Top 100 University | Rijksuniversiteit Groningen - …1.3.2 Hydrolases used in this thesis...

17
University of Groningen Polyamide synthesis by hydrolases Schwab, Leendert Willem IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2010 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Schwab, L. W. (2010). Polyamide synthesis by hydrolases. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 07-11-2020

Transcript of Top 100 University | Rijksuniversiteit Groningen - …1.3.2 Hydrolases used in this thesis...

Page 1: Top 100 University | Rijksuniversiteit Groningen - …1.3.2 Hydrolases used in this thesis Hydrolases catalyze the hydrolysis of substrates and their names originate from the substrate

University of Groningen

Polyamide synthesis by hydrolasesSchwab, Leendert Willem

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite fromit. Please check the document version below.

Document VersionPublisher's PDF, also known as Version of record

Publication date:2010

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):Schwab, L. W. (2010). Polyamide synthesis by hydrolases. s.n.

CopyrightOther than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of theauthor(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediatelyand investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons thenumber of authors shown on this cover page is limited to 10 maximum.

Download date: 07-11-2020

Page 2: Top 100 University | Rijksuniversiteit Groningen - …1.3.2 Hydrolases used in this thesis Hydrolases catalyze the hydrolysis of substrates and their names originate from the substrate

     

Chapter 1 General introduction 

1.1 ABSTRACT  

Enzymes are the catalysts of nature and and they operate under ambient temperature and pressure mostly  in  aqueous  environments. The high  catalytic proficiency of enzymes under mild reaction conditions raised the interest in these green catalysts as alternatives for conventional processes. Stabilized by immobilization some enzymes are now commercially available for the in vitro use in organic media. 

In  recent years polymerizations with enzymes have been developed by different groups in the field. The enzymatic synthesis of polyamides however, has not been studied  extensively.  It  is  the  aim of  this  thesis  to  expand  the knowledge on  the synthesis of polyamides by enzyme catalysis. 

In the synthesis of polyamides and polypetides a lot can be gained by using enzymes in terms of waste reduction and the consumption of energy and chemicals. Typically, high temperatures and pressures and toxic chemicals are used  in the synthesis of  these compounds.   

In  this general  introduction  the choice of enzymes  is  illustrated and  the basics of catalysis by enzymes and hydrolases in particular are explained. After this, it is shown what precautions are needed when enzymes need to function in organic media to be used in the synthesis of polymers. The chapter concludes with the aim and outline of the thesis in greater detail. 

Page 3: Top 100 University | Rijksuniversiteit Groningen - …1.3.2 Hydrolases used in this thesis Hydrolases catalyze the hydrolysis of substrates and their names originate from the substrate

‐2‐      

1.2 ENZYMATIC  SYNTHESIS  OF  POLYAMIDES  

In general enzymes can accelerate reactions by a factor 103 ‐1017 under mild reaction conditions (ambient temperature and pressure in an aqueous environment). When applied to organic reactions the use of enzymes has ecological and economical benefits in reducing waste production, reaction steps and energy consumption.    

In the synthesis of polyamides a lot can be gained by using enzymes as a catalyst. A distinction is made between polyamides (including all synthetic polymers that contain amide bonds) and polypeptides (polymers made from α‐amino acids).  

Polyamides are produced in industry by amidation of dicarboxylic acid compounds with  diamines,  selfamidation  of  amino  acids  or  ring‐opening  polymerization  of lactams. The commercially most successful polyamide  is nylon6,6 produced from hexamethylene diamine and adipic acid closely followed by nylon6 synthesized from ε‐caprolactam. Together these nylons form 90 % of the polyamides market. Other nylons  are  produced  for  special  applications.  Aromatic  polyamides  are  more expensive to produce but offer a high heat and chemoresistance combined with ultra high strength. Kevlar and Twaron are tradenames of the polymer from terephthalic acid chloride and p‐phenylenediamine. Nomex is produced from the meta substituted aromatic diacid and diamine. The  synthesis of  the above mentioned polyamides consumes a lot of energy in the form of heat as polymerizations are usually carried out at temperatures >200 °C.  

Polypeptides are a class of polyamides with a wide variety of functions in living nature. They are part of the structure of living bodies (i.e. hairs, nails, tendons and muscles), regulate  biological  reactions  (hormones,  enzymes)  and  are  used  in  construction (spider silk, mussel attachment fibers). The variety in structure and function combined with the biodegradability has made polypeptides interesting compounds for the use in cosmetics,1,2 medicine3 and fabrics.4 The ring‐opening polymerization of α‐amino acid  N‐carboxy  anhydrides(NCA’s)  is  the  preferred  method  for  the  in  vitro polymerization of α‐amino acids. Although this method provides great control over chain length and composition a major drawback in the production of NCA’s is the use of toxic phosgene compounds.   

Page 4: Top 100 University | Rijksuniversiteit Groningen - …1.3.2 Hydrolases used in this thesis Hydrolases catalyze the hydrolysis of substrates and their names originate from the substrate

‐3‐      

1.3 ENZYMES    

Almost all the reactions in living cells are catalyzed by enzymes. Enzymes are large proteins that consist of  poly(α‐amino acid) chains in secondary structures like the α‐helix, β‐sheet and random coil domains. The arrangement of these structures relative to each other is different in every protein and determines its shape and regulates its function. Sometimes two proteins combine to form an active complex.  

