To hear today’s event : Listen via the audio stream...

63
© 2012 ANSYS, Inc. November 27, 2014 1 To hear today’s event : Listen via the audio stream through your computer speakers OR Listen via phone by clicking the teleconference request button in the Participants window You will not hear “hold music” while waiting for the event to begin.

Transcript of To hear today’s event : Listen via the audio stream...

© 2012 ANSYS, Inc. November 27, 2014

1

To hear today’s event : Listen via the audio stream through your

computer speakers OR

Listen via phone by clicking the teleconference request button in the

Participants window

You will not hear “hold music” while waiting for the event to begin.

© 2012 ANSYS, Inc. November 27, 2014

2

Power Electronics for Hybrid and Electric Vehicles

Mark Solveson – Application Engineer

© 2012 ANSYS, Inc. November 27, 2014

3

Simplorer Capabilities, Components, Semiconductors

Thermal performance Power Electronics Examples

System Deisgn Integration PExprt – EMI, RMxprt Maxwell Automotive system Examples

Power Electronics for Hybrid and Electric Vehicles

© 2012 ANSYS, Inc. November 27, 2014

5

Systems Engineering • Modeling Hybrid Electric Systems through the Workbench Platform

• Includes both detailed component level solutions as well as high level

Reduced Order Models (ROM) in their appropriate physics domain

• These detailed component models can then be included in a complete

system solution which integrates multiple physical solutions to determine

overall performance of the HEV

© 2012 ANSYS, Inc. November 27, 2014

6

Simplorer Technology Highlights

© 2012 ANSYS, Inc. November 27, 2014

7

State-of-the-Art Drive System: A Multidomain Challenge

Drive systems

• Simplorer conservative structures (electrical circuits, mechanics, magnetics, hydraulics, thermal, ...)

• Simplorer non-conservative systems (blocks, states, digital, nth-order differential equations.

Drive components

• Maxwell with motion and circuits

• RMxprt and PExprt (incl. thermal)

• Maxwell with ANSYS Thermal.

• HFSS, Q3D, SIwave with circuits (Designer/Nexxim), ANSYS Mechanical, ICEPACK, etc. ...

ANSYS provides a comprehensive toolset for multidomain work:

? = M SV RS

© 2012 ANSYS, Inc. November 27, 2014

8

+

-

B 11A 11 C11

A 12 A 2

B 12 B 2

C12 C2

ROT2ROT1

ASMS

3~M

J

STF

M(t)

GN

D

m

STF

F(t)

GN

D

Magnetics

JA

MMF

Mechanics

L

H Q

Hydraulics, Thermal, ...

Simplorer Simulation Data Bus / Simulator Coupling Technology

State-space Models

statetransition

AUS

SET: TSV1:=0SET: TSV2:=1SET: TSV3:=1SET: TSV4:=0

(R_LAST.I <= I_UGR)

(R_LAST.I >= I_OGR)

EIN

SET: TSV1:=1SET: TSV2:=0SET: TSV3:=0SET: TSV4:=1

Cxy

BuAxx

Electrical circuits

Multi-Domain System Simulator

Analog Simulator

Block Diagram Simulator

State Machine Simulator

Digital/VHDL Simulator

PROCESS (CLK,PST,CLR) BEGIN IF (PST = '0') THEN state <= '1'; ELSIF (CLR = '0') THEN state <= '0'; ENDIF;

JK-Flip flop with Active-low Preset and Clear

CLK

INV

CLK

CLK

J Q

QB

CLR

PST

Flip flop

K

CLK

CLK

INV

0 0 0 0 1 1 1 1 1 1X-Axis

Curve Data

ffjkcpal1.clk:TR

ffjkcpal1.j:TR

ffjkcpal1.k:TR

ffjkcpal1.clr:TR

ffjkcpal1.pst:TR

ffjkcpal1.q:TR

ffjkcpal1.qb:TR

MX1: 0.1000

© 2012 ANSYS, Inc. November 27, 2014

9

Electromechanical Design Environment

Simulation Data Bus/Simulator Coupling Technology

Model Database Electrical, Blocks, State Machines, Automotive, Hydraulic,

Mechanics, Power, Semiconductors…

Maxwell Circuits Block

Diagram State

Machine

VHDL-AMS Spice/PSPICE

Characterization

Matlab RTW

UDC MathCAD Matlab Simulink

Maxwell

C/C++ Programming Interface (FORTRAN, C, C++ etc.)

Co-Simulation

© 2012 ANSYS, Inc. November 27, 2014

10

Power Electronics Applications . . .

3 phase Inverters Multi-level Inverters

DC/DC Converters Rectifiers

PWM/Vector Control Smart Grid

Semiconductor models EMI/EMC

© 2012 ANSYS, Inc. November 27, 2014

11

Power Electronics Applications . . .

