Tobias Huber, Tom Wunderling, Markus Paschold, Hauke Lang ... · Tobias Huber, Tom Wunderling,...

20
Tobias Huber, Tom Wunderling, Markus Paschold, Hauke Lang, Werner Kneist, Christian Hansen Highly-Immersive Virtual Reality Laparoscopy Simulation: Development and Future Aspects Pre-print version Tobias Huber, Markus Paschold, Hauke Lang, Werner Kneist Department of General, Visceral and Transplant Surgery, University Medicine of the Johannes Gutenberg-University Mainz, Germany [email protected] Tom Wunderling, Christian Hansen Faculty of Computer Science, Otto-von-Guericke University Magdeburg, Germany [email protected] This is a pre-print of an article published in the International Journal of Computer Assisted Radiology and Surgery. The final authenticated version is available online at: https://doi.org/10.1007/s11548-017-1686-2

Transcript of Tobias Huber, Tom Wunderling, Markus Paschold, Hauke Lang ... · Tobias Huber, Tom Wunderling,...

  • TobiasHuber,TomWunderling,MarkusPaschold,

    HaukeLang,WernerKneist,ChristianHansen

    Highly-ImmersiveVirtualRealityLaparoscopySimulation:DevelopmentandFutureAspects Pre-print version TobiasHuber,MarkusPaschold,HaukeLang,WernerKneist

    DepartmentofGeneral,VisceralandTransplantSurgery,

    UniversityMedicineoftheJohannesGutenberg-UniversityMainz,Germany

    [email protected]

    TomWunderling,ChristianHansen

    FacultyofComputerScience,

    Otto-von-GuerickeUniversityMagdeburg,Germany

    [email protected]

    Thisisapre-printofanarticlepublishedintheInternationalJournalofComputerAssisted

    RadiologyandSurgery.Thefinalauthenticatedversionisavailableonlineat:

    https://doi.org/10.1007/s11548-017-1686-2

  • 2

    Abstract

    PurposeVirtualReality(VR)applicationswithhead-mounteddisplays(HMDs)havehad

    animpactoninformationandmultimediatechnologies.Thecurrentworkaimedto

    describetheprocessofdevelopingahighly-immersiveVRsimulationforlaparoscopic

    surgery.

    MethodsWecombinedaVRlaparoscopysimulator(LapSim)andaVRHMDtocreatea

    user-friendlyVRsimulationscenario.Continuousclinicalfeedbackwasanessentialaspect

    ofthedevelopmentprocess.WecreatedanartificialVR(AVR)scenariobyintegratingthe

    simulatorvideooutputwithVRgamecomponentsoffiguresandequipmentinan

    operatingroom.Wealsocreatedahighly-immersiveVRsurrounding(IVR)byintegrating

    thesimulatorvideooutputwitha360°videoofastandardlaparoscopyscenariointhe

    department'soperatingroom.

    ResultsClinicalfeedbackledtooptimizationofthevisualization,synchronization,and

    resolutionofthevirtualoperatingrooms(inboththeIVRandtheAVR).Preliminarytesting

    resultsrevealedthatindividualsexperiencedahighdegreeeofexhilarationandpresence,

    withrareeventsofmotionsickness.Thetechnicalperformanceshowednosignificant

    differencecomparedtothatachievedwiththestandardLapSim.

    ConclusionOurresultsprovidedaproof-of-conceptforthetechnicalfeasibilityofan

    customhighlyimmersiveVR-HMDsetup.Futuretechnicalresearchisneededtoimprove

    thevisualization,immersion,andcapabilityofinteractingwithinthevirtualscenario.

    Keywords:SurgicalTraining,VirtualReality,LaparoscopicSurgery,Human-Computer-

    Interaction,Visualization

  • 3

    1Introduction

    VirtualReality (VR) iscurrentlyused insurgical training to improvepsychomotor

    skills that are important for laparoscopic surgery, suchashand-eye coordination, spatial

    orientation,andmanipulationsinthepresenceofafulcrumeffect[1].Nonetheless,theuse

    ofVRsimulatorsislimitedindailyclinicalroutine,duetoalackingrealismoftasks,abstract

    graphicdesign,andtheawarenessofparticipantstobeinatrainingenvironment[2,3].The

    varietyoftaskshasbeenenlargedsincethedevelopmentofVRlaparoscopysimulations,and

    currently,abstracttrainingtasksandproceduraloperationsareavailableinVR.Inaddition,

    graphic design of simulation tasks and virtual tissue interaction in VR laparoscopy

    simulationhaveimproved.However,usersarecontinuouslyawarethattheyareinatraining

    environmentandnotarealsurgicalsituation.Realisticsurroundingsthatincreasetheuser’s

    senseofpresenceduringaVRsimulationareonlypossiblewhenperformingteamtraining

    sessions, which require more time, infrastructure, and human resources [4]. Recent

    advancementsininformationandmultimediatechnologyhavemadeitpossibletodevelop

    VR applications in combination with head mounted displays (HMDs). These combined

    applicationsarecurrentlyusedintheentertainmentindustry,inthemilitary,andinaviation

    training. Medical applications include VR-HMD psychological interventions for

    posttraumaticstressdisorders,phobias,cognitiverehabilitationandandpaintreatmentfor

    burn victims [5-8].Additionally, VRwill enhance the validity of clinical, behavioural and

    affective and social neurosciences due to more realistic test scenarios [9]. The rise of

    commerciallyavailableVR-HMDsoverthelastyearhasledtothedevelopmentofavirtual

    operating room environment to increase the attractiveness and the degree of presence

    duringVRlaparoscopysimulations.Thepresentworkaimedtodescribethedevelopment

    processofanimmersiveVRlaparoscopysimulationsetup.Thegoalwastocombineexisting

    technologies to create a user-friendly simulation scenario with high immersion and

    presence. Continuous clinical evaluations and feedback from laparoscopic surgeons

    comprisedanessentialpartofthedevelopmentprocess.

