experimental liquid penetration as a function of time is relatively close for all laboratories, showing similar fluctuations, except for Sandia injector that showed the highest values regarding the steady-state liquid length.

• The baseline Spray “A” condition (150 MPa, 900 K, and 22,8 kg/m3) was widely tested by all institutions and the results were completely consistent with each other in terms both of liquid and vapor penetration.

• Preliminary tests on Spray “B” confirmed a similar behavior with respect to the Spray “A” in terms of liquid and vapor penetration.

Page 45: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Acknowledgements

Sandia: Lyle M. Pickett, Julien Manin

CMT: Raul Payri, Jose M. Pastor, Jose M. Garcia-Oliver

IFPEN: Bruneaux Gilles, Louis-Marie Malbec

TU/e: Maarten Meijer

Kaist: Choongsik Bae, Jaeheun Kim

IM/MTU: Luigi Allocca, Alessandro Montanaro, Seong-Young Lee, Jaffrey Naber

Page 46: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Simulations

Page 47: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Contributors

- Argonne National Labs (ANL)

- Chalmers University of Technology (CHALMERS)

- CMT Motores Termicos (CMT)

- Politecnico di Milano (POLIMI)

- SANDIA National Labs (SANDIA)

Page 48: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Methodology - General

ANL CHALMERS CMT POLIMI SANDIA

Code CONVERGE OpenFOAM +

VSB2 OpenFOAM + S-Y model

OpenFOAM + LibICE

Raptor

Mesh 3D + AMR

(Adaptive Mesh Refinement)

3D cartesian 2D, axy-

symmetric 2D, axy-

symmetric 3D including

nozzle

Spray model Eulerian (gas) + Lagrangian

(spray)

Eulerian (gas) + Lagrangian VSB2 (spray)

Eulerian (gas) + Eulerian

(spray)

Eulerian (gas) + Lagrangian

(spray)

Dense fluid model

Turbulence LES, Dynamic

Model RANS, k-e RANS, k-e RANS, k-e

LES, Dynamic Model

Notes LES with 20 realizations

VSB2 model S-Y model LibICE spray

model Real fluid

model, LES

5 Institutions with 5 substantially different

approaches.

Page 49: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Comparison: MESH

Mesh size [m]

Mesh Type

ANL EL 62.5 - 1000 3D

CHALMERS EL 125 - 330 3D

CMT E 9 – 1000 2D

POLIMI EL 100 – 1000 2D

SANDIA E 4 – 400 3D

S-Y approaches and Dense Fluid model go well below nozzle size:

minimum mesh resolution less than 10 m.

Contributors with Lagrangian models are now aware of the need to properly resolve scales with the same order of nozzle size.

Maximum employed mesh resolution: 1 mm

Mesh structure

• Axy symmetric: can intrinsically account for the axy-symmetry of liquid and gas jet.

• Cartesian mesh: numerical diffusivity affects results along different radial directions

Page 50: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Comparison: Turbulence models

Type Model Notes Initialization

ANL LES Dynamic structure 20 flow realizations Random seeds

CHALMERS RANS Standard k-eC1 = 1.55, seps = 1.65

Uniform k-e

CMT RANS Standard k-e C1 = 1.6, seps = 1.3

Uniform k-e

POLIMI RANS Standard k-e C1 = 1.55, seps = 1.4

Uniform k-e

SANDIA LES Smagorinski 1 realization Inflow

generator

• Increasing C1 in standard k-e model is a common practice also used in simulation of turbulent gas jets (see past Proceedings of the SANDIA TNF workshop).

• LES/Lagrangian: initial flow field and particles generates fluctuations • LES/Dense fluid: fuel inlet boundary condition generating fluctuations

Page 51: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Comparison: Spray sub-models

Only two institutions are using standard Lagrangian approach. In both cases KHRT was used.

B1 B0 Crt Ct

ANL 7 0.6 0.1 1.0

POLIMI 23.5 0.6 0.2 0.2

Why different constants?

1) Codes are different, of course…

2) Turbulence models are different, but…

3) Mesh structures are VERY DIFFERENT (2d axy-symmetric vs 3d Cartesian), hence different interaction between gas phase and spray are expected and tuning cannot be the same.

Page 52: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Comparison: Tuning

Other approaches CHALMERS - VSB2 : Bubble radius size for liquid-gas thermodynamic equilibrium computation. CMT – S-Y Model: Initialization and tuning constants for generation and destruction of S field. SANDIA – Dense fluid model: no constants

Page 53: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Contributions: Lagrangian

• Many contributions to combustion sessions used standard Lagrangian approach

only POLIMI taking part to non-reacting spray session as well with the same approach.