© 2012 ANSYS, Inc. November 27, 2014

12

Simplorer Library Components

© 2012 ANSYS, Inc. November 27, 2014

13

Block Types

GAIN

GAIN1

G(s)

GS1 Memory

DEAD1

Delay

GZ1

DEAD

DEAD2

G(z)

GZ1

S & H

SAH1

UnitDelay

GZ2

Filter

GZ3

Arc Cos

Ln

n

_ +

MAX

MAX1

MUL1

TPH1

EQUBL

EQUBL1

Continuous

Discrete

Signal Processing Math

© 2012 ANSYS, Inc. November 27, 2014

14

State Machines

Sequential

Parallel Processes

Cycle (Loop)

Synchronization

Alternative (IF-THEN-ELSE)

Note: Many different kinds of processes can be simulated

If a >10 If a<10

© 2012 ANSYS, Inc. November 27, 2014

15

What is VHDL-AMS

VHDL-AMS is a strict superset of IEEE Std. 1076

Very High Speed Integrated Circuit Hardware Description

Language – Analog and Mixed-Signal

1993 1999

IEEE 1076

VHDL

IEEE 1076.1

VHDL-AMS

Description

& simulation

of event-

driven

systems

Description &

simulation of

analog and

mixed signal

circuits and

systems

Mixed Technology Electrical Mechanical Thermal Magnetic Hydraulic …

Electrical Analog Digital

© 2012 ANSYS, Inc. November 27, 2014

16

VHDL-AMS (Compatibility, Capability)

Standard Format Allows Model Portability

• Different engineering groups within same company

• With Sub-Contractors

• Between different simulators

Multi-level Modeling

• Different levels of abstraction of model behavior

Multi-domain Modeling

• Electrical, Thermal, Magnetic, Mechanical, etc

Mixed-signal Modeling

• Supports analog and digital modeling

© 2012 ANSYS, Inc. November 27, 2014

17

Why Use VHDL-AMS (Cont’d)

Thermal : Heat flow, Temperature Magnetic : Flux, MMF

© 2012 ANSYS, Inc. November 27, 2014

18

AK30 Automotive Library

• FAT-AK30 is organized within the German Association for Research in Automobile Technology (FAT) of the VDA.

• Supporting the VDA/FAT-AK30 VHDL-AMS libraries along with the Simplorer VHDL-AMS SML (Simplorer Model Language) and C-Model libraries helps design teams reduce risk and enable first-pass system success in complex automotive system design, contributing significantly to the safety and success of the product design stage through virtual hands-on experience.

• Simplorer's support of the VDA/FAT-AK30 VHDL-AMS models provides our users with access to standardized automotive component models that can be readily placed within a design.

• http://fat-ak30.eas.iis.fraunhofer.de/index_en.html

© 2012 ANSYS, Inc. November 27, 2014

19

SMPS Library

Simplorer’s Switched Mode Power Supply (SMPS) model library provides a comprehensive set of predefined power electronic circuit topologies and

related control algorithms for the design of power converters.

• Graphical modeling of power systems • Predefined models for frequently

used DC/DC converter topologies (including PFC, isolated and non-isolated designs)

• AC to DC elements such as single and three phase rectifiers, system energy storage elements, loads, and sources aid in the over all power system design and modeling.

• Common power electronic control algorithms and control blocks, such as PWMs, PID, abc <-> dq, etc, aid in the feedback designs.

• Switching models provide accurate voltage and current waveform representation

• Average models can be used for control loop design, AC analysis, and system level converter modeling.

© 2012 ANSYS, Inc. November 27, 2014

20

IC Power Modules Simplorer Model Database

© 2012 ANSYS, Inc. November 27, 2014

21

IC Power Modules Simplorer Model Database

Active clamp forward converter with UCC3580

R1

0.05ohm

C1

2.2e-007farad

R2

2000ohm

R4

C22.2e-007farad

R55.1ohm

L15e-006H

C30.0001farad

R6

0.11ohm

+

V

VM1

+

V

VM3

+

V

VM4

A

AM1

E1 48V

R9150000ohm

R10

27000ohm

C7

0.0001farad

R1210000ohm

NPN61

R11

270000ohm

C63.3e-010farad

R8

200000ohm

R3

5.1ohm

C52e-008farad

R7

C48.2e-010farad

R13

R1718000ohm

R16

72800ohm

C9

1e-010farad

R14

R15

C8

1e-007farad

R18

1600ohm

R19 5000ohm

R22

R23

E2

+

VVM5

AAM3

+

V

VM6

R24

AAM4

1

23

4

PS2705

A

AM2

TL431 R20

10000ohm

C12

4.472nF

C10

159.2pF

R25

12000ohm

R21438ohm

C11

3.635nF

TFR1P2W1

0.001H

0.1666

DRAIN

BULK

SOURCEGATE

irf6401

_40cpq0601

_40cpq0602

D_Z_ST_18V1

D_Z_ST_13V1

GND

PGND

OUT2

OUT1

RAMP

EAOUT

EAIN

REF

DELAY

VDD

LINE

SHTDWN

SS

CLK OSC2

OSC1

UCC3580x2

UCC3580x

BULK

DRAIN

GATE

SOURCE

irf9640_1

Vout

5.80 5.82 5.85 5.88 5.90 5.92 5.95 5.97 6.00Time [ms]