Within each enzyme there is a small region were catalysis takes place, the so‐called active site. The electrostatic properties and spatial arrangement of the amino acids surrounding the catalytically active residues determine the specificity of the enzyme. 

The activity of the enzyme can be regulated by parts of the enzyme that are not in the active  site. They  control  the  accessibility of  the  active  site by building  an  access channel and allosteric effects can turn the enzyme “on” and “off”.5 In some enzymes the catalytic activity is assisted by co‐factors. These co‐factors can be iron, copper or zinc ions but also organic molecules or more complex prosthetic groups like the heme‐group.6,7  

1.3.1 Hydrolases are the enzymes of choice 

Enzymes are categorized in six classes based on the type of reaction that is catalyzed as determined by the international union of biochemistry and molecular biology:8  

I.  Oxido‐reductases catalyze redox‐reactions. 

II.  Transferases catalyze the transfer of a functional group.  

III. Hydrolases catalyze the hydrolysis of various bonds.  

IV. Lyases catalyze the cleavage of bonds but not by hydrolysis or oxidation.  

V.  Isomerases catalyze isomerizations of chiral substances. 

VI. Ligases catalyze the bond formation coupled with ATP hydrolysis  

Even though within each class enzymes evolved to catalyze very specific reactions some enzymes show a broad tolerance for substrates that can be converted using the same catalyic pathway. Also, enzymatic reactions are equilibria and by choosing the right conditions the reverse reaction can be catalyzed. For the synthesis of polyamides the obvious choice is to use enzymes that catalyze the amide bond formation in vivo. 

The  only  polyamides  synthesized  in  vivo  are  peptides.  They  are  synthesized  by expression  of  the  genetic  code  with  synthesis  taking  place  on  the  ribosomes. Ribosomes  are  complex  assemblies  of  rRNA’s  and  50  kinds  of proteins.  For  the synthesis of peptides in vitro this process is too complex.  

Page 5: Top 100 University | Rijksuniversiteit Groningen - …1.3.2 Hydrolases used in this thesis Hydrolases catalyze the hydrolysis of substrates and their names originate from the substrate

‐4‐      

Enzymes  should  be  used  that  catalyze  reactions  by  a  pathway  that  can  also accommodate the monomers for polyamides and peptides. From the six classes of enzymes introduced above the hydrolases are the enzymes of choice for the synthesis of polypeptides and polyamides. They are available in a large variety of specificities and they in general do not need co‐factors for their function.9  

1.3.2 Hydrolases used in this thesis 

Hydrolases catalyze the hydrolysis of substrates and their names originate from the substrate  that  is  hydrolyzed.  Lipids  are  hydrolyzed  by  lipases  and  proteins  are hydrolyzed by proteases.  

Two lipases are used in chapter 2 and 3 (lipases A and B from Candida antarctica yeast) and the protease papain from Carica papaya fruit is used in chapters 4 and 5. 

The  lipase  B  and  the  papain were  chosen mainly  because  they  display  a wide substrate tolerance (lipase B and papain) with respect to other enzymes belonging to the hydrolases. The lipase A was chosen for its reported high thermostability.   

Candida antarctica lipase A 

Only recently the structure of Candida antarctica lipase A was resolved.10 It is a 45 kDa enzyme with characteristic α/β‐hydrolase structure. As many lipases it has a lid covering the active site entrance. Although reported by many as calcium dependent  no calcium densities were detected in the x‐ray study. The entrance to the active site is formed by a 30Å narrow  tunnel with a 90° kink  leading  to an active  site with a catalytic triad of Ser, His and Asp.  

Candida  antarctica  lipase  A  is  commercially  available  as  a  free  enzyme  and  as crosslinked enzyme aggregates (CLEA), immobilized on celite with sucrose11, silcone particles12, polypropylene beads EP‐10013 and magnetic particles.14 The most used methods of immobilization are the CLEA and the immobilization on Celite in the presence of sucrose. A cross‐linked enzyme aggregate is obtained by cross‐linking enzyme molecules.15 One CLEA particle contains approximately 8 million enzyme molecules and it has a size of 1μm. The particles do not behave like a solid, they can pass 0.2 μm pores in a filter.16 Candida antarctica lipase A was shown to have a ten‐fold increased activity when it is used as a CLEA.17    

The unique properties of the lipase A were reviewed by Kirk18 and de Maria et al.19 in the past. Cal‐A is an enzyme with a high thermostability (>90 °C) with a selectivity for hydrolyzing the Sn‐2 position of lipids. In synthesis reactions Cal‐A has a preference for the N‐acylation of β‐amino acid esters and reactions with tertiary alcohols. Heldt‐Hansen and co‐workers reported a that esterifications with butyric acid and acetic acid gave no reaction wheras longer chain carboxylic acids are used with success.20 

Page 6: Top 100 University | Rijksuniversiteit Groningen - …1.3.2 Hydrolases used in this thesis Hydrolases catalyze the hydrolysis of substrates and their names originate from the substrate

‐5‐      

Reactions with activated esters (fluorinated butanoate and hexanoate) were performed by Kanerva et al.21  

Candida antarctica lipase B 

The yeast Candida antarctica was isolated from sediments of lake Vanda in Antarctica and reported in 1969.22 From this organism two lipases (A and B) could be isolated20 and expression in Asperigillus oryzae23 made the large scale production of the enzyme possible.  