  • 4

    2RelatedWork

    ThecurrentuseofVRinmedicalfieldsismainlyduetothevisualpossibilitiesitoffers,

    whichareveryhelpfulforprocessessuchaseducation,simulation,planning,navigation,and

    even rehabilitation [10]. VR simulations in surgery are used to teach technical skills,

    behavioralskills,andentireprocedurestotraineesandpracticingsurgeonsworldwide[11].

    In VR laparoscopy trainers, users perform surgical tasks with standard laparoscopy

    instruments [12]. Studies on VR laparoscopy simulations have concluded that the skill

    acquisition is equivalent to that acquiredwith laparoscopy box trainer simulations, and

    theseskillscanbetransferredtotheoperatingroom(OR)[13,14].Also,abriefpre-surgical

    VRwarm-upcanimproveperformanceintheOR[15].

    Technical and visual improvements have influenced VR simulators. Three-

    dimensionaldisplayswithpolarizationor shutter technologieshavebeen integratedand

    investigated with differing results [16,17]. On the other hand, recent developments in

    surgery, such as robotic operations, have led to the development of VR robotic surgery

    simulators[18].VisualizationforaVRroboticsurgerysimulationcanbeseenasavariantof

    anHMDsimulation,performedontheroboticconsole;however,theORsurroundingshave

    not yet been considered in this context. A recent study described a VR application that

    combinedaVRlaparoscopysimulationandalow-immersionHMD,withonlya45°fieldof

    view, to produce a virtual scenario, which consisted of a peg transfer task in a plain,

    computer-generatedroom[19].

    The latest generation HMDs, which began shipping in 2016, feature several

    technological advancements realized in recent years. High pixel density displays from

    smartphoneswereusedinearlyprototypestoreducethe‘screen-door’effect.Thesedisplays

    operatewith a high refresh rate to reduce latency,which causesmotion sickness.Novel

    methods and custom sensors were developed to improve positional tracking [20].

    Asynchronousre-projectionwasintroducedtoreducelatencyevenfurther.Thistechnique

    introducessmallchangesontoapreviouslyrenderedframe,accordingtothemostrecent

    positional tracking data, which lowers the computational requirements of the graphics

    processingunit(GPU)[21].Othersoftwaresolutionswererequiredtocorrectfordistortion

    andchromaticaberrationsthatarisefromthelenses.Thesesolutionswereneededtomap

    theHMDtoawiderfieldofviewandcreateamorecomfortablepointoffocus.

  • 5

    Fig. 1: Custom IVR setupwith LapSimSimulatorwith the4D joysticks (Simball, G-coder

    Systems,Sweden);thegogglesaretheHTCVive(HMD);andtheheadphonesprovidesound.

    Aconventionalmonitorisnotneededinthissetup.

    3MaterialsandMethods

    VirtualRealityLaparoscopySimulationSystem

    The basis of our custom setup was a VR laparoscopy simulator without haptic

    feedback(LapSim),purchasedfromSurgicalScienceAB,Goethenburg,Sweden.Itconsisted

    ofa27-inchLCDmonitor(AOCInternational,Taiwan),akeyboardandmouse,aWindows7

    PC,andSimball™4Djoysticks,withadoublefoot-switch(G-coderSystems).Allhardware

    components were mounted on a rolling, height-adjustable array, and they were readily

    accessible,duetotheopendesignofthechassis.ForinteractionswiththeVRenvironment,

    the simulator provided Simball 4D joysticks (Fig. 1 andFig. 2). Their laser-marked ball

    joints,withthreedegreesoffreedom,allowedreal-timecalculationsoftheexact3Dangular

    position.Theinputdevicesincludedagrasperinstrumentontheleftandrightsides,anda

    camera instrument in the center. During our tests, the camera was not used in any

  • 6

    laparoscopic task.Thecomputer featuredproprietarysoftware fromSurgicalScienceAB,

    version2015,whichranonWindows7.Thissoftwareallowedtheuser toperformbasic

    trainingtasks,likepegtransferorpatterncutting,butalsocomplex,morerealisticscenarios,

    like a cholecystectomy or appendectomy simulation. The software logged the user's

    performancebyrecordingasetoftask-specificparameters.Thisallowedtheassessmentof

    execution quality for each performed task; thus, the individual's improvement in

    psychomotorskillscouldbemonitoredovertime.