20.00

25.00

30.00

35.00

L1

.I [A

]

Inductor Current ANSOFT

5.80 5.82 5.85 5.88 5.90 5.92 5.95 5.97 6.00Time [ms]

3.00

3.20

3.40

3.60

R6

.V [V

]

Output Voltage ANSOFT

0.00 1.00 2.00 3.00 4.00 5.00 6.00Time [ms]

0.00

12.50

25.00

37.50

R6

.I [A

]

Curve Info

R6.I

GND

PGND

OUT2

OUT1

RAMP

EAOUT

EAIN

REF

DELAY

VDD

LINE

SHTDWN

SS

CLK OSC2

OSC1

© 2012 ANSYS, Inc. November 27, 2014

22

+

-

+ V

Ideal switches and semiconductor - System Level

Semiconductor - Device Level Spice compatible models

Switches - Semiconductor

© 2012 ANSYS, Inc. November 27, 2014

23

Semicondutor Modeling In Simplorer

IGBT Device model

• Semiconductor device model on Simplorer

• IGBT Device model : Average / Dynamic

• Capability of IGBTmodel

Thermal management for Inverter

• Thermal model in Simplorer’s semiconductor model.

• Extract thermal network from ANSYS Icepak

• Heat / Power loss coupling with device model

Inverter surge and conduction noise

• Extract parasitic LCR from Q3D Extractor

• Inverter surge and conduction noise in Simplorer

© 2012 ANSYS, Inc. November 27, 2014

24

Semiconductor Device Model in Simplorer

Ideal switch model

• ON:short, OFF:open

Semiconductor system level

• Modeled as nonlinear resistance in consideration of a static characteristic.

Semiconductor device level

• Dynamic characteristics, therma and physical characteristics are modeled. – BJT / MOSFET /JFET / IGBT / Diode / Thysistors…

SPICE compatible

• spice-3f5 compatible – MOSFET (spice3 Lv.1 - 6, BSIM1 - 4, EKV,JFET)

© 2012 ANSYS, Inc. November 27, 2014

25

IGBT Model 1. System model

• Nonlinear resistance – verification of operation

2. Average model

• Static char. & average loss. – Heating & temp. rise

3. Basic Dynamic model

• Dynamic char.& Energy – Switching loss & heating.

4. Advanced Dynamic model

• Detailed dynamic char. – Inverter surge & noise

1) 2)

3) 4)

© 2012 ANSYS, Inc. November 27, 2014

26

IGBT Characterization

• Average model is developed for system simulation and is integrated into the extraction tool

• Common thermal model is used among the IGBT family members

© 2012 ANSYS, Inc. November 27, 2014

27

Average IGBT Model

A switching waveform (current and voltage) is systematic.

Calculate a switching loss for every cycle.

DC loss and turn ON/OFF loss pulse is an input to a thermal network.

Losses compute as an averaged rectangle pulse.

A thermal network is calculable in the independent sampling time.

• PON/POFF – switching loss • EON/EOFF – switching energy loss • PDC – conduction loss • TON/TOFF – turn on , turn off time • Vce,sat – collector-emitter saturation voltage.

© 2012 ANSYS, Inc. November 27, 2014

28

-231.0n 618.0n0 200.0n 400.0n

-50.0

700.0

0

166.7

333.3

500.0

-172.0n 750.0n0 200.0n 400.0n 600.0n

-50.0

700.0

0

166.7

333.3

500.0

Dynamic IGBT Model

Static characteristic modeled the same as Average model.

Switching energy is derived by the integration of a current cross voltage waveform.

The Dynamic model can obtain an exact switching waveform.

It can applies also to EMI/EMC and a noise simulation.

(VCE=600V、IC=300A、VGE=15V、T=25℃)

Eoff

Eon

© 2012 ANSYS, Inc. November 27, 2014

29

IGBT Device Circuit Model

Internal equivalent circuit

Internal thermal network

Current, Voltage, Temp., VgeSlope dependency modeled for each capacitance. Independent tail current source. RC snubber are implemented.

