Tooth wear - causes and (evolutionary) consequences review ...ffffffff-f77d-1dab... · Tooth wear -...

82
Tooth wear - causes and (evolutionary) consequences review of the evidence Thomas Kaiser, Ellen Schulz Zoological Museum, University of Hamburg, Germany Jürgen Hummel Animal Nutrition Group, University of Bonn, Germany Dennis Müller, Marcus Clauss Clinic for Zoo Animals, Exotic Pets and Wildlife, University of Zurich, Switzerland NESCent Symposium 2011

Transcript of Tooth wear - causes and (evolutionary) consequences review ...ffffffff-f77d-1dab... · Tooth wear -...

  • Tooth wear - causes and (evolutionary) consequences

    review of the evidence

    Thomas Kaiser, Ellen Schulz Zoological Museum, University of Hamburg, Germany

    Jürgen Hummel Animal Nutrition Group, University of Bonn, Germany

    Dennis Müller, Marcus Clauss Clinic for Zoo Animals, Exotic Pets and Wildlife, University of Zurich, Switzerland

    NESCent Symposium 2011

  • Tooth wear

    •!Do animals show adaptations to tooth wear?

    •!Do variations in tooth wear drive the quantitative expression of these adaptations?

    •!Hypsodonty, mesowear, tooth wear (height/volume per time)

    •!Diet abrasiveness

  • Hypsodonty and grass

    own evaluation, but similar findings published by Janis (1995), Perez-Barberia and Gordon (2001), Mendoza and Palmqvist (2008)

  • 0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Pro

    port

    ion e

    xcessiv

    e w

    ear

    fed from dishes/racks

    fed on sandy soil

  • from Healey et al. (1965)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0 50 100 150 200 250

    Soil ingestion (g/d)

    Incis

    or

    length

    (in

    .)

    Soil ingestion and wear

  • from Healey et al. (1966)

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    0 2 4 6 8 10

    Month

    Wear

    in p

    recedin

    g 6

    weeks

    (in.)

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08

    Faecal s

    oil (%

    DM

    )

    Faecal soil (%DM)

    Wear

    Soil ingestion and wear

  • Foto: Johanna Castell

  • method developed by Fortelius, Solounias (Kaiser)

    =0

    =1

    =2

    =3

    =4

  • Free-ranging vs. captive giraffes

    from Clauss et al. (2007)

  • from Clauss et al. (i2007)

  • -1.50

    -1.00

    -0.50

    0.00

    0.50

    1.00

    1.50

    2.00

    Diffe

    rence in s

    core

    Less abrasion than in the wild

    More abrasion than in the wild

  • -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    2

    2.5

    3

    0 1 2 3 4 5 6

    Hypsodonty index

    Diffe

    rence in s

    core

    BR

    IM

    GR

  • 0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    0 20 40 60 80 100

    %grass

    Faecal silic

    a (

    mg/k

    g D

    M)

    dry season

    wet season

  • R2 = 0.66

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 50 100 150

    Faecal silica (mg/kg DM)

    Hypsodonty index

  • 0

    1

    2

    3

    4

    5

    6

    0 1 2 3 4 5

    Annual wear rate (mm)

    Hypsodonty

    index

  • 0

    1

    2

    3

    4

    5

    6

    0 1 2 3 4 5

    Annual wear rate (mm)

    Hypsodonty

    index

  • 0

    1

    2

    3

    4

    5

    6

    0 1 2 3 4 5

    Annual wear rate (mm)

    Hypsodonty

    index

  • Testing the mesowear signal

    •!Species level (comparative) •!Calculating mesowear score from Fortelius & Solounias (2000) and the data collection of Kaiser; matching hypsodonty index from Janis (1988)

    •!Using %grass from own data collection •!Using habitat score from Mendoza & Palmqvist (2008)

    •!Using precipitation and other climate data from Pantheria

    •!Analyses with OLS and PGLS

  • R2 = 0.66

    0

    1

    2

    3

    4

    5

    6

    7

    0 50 100 150

    Faecal silica (mg/kg DM)

    Hypsodonty index

    Mesowear score

    Is diet abrasiveness reflected in the mesowear score?

  • R2 = 0.66

    0

    1

    2

    3

    4

    5

    6

    7

    0 50 100 150

    Faecal silica (mg/kg DM)

    Hypsodonty index

    Mesowear score

    Is diet abrasiveness reflected in the mesowear score?