The crystal structure of the lipase B was elucidated by J.Uppenberg and coworkers.24 The lipase B is a 33 kDa enzyme with an active site that is accessible through a 12Å narrow channel. It lacks the interfacial activation found for other lipases25 and this is attributed to the absence of a “lid” that completely covers the active site entrance of most  lipases. Although  there  are  indications  that  the  “lid”  is  actually  an α‐helix formed by residues 142‐14624,26 it is however small and an open configuration of the active  site  is  assumed.  This  greatly  improves  the  accessibility  of  the  active  site compared to other lipases.  

The active site has two distinct parts, the acyl‐binding side and the alcohol binding side. The  latter being stereospecific  for secondary alcohols due  to a stereospecific pocket that can accommodate a methyl side group.27 

Candida  antarctica  lipase  B  is  commercially  available  as  the  free  enzyme  or immobilized by absorption on macroporous beads known as Novozymes N435. The immobilization increases the thermostability of the lipase so that it can be used at temperatures up to 100 °C.28 Also the stability towards organic solvents is greatly improved by  immobilization. Novozymes N435  is a versatile catalyst  in  terms of reaction conditions and the acceptance of various substrates e.g. it has been used to synthesize polyesters from linear29 and cyclic30,28,31,32 starting materials. The best results for the polymerization of lactones were obtained in toluene.28 

The N435‐beads consist of a crosslinked resin of poly(methyl methacrylate) and have a diameter ranging from 0.3 to 0.9 mm.33 The catalyst has an average loading of ~20% by weight32 with the lipase located in the outer 100 microns of the beads.34 The N435 catalyst has been  employed  in  toluene, dioxane, hexane,  iso‐octane,  cyclooctane, benzene,  cyclohexane,  ionic  liquids35,  tert‐butanol,  iso‐propylether  and tetrahydrofuran.36 Care must be taken that the solvent itself cannot be hydrolyzed, amidated or transesterified by the N435.37  

Carica papaya papain 

Papain is a protease obtained from unripe papaya fruit. The structure of papain was published in 1968 by Drenth and co‐workers38 at 2.8 Å resolution and refined to 1.65 Å by I.G. Kamphuis in 1983.39  It was shown that Papain is a 23 kDa protein of 212 amino 

Page 7: Top 100 University | Rijksuniversiteit Groningen - …1.3.2 Hydrolases used in this thesis Hydrolases catalyze the hydrolysis of substrates and their names originate from the substrate

‐6‐      

acid residues. Two domains can be distinguished a helical domain and a domain consisting of β‐sheets. The active site  is  located at  the surface of  the enzyme  in a groove running over the two domains.38,39  

The optimum pH for hydrolysis by papain is   5.5 to 6.5. The optimum pH for the synthesis of peptides was determined to be 8‐9.5.40 While the peptidase activity of the papain is negligible at pH >8 it retains its esterase activity.40 

The catalytic action of papain  to degrade peptides  is used  in  the  tendorization of meat.41,42 

Specificity of papain 

Before the structure of papain was resolved by X‐ray crystallography Schechter and Berger identified  recognition sites for amino acid residues on both sides of the active site cysteine by kinetic experiments.43,44 In Figure 1‐1 three recognition sites on the amino side (S1‐S3) of the peptide and 3 recognition sites on the carboxylic acid side (S1’‐S2’) of the peptide are depicted. 

 

Figure 1‐1. Recognition sites around the papain active site according to Schlechter and Berger43,44 

The only binding site in papain that has a distinct specificity is the S2 pocket build by two valine (Val133, Val157) residues and an aspartic acid (Asp158). The pocket was found by  cocrystallizing the enzyme with a chloromethyl ketone substrate analog.45 Since these early findings published by Schechter and Berger more research pointed out that papain has a selectivity for binding aromatic hydrophobic residues in the S2 position.46,47,48,49,50 It prefers tyrosine over phenylalanine  in peptides at P2.51 It was concluded by Kim et al. 52 that the S2 and S3 form one big hydrophobic pocket.  

The recognition sites S1, S1’ and S2’ are less well defined. In the S1’ site papain can bind hydrophilic and small hydrophobic side chains shown by Schuster et al.53 refined to  leucine,  alanine,  serine and phenylalanine by Ménard and  coworkers.54 While others determined a preference for tryptophan and leucine.55  

The S2’ site binds small amino acids in the order Ala, Val, Asn, Leu and Phe. Shown with kinetic experiments of small peptides with chromophoric markers attached to 

Page 8: Top 100 University | Rijksuniversiteit Groningen - …1.3.2 Hydrolases used in this thesis Hydrolases catalyze the hydrolysis of substrates and their names originate from the substrate

‐7‐      

it.56 Schechter and Berger report also S3’ and S4’ but not much evidence for these subsites is found. 