© 2012 ANSYS, Inc. November 27, 2014

30

IGBT Characterization

© 2012 ANSYS, Inc. November 27, 2014

31

-231.0n 618.0n0 200.0n 400.0n

-50.0

700.0

0

166.7

333.3

500.0

Simplorer + Icepak = Detailed Modeling Of Thermal System

Simplorer

ANSYS Icepak Q3D Extractor

Parasitism LCR extraction

Device property and loss consultation

CAD Import

Design of the cooling technique and arrangement

Design of substrate radiating route

The simulation in consideration of change of detailed temperature environment

© 2012 ANSYS, Inc. November 27, 2014

32

IGBT Inverter Design Circuit Design (Loss) + Thermal Model

Line current

1T, 1D SW loss + DC loss

1T, 1D junction temperature

Package temperature

Examination of temperature cycle

1T 1D

Ambient temperature = 20 cel

© 2012 ANSYS, Inc. November 27, 2014

33

Simulation initiated from SIMPLORER

Simplorer - Simulink Cosimulation

© 2012 ANSYS, Inc. November 27, 2014

34

Embedded Into

Chip

Esterel Acquisition

C Code and/or

VHDL

Software Engineering

Certifications (DO-178B, IEC 61508, EN 50128, ISO26262, etc.)

[…]

switch (SSM_SM1_dispatch_sel) { case SSM_SM1_Locked__ABC_N : outC->foreground = white_ABC_N; outC->background = green_ABC_N; if (inC->Unlock) { outC->M_pre_ = SSM_SM1_Preselected__ABC_N; } else { outC->M_pre_ = SSM_SM1_Locked__ABC_N; } break; case SSM_SM1_WaitUnlock__ABC_N : outC->foreground = black_ABC_N; outC->background = grey_ABC_N; if (inC->Unlock) { outC->M_pre_ = SSM_SM1_Unselected__ABC_N; } else { outC->M_pre_ = SSM_SM1_WaitUnlock__ABC_N; } break; […]

Sub-System - Control System • Embedded Software

Embedded Software

© 2012 ANSYS, Inc. November 27, 2014

35

System Analysis Examples

© 2012 ANSYS, Inc. November 27, 2014

36

Maxwell 2-D/3-D Electromagnetic Components

Field Solution

Model Generation

HFSS

ANSYS

Mechanical Thermal/Stress

ANSYS CFD Fluent

PExprt Magnetics

RMxprt Motor Design

Maxwell Design Flow – Field Coupling

© 2012 ANSYS, Inc. November 27, 2014

37

Simplorer System Design

PP := 6

ICA:

A

A

A

GAIN

A

A

A

GAIN

A

JPMSYNCIA

IB

IC

Torque JPMSYNCIA

IB

IC

Torque

D2D

HFSS, Q3D, SIwave

ANSYS CFD Icepack/Fluent

Maxwell 2-D/3-D Electromagnetic Components

ANSYS

Mechanical Thermal/Stress

PExprt Magnetics

RMxprt Motor Design

Simplorer Design Flow – System Coupling

Model order Reduction

Co-simulation

Push-Back Excitation

© 2012 ANSYS, Inc. November 27, 2014

38

PExprt/PEmag Design Example: Transformer For Linear Power Supply

PExprt is used to design the transformer of an ac/dc linear power supply (24 V, 5 A).

The transformer has the following characteristics: • EI laminated core shape.

• Primary voltage is 50 Hz, sinusoidal. 230 V (rms) = 325.27 V (peak).

• Secondary voltage is 24 V (peak).

• Output power is 170 W.

• Unit power factor is assumed.

© 2012 ANSYS, Inc. November 27, 2014

39

0

3.00

1.00

2.00

1.95m 2.00m1.96m 1.98m

Phase Currents

AM1.I ...

AM2.I ...

AM3.I ...

Magnetic Component Design with PExprt

© 2012 ANSYS, Inc. November 27, 2014

40

PExprt - Coupled to Magnetic FEA Solution

© 2012 ANSYS, Inc. November 27, 2014

41

snubber

input

Output

push pull transformer inplemented

using coupled inductors for speed, robustness

inputs include main Inductance, leakage Inductance,

wire resistance, coupling coeff "k"

The output v oltage Vout equals the av erage of the wav ef orm applied to the LC f ilter:

Vout = Vin*(n2/n1)*D*2 = 48*0.127*0.33*2 = 4 (note minus diode drop now = 3.3V

where:

NOTE n2/n1 = sqrt(Ls/Lp) = sqrt(20uH/1250uH)

= sqrt(0.016) = 0.127

Vout=Av erage output v oltage

Vin=Supply Voltage

n2=half of total number of secondary turns

n1=half of total number of primary turns

D = duty cy cle

48V to 3.3V Push Pull Converter

0

E1

48V

R17

0.5ohm

C6

5uF

L1

7.5uH

CSx1

CSx2

D1

D2

W

+

WM_load

R1

C1

R4

C2

4 Coupled Inductors

La

Lb

Lc

Ld

coupled_ind_w_leak_r1

coupled_ind_w_leak_r

ICA:

FML_INIT1

frequency:=100.0e3

dutycycle:=0.33

period:=1/frequency

pulsewidth:=dutycycle*period

Ea_inv

Eb_inv

Vsw_b

Vc

Vsw_a

-15.00

5.00

16.50 Curve Info

Ea_inv...TR

-15.00

5.00

16.50 Curve Info

Eb_inv...TR

0.00

5.00

10.00Curve Info

L1.ITR

0.00

2.00

3.52Curve Info

WM_load...TR

150.00 160.00 170.00 180.00 190.00 200.00Time [us]

0.00

100.00

Vsw

_a.V

[V

]

Curve Info

Vsw_a...TR

150.00 160.00 170.00 180.00 190.00 200.00Time [us]

0.00

100.00

Vsw

_b.V

[V

]

Curve Info

Vsw_b...TR

150.00 160.00 170.00 180.00 190.00 200.00Time [us]

-15.00

5.00

16.50

Y1 [V

]

Curve Info

Ea_inv...TR

Eb_inv...TR

150.00 160.00 170.00 180.00 190.00 200.00Time [us]

-5.00

0.00

5.00

10.00

D1.I [A

]

Curve Info

D1.ITR

150.00 160.00 170.00 180.00 190.00 200.00Time [us]

-5.00

0.00

5.00

10.00

D2.I [A

]

Curve Info

D2.ITR

150.00 160.00 170.00 180.00 190.00 200.00Time [us]

-20.00

0.00

20.00

-7.50

2.50

7.50

0.00

7.50

0.00

10.00

0.00

12.50

25.00

37.50

50.00

62.50

75.00

87.50

100.00

Curve Info

Eb_inv...TR

Vc.VTR

D1.ITR

L1.ITR

Vsw_b...TR

DC/DC Converter Examples with PExprt

snubber

input

Output

48V to 3.3V Push Pull Converter The output voltage Vout equals the average of the waveform applied to the LC filter:

Vout = Vin*(n2/n1)*D*2 (note need to subtract diode drop)

where:

NOTE n2/n1 = sqrt(Ls/Lp)

Vout=Average output voltage

Vin=Supply Voltage

n2=half of total number of secondary turns

n1=half of total number of primary turns

D = duty cycle

0

E1

48V

R170.5ohm

C6

5uF

L1

7.5uH

CSx1

CSx2

D1

D2

W

+

WM_load

R1

C1

R4

C2

Ap_center

Am_center

Bp_center

Bm_center

Cp_center

Cm_center

Dp_center

Dm_center

ICA:

FML_INIT1

frequency:=100.0e3dutycycle:=0.33

period:=1/frequencypulsewidth:=dutycycle*period

Ea_inv

Eb_inv

Vsw_b

Vc

Vsw_a

-15.00

5.00

16.50Curve Info

Ea_inv.VTR

-15.00

5.00

16.50Curve Info

Eb_inv.VTR

0.00

5.00

10.00Curve Info

L1.ITR

0.00

2.00

3.75Curve Info

WM_load.VTR

150.00 160.00 170.00 180.00 190.00 200.00Time [us]

-25.00

75.00

127.90

Vsw

_a.V

[V

]

Curve Info

Vsw_a.VTR

150.00 160.00 170.00 180.00 190.00 200.00Time [us]

-25.00

75.00

127.74

Vsw

_b.V

[V

]

Curve Info

Vsw_b.VTR

150.00 160.00 170.00 180.00 190.00 200.00Time [us]

-15.00

5.00

16.50

Y1 [V

]

Curve Info

Ea_inv.VTR

Eb_inv.VTR

150.00 160.00 170.00 180.00 190.00 200.00Time [us]

-5.00

0.00

5.00

10.00

D1.I [A

]

Curve Info

D1.ITR

150.00 160.00 170.00 180.00 190.00 200.00Time [us]

-5.00

0.00

5.00

10.00

D2.I [A

]

Curve Info

D2.ITR

150.00 160.00 170.00 180.00 190.00 200.00Time [us]