• We encourage who is performing reacting simulations also to carry out non-reacting simulations to verify the consistencies of their approaches

ECN Methodology

Nozzle flow Near Nozzle Evaporative

sprays Combustion

Look back!

Page 54: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Comparison: Simulation setup

• Numerical accuracy is of great importance to predict fuel-air mixing. • Good to see everybody is using 2nd order accurate space discretization schemes

Time-step Discretization

Time Convection Diffusion

ANL Co < 0.75 Euler Implicit 2nd order CD 2nd order

CHALMERS Dt = 1 s Euler Implicit 1st + 2nd order CD 2nd order

CMT Co < 2 Euler Implicit Gamma NVD CD 2nd order

POLIMI Dt = 1 s Euler Implicit Limited linear CD 2nd order

SANDIA Coacoustic < 0.5 Runge-Kutta (4th order)

QUICK (3rd ord) + upwind with

switching CD 2nd order

Page 55: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Comparison: boundary conditions

Injection rate profile

Nozzle diameter [m]

Initial droplet size

[m]

ANL Generated by CMT 90 90

CHALMERS Generated by CMT 89.4 80

CMT Generated by CMT 89.4 -

POLIMI Generated by CMT 89.4 89.4

SANDIA Generated by CMT 89.4 -

• Almost consistent approaches for what concerns initial and boundary conditions….

• All institutions used 675 injector geometry as suggested

Page 56: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Comparison: definitions

Vapor penetration

Liquid penetration

Mixture fraction variance

ANL YC12H26,v = 0.001 90% by liquid

mass LES Averaging

CHALMERS YC12H26,v = 0.001 0.1% by liquid

volume fraction Transport equation

CMT YC12H26,v = 0.001 0.1% by liquid

volume fraction Transport equation

POLIMI YC12H26,v = 0.001 99% by liquid

mass mass Transport equation

SANDIA YC12H26 = 0.05 YC12H26 = 0.79 LES Averaging

Time to see results!

Still inconsistencies for liquid penetration definitions. SANDIA is using a quite high mass fraction to locate vapor penetration compared to different institutions

Page 57: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Baseline condition

T [K] density [kg/m3]

Pressure [MPa]

Fuel T fuel [K] Injection duration

[ms]

1 900 22.8 150 n-dodecane 363 ≥1.5

• Studied by all-institutions

• Large amount of data for validation: penetrations, velocity, mixture fraction

• Model tuning performed for such conditions

Page 58: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

0

2

4

6

8

10

12

14

16

18

20

0.0 0.3 0.6 0.9 1.2 1.5

Pe

ne

trat

ion

[mm

]

Time ASOI [ms]

CMT PoliMI

Chalmers ANL

SANDIA Exp. (SANDIA - 675)

Baseline condition: liquid penetration vs time

1: r = 22.8 kg/m3; T = 900 K; pinj = 150 MPa

Ignition delay (baseline)

Flame lift-off

SANDIA results affected by liquid length definition. How to interpret, with the SANDIA model, the steady-state liquid length measured by DBI or Mie scattering?

Page 59: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

0

2

4

6

8

10

12

14

16

18

20

0.000 0.025 0.050 0.075 0.100

Pe

ne

trat

ion

[mm

]

Time ASOI [ms]

CMT PoliMI

Chalmers ANL

SANDIA Exp. (SANDIA - 675)

Baseline condition: liquid penetration vs time

Initial liquid transient rather well reproduced by all the models

1: r = 22.8 kg/m3; T = 900 K; pinj = 150 MPa

Page 60: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

0

10

20

30

40

50

60

0.0 0.3 0.6 0.9 1.2 1.5

Pe

ne

trat

ion

[mm

]

Time ASOI [ms]

CMT

PoliMI

Chalmers

ANL

SANDIA

Exp. (CMT - 675)

Baseline condition: vapor penetration vs time

Ignition delay (baseline)

Flame lift-off

1: r = 22.8 kg/m3; T = 900 K; pinj = 150 MPa For a proper prediction of combustion process:

- Ignition delay: vapor penetration up to 30 mm (mixing and scalar dissipation rate)

-Flame lift-off : mixture fraction distribution, velocity, turbulence

Page 61: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

0

5

10

15

20

25

30

35

40

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Pe

ne

trat

ion

[mm

]

Time ASOI [ms]

CMT

PoliMI

Chalmers

ANL

SANDIA

Exp. (CMT - 675)

Baseline condition: vapor penetration vs time 1: r = 22.8 kg/m3; T = 900 K; pinj = 150 MPa

Different results. Why?