1.4 CATALYSIS  BY  ENZYMES  

In general enzymes catalyze reactions by introducing multiple reaction steps each with a lower activation energy than the uncatalyzed reaction (ΔG≠uc). In Figure 1‐2 the energy diagram of the conversion of a substrate S into a product P is shown.  

In the enzymatic reaction two intermediates are formed the enzyme‐substrate (ES) and enzyme‐product (EP). Each of these intermediates is formed through a transition state (TS‡). Enzymes can specifically bind the transition states and reduce the energy cost to produce the ES and EP intermediates. The activation energy by the enzyme catalyzed  reaction  (ΔG≠c)  is  lower  than  the  activation  energy by  the uncatalyzed reaction (ΔG≠uc). 

 

Figure 1‐2. Energy profile of the conversion of S  P catalyzed by an enzyme.  

Enzymes  can  use  hydrogen  bonding  and  electrostatic  interactions  to  bind  the transition states. From equation 1‐17 that relates the acceleration by enzymes (V) to the reduction of the activation energy (ΔEa) it follows that a 10‐fold acceleration requires ~5.71 kJ mol‐1.  

RTEaeV /~ Δ   1‐1 

This is half the energy of a hydrogen bond57 easily provided by the amino acids in the active site of the enzyme. A million fold increase in reaction speed requires lowering 

Page 9: Top 100 University | Rijksuniversiteit Groningen - …1.3.2 Hydrolases used in this thesis Hydrolases catalyze the hydrolysis of substrates and their names originate from the substrate

‐8‐      

the activation energy by ~34 kJ mol‐1. Enzymes can use covalent bonds to stabilize intermediates and this lowers the activation energy with ~100 kJ mol‐1.  

The combined stabilization of reaction intermediates by hydrogen bonding, covalent attachment and electrostatic interactions lowers the activation energy relative to the uncatalyzed reaction so that accelerations by a factor 103 ‐1017 are achieved.58 These rate enhancements are achieved in an aqueous environment at ambient temperatures and pressures. 

1.4.1 Catalysis by hydrolases 

A general hydrolase (e.g. proteases and lipases used in this thesis) catalyzed reaction proceeds as follows. First, the substrate is bound to the enzyme through a tetrahedral intermediate forming an acyl‐enzyme intermediate (ES). In a second step the enzyme‐substrate  complex  is  attacked by water  and  a  second  tetrahedral  intermediate  is formed. In a last step the second intermediate falls apart and the product of hydrolysis is released and the enzyme is ready for a new cycle.  

The sequence of catalytic steps is enabled by two distinct regions in the active site of hydrolases the catalytic triad and the oxyanion hole.  

As an example of catalysis by hydrolases the function of both regions in the hydrolysis of esters by Candida antarctica lipase B is explained below.  

Catalytic triad  

All hydrolases share a common sequence of amino acids in the active center called the catalytic triad, first identified in α‐chymotrypsin.59  The action of the catalytic triad of the Candida antarctica  lipase B  is depicted  in Figure 1‐3 and shows how  the acyl‐enzyme complex is formed.  

The catalytic triad of Cal‐B consists of a Ser105, His224 and Asp187 residue.24 Prior to binding  the  substrate  the  His224  accepts  a  proton  from  the  Ser105  creating  a nucleophile, the His224 tautomerizes and is stabilized by Asp187. At the same time Ser105 binds to the substrate. After the release of the products protons exchange to regain the situation depicted on the left in Figure 1‐3.    

Asp187

OO HN N

His224

Ser105HO

 

 

Asp187

OO HN NH

His224

Ser105O

substrate

 

Figure 1‐3.Catalytic triad without a substrate (left) and after binding the substrate (right). 

Page 10: Top 100 University | Rijksuniversiteit Groningen - …1.3.2 Hydrolases used in this thesis Hydrolases catalyze the hydrolysis of substrates and their names originate from the substrate

‐9‐      

Although the principle of the catalytic triad is general it is not always performed by the same residues. In papain cystein performs the nucleophilic attack38 while aspartic acid has this function in pepsin60 and in other hydrolases threonine can act as the nucleophile.61  

Oxyanion hole 

Close to the nucleophilic residue (serine or cysteine mostly) a so‐called oxyanion hole exists  that  can  bind  the  tetrahedral  intermediates  during  hydrolysis.  The  first tetrahedral intermediate is formed when an ester is attacked by the activated Ser105. This intermediate is stabilized by binding in the oxyanion hole62,63 see Figure 1‐4. 

OO

O

Ser105

R

HN

Gln106

Thr40

R'

HNHO

 

 

Figure 1‐4. Tetrahedral intermediate in the oxyanion hole of Candida antarctica lipase B. 

The oxyanion hole consists of the NH group of Gln106 and the OH and NH group of the main  chain Thr40. Together  they  trap  the  negatively  charged  oxygen  of  the tetrahedral intermediate by hydrogen bonding. From this intermediate an alcohol is released and an acyl‐enzyme complex is formed. The reaction of the acyl‐enzyme complex with any nucleophile proceeds again  through a  tetrahedral  intermediate stabilized by the oxyanion hole. 