-20.00

0.00

20.00

-10.00

2.50

7.50

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0.00

10.00

-25.00

-5.00

15.00

35.00

55.00

75.00

95.00

115.00

Curve Info

Eb_inv.VTR

Vc.VTR

D1.ITR

L1.ITR

Vsw_b.VTR

push_pull_pwrstg_PExprtVoltages and Currents ANSOFT

© 2012 ANSYS, Inc. November 27, 2014

42

Conducted EMI

© 2012 ANSYS, Inc. November 27, 2014

43

Ansoft Partnership with Rockwell IEMDC – 2009, Miami, FL

© 2012 ANSYS, Inc. November 27, 2014

44

Example: Drive Cycle With Switching Loads

R_Misc Heated_Backlight HeadLamps R_Wipers Heated_Seats HeatBlwr

S1 S2 S3 S4 S5 S6

YtMISC

YtHBL

YtHL

YtWipers

YtHS

YtHBlwr

Yt

RPM

X Y

Alternator_Char

A

AM1

A

AM2 YtMystery

S7

HeatBlwr1

Battery

- +

LBATT_A1

GA

IN

Alternatoralternator

w w1

w2

w3

w4

w5Engine

engine_ss1

0.00 1250.00 2500.00 3750.000.00

500000.00

1000000.00

1500000.00

2000000.00

2500000.00Curve Info

engine_ss1.nTR

0.00 1250.00 2500.00 3750.000.00

4.00

8.00Curve Info

AM1.ITR

0.00 1250.00 2500.00 3750.00-150.00

50.00

150.00 Curve InfoAM2.I

TR

0.00 1250.00 2500.00 3750.008.75

13.75

18.75

20.00Curve Info

N0008.VTR

0.00 1250.00 2500.00 3750.00Time [s]

0.00

1000.00

2000.00

2500.00

RP

M.V

AL

Curve InfoRPM.VAL

TR

© 2012 ANSYS, Inc. November 27, 2014

45

Forward Converter Example

0

00 0

Yt

v in_ctrl

v in_sw

vin_ctrl.VAL

W

+

WM2_sw

rload_sw

7.5

r41

87000ohm

r11

166000ohm

v ref 1

5V

r21

50000ohm

c21

1.479e-009farad

r31

7450ohm

C2

2.5e-006farad

+

-

OPV51

50000V_per_V10V-10V0ohm5000000Hz

c11

4.4e-010farad

ICA:

pwm_v ariables

swfreq := 200000maxduty := 0.45HI := 5

LO := 0minduty := 0.01threshold := 2.5maxtime := maxduty / swfreq

D1

PWM function

Using States

Switch Drive

Control Voltage

pwm_hier_states1

mindutymaxdutyLOHIswfreqmaxtimethreshold

L1

0.53mH

D2

TFR1P2_1

Switch_b

TFR1P1_1

D3 D4

Switch_a

W+WM1_sw

EQU PowerCalc

pin_avg := pwr_meter_input_avg.MEAN

pout_avg := pwr_meter_output_avg.MEAN

eff1 := pout_avg / (pin_avg + 1.0e-006) * 100.0

pin_mean := pwr_meter_input_mean.MEAN

pout_mean := pwr_meter_output_mean.MEAN

eff2 := pout_mean / (pin_mean + 1.0e-006) * 100.0

TR

Probe

pwr_meter_output_avg

TR

Probe

pwr_meter_input_avg

Moving

Average

pwr_meter_input_mean

Moving

Average

pwr_meter_output_mean

0.00

5.00

10.00

15.00

18.00Ansoft LLC Output Voltage ANSOFT

Curve Infovout_sw.V

TR

-0.50

0.50

1.50

2.50Ansoft LLC Inductor Current ANSOFT

Curve InfoL1.I

TR

0.00 250.00 500.00 750.00 1000.00Time [us]

0.00

100.00

123.21

Y1

Power ANSOFT

Curve Infopwr_meter_input_avg.MEAN

TR

pwr_meter_input_mean.ME...TR

1

Time [us] 990eff1 94.50eff2 94.46

Efficiency ANSOFT

© 2012 ANSYS, Inc. November 27, 2014

46

RMxprt - Initial Motor Design Analytical solution

• 16 different Motor/Generator types

• Input data

• geometry, winding layout

• saturation, core losses

• comprehensive results – machine parameters

– performance curves

© 2012 ANSYS, Inc. November 27, 2014

47

Parametric Sweep:

Stack_Length

Skew/no Skew

Stator_ID

AirGap

Monitor:

Torque

Power

Efficiency

Determine the Best Design

Create FEA Model

Export Circuit Model

RMxprt - Motor Design

© 2012 ANSYS, Inc. November 27, 2014

48

RMxprt Dynamic Link to Simplorer

© 2012 ANSYS, Inc. November 27, 2014

49

Rmxprt: Simplorer Circuit

0

0

0 0

0

C24700uF

IGBT1 IGBT2 IGBT3

IGBT4 IGBT5

IGBT6

D7 D8 D9

D10 D11

D12

ICA:

FML_INIT1

TP:=0.00005ustmax:=C1.Vt0a:=0t0b:=0t0c:=0

P11

SET: t0a:=timeSET: z4:=0SET: z1:=1

P12

SET: z4:=1SET: z1:=0

Time - t0a>=TEa

Time - t0a>=TP

EQU

FML1

theta_el:=SM_ROT1.PHI*Pole/2yalph:=cos(theta_el) * yd.VAL -sin(theta_el) *yq.VALybeta:=sin(theta_el) * yd.VAL + cos(theta_el) * yq.VALya:=yalphyb:=-0.5 * yalph + ybeta * sqrt(3)/2yc:=-ya - ybTEa:=(ya/ustmax + 1) * TP/2TEb:=(yb/ustmax + 1)*TP/2TEc:=(yc/ustmax + 1)*TP/2i1alph:=AM1.Ii1beta:=(AM1.I + 2*AM2.I)/sqrt(3)i1d1:=i1alph * cos(theta_el) + i1beta * sin(theta_el)i1q1:=i1beta * cos(theta_el) - i1alph * sin(theta_el)