- Initial part drastically affected by momentum exchange between liquid and gas:

1) Spray sub-models (tuning of breakup) 2) Mesh resolution and structure and effect

of used approach (surely Eulerian model performs better)

3) Turbulence model affecting momentum exchange. All model setup used are different.

4) Please suggest….

Page 62: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Baseline condition: vapor penetration vs time

• More validation for baseline

- Vapor mixture fraction distribution: fuel-air mixing locally

- Vapor mixture fraction variance distribution: scalar dissipation rate and turbulence-chemistry interaction

- Velocity field: momentum exchange

Page 63: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

0.00

0.20

0.40

0.60

0.80

1.00

0.0 10.0 20.0 30.0 40.0 50.0 60.0

Vap

or

mix

ture

Fra

ctio

n [-

]

Axial Distance from injector nozzle [mm]

SANDIA

CMT

PoliMI

Chalmers

Exp

ANL

Baseline condition: axial mixture fraction at 1.5 ms

Liquid + Vapor region

1: r = 22.8 kg/m3; T = 900 K; pinj = 150 MPa Pure vapor region

L.O.L

Page 64: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

0.00

0.20

0.40

0.60

0.80

1.00

0.0 10.0 20.0 30.0 40.0 50.0 60.0

Vap

or

mix

ture

Fra

ctio

n [-

]

Axial Distance from injector nozzle [mm]

SANDIA

CMT

PoliMI

Chalmers

Exp

ANL

Baseline condition: axial mixture fraction at 1.5 ms 1: r = 22.8 kg/m3; T = 900 K; pinj = 150 MPa

Liquid + Vapor region

• ANL : breakup model determines evaporation.

• CMT : evaporation model predicts almost liquid until 2 mm (intact liquid core length?), then mixture fraction grows up to 0.3 (f = 5) where steady-state liquid length is reached.

• CHALMERS : evaporation and spray evolution limits mixture fraction to 0.2 (f = 3). Evaporation model?

• POLIMI : stripping breakup close to nozzle produces small droplets and create very high mixture fractions close to the nozzle.

• SANDIA : real fluid evolution and mixing with N2 determines the mixture fraction (total) evolution. Results at 0.25 ms not fully comparable with other approaches.

Page 65: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

0.00

0.20

0.40

0.60

0.80

1.00

0.0 10.0 20.0 30.0 40.0 50.0 60.0

Vap

or

mix

ture

Fra

ctio

n [-

]

Axial Distance from injector nozzle [mm]

SANDIA

CMT

PoliMI

Chalmers

Exp

ANL

Baseline condition: axial mixture fraction at 1.5 ms

POLIMI and CMT: different approaches but very similar trends in terms of fuel vapor distribution already from 9 mm up to 50 mm. Best agreement with experimental data

ANL and CHALMERS: reduced evaporation rates near the nozzle compared to CMT and POLIMI. Acceptable agreement (but slightly underestimated) with experimental data

1: r = 22.8 kg/m3; T = 900 K; pinj = 150 MPa SANDIA results recorded at 0.25 ms and represent total mixture fraction (Liq. + Vapor). The head of the jet has not reached very far in the simulation

Page 66: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Baseline condition: axial mixture fraction at 1.5 ms

• Some general comments

- Very similar behavior in the far field

- Very different behavior where liquid evolve, evaporates and mixes with air.

1) Which is the most correct one?

• Need to experimentally characterize fuel-air mixing in the near field

2) When such differences in fuel-air mixing modeling can be relevant for combustion simulations?

Page 67: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

0.00

0.20

0.40

0.60

0.80

1.00

0.0 0.3 0.6 0.9 1.2 1.5

Vap

or

mix

ture

Fra

ctio

n [

-]

Distance from axis [mm]

SANDIA CMT

PoliMI Chalmers

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Vap

or

mix

ture

Fra

ctio

n [

-]

Distance from axis [mm]

SANDIA CMT

PoliMI Chalmers

0.00

0.20

0.40

0.60

0.80

1.00

0.0 0.2 0.4 0.6 0.8 1.0

Vap

or

mix

ture

Fra

ctio

n [

-]

Distance from axis [mm]