Different fates of the acyl‐enzyme complex 

The acyl‐enzyme complex is attacked by water in hydrolysis (the natural action of hydrolases) but it can also be attacked by other nucleophiles. Reactions with water, amines, alcohols and hydrogen peroxide lead to hydrolysis, acyl transfer, aminolysis and peracid formation repectively as shown in Figure 1‐5.   

For  the  synthesis of polyamides  the  reaction with  amines  is  the most  important reaction. Amines are better nucleophiles than water but hydrolysis is always present as a possible side‐reaction.  

Page 11: Top 100 University | Rijksuniversiteit Groningen - …1.3.2 Hydrolases used in this thesis Hydrolases catalyze the hydrolysis of substrates and their names originate from the substrate

‐10‐      

 

Figure  1‐5. Hydrolysis,  acyl  transfer,  aminolysis  and  peracid  formation  as  the  result  of  different nucleophiles attacking the acyl enzyme intermediate. 

1.5 ENZYMES  IN  ORGANIC  SOLVENTS  

Two decades ago Alexander Klibanov and coworkers showed that porcine pancreatic lipase64, subtilisin, chymotrypsin65 and horse radish peroxidase65 can perform their catalytic actions in dry organic solvents even at 100 °C.66 This turned out to be valid for more enzymes and stabilized by immobilization67 or cross‐linking15 enzymes have become useful tools in organic chemistry.68,69,70 Especially in the field of enantiomeric resolution and enantioselective reactions enzymes are now widely employed. 71,72,73,74,75 

Using enzymes in organic solvents rather than in water has several advantages: 

1 Substrates and products usually dissolve better in organic solvents 2 Enzymes can be removed from the reaction medium since they do not dissolve 3 Undesired side‐reactions with water are suppressed 4 Denaturation of enzymes is water dependent therefore the enzymes are expected 

to be more stable in a water‐free environment 5 Thermodynamic equilibria can be shifted from hydrolysis towards synthesis   Enzymes can retain their catalytic function in organic solvents provided that a small amount of structural water is present in the enzyme. By non‐covalent interactions these water molecules keep  the  enzyme  together  in  its  active  conformation. The amount of essential water is not equal for each enzyme. Lipases and proteases only need traces of water65,76 while polyphenol oxidase needs 3.5x107 molecules of water per enzyme.77  

The  structural water  is best  retained  in  a hydrophobic  solvent  since hydrophilic solvents mix easily with water and are therefore able to strip all the water from the catalyst. A measure  for  the hydrophobicity of  the solvent  is  the  logarithm of  the 

Page 12: Top 100 University | Rijksuniversiteit Groningen - …1.3.2 Hydrolases used in this thesis Hydrolases catalyze the hydrolysis of substrates and their names originate from the substrate

‐11‐      

partition coefficient (log P) of a solvent between 1‐octanol and water. Solvents with a log P value higher than 2 are considered best for enzymatic synthesis.78 

Enzymatic reactions are equilibrium reactions. In order to obtain yields that exceed the equilibrium reactions are performed under thermodynamic or kinetic control. 

Thermodynamically  controlled  reactions  are  the  reverse  of  the  hydrolysis.  The reaction  conditions must  be  chosen  to  favour  synthesis  and  usually  this means choosing the right pH value. A drawback is the very slow reaction and low yield of the reaction. If the reaction products can accumulate by precipitation or by extraction, higher yields can be reached. 

Kinetically controlled reactions fullfill two requirements. The formation of the acyl‐enzyme complex must be faster for the substrate than for the product. This can be met by using carboxylic esters in stead of acids. And secondly the rate of hydrolysis must be slower than the rate of aminolytic deacylation. If these two requirements are met an accumulation of the product polyamide occurs.  

1.6 ENZYMES  IN  POLYMER  SYNTHESIS  

Enzymes are applied in polymer chemistry and a wide array of polymers has been synthesized by enzyme catalysis see Table 1‐179. Enzymatic catalysis enabled scientists to synthesize polymers that are hard to synthesize by conventional catalysis like for instance polysaccharides.  

Polyamides mentioned in Table 1‐1 are published only recently by Gross80 in 2005 and Cheng81 in 2006. They synthesized polyamides (Mn ~3000 g/mol) in a condensation reaction of dialkylesters (among others: fumarate, malonate, adipate and oxalate) with diamines (e.g. diethylene triamine and diamine terminated polyethylene glycol).      

Table 1‐1. Polymers synthesized by enzymatic catalysis  

Enzymes  Polymers hydrolases glycosidases, lipases, proteases 

polysaccharides, polyesters, polycarbonates, poly(amino acid)s, polyamides  

oxidoreductases horse radish and  soybean peroxidase laccase 

Polyphenols, polyanilines, vinyl polymers 

transferases glycosyl‐, acyltransferase 

polysaccharides, cyclic oligosaccharides, polyesters 

Two  approaches  were  formulated  at  the  start  of  the  research.  One  is  the polymerization analogous to the synthesis of polyesters by lipase (condensation of 

Page 13: Top 100 University | Rijksuniversiteit Groningen - …1.3.2 Hydrolases used in this thesis Hydrolases catalyze the hydrolysis of substrates and their names originate from the substrate

‐12‐      

diesters with diamines and the ring‐opening polymerization of lactam rings) and the other one  is starting  from  the reverse action of proteases82,83 and expand  it  to  the formation of amide bonds between natural and non‐natural substrates for proteases.  