CONSTn_ref

3600/60*pi*2

SUM1

GAIN

GAIN2

I

INTG1

SUM2

LIMIT

iq_refSUM3

GAIN

iq

I

INTG2

GAIN

GAIN1SUM4

LIMIT

yq

LIMIT

yd SUM5

GAIN

GAIN3

I

INTG3

GAIN

id_ref

SUM6

GAIN

id

Time - t0b>=TP

Time - t0b>=TEb

P22

SET: z5:=1SET: z2:=0

P21

SET: t0b:=timeSET: z5:=0SET: z2:=1

Time - t0c>=TP

Time - t0c>=TEc

P32

SET: z6:=1SET: z3:=0

P31

SET: t0c:=timeSET: z6:=0SET: z3:=1

+

V

VM1 +

V

VM2

r4 r5 r6

RMxprt

A

B

C

N

ROT1

ROT2

A

AM1

A

AM2

+

FSM_ROT1

w

+

VM_ROT1

MASS_ROT1

0.005kgm2

T

F_ROT1

(10+0.1*sin(2*pi*120*Time))*n.VAL/n_ref

A

AM3

C14700uF

r7

L40.0005H

L5

0.0005H

L6

0.0005H

GAINn

-VM_ROT1.OMEGA

R_ESR

R_ESR2

R8

E1

T

FM_ROT1

0.00 20.00 40.00 60.00 80.00 100.00Time [ms]-75.00

-25.00

25.00

75.00

Y1 [

A]

Curve Info

AM1.ITR

AM2.ITR

AM3.ITR

0.00 20.00 40.00 60.00 80.00 100.00Time [ms]

-18.85

0.00

100.00

200.00

300.00

400.00

Y1

Curve Info

n_ref.VALTR

n.VALTR

Speed Currents

RMxprt Model

© 2012 ANSYS, Inc. November 27, 2014

50

Co-simulation Mechanism

Thevenin equivalent (impedance matrix,

source voltages)

Lumped field

parameters

(inductances, induced

Internal voltages)

Norton equivalent

(conductance matrix,

source currents)

Convert node

to loop

FE Simulator

Mww

Rw

Ew J

STF

M

DCMP STF

J

ETA

UA.VAL

ETB

UB.VAL

ETC

UC.VAL

TH11 TH12 TH13

TH14 TH15 TH16

TH21 TH22 TH23

TH24 TH25 TH26

MasTacho

J := 0.15m

StfTachoShaft

DcmpMotor

J := 2.1m

StfMotorShaft

MasCouplingLeft

J := 0.9m

Circuit Simulator

© 2012 ANSYS, Inc. November 27, 2014

51

Induction Motor FEA Coupled with Simplorer

FEA

PhaseA1

PhaseA2

PhaseB1

PhaseB2

PhaseC1

PhaseC2

Rotor1

Rotor2

w +

ICA:

1400 rpm

LL:=237.56u

RA:=696.076m

B6U

D1 D3 D5

D2 D4 D6

2L3_GTOS

g_r1

g_r2

g_s1

g_s2

g_t1

g_t2

~

3PHAS

~

~

A * sin (2 * pi * f * t + PHI + phi_u)

PHI = 0°

PHI = -120°

PHI = -240°

LDUM:=100m

CDC:=10m

LDC:=10m

RDC:=10

VZENER:=650

AMPLITUDE := 800 V

FREQUENCY := 60 Hz

-297.50

300.00

-200.00

0

200.00

0 100.00m 50.00m

LA.I [A]

LB.I [A]

LC.I [A]

FREQ := 800 Hz

AMPL := 800

PHASE := 0 deg

AMPL := 500

PHASE := -315 deg

FREQ := 50 Hz

PHASE := -195 deg

PHASE := -75 deg

SA

SB

SC

G_R1 := SA.VAL

G_R2 := -SA.VAL

G_S1 := SB.VAL

G_S2 := -SB.VAL

G_T1 := SC.VAL

G_T2 := -SC.VAL

+

V

Name Value

SIMPARAM1.RunTime [s] 111.29k

SIMPARAM1.TotalIterations 40.51k

SIMPARAM1.TotalSteps 10.00k

FEA1.FEA_STEPS

-500.00

1.50k

0

1.00k

0 100.00m 50.00m

100.00 * LD.I [A]

VDC.V [V]