SANDIA CMT

PoliMI Chalmers

0.00

0.20

0.40

0.60

0.80

1.00

0.0 0.2 0.4 0.6 0.8 1.0

Vap

or

mix

ture

Fra

ctio

n [

-]

Distance from axis [mm]

SANDIA CMT

PoliMI Chalmers

Baseline condition: radial mixture fraction at 1.5 ms d = 0.6 mm d = 2.0 mm

d = 6.0 mm d = 10.0 mm

Mixing and air-entrainment makes profiles already at 10 mm quite similar

Page 68: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Baseline condition: radial mixture fraction at 1.5 ms

0.00

0.20

0.40

0.60

0.80

1.00

0.0 0.3 0.6 0.9 1.2 1.5

Vap

or

mix

ture

Fra

ctio

n [

-]

Distance from axis [mm]

SANDIA CMT

PoliMI Chalmers

d = 6.0 mm • Where and how spray

evaporation takes place?

CMT (S model): evaporation takes place at the periphery of the jet, which is consistent with what is expected: small atomized droplets heats up and change their phase. An intact core length exists up to 2 mm from the nozzle.

Argonne (LES Lagrangian), Chalmers (VSB2 Lagrangian), Polimi (RANS Lagrangian): breakup and momentum exchange between continuous and dispersed phase.

SANDIA (dense fluid model): transition from compressed liquid to supercritical fluid.

Page 69: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Baseline condition: radial mixture fraction at 1.5 ms

- Validation: radial distributions at 25 mm distances from injector

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.0 2.0 4.0 6.0 8.0

Vap

or

Mix

ture

Fra

ctio

n [

-]

Distance from axis [mm]

Exp CMT

PoliMI Chalmers

ANL

Page 70: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

0

100

200

300

400

500

600

700

0.0 10.0 20.0 30.0 40.0 50.0 60.0

Ve

loci

ty [m

/s]

Axial Distance from injector nozzle [mm]

SANDIA CMT

PoliMI Chalmers

ANL Exp.

Baseline condition: axial velocity along injector axis at 1.5 ms

SANDIA and CMT: velocity of the fluid mixture (liquid velocity at the nozzle)

Lagrangian approaches: velocity of the gas phase (lower than the liquid one)

Page 71: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Parametric variations : Liquid length

6

8

10

12

14

50 100 150

Ave

rage

Liq

uid

Le

ngt

h [m

m]

Injection Pressure [MPa]

Chalmers CMT

PoliMI Exp

Injection pressure

Momentum transfer and breakup affecting steady-state spray penetration.

CHALMERS results always within the expected experimental values;

POLIMI : good agreement at 100 and 150 MPa. Breakup model resposable for bad behavior at 50 MPa.

CMT: underestimation. Atomization model?

# T [K] r [kg/m3] pinj [Mpa]

1 900 22.8 150

2 900 22.8 100

3 900 22.8 50

Nozzle flow affects parametric variations. Topic 1.1

Page 72: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Parametric variations : Liquid length Ambient density

4

8

12

16

20

24

7.6 15.2 22.8

Ave

rage

Liq

uid

Le

ngt

h [m

m]

Ambient Density [kg/m3]

Chalmers

CMT

PoliMI

Exp

# T [K] r [kg/m3] pinj [Mpa]

1 900 22.8 150

4 900 7.6 150

5 900 15.2 150

Drag and breakup affect variation of liquid length with ambient density. Nozzle flow is not expected to play a big influence. All models reproducing properly experimental trends.

Page 73: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

0

4

8

12

16

20

24

700 800 900 1000 1100

Ave

rage

Liq

uid

Le

ngt

h [m

m]

Ambient Temperature [K]

Chalmers

CMT

PoliMI

Exp

Parametric variations : Liquid length Ambient temperature

# T [K] r [kg/m3] pinj [Mpa]

1 900 22.8 150

6 700 22.8 150

7 1000 22.8 150

8 1100 22.8 150

Droplet diameter evolution (breakup) affects evaporation rate and, consequently, the steady state liquid length.

CMT: agreement is very good.

CHALMERS: trend reproduced

POLIMI: breakup model not suitable to reproduce such variation.