    CustomVirtualRealityHeadMountedDisplaySystem

    TwoVR-HMDsolutions fromtheconsumermarketwereconsidered inouraimto

    extendtheexistingLapSimexperiencewithadditionalhardwareandcontent:TheOculus

    RiftCV1andtheHTCVive.Comparedtotheconventionalbuilt-inmonitor,HMDsprovidea

    widerfieldofview.Withthecombinedheadtrackingandstereoscopicdeptheffects,theuser

    isimmersedinanall-aroundvisualexperiencethatismuchclosertorealhumanvisionthan

    the2DdisplayoftheLapSim.ThehighrefreshrateandlowlatencyoftheOLEDdisplayson

    theHMDwereimportantinachievingminimumsimulatorsickness.WechosetheHTCVive

    HMDforthisstudy,becausecomparedtotheOculusRiftCV1, it featuredaslightlylarger

    fieldofviewof110°comparedto101°fortheOculusRiftCV1andalargetrackingareaof

    4.6 by 4.6 meters, which allowed highly-immersive, room-scale VR [22]. A separate

    computerwasnecessarytodrivetheHTCViveHMDwithoutinterferingwiththeexisting

    LapSimsoftwareandhardware(Fig.2c).AVR-readylaptop(MSIGT72VR-6RE16H51)was

    chosenoveracustom-builtdesktopPC forbettermobility.TheMSI laptopwasequipped

    withanIntelCorei7processor(6700HQ,16GBRAM),aNvidiaGTX1070graphicscard(8GB

    VRAM),andtheportsnecessaryforconnectingtheHTCVivelinkbox.

    VideoandAudioSignalTransfer

    Tointegratethevideooutputpreviouslydisplayedonthe2DLapSimmonitor(Fig.

    2a) intoavirtualenvironmentcreatedwith theseparateHTCViveHMDsystem,a frame

    grabberwasused(Fig.2d).ThisUSB3.0HDvideocapturedevice(StartechUSB3HDCAP;

    Startech, Northampton, UK) received the HDMI output from the LapSim PC at 1080p

    resolutionand60fps,andsent itovertheUSBtothe laptopviatheHTTPlive-streaming

    protocol,HLS.AnHDMIsplitter(Fig.2e)wasinsertedupstreamtoallowthevideosignalto

  • 7

    beroutedbacktotheLapSimsystemforsimultaneousdisplayonthebuilt-inmonitor.The

    simultaneous display allowed other developers to follow the laparoscopy simulation, as

    usual,onthe2Dmonitor.Thus,theotherdeveloperscouldprovidetechnicaladministration

    andcontroltheLapSimsoftwarewiththekeyboardandmouse,whiletheuserwaswearing

    theHMD. Audio feedback generated by the LapSim software (e.g.,whenworkingwith a

    virtualelectronicdevice)wastransferredviaananalogcablefromtheLapSimPCheadphone

    jacktotheMSIlaptopmicrophonejack(Fig.2f).Thefinalaudiomix-downwasperformed

    on the laptop. The user wearing the HMD listened to the audio output with stereo

    headphonesconnectedtotheHTCViveHMD.

    Fig.2:ComponentdiagramoftheVRlaparoscopysimulationsystemandourcustomizedVR

    HMDsystem.a: conventional2Dscreen,b: surgical simulator, c:VR-readyMSI laptop,d:

    HDMItoUSBframegrabber,e:HDMIsignalsplitter,f:stereoaudiocable,g:localnetwork

    connection(LAN),h:Simballdataloggerauxiliaryprogram.

  • 8

    CreationofVirtualRealitySurroundings

    The cross-platform game engine, Unity™ (Version 5.4.2), was used to create the

    virtualsurroundingsbyintegratingthevirtualmonitorwiththeSimballjoystickmovements.

    Thelivevideostreamfromthescreengrabberwasdisplayedonaplane,whichservedasa

    virtualmonitor,with theUnity engine, “WebCamTexture class”. The original streamwas

    rendered at the standard resolution of 1920´1080 pixels. To optimize performance, the

    texturewasdown-sampledto960´540pixelspriortorendering.SoundfromtheLapSim

    systemwasintegratedbyplacinganAudioSourceobjectinthescenethatcapturedtheinput

    fromthelaptop’smicrophonejack.Theremainingvirtualspacewasfilled,viadraganddrop,

    withmodelsofmedicaldevices,furniture,props,andanimatedcharactermodelsofmedical

    personnel and the patient. The models could be moved around to create a setting that

    mimickedtheappearanceofanORduringlaparoscopicsurgery.

    Analternativewaytocreateavirtualsurroundingwastointegratetheplaybackfrom

    a360°video.Tocreatethiseffect,thevideoclipcouldbemappedontoaspherewiththe

    MovieTexturefeatureinUnity.TheSteamVRcamerarigwasthenplacedinthecenterofthe

    sphereandscaleddowntoaverysmallsizetoadjustforthefixedperspectiveofthe360°

    videorecording.

    ClinicianFeedback

    Four members of the surgical department were continuously involved in the

    developmentprocess.AllfourmembershadpreviousexperiencewiththeVRlaparoscopy

    simulator.

    TestingPhase

    As part of the first clinical pilot investigations, other members of the surgical

    departmentperformedlaparoscopictasksonthesimulator.Hypothetically,adifferencein

    performanceduetodistractionsintheimmersivesetupmaybepossible.Furthermore,the

    degreeofimmersionintoavirtualworld,theattentiontotheenvironmentandexhilaration

    of the participant are important aspects to optimize the surrounding.We thus used the

    validated questionnaire by Nichols et al. to quantify these aspects [23]. Furthermore,

    negativepsychopathologicalaspectsandvegetativesideeffectshavebeendescribedinVR

    andhaveleadtothedescriptionofa“codeofconduct”regardVRresearch[24].Thuswe

  • 9

    investgatedparticipants’heart rate (stress level) andmotion sicknesswith thevalidated

    motionsicknessscalebyKeshavarzetal.[25].