-715.00

425.00

-500.00

0

0 100.00m 50.00m

Current Torque

Speed

Fed by ac-dc-ac inverter

Frequency controlled speed

© 2012 ANSYS, Inc. November 27, 2014

52

BLDC motor FEA Coupled with Simplorer

FEA

sourceA1

sourceA2

sourceB1

sourceB2

sourceC1

sourceC2

Magnet01

Magnet02

w +

ICA:

+

F GAIN

CONST

CONST

EQUBL

EQUBL

EQUBL

1500 rpm

LL:=922u

RA:=2.991

ANGRAD

57.3

-60+PWM_PER

-30+PWM_PER

QS1

QS2

QS3

VAL[0] := mod( INPUT[0] ,INPUT[1] )

PWM_T:=60

I_TARG:=9

I_HYST:=0.2

Q1

Q2

Q3 Q5

Q4 Q6

400 V

THRES := PWM_T

EQUBL

CONST

QS4

-90+PWM_PER

EQUBL

CONST

QS5

-120+PWM_PER

EQUBL

CONST

QS6

-150+PWM_PER

RA Ohm LL H

PWM_PER:=180

INPUT[1] := PWM_PER

INPUT := -LB.I

LC.I

-LA.I

LB.I

-LC.I

LA.I

THRES1 := I_TARG - I_HYST

0

8.50

5.00

0 20.00m 30.00m

-14.50

7.80

0

0 30.00m 20.00m

-10.30

10.00

0

0 30.00m 20.00m

Output torque

Chopped currents

Inverter fed three phase BLDC

motor drive

Chopped current control

0

8.50

5.00

0 30.00m 20.00m

© 2012 ANSYS, Inc. November 27, 2014

53

FEA

A1

A2

B1

B2

C1

C2

AirRotor1

AirRotor2

w +

26293 rpm ICA: LL:=70.6914u

RA:=203m

140 V

100u F

+

F ANGRAD GAIN

57.3

CONST -30+90

CONST -60+90

EQUBL

VAL[0] := mod( INPUT[0] ,90 ) QA

QB

QC

EQUBL

EQUBL

Name Value

FEA1.FEA_STEPS 1.00k

SIMPARAM1.RunTime [s] 6.90k

SIMPARAM1.TotalIterations 4.05k

SIMPARAM1.TotalSteps 1.00k

0

100.00

50.00

0 1.00m 500.00u

10.00 * QA.VAL

10.00 * QB.VAL + 30.00

10.00 * QC.VAL + 60.00

ROTA.VAL[0]

ROTB.VAL[0]

ROTC.VAL[0]

-54.00m

264.00m

0

100.00m

200.00m

0 1.00m 500.00u

10.00u * FEA1.OMEGA

V_ROTB1.TORQUE [Nm]

mechanical

-17.80

18.00

-10.00

0

10.00

0 1.00m 500.00u

L1.I [A]

L2.I [A]

L3.I [A]

E1.I [A]

current control variable

SRM FEA Coupled with Simplorer

© 2012 ANSYS, Inc. November 27, 2014

54

Electric Machine Design: Maxwell – Simplorer Co-Simulation

3-ph Windings

Permanent Magnets

Stator & Rotor

Flux Linkages

3ph Line Currents

Co-simulation

© 2012 ANSYS, Inc. November 27, 2014

55

Motor Drive Example

C code

VHDL-AMS

VHDL-AMS

© 2012 ANSYS, Inc. November 27, 2014

56

Electric Power Steering

© 2012 ANSYS, Inc. November 27, 2014

57

Electric Power Steering

© 2012 ANSYS, Inc. November 27, 2014

58

Systems Modeling

© 2012 ANSYS, Inc. November 27, 2014

59

Fuel Consumption

ICE Only Hybrid

Hybrid ROM

© 2012 ANSYS, Inc. November 27, 2014

60

Register Now!

Early Bird Rate Saves $150 Off of Registration Cost

Register at www.ansys.com/ASWC

Automotive Simulation World Congress

© 2012 ANSYS, Inc. November 27, 2014

61

ANSYS Training

Interested in Live Training Sessions with ANSYS Experts? Training classes are offered both locally and online. View the entire schedule at: http://www.ansys.com/Support/Training+Center Topics include: • Introduction to ANSYS Mechanical • Introduction to ANSYS DesignModeler • Introduction to ANSYS FLUENT • Introduction to ANSYS Icepak • Introduction to ANSYS HFSS • Introduction to ANSYS Explicit Dynamics • Introduction to ANSYS ICEM CFD • And Many More…

© 2012 ANSYS, Inc. November 27, 2014

62

To Ask a Question:

Click on the Q&A tab in the WebEx Toolbar

Webinar Recording:

Available in one week’s time in the ANSYS Resource Library at www.ansys.com/resource+library

© 2012 ANSYS, Inc. November 27, 2014

63

Thank you