Page 74: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Injection pressure effect: vapor penetration 1/2/3 T = 900 K r=22.8 kg/m3

0

10

20

30

40

50

60

70

80

0.0 0.5 1.0 1.5

Vap

or

pre

net

rati

on

[m

m]

Time [ms]

CMT

PoliMI

Chalmers

Exp. (CMT - 675)

0

10

20

30

40

50

60

70

80

0.0 0.5 1.0 1.5

Vap

or

pre

net

rati

on

[m

m]

Time [ms]

CMT

PoliMI

Chalmers

Exp. (CMT - 675)

0

10

20

30

40

50

60

70

80

0.0 0.5 1.0 1.5

Vap

or

pre

net

rati

on

[m

m]

Time [ms]

CMT

PoliMI

Chalmers

Exp. (CMT - 675)

1: pinj = 150 MPa 2: pinj = 100 MPa

3: pinj = 50 MPa Vapor penetration mainly affected by momentum transfer to the gas phase and is reduced consistently with injection pressure.

• CMT and POLIMI following rather well the experimental trend;

• Momentum transfer in VSB2 model? • Steady state liquid penetration prediction

not an issue for reproducing vapor evolution.

Page 75: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

0

10

20

30

40

50

60

70

80

0.0 0.5 1.0 1.5

Vap

or

pre

net

rati

on

[m

m]

Time [ms]

CMT

PoliMI

Chalmers

Exp. (CMT - 675)

Ambient density: vapor penetration

1/4/5 T = 900 K pinj =150 MPa

0

10

20

30

40

50

60

70

80

0.0 0.5 1.0 1.5

Vap

or

pre

net

rati

on

[m

m]

Time [ms]

CMT

PoliMI

Chalmers

Exp. (CMT - 675)

1: r = 22.8 kg/m3

Spray dynamics (drag force) affects vapor penetration.

• Rather good agreement achieved by all the approaches.

• Consistent results by different institutions for the three different conditions (trends persist).

0

10

20

30

40

50

60

70

80

0.0 0.5 1.0 1.5

Vap

or

pre

net

rati

on

[m

m]

Time [ms]

CMT

PoliMI

Chalmers

Exp. (CMT - 675)

2: r = 7.6 kg/m3

3: r = 15.2 kg/m3

Page 76: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Ambient Temperature: vapor penetration

1/6/8 r = 22.8 kg/m3 pinj =150 MPa

0

10

20

30

40

50

60

70

80

0.0 0.5 1.0 1.5

Vap

or

pre

net

rati

on

[m

m]

Time [ms]

CMT

PoliMI

0

10

20

30

40

50

60

70

80

0.0 0.5 1.0 1.5

Vap

or

pre

net

rati

on

[m

m]

Time [ms]

CMT

PoliMI

Chalmers

Exp. (CMT - 675)

1: T = 900 K

8: T = 1100 K Vapor penetration cannot be drastically affected by spray breakup for constant injection pressure and density.

Experimental trend properly reproduced at

700 and 900 K; consistent results at 1100 K

0

10

20

30

40

50

60

70

80

0.0 0.5 1.0 1.5

Vap

or

pre

net

rati

on

[m

m]

Time [ms]

CMT

PoliMI

Exp. (CMT - 675)

6: T = 700 K

Page 77: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Low temperature; low pressure condition

0

10

20

30

40

50

60

70

80

0.0 0.5 1.0 1.5

Dis

tan

ce fr

om

th

e n

ozz

le [m

m]

Time [ms]

CMT

PoliMI

Exp. (CMT - 675)

T = 700 Krho = 22.8 kg/m3

p = 50 MPa

0

10

20

30

40

50

60

70

80

0.0 0.5 1.0 1.5

Dis

tan

ce fr

om

th

e n

ozz

le [m

m]

Time [ms]

CMT

PoliMI

Chalmers

T = 440 Krho = 22.8 kg/m3

p = 150 MPa

9 : T = 700 K; pinj = 50 MPa 10 : T = 440 K; pinj = 150 MPa

• Still breakup model being an issue for liquid spray evolution for POLIMI • Rather good results from Chalmers and CMT

9/10 r = 22.8 kg/m3

Page 78: Topic 1.3: Evaporative spray and parametric studies · 2020. 9. 1. · Topic 1.3: Evaporative spray and parametric studies Tommaso Lucchini, Roberto Torelli Department of Energy,

Conclusions

• Results summary:

Capability of all the tested models to reproduce both vapor penetration and fuel air mixing in the far field.

Steady-state liquid penetration: rather good agreement from CMT and Chalmers.

• Suggested methodology for fuel-air mixing modeling: Eulerian CMT in the near field + Lagrangian after liquid core

atomization. ELSA model?

• Where to improve lagrangian models: Atomization needs a better description, accounting for nozzle flow conditions.

• New measurements: baseline mixture fraction and velocity closer to the liquid

• What if spray A was supercritical?