  • R2 = 0.66

    R2 = 0.35

    0

    1

    2

    3

    4

    5

    6

    7

    0 50 100 150

    Faecal silica (mg/kg DM)

    Hypsodonty index

    Mesowear score

    Is diet abrasiveness reflected in the mesowear score?

  • Is diet abrasiveness reflected in the mesowear score?

    R2 = 0.66

    R2 = 0.35

    0

    1

    2

    3

    4

    5

    6

    7

    0 50 100 150

    Faecal silica (mg/kg DM)

    Hypsodonty index

    Mesowear score

  • R2 = 0.40

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 20 40 60 80 100

    %grass

    Hypsodonty index

    Mesowear score

    Mesowear score, diet and habitat

    R2 = 0.38

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 1 2 3 4

    Habitat category

    Hypsodonty index

    Mesowear score

  • R2 = 0.40

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 20 40 60 80 100

    %grass

    Hypsodonty index

    Mesowear score

    Mesowear score, diet and habitat

    R2 = 0.38

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 1 2 3 4

    Habitat category

    Hypsodonty index

    Mesowear score

    20 40 60 80 100

    %grass

    R = 0.38

    0

    1

    2

    3

    4

    0 1 2 3

    Habitat category

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 20 40 60 80 100

    %grass

    Hypsodonty

    index

    open

    medium

    closed

    This shows that both %grass and habitat influence HI

  • R2 = 0.40

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 20 40 60 80 100

    %grass

    Hypsodonty index

    Mesowear score

    Mesowear score, diet and habitat

    R2 = 0.38

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 1 2 3 4

    Habitat category

    Hypsodonty index

    Mesowear score

  • R2 = 0.40

    R2 = 0.32

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 20 40 60 80 100

    %grass

    Hypsodonty index

    Mesowear score

    Mesowear score, diet and habitat

    R2 = 0.38

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 1 2 3 4

    Habitat category

    Hypsodonty index

    Mesowear score

  • R2 = 0.40

    R2 = 0.32

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 20 40 60 80 100

    %grass

    Hypsodonty index

    Mesowear score

    Mesowear score, diet and habitat

    R2 = 0.38

    R2 = 0.130

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 1 2 3 4

    Habitat category

    Hypsodonty index

    Mesowear score

  • R2 = 0.40

    R2 = 0.32

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 20 40 60 80 100

    %grass

    Hypsodonty index

    Mesowear score

    Mesowear score, diet and habitat

    R2 = 0.38

    R2 = 0.130

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 1 2 3 4

    Habitat category

    Hypsodonty index

    Mesowear score

    R2 = 0.32

    20 40 60 80 100

    %grass

    R = 0.38

    R2 = 0.130

    1

    2

    3

    4

    0 1 2 3

    Habitat category

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    0 20 40 60 80 100

    %grass

    MesowearScore

    open

    medium

    closed

    This shows that the mesowear signal is not catching a habitat effect

  • R2 = 0.40

    R2 = 0.32

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 20 40 60 80 100

    %grass

    Hypsodonty index

    Mesowear score

    Mesowear score, diet and habitat

    R2 = 0.38

    R2 = 0.130

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 1 2 3 4

    Habitat category

    Hypsodonty index

    Mesowear score

    R2 = 0.15

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 50 100 150 200 250

    Precipitation (mm)

    Hypsodonty index

    Mesowear score

    R2 = 0.13

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 500 1000 1500 2000

    Evaporation (mm)

    Hypsodonty index

    Mesowear score

  • R2 = 0.40

    R2 = 0.32

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 20 40 60 80 100

    %grass

    Hypsodonty index

    Mesowear score

    Mesowear score, diet and habitat

    R2 = 0.38

    R2 = 0.130

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 1 2 3 4

    Habitat category

    Hypsodonty index

    Mesowear score

    R2 = 0.15

    R2 = 0.050

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 50 100 150 200 250

    Precipitation (mm)

    Hypsodonty index

    Mesowear score

    R2 = 0.13

    R2 = 0.04

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 500 1000 1500 2000

    Evaporation (mm)

    Hypsodonty index

    Mesowear score

  • Mesowear score and body mass

    R2 = 0.10

    0.01

    0.1

    1

    10

    1 10 100 1000 10000

    Body mass (kg)

    Hypsodonty index

    Mesowear score

    not significant after phylogenetic control

  • Mesowear score and body mass

    R2 = 0.10

    R2 = 0.00

    0.01

    0.1

    1

    10

    1 10 100 1000 10000

    Body mass (kg)

    Hypsodonty index

    Mesowear score

  • Does tooth wear drive the evolution of hypsodonty?