1.7 AIM  AND  OUTLINE  OF  THE  THESIS  

This thesis aims to develop and extend the knowledge of enzyme catalyzed ways to produce polyamides. The use of these highly selective catalysts that operate under mild conditions (aqueous media, ambient temperature and pressure) has developed over  the  last decades and offers new ways  to synthesize polymers. These highly selective  biocatalysts  not  just  replace  the  conventional  catalysts  but  also  offer completely  new  routes  to  (bio)polymers  that were  not  available  before  e.g.  the synthesis of different polysaccharides.  

By reducing energy consumption, waste production and the use of toxic chemicals enzymes  can  offer  a  green  alternative  for  conventional  processes  to  produce polyamides involving high temperatures (>200 °C) and toxic chemicals (like phosgene in peptide synthesis).  

Chapter 2 Describes the ring‐opening polymerization of β‐propiolactam by N435 to produce a nylon 3 characterized by MALDI‐ToF MS and 1H‐NMR spectroscopy. From the results we conclude that the polymerization does not proceed according to the reaction path accepted for enzyme catalyzed polymerization of lactones. 

Chapter  3  Enzyme  catalyzed  aminolysis  is  mainly  used  for  the  enantiomeric resolution of secondary amines but when applied to diesters and diamines the N435 can  catalyze  the  synthesis of polyamides. The polycondensation of diesters with different diamines was studied with IR‐spectroscopy. 

Chapter 4 Papain protease was used to synthesize a series of co‐polyamino acids. The polymers are synthesized starting from a 1:1 molar mixture of two, three and four α‐amino acids. Maldi‐ToF mass spectrometry was used to determine the composition of these polymers.  

Chapter 5 The biodegradability of polymers can be enhanced by incorporating amino acids in the structure. By a reaction between aromatic diamines and protected amino acids diamines can be created that can serve as building blocks for biodegradable polymers. Papain was used to create a series of amido amines based on CBz‐Gly, CBz‐L‐Leu and CBz‐L‐Phe. 

Page 14: Top 100 University | Rijksuniversiteit Groningen - …1.3.2 Hydrolases used in this thesis Hydrolases catalyze the hydrolysis of substrates and their names originate from the substrate

‐13‐      

1.8 REFERENCES  

1.   Barba, C., Mendez, S., Roddick‐Lanzilotta, A., Kelly, R., Parra, J.L., Coderch, L., Skin Res. Techn., 2008, 14, 243‐248 

2.   Barba, C., Mendez, S., Roddick‐Lanzilotta, A., Kelly, R., Parra, J.L., Coderch, L., J. Cosmet. Sci., 2007, 58, 99‐107 

3.   Glaser, V., Genetic Engineering News, 2005, 25, 20‐23 4.   Sanda, F., Endo, T., Macromol. Chem. Phys., 1999, 200, 2651‐2661 5.   Derewenda, U., Brzozowski, A.M., Lawson, D.M., Derewenda, Z.S., Biochemistry, 1992, 

31, 1532‐1541 6.   Stryer, L, Biochemistry, 4th edition, W.H. Freeman and Company, 1995 7.   Voet, D, Voet, J. G., and Pratt, C. W., Fundamentals of biochemistry, 2nd edition, John 

Wiley & Sons, Inc., 2006 8.   The enzyme commission, Enzyme nomenclature, Academic press, 1992 9.   Cheng, H.N., Maslanka, W.W., Gu, Q.‐M., US6677427, 2004 10.  Ericsson, D.J., Kasrayan, A., Johanssonl, P., Bergfors, T., Sandstrom, A.G., Backvall, J.E., 

Mowbray, S.L., J. Mol. Biol., 2008, 376, 109‐119 11.  Kanerva, L.T., Sundholm, O., J. Chem. Soc. , Perkin Trans. 1, 2010, 2407‐2410 12.  Buthe, A., Kapitain, A., Hartmeier, W., Ansorge‐Schumacher, M.B., J. Mol. Catal. B: 

Enzym., 2005, 35, 93‐99 13.  Uhm, K.N., Lee, S.J., Kim, H.k., Kang, H.Y., Lee, Y., J. Mol. Catal. B: Enzym., 2007, 45, 34‐

38 14.  Schultz, N., Hobley, T., Syldatk, C., Biotechnol. Lett., 2007, 29, 365‐371 15.  Sheldon, R.A., Schoevaart, R., van Langen, L.M., Biocatal. Biotransform., 2005, 23, 141‐147 16.  Schoevaart, R., Wolbers, M.W., Golubovic, M., Ottens, A, M., Kieboom, P.G., van, R., 

van, d.W., Sheldon, R.A., Biotechnol. Bioeng., 2004, 87, 754‐762 17.  Lopez‐Serrano, P., Cao, L., van Rantwijk, F., Sheldon, R.A., Biotechnol. Lett., 2002, 24, 

1379‐1383 18.  Kirk, O., Christensen, M.W., Org. Process Res. Dev., 2002, 6, 446‐451 19.  Domínguez de María, P., Carboni‐Oerlemans, C., Tuin, B., Bergeman, G., Meer van der, 