    The presented technical data is a comparison of immersive and regular VR

    simulation. This was investigated with the consectuvie performance of three tasks (peg

    transfer,finedissection,andcholecystectomy)afteraninitialwarm-upphaseinregularVR

    mode.Theselectedtasksrepresentdifferentaspectsoflaparoscopicsurgery,navigational

    maneuver,finepreparationandproceduralaspects.Taskswerealwaysperformedinregular

    modefirstandAVRsecondandintheabovementionedorder.Simulatormetricshavebeen

    analysedusingthetotalz-scoreofeachtask.Additionally,metricshavebeengroupedinto

    categoriestime,handlingeconomicsanderrorsaspreviouslydescribed[15].

    Fig. 3: Screenshot of the artificial virtual reality (AVR) operating room. The virtual

    environmentwasmodeled, based on a 3Dmodel kit from Vertigo Games, Rotterdam. A

    virtualinstrumentallowsinteractionwiththeLapSimsimulator.Avirtualmonitor(center)

    showsthelaparoscopysimulator'sgraphicoutput.

  • 10

    4Results

    A general overview of the customVR setupwe developed is shown inFig. 2. All

    software and hardware components and connections proved to be generally technically

    feasible.Thesetupwasuserfriendly,easytoassemble,andhighlymobile.

    ArtificialVirtualOperatingRoom

    We firstdevelopedanartificial virtual reality (AVR)OR.OurAVRwasbasedona

    commerciallyavailablemodular3Dassetkit,whichcontainedafullyequippedsurgicalOR

    (VertigoGames,Rotterdam,Netherlands).Itfeaturedanimated3Dcharactersandseveral

    modelsofsurgicaldevices,props,andfurniture.Thefeedbackfromtheclinicaldevelopment

    teamledtorepositioningcertaincomponentsinthevirtualenvironment.Thepositionofthe

    virtualdisplaywasadaptedtocorrespondtothesettinginourclinic.Thepositionsofthe

    trocars, sterile equipment, and surrounding teammembers in the AVRwere changed to

    ensurethepositionwascomfortablefortheuserandreflectedtheclinicalsetting(Fig.3).

    Additionally,thesizeofthevirtualmonitorwasincreasedtoimprovevisibilityoffinedetails,

    but at the same time, it remained realistic. A very small delay between the joystick

    movementsandthecorrespondingmovementsintheVRsurgicalmonitorwasachievedon

    the virtual display. Even after the AVR was optimized, clinical feedback from the

    development team revealed that they remained aware of the fact that they were in an

    artificialenvironmenttheentiretime,whichledtoalowdegreeofpresence.Thislimitation

    stimulatedtheinitiativetoimprovethesurroundingsandcreateamorerealisticsimulation.

    IntegrationofLaparoscopyInstruments

    At first, the fourdevelopers remarked that the instruments in frontof themwere

    missingduringtheAVRsimulation.TheSimballinputdevicesprovidedahapticsensationto

    the user,whichwas similar to the sensation of holding real surgical instruments. These

    instrumentsweretheonlymeansbywhichtheusercouldphysicallyinteractwiththevirtual

    world.Therefore,itwasimportantthatvirtualrepresentationsoftheseinstrumentscould

    beseenwhenwearingtheHMD.ThisvisualizationoftheinstrumentsinVRenabledtheuser

    tolocateandgrabthedeviceswhilewearingtheHMD.Toachievethiseffect,theinputdata

    fromtheSimballshadtobetranslatedintomovementsthatwerethenappliedtothevirtual

  • 11

    objects represented by the shapes of the simulated instruments. Because the virtual

    environmentwasgeneratedintheVRsystem,andnottheLapSimsystem,theSimballsinput

    datahadtobeinterceptedandsentfromonecomputertotheother.Anauxiliaryprogram,

    theSimballDataLogger(Fig.2h),whichraninthebackgroundontheLapSimPC,recorded

    thedatawithoutinterferingwiththeLapSimsoftware.Eeroutedthedatastreamtopass

    throughalocalareanetwork,whichsentittothelaptopthatrantheVRsystem(Fig.3).The

    movementsofthevirtualinstrumentswereveryaccurate,accordingtotheusers.Thedouble

    foot-switchwasnotvisualizedwithinthevirtualenvironment.However,thisdidnotseem

    tobeaproblemfortheclinicianssincethefootswitchisoftennotvisibleintherealoperating

    roomaswellduetothesurgicalcovers.

    Highly-ImmersiveVirtualOperatingRoom

    AnalternativeVRenvironment,thehighlyimmersiveVR(IVR)OR,wascreatedwith

    a360°camera(SamsungGear360,SamsungAG,Seoul,Korea).Sphericalvideosequences

    wererecordedinsidearealsurgicalORattheUniversityHospitalMainz,Germany.Forthe

    video,asurgicalstaffre-enactedthesituationofareallaparoscopicsurgery.Actualmembers

    of the departments acted as the patient, scrub nurses, laparoscopy assistant, and

    anesthesiologist (Fig.4).TheORwas first recordedwithout a scripteddialogue.Later, a

    second scenariowas createdwith interactions between the fictional characters (e.g., the

    scrubnurses).Thesecondscenarioincludedsounds,actions,andconversationsthatwere

    typicalduringastandardlaparoscopicprocedure.