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 1 2 3 4

    Mesowear score

    Hypsodonty

    index

  • Does tooth wear drive the evolution of hypsodonty?

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 1 2 3 4

    Mesowear score

    Hypsodonty

    index

    10-100 kg

    100-1600 kg

    Influence of body mass not significant with phylogenetic control

  • Does tooth wear drive the evolution of hypsodonty?

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 1 2 3 4

    Mesowear score

    Hypsodonty

    index

    Ruminants CamelidsEquids RhinosHyraxes

  • Does tooth wear drive the evolution of hypsodonty?

    0

    1

    2

    3

    4

    5

    6

    0 1 2 3 4

    Mesowear score

    Hypsodonty

    index

    Tragulids

    Giraffids

    Cervids

    Bovids

    Antilocapra

  • Does tooth wear drive the evolution of hypsodonty?

    0

    1

    2

    3

    4

    5

    6

    0 1 2 3 4

    Mesowear score

    Hypsodonty

    index

    Bovinae AlcelaphinaeAepyceroidae HippotraginaeReduncinae CephalophinaeSaiginae AntilopinaeCaprinae

  • Does tooth wear drive the evolution of hypsodonty?

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 1 2 3 4

    Mesowear score

    Hypsodonty

    index

    open

    medium

    closed

    This shows that both mesowear and habitat influence HI - again showing that there is something in habitat that the mesowear score does not catch

  • Predicting %grass / precipitation

    For predicting %grass, in a GLM both HI and MesowearScore are significant; body mass only when not correcting for phylogeny.

    LS LogBM HI Mesoscore r2 p p p OLS (F) 8.424 0.005 (F) 16.192

  • Predicting %grass / precipitation

    For predicting %grass, in a GLM both HI and MesowearScore are significant; body mass only when not correcting for phylogeny.

    LS LogBM HI Mesoscore r2 p p p OLS (F) 8.424 0.005 (F) 16.192

  • Predicting %grass / precipitation

    For predicting %grass, in a GLM both HI and MesowearScore are significant; body mass only when not correcting for phylogeny.

    LS LogBM HI Mesoscore r2 p p p OLS (F) 8.424 0.005 (F) 16.192

  • Predicting %grass / precipitation

    For predicting %grass, in a GLM both HI and MesowearScore are significant; body mass only when not correcting for phylogeny.

    LS LogBM HI Mesoscore r2 p p p OLS (F) 8.424 0.005 (F) 16.192

  • common taxa rare taxa

    Crown types Localities

  • Relationship HI - enamel ridge alignment?

  • Relationship HI - enamel ridge alignment?

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    0 1 2 3 4 5 6

    HI

    Fre

    quency (

    10-4

    0°)

  • Relationship HI - enamel ridge alignment?

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    0 1 2 3 4 5 6

    HI

    Fre

    quency (

    10-4

    0°)

    n.s.

    No link between HI and enamel ridge alignment - no realtionship between HI and one quantitative tooth shape parameter we have

  • Relationship HI - enamel ridge alignment?

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    0 1 2 3 4 5 6

    HI

    Fre

    quency (

    10-4

    0°)

    n.s.

    Enamel ridge alignment and hypsodonty are two independent adaptations

  • Some brachydont teeth do good things ...

  • 0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    5

    free-ranging captive

    MPS (

    mm

    )

    Przewalski

    Tapir

  • 0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    5

    free-ranging captive

    MPS (

    mm

    )

    Przewalski

    Tapir

  • 0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    free-ranging captive

    MPS (

    mm

    )

    Aurochs

    Giraffe

  • 0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    free-ranging captive

    MPS (

    mm

    )

    Aurochs

    Giraffe

  • Silica (%DM)

  • Summary

    •!Hypsodonty can most logically be explained as a adaptation to tooth wear

    •!Abrasiveness of diet is mostly a concept and not an empirical measure

    •!Differences in wear can be demonstrated under different situations

    •!Important differences in the signal of hypsodonty (evolutionary) and mesowear (individual’s lifetime)

    •!Quantitative effects of diet on tooth wear are needed

  • Summary

    The mesowear score as in our collection does not relfect climate/habitat to the same extent as HI. HI is an evolutionary signal. MesoScore is a signal from an individual animal that may be exposed to different conditions than the animal was during its evolution of HI.

    This does not mean that at lower-scale comparisons (e.g. within one group of herbivores only) the MesoScore is more linked to climate parameters.