A., Gemert, R., J. Mol. Catal. B: Enzym., 2005, 37, 36‐46 20.  Heldt‐Hansen, H., Ishii, M., Patkar, S., Hansen, T., Eigtved, P., Biocat. Agri. Biotechn., 

1989, 73, 158‐172 21.  Kanerva, L.T., Csomos, P., Sundholm, O., Bernath, G., Fülöp, F., Tetrahedron: Asymmetry, 

1996, 7, 1705‐1716 22.  Goto, S., Sugiyama, J., Iizuka, H., Mycologica, 1969, 61, 748‐774 23.  Hoegh, I., Patkar, S., Halkier, T., Hansen, M., Can. J. Bot., 1995, 73, 869‐875 24.  Uppenberg, J., Hansen, M.T., Patkar, S., Jones, T.A., Structure, 1994, 15, 293‐308 25.  Martinelle, M., Holmquist, M., Hult, K., Biochim. Biophys. Acta, 1995, 1258, 272‐276 26.  Skjot, M., de Maria, J., Chatterjee, R., Svendsen, A., Patkar, S.A., ChemBioChem, 2009, 10, 

520‐527 27.  Uppenberg, J., Öhrner, N., Norin, M., Hult, K., Kleywegt, G.J., Patkar, S., Waagen, V., 

Anthonson, T., Jones, T.A., Biochemistry, 1995, 34, 16838‐16851 28.  Kumar, A., Gross, R., Biomacromolecules, 1999, 1, 133‐138 29.  Gross, R.A., Kumar, A., Kalra, B., Chem. Rev., 2001, 101, 2097‐2124 30.  Thurecht, K.J., Heise, A., deGeus, M., Villarroya, S., Zhou, J.X., Wyatt, M.F., Howdle, 

S.M., Macromolecules, 2006, 39, 7967‐7972 

Page 15: Top 100 University | Rijksuniversiteit Groningen - …1.3.2 Hydrolases used in this thesis Hydrolases catalyze the hydrolysis of substrates and their names originate from the substrate

‐14‐      

31.  van der Mee, L., Helmich, F., de Bruijn, R., Vekemans, J.A.J.M., Palmans, A.R.A., Meijer, E.W., Macromolecules, 2006, 39, 5021‐5027 

32.  Kumar, A., Mei, Y., Gross, R., Macromolecules, 2004, 2003, 5530‐5536 33.  Novozym AS, Novozym 435 datasheet, 2004, 1‐3 34.  Mei, Y., Miller, L., Gao, W., Gross, R.A., Biomacromolecules, 2003, 4, 70‐74 35.  Srivastava, R.K., Adv. Drug Delivery Rev., 2008, 60, 1077‐1093 36.  Rantwijk van, F., Hacking, M.A.P.J., Sheldon, R.A., Monatshefte für Chemie, 2000, 131, 

549‐569 37.  Sergeeva, M.V., Mozhaev, V.V., Rich, J.O., Khmelnitsky, Y.L., Biotechnol. Lett., 2000, 22, 

1419‐1422 38.  Drenth, J., Jansonius, J.N., Koekoek, R., Swen, H.M., Wolthers, B.G., Nature, 1968, 218, 

929‐932 39.  Kamphuis, I.G., Kalk, K.H., Swarte, M.B.A., Drenth, J., J. Mol. Biol., 1984, 179, 233‐256 40.  Mitin, Y.V., Zapevalova, N.P., Gorbunova, E.Y., Int. J. Pept. Protein. Res., 1983, 23, 528‐

534 41.  Weiner, S., Mangel, M., Maharg, L., Kelley, G.G., Food Technology, 1958, 12, 248‐252 42.  Ashie, I.N.A., Sorensen, T.L., Nielsen, P.M., J. Food Sci., 2002, 67, 2138‐2142 43.  Schechter, I., Berger, A., Biochem. Biophys. Res. Commun., 1967, 27, 157‐162 44.  Schechter, I., Berger, A., Biochem. Biophys. Res. Commun., 1968, 32, 898‐902 45.  Drenth, J., Kalk, K.H., Swen, H.M., Biochemistry, 1976, 15, 3731‐3738 46.  Khouri, H.E., Vernet, T., Menard, R., Parlati, F., Laflamme, P., Tessier, D.C., Gour‐Salin, 

B., Thomas, D.Y., Storer, A.C., Biochemistry, 1991, 30, 8929‐8936 47.  Tchoupé, J.R., Moreau, T., Gauthier, F., Bieth, J.G., Biochimica et Biophysica Acta (BBA) ‐ 

Protein Structure and Molecular Enzymology, 1991, 1076, 149‐151 48.  Garcia‐Echeverria, C., Rich, D.H., FEBS Lett., 1992, 297, 100‐102 49.  Serveau, C., Juliano, L., Bernard, P., Moreau, T., Mayer, R., Gauthier, F., Biochimie, 1994, 

76, 153‐158 50.  Menard, R., Khouri, H.E., Plouffe, C., Dupras, R., Ripoll, D., Vernet, T., Tessier, D.C., 