    Thetestingclinicianswerehighlyexhilaratedinresponsetothepresencetheyfeltin

    theOR,particularlyduringthesecondscenario.Thesensationofpresencewasevenmore

    exhilaratingwhenperformingproceduralsimulationsettings,suchasacholecystectomy,on

    the LapSim. Nonetheless, the display resolution was limited in the AVR and the IVR,

    particularlyintaskslikefinedissection,wherebloodvesselsmustbedifferentiated.Despite

    manychangesofsettings,thislimitationwasmentionedbyallparticipants.Thatfindingled

    totheconclusionthattheresolutionwaslackingwiththeHMD.Down-sizingtheinputsignal

    to960´540inUnitydidnotimpactthevisualqualityoftheimagesignificantly,becausethe

    virtualmonitoronlycoveredpartoftheuser'sfieldofview.ThenativeresolutionoftheHTC

    ViveHMDwasinsufficienttodisplaytheoriginalimageinfullHDresolutionatthatsize.

  • 12

    Fig.4:Screenshotofthe360°highlyimmersivevirtualreality(IVR)operatingroom(OR).A

    sphericalvideowasgeneratedwithaSamsungGear360°cameraintheORattheUniversity

    HospitalMainz,Germany.Thevirtualmonitorinthecentershowsthegraphicoutputfrom

    thelaparoscopysimulator(LapSim).

    TestingPhase

    In a previously published pilot study, we found no significant difference in

    performancebetweentheregularVRlaparoscopyandIVR.Theparticipatingsurgicalstaff

    washighlyexhilaratedandindicatedahighlevelofpresence[26].Inadifferentapproach,

    we previously investigated potential vegetative side effects. Nausea was present in this

    previous investigation in 10% of participants (2/20). These two female surgeons had a

    historyofmotionsickness.AlthoughheartrateswereelevatedduringIVRsimulations,the

    elevationswerenotstatisticallysignificant[27].

    ThecurrentanalysisoftechnicalperformancecomparedregularVRlaparoscopyand

    AVRof16participants.Weobservednostatisticaldifferencesinthetotalz-scoresorinthe

    categorizedz-scoresforhandlingeconomics,errors,andtime.Thesetechnicalresultsare

    displayedinTable1.

  • 13

    Table1:Calculatedz-scoresfortasksperformedbyparticipants(n=16)

    VRLSession AVRSession Taskparameters Median(IQR) Median(IQR) P*

    Cholecystectomy Total 2.76(-1.18;5.40) 1.07(-2.18;6.14) 0.918Time 0.39(-0.60;0.74) 0.28(-0.86;0.85) 0.836Economics 2.47(-3.00;4.45) 0.93(-0.74;4.72) 0.836Errors 0.80(-1.48;2.33) 0.97(-1.77;2.03) 0.756 FineDissection Total 0.35(-1.58;3.10) 0.39(-3.53;3.35) 0.918Time 0.12(-0.71;0.57) -0.12(-0.59;0.86) 0.959Economics 1.22(-1.19;2.16) 0.12(-1.43;1.63) 1.000Errors -0.19(-1.57;1.64) -0.18(-1.23;1.49) 0.756 PegTransfer Total 0.59(-1.73;2.06) 1.39(-1.33;2.67) 0.756Time 0.19(-0.62;0.60) 0.28(-0.22;0.72) 0.796Economics 0.23(-0.24;0.79) 0.78(-1.29;1.24) 0.756Errors -0.61(-0.61;1.01) 0.27(-0.60;0.71) 0.679 IQR:interquartilerange;VRL:virtualrealitylaparoscopysimulation;AVR:artificialvirtualrealityoperatingroom*Wilcoxon-Signed-Rank-Test5Discussion

    Previously,Bowmanetal.[28]discussedtheimportantaspectsofimmersion,andthe

    sensation of presence in VR. These aspects require hardware components that provide

    optimalrefreshrates,framerates,displaysizes,anddisplayresolutions.Inthecurrentstudy,

    ourVRsetupincludedanHMDwithpotentiallythebesthardwarecomponentscommercially

    available.Nevertheless, theresolutionintheHMDwaslimitedforveryfinepreparations,

    anditmustbeoptimizedtodeterminethesweetspotwiththebestcombinationofasmooth

    frame rate and video playback, an acceptable virtual monitor size, and good image

    resolution.Accordingtothe“reality-virtualitycontinuum”[29],thecombinationoftheVR

    laparoscopysimulationandavirtualORinthecurrentsetuprepresentedacombinationof

    twovirtuallygeneratedworlds.TheVRlaparoscopysimulatorisusuallyperceivedascloser

  • 14

    toreality thanthenewlydevelopedsetup,becausethesimulation ispresentedona two-

    dimensionalmonitorinanout-of-contextenvironment.Theonlyconnectionlefttorealityis

    the haptic user interface (Simball joysticks) which makes the virtual display of the

    instruments evenmore important.However, interaction inAVRand IVR is currentlynot

    possible and should be improved by further technical advances. An overview of the

    limitations in the setupwe developed is given inTable 2,with corresponding technical

    solutionsandratingsofclinicalimportanceandtechnicalviability.Handtracking(e.g.,via

    stereocameras)mayincreasespatialawarenessandproprioception,andthisfeaturemay

    function as an interface for changing the simulator settings in VR. Furthermore, several