Laliberte, F., Thomas, D.Y., Storer, A.C., Biochemistry, 1990, 29, 6706‐6713 51.  Lecaille, F., Serveau, C., Gauthier, F., Lalmanach, G., FEBS Lett., 1999, 445, 311‐314 52.  Kim, M.J., Yamamoto, D., Matsumoto, K., Inoue, M., Ishida, T., Mizuno, H., Sumiya, S., 

Kitamura, K., Biochem. J., 1992, 287, 797‐803 53.  Schuster, M., Kasche, V., Jakubke, H.D., Biochim. Biophys. Acta, 1992, 1121, 207‐212 54.  Menard, R., Carmona, E., Plouffe, C., Bromme, D., Konishi, Y., Lefebvre, J., Storer, A.C., 

FEBS Lett., 1993, 328, 107‐110 55.  Alecio, M.R., Dann, M.L., Lowe, G., Biochem. J., 1974, 141, 495‐501 56.  García‐Echeverría, C., Rich, D.H., Biochem. Biophys. Res. Commun., 1992, 187, 615‐619 57.  Verkerk, G., Broens, J.B., Kranendonk, W., Puijl van der, F.J., Sikkema, J.L., Stam, C.W., 

BINAS 3rd edition, 1992 58.  Houk, K.N., Acc. Chem. Res., 2005, 38, 379‐385 59.  Blow, D.M., Steitz, T.A., Annu. Rev. Biochem., 1970, 39, 63‐100 60.  Lee, H.C., Ko, Y.H., Back, S.B., Kim, D.H., Bioorg. Med. Chem., 1998, 8, 3379‐3384 61.  Dodson, G., Wlodawer, A., Trends in Biochemical Sciences, 1998, 23, 347‐352 62.  Robertus, J.D., Kraut, J., Alden, R.A., Birktoft, J., Biochemistry, 1972, 11, 4293‐4303 63.  Henderson, R., J. Mol. Biol., 1970, 54, 341‐354 64.  Zaks, A., Klibanov, A.M., Proc. Natl. Acad. Sci. U. S. A., 1985, 82, 3192‐3196 65.  Dordick, J.S., Marletta, M.A., Klibanov, A.M., Biotechnol. Bioeng., 1987, 30, 31‐36 66.  Zaks, A., Klibanov, A.M., Science, 2006, 224, 1249‐1251 

Page 16: Top 100 University | Rijksuniversiteit Groningen - …1.3.2 Hydrolases used in this thesis Hydrolases catalyze the hydrolysis of substrates and their names originate from the substrate

‐15‐      

67.  Pencreacʹh, G., Leullier, M., Baratti, J.C., Biotechnol. Bioeng., 1997, 56, 181‐189 68.  Faber, K., Biotransformations in Organic Chemistry, 4th edition, Springer, 2000 69.  Dekkers, M., Patel, R.N., Stereoselective Biocatalysis, 2001 70.  Roberts, S.M., J. Chem. Soc. , Perkin Trans. 1, 2001, 1475‐1499 71.  Patel, R.N., Biocatalysis in the Pharmaceutical and Biotechnology Industries, 2007 72.  Cuiper, A.D., Brzostowska, M., Gawronski, J.K., Smeets, W.J.J., Spek, A.L., Hiemstra, H., 

Kellogg, R.M., Feringa, B.L., J. Org. Chem., 1999, 64, 2567‐2570 73.  van den Heuvel, M., Cuiper, A.D., Kellogg, R.M., Feringa, B.L., Tetrahedron Lett., 1997, 

38, 1655‐1658 74.  van der Deen, H., Hof, R.P., van Oeveren, A., Feringa, B.L., Kellog, R.M., Tetrahedron 

Lett., 1994, 35, 8441‐8445 75.  Haak, R.M., Tarabino, C., Janssen, D.B., Minnaard, A.J., de Vries, J.G., Feringa, B.L., Org. 

Biomol. Chem., 2007, 5, 318‐323 76.  Klibanov, A.M., J. Am. Chem. Soc., 1986, 108, 2767‐2768 77.  Kazandjian, R.Z., Klibanov, A.M., J. Am. Chem. Soc., 1985, 107, 5448‐5450 78.  Pogorevc, M., Stecher, H., Faber, K., Biotechnol. Lett., 2002, 24, 857‐860 79.  Kobayashi, S., Uyama, H., Kimura, S., Chem. Rev., 2001, 101, 3793‐3818 80.  Azim, A., Azim, H., Sahoo, B., Gross, R.A., ACS PMSE Preprints, 2005, 93, 743‐744 81.  Gu, Q.‐M., Maslanka, W.W., Cheng, H.N., Polym. Prepr., 2006, 47, 234 82.  Stehle, P., Bahsitta, H.‐P., Monter, B., Fürst, P., Enzyme Microb. Technol., 1990, 12, 56‐60 83.  Sergeeva, M.V., Paradkar, V.M., Dordick, J.S., Enzyme Microb. Technol., 1996, 20, 623‐628   

Page 17: Top 100 University | Rijksuniversiteit Groningen - …1.3.2 Hydrolases used in this thesis Hydrolases catalyze the hydrolysis of substrates and their names originate from the substrate