    issuesremainwithHMDtechnologythataredisadvantagestoenhancingtheimmersion,and

    intheseaspects,thetraditionalmonitoroutshinesthenewHMDs.Forexample,althoughthe

    selectedHMDpossessedhighpixeldensity(above450ppi),atcloseviewingdistances,the

    so-calledscreen-dooreffectwhichisdefinedasthevisibilityofinter-pixelspaceswasquite

    noticeable [30]. In addition, from an ergonomic standpoint, the roughly half a kilogram

    weight of theHMD can becomeuncomfortablewith prolonged use, and thisweight also

    hindersimmersion.However,newadvancementsmaygiverisetohigher-resolution,lighter-

    weight, and possibly wireless HMDs; thus, both the image quality and weight might be

    reduced in future applications to increase user-friendliness. Furthermore, the cost and

    complexitycouldbereducedbycombiningthetwocomputersetupsintoasinglecomputer

    system. We demonstrated the technical feasibilities of both the AVR, produced with a

    computer-generatedOR,andtheIVR,producedwiththe360°sphericalvideosequence.

    Despitethementionedtechnicallimitations,thecurrentpilotstudy,whichcompared

    theAVRtoregularVRlaparoscopy,showedthatparticipantstechnicalperformancewasnot

    different toregularVR.Still,anon-randomizedstudydesign isa limitationregarding the

    interpretationofthecurrentresults.CochranereviewscomparingregularboxtrainerstoVR

    laparoscopyshowedequivalenceinthosetrainingmethods[14].Thecurrentresultsshow

    no significant difference in performance compared to regular VR surgical simulation

    techniques. This was consistent with our previous investigation, where we compared

    regularVRlaparoscopyandIVR.Inthatstudy,althoughwefoundnodifferenceintechnical

    performance, the questionnaires revealed that the users experienced a high degree of

    presenceandexhilarationandaratherlowrateofmotionsicknesswiththeIVR[26,27].The

    exhilarationexperiencedinVRlaparoscopycombinedwiththeHMDscenarioswasakeyaim

    of the current approach, and it is likely to increase the attractiveness ofVR laparoscopy

  • 15

    simulation.Furtherstudieswithalargercohortmustbeperformedtoevaluatethegeneral

    influenceofAVRandIVRonlaparoscopysimulations.

    However,futureresearchshouldplacethegreatestemphasisoninteractionswithin

    theVRenvironment,accordingto theuser’sperformanceontheLapSim.Here, itmaybe

    possibletousetechnicaldatafromthesimulatororaspeechrecognitionfeaturetotrigger

    differentenvironmentalscenarios,dependingonthesituation.Immersionmaybeimproved

    byreplacingstaticvideopartswithhighresolution360°imagesorbyconstructingvirtual

    environments with multiple 360° videos. Currently, these improvements might be

    technicallydemanding;however,itwouldnotbedifficulttoimplementbinauralrecordings

    ofORsoundsto increasepresenceinthegeneratedworld.Thedegreeof immersionmay

    generallybehigher in thecomputer-generatedAVR than in the IVR,becauseAVRallows

    movements about the virtual room (roomscale VR). However, the fact that the OR

    surroundingsandtheactingindividualswerefamiliartoallparticipantsmayhaveincreased

    thedegreeofpresenceintheIVR.Ontheotherhand,inIVR,movementinthevirtualroom

    is currently impossible, due to the static video recording. Movement in IVR might be

    achievedby fusingmultiple360° camera recordingsof avirtual environment to createa

    photorealistictypeofAVR.Thelowdegreeofmotionsicknessachievedmightbeexplained

    by the fact that all movements were controlled by the participants, and not by the VR

    environment.TheabilitytosimulatecameranavigationwasnotusedinthisfirstVRsetup.

    Apotential goalof futuredevelopmentsmightbe to integrateanassistant thatperforms

    camera navigation; however, this integrationmight also affectmotion sickness. Another

    promisingimprovementduetohighly-immersiveVRapplicationcouldbethesimulationof

    stress training in the OR as part of the surgeon’s learning curve. Further research

    additionallyneedstofocusonthesimulationofinteractivescenarios.IVRmaybeauseful

    tooltosupportthisandinterfacesshouldbedevelopedforsurgicalsimulationsoftwarethat

    triggeraspectsinavirtualsurrounding.

    Inconclusion,wehavepresentedthetechnicalandclinicaldevelopmentofahighly

    immersiveVRlaparoscopysimulationsetup.Thisnewgenerationofsimulationwillenable

    clinicalstudiestoevaluatetheimpactofVRforsurgicaltraining.Furthertechnicaladvances

    areneededtoimprovevisualizationandinteractivity.Clinicalanalysesshouldfocusonthe

    influenceofAVRandIVRonlaparoscopytraining.

  • 16

    Table2:OverviewofcurrentlimitationsofthecustomimmersiveVirtualRealitySimulationandpossiblesolutionsforfutureresearch,includingratingsoftheirclinicalimportanceandtechnicalviability

    Currentlimitation PossiblesolutionClinical

    importanceTechnicalviability

    Monoaudiorecordingof360°camera

    Binauralrecordingofintraoperativesounds

    3 3

    Missingvisibilityofuser’shandmotion

    Handtrackingwithdatagloves 1 2

    Missinghaptic/tactilefeedbackfromobjects(patient,table,steriledrapes,otherpersons…)

    Useofappropriatehapticfeedbackdevice

    3 1

    Flatspherewithmissingdepthoffield

    Three-dimensional360°cameravideo

    3 2

    Static360°videoofsurroundings(noroom-scaleVRinIVR)

    Multiple360°videostocreateaphotorealisticVRoperatingroomtoenableroom-scaleVR

    2 2

    NoreactionofsurroundingstoVRsimulatordata(e.g.,mistakes)

    RecordingofsimulatordatathatcanbeusedtotriggerdifferentscenariosTextrecognitionofsimulatorcommands

    1 3

    InteractionwithVRsimulator(administrative)

    Connectdataglovestosteersimulationsoftware

    1 2

    Cameranavigationnotincluded

    Performvirtualsurgeriesasateamofsurgeons,andincludeacameranavigator,withtwoVRheadsets

    2 1

    Simpleoperatingroomscenario

    Recorddifferentscenarios(e.g.,stresstraining)

    1 3

    Surroundingsfamiliartotheparticipants

    Recorddifferentoperatingrooms 2 3

    Rangeofclinicalimportanceratings:1=highimportance,3=lowimportanceRangeoftechnicalviabilityratings:1=difficult,3=feasible

  • 17

    Acknowledgments

    TheauthorsthankS.Rohde,B.Golla,andM.Kosta(UniversityofMagdeburg)fortechnical

    support. Additionally, we appreciate the support from and discussions with H. Hecht,

    DepartmentofGeneralExperimentalPsychology,JohannesGutenbergUniversity,Mainz.

    EthicalApproval

    Forthistypeofstudy,formalconsentwasnotrequired.Thisstudydidnotincludepatients

    oranimals.

    Funding

    Financial support for the laparoscopy simulatorwas provided by themedical education

    project,“MAICUM”,fromtheMedicalCenteroftheJohannesGutenbergUniversityofMainz.

    Fundingfortheadditionalimmersivevirtualrealityhardwarewasprovidedbyintramural

    fundingfromtheMedicalCenteroftheJohannesGutenbergUniversityofMainz,Germany,

    and educational intramural funding by the Otto-von-Guericke University Magdeburg,

    Germany.

    ConflictofInterest

    TheauthorsTH,TW,MP,HL,WKandCHdeclarenoconflictsof interestor financial ties

    relatedtothisstudy.

    Informedconsent

    Thisarticledoesnotcontainpatientdata.

  • 18

    References

    1. AggarwalR,GrantcharovTP,EriksenJR,BlirupD,KristiansenVB,Funch-JensenP,

    DarziA(2006)Anevidence-basedvirtualrealitytrainingprogramfornovice

    laparoscopicsurgeons.AnnSurg244(2):310-314.

    doi:10.1097/01.sla.0000218094.92650.44

    2. vanDongenKW,vanderWalWA,RinkesIH,SchijvenMP,BroedersIA(2008)Virtual

    realitytrainingforendoscopicsurgery:voluntaryorobligatory?SurgEndosc22

    (3):664-667.doi:10.1007/s00464-007-9456-9

    3. HuberT,KirschniakA,JohanninkJ(2017)SurveyofTraininginLaparoscopicSkillsin

    Germany.ZentralblChir142(1):67-71.doi:10.1055/s-0042-116327

    4. EarleD,BettiD,ScalaE(2017)Developmentofarapidresponseplanfor

    intraoperativeemergencies:theCirculate,Scrub,andTechnicalAssistanceTeam.AmJ

    Surg213(1):181-186.doi:10.1016/j.amjsurg.2016.01.047

    5. ChiricoA,YadenDB,RivaG,GaggioliA(2016)ThePotentialofVirtualRealityforthe

    InvestigationofAwe.FrontPsychol7:1766.doi:10.3389/fpsyg.2016.01766

    6. SchmittYS,HoffmanHG,BloughDK,PattersonDR,JensenMP,SoltaniM,CarrougherGJ,

    NakamuraD,ShararSR(2011)Arandomized,controlledtrialofimmersivevirtual

    realityanalgesia,duringphysicaltherapyforpediatricburns.Burns37(1):61-68.

    doi:10.1016/j.burns.2010.07.007

    7. RizzoA,HartholtA,GrimaniM,LeedsA,LiewerM(2014)Virtualrealityexposure

    therapyforcombat-relatedposttraumaticstressdisorder.Computer47(7):31-37

    8. LaverKE,GeorgeS,ThomasS,DeutschJE,CrottyM(2015)Virtualrealityforstroke

    rehabilitation.CochraneDatabaseSystRev(2):Cd008349.

    doi:10.1002/14651858.CD008349.pub3

    9. ParsonsTD(2015)VirtualRealityforEnhancedEcologicalValidityandExperimental

    ControlintheClinical,AffectiveandSocialNeurosciences.Frontiersinhuman

    neuroscience9:660.doi:10.3389/fnhum.2015.00660

    10. RivaG(2003)Applicationsofvirtualenvironmentsinmedicine.MethodsInfMed42

    (5):524-534

    11. OlaskyJ,SankaranarayananG,SeymourNE,MageeJH,EnquobahrieA,LinMC,

  • 19

    AggarwalR,BruntLM,SchwaitzbergSD,CaoCG,DeS,JonesDB(2015)Identifying

    OpportunitiesforVirtualRealitySimulationinSurgicalEducation:AReviewofthe

    ProceedingsfromtheInnovation,Design,andEmergingAlliancesinSurgery(IDEAS)

    Conference:VRSurgery.SurgInnov22(5):514-521.doi:10.1177/1553350615583559

    12. PascholdM,SchroderM,KauffDW,GorbauchT,HerzerM,LangH,KneistW(2011)

    Virtualrealitylaparoscopy:whichpotentialtraineestartswithahigherproficiency

    level?IntJComputAssistRadiolSurg6(5):653-662.doi:10.1007/s11548-010-0542-4

    13. LarsenCR,SoerensenJL,GrantcharovTP,DalsgaardT,SchouenborgL,OttosenC,

    SchroederTV,OttesenBS(2009)Effectofvirtualrealitytrainingonlaparoscopic

    surgery:randomisedcontrolledtrial.BMJ338:b1802.doi:10.1136/bmj.b1802

    14. NagendranM,GurusamyKS,AggarwalR,LoizidouM,DavidsonBR(2013)Virtual

    realitytrainingforsurgicaltraineesinlaparoscopicsurgery.CochraneDatabaseSyst

    Rev(8):CD006575.doi:10.1002/14651858.CD006575.pub3

    15. PascholdM,HuberT,KauffDW,BuchheimK,LangH,KneistW(2014)Preconditioning

    inlaparoscopicsurgery--resultsofavirtualrealitypilotstudy.LangenbecksArchSurg

    399(7):889-895.doi:10.1007/s00423-014-1224-4

    16. KneistW,HuberT,PascholdM,LangH(2016)[3DVirtualRealityLaparoscopic

    SimulationinSurgicalEducation-ResultsofaPilotStudy].ZentralblChir141(3):297-

    301.doi:10.1055/s-0033-1350609

    17. SorensenSM,SavranMM,KongeL,BjerrumF(2016)Three-dimensionalversustwo-

    dimensionalvisioninlaparoscopy:asystematicreview.SurgEndosc30(1):11-23.

    doi:10.1007/s00464-015-4189-7

    18. TillouX,CollonS,Martin-FrancoisS,DoerflerA(2016)RoboticSurgerySimulator:

    ElementstoBuildaTrainingProgram.JSurgEduc73(5):870-878.

    doi:10.1016/j.jsurg.2016.04.008

    19. SankaranarayananG,LiB,ManserK,JonesSB,JonesDB,SchwaitzbergS,CaoCG,DeS

    (2016)Faceandconstructvalidationofanextgenerationvirtualreality(Gen2-VR)

    surgicalsimulator.SurgEndosc30(3):979-985.doi:10.1007/s00464-015-4278-7

    20. LaValleSM,YershovaA,KatsevM,AntonovMHeadtrackingfortheOculusRift.In:

    RoboticsandAutomation(ICRA),2014IEEEInternationalConferenceon,2014.IEEE,

    pp187-194

  • 20

    21. EvangelakosD,MaraMExtendedTimeWarplatencycompensationforvirtualreality.

    In:Proceedingsofthe20thACMSIGGRAPHSymposiumonInteractive3DGraphicsand

    Games,2016.ACM,pp193-194

    22. CoburnJQ,FreemanI,SalmonJL(2017)AReviewoftheCapabilitiesofCurrentLow-

    CostVirtualRealityTechnologyandItsPotentialtoEnhancetheDesignProcess.

    JournalofComputingandInformationScienceinEngineering17(3):031013

    23. NicholsS,HaldaneC,WilsonJR(2000)Measurementofpresenceanditsconsequences

    invirtualenvironments.InternationalJournalofHuman-ComputerStudies52(3):471-

    491.doi:http://dx.doi.org/10.1006/ijhc.1999.0343

    24. MadaryM,MetzingerTK(2016)RealVirtuality:ACodeofEthicalConduct.

    RecommendationsforGoodScientificPracticeandtheConsumersofVR-Technology.

    FrontiersinRoboticsandAI3(3).doi:10.3389/frobt.2016.00003

    25. KeshavarzB,HechtH(2011)ValidatinganEfficientMethodtoQuantifyMotion

    Sickness.HumanFactors:TheJournaloftheHumanFactorsandErgonomicsSociety53

    (4):415-426.doi:10.1177/0018720811403736

    26. HuberT,PascholdM,HansenC,WunderlingT,LangH,KneistW(2017)New

    dimensionsinsurgicaltraining:immersivevirtualrealitylaparoscopicsimulation

    exhilaratessurgicalstaff.SurgEndosc.doi:10.1007/s00464-017-5500-6

    27. HuberT,PascholdM,HansenC,LangH,KneistW(2017)["Iwilldolaparoscopy

    somewhereelse":Total,highlyimmersivevirtualrealitywithoutsideeffects?].Der

    Chirurg.doi:10.1007/s00104-017-0465-5

    28. BowmanDA,McMahanRP(2007)VirtualReality:HowMuchImmersionIsEnough?

    Computer40(7):36-43.doi:10.1109/MC.2007.257

    29. MilgramP,TakemuraH,UtsumiA,KishinoFAugmentedreality:aclassofdisplayson

    thereality-virtualitycontinuum.In,1995.pp282-292

    30. ChoJ-m,KimY-d,JungSH,ShinH,KimTScreenDoorEffectMitigationandIts

    QuantitativeEvaluationinVRDisplay.In:SIDSymposium2017.vol1.WileyOnline

    Library,pp1154-1156