Tissue Fluid Formation - Pages Persos...

60
CHAPTER 16: LYMPHATIC SYSTEM AND IMMUNITY OBJECTIVES: 1. Name the organs that compose the lymphatic system and give three general functions performed by this system. 2. Trace the flow of lymph from interstitial tissues to the bloodstream. 3. Discuss the function of anchoring filaments that surround lymphatic capillaries. 4. Name four tissues that do not contain lymphatic capillaries. 5. Give the special name for lymphatic capillaries within the wall of the small intestine. 6. Distinguish between an afferent and efferent lymphatic vessel. 7. Explain how lymphatic vessels are similar to veins. 8. List the six primary body regions drained by lymphatic trunks. 9. Name the two lymphatic collecting ducts and indicate the portion of the body that is drained by each. 10. Name the vein that each of the two collecting ducts deposit their lymph. 11. Discuss the composition of interstitial fluid and lymph. 12. List the functions of lymph, noting its major function. 13. Explain the forces involved in the movement of lymph. 14. Name the condition that occurs when lymphatic flow is obstructed.

Transcript of Tissue Fluid Formation - Pages Persos...

Page 1: Tissue Fluid Formation - Pages Persos Chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web viewWhen an obstruction occurs, the tissue fluid builds up and causes edema.

CHAPTER 16: LYMPHATIC SYSTEM AND IMMUNITY

OBJECTIVES:

1. Name the organs that compose the lymphatic system and give three general functions performed by this system.

2. Trace the flow of lymph from interstitial tissues to the bloodstream.

3. Discuss the function of anchoring filaments that surround lymphatic capillaries.

4. Name four tissues that do not contain lymphatic capillaries.

5. Give the special name for lymphatic capillaries within the wall of the small intestine.

6. Distinguish between an afferent and efferent lymphatic vessel.

7. Explain how lymphatic vessels are similar to veins.

8. List the six primary body regions drained by lymphatic trunks.

9. Name the two lymphatic collecting ducts and indicate the portion of the body that is drained by each.

10. Name the vein that each of the two collecting ducts deposit their lymph.

11. Discuss the composition of interstitial fluid and lymph.

12. List the functions of lymph, noting its major function.

13. Explain the forces involved in the movement of lymph.

14. Name the condition that occurs when lymphatic flow is obstructed.

15. Discuss the structure, location, and major function of lymph nodes.

16. Discuss the structure, location, and major function of the spleen.

17. Distinguish between the body fluids filtered by lymph nodes and those filtered by the spleen.

18. Name the cell responsible for the filtering action of the lymph node and spleen.

19. Discuss the structure, location, and major function of the thymus.

20. Name the hormone secreted by the thymus that causes maturation of lymphocytes that have migrated to other tissues.

21. Describe what happens to the thymus as one ages.

Page 2: Tissue Fluid Formation - Pages Persos Chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web viewWhen an obstruction occurs, the tissue fluid builds up and causes edema.

22. Define the term pathogen.

23. Distinguish between the body's two types of defense mechanisms against infections.

24. Define the term nonspecific resistance and discuss the body's six major mechanisms.

25. Name the antibacterial enzyme present in tears.

26. Discuss how interferons, defensins, and collectins aid in fighting infection.

27. List the cardinal signs of inflammation.

28. List the steps involved in the inflammatory process.

29. Discuss the importance of phagocytosis, and indicate the origin of phagocytic cells.

30. Define the term specific resistance/ immunity.

31. Define the term antigen, and discuss how antigens cause immune responses to occur.

32. Discuss the origin and maturation of lymphocytes.

33. Discuss the process by which an immune response occurs, beginning with the “antigen-presenting cell”.

34. Distinguish between T cells and B cells.

35. Distinguish between Cell-Mediated Immunity (CMI) and Antibody-Mediated (or humoral) Immunity (AMI).

36. Discuss the general structure of an antibody (immunoglobulin [Ig]).

37. Name the five major classes of immunoglobulins and list the major characteristics of each.

38. Name the most abundant Ig.

39. Name the only Ig that can cross the placenta.

40. Name the Ig produced during a primary immune response (IR).

41. Name the Ig produced in abnormal amounts during allergic reactions.

42. Discuss the many actions of antibodies.

43. Distinguish between agglutination, precipitation, neutralization, and lysis.

44. Name the positive feedback mechanism that is activated by antibodies and list its effects.45. Compare and contrast a primary IR vs. a secondary IR.

Page 3: Tissue Fluid Formation - Pages Persos Chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web viewWhen an obstruction occurs, the tissue fluid builds up and causes edema.

46. Discuss the four practical classifications of immunity.

47. Explain how immediate-type allergic reactions occur and proceed.

48. Name the four types of transplants performed.

49. Discuss the major problem that occurs in autoimmune disorders, and list some possible causes of autoimmunity.

50. Explain the theory of “microchimerism”, as it relates to autoimmunity.I. INTRODUCTION

The lymphatic system is closely associated with the cardiovascular system. The primary organs of the lymphatic system are the bone marrow and thymus gland, and the secondary lymphatic organs include the lymph nodes and spleen. These organs work together to transport excess tissue (interstitial) fluid to the blood stream, transport dietary fat, and help defend the body against disease-causing agents.

II. LYMPHATIC PATHWAYS

Lymphatic pathways begin as lymphatic capillaries, which come together to form afferent lymphatic vessels, which lead to lymph nodes. The vessels that leave the lymph nodes are called efferent lymphatic vessels, which come together to form lymphatic trunks, which lead to two collecting ducts, which finally join the subclavian veins, where the lymph enters the cardiovascular system.

See General Overview Figure 16.1, page 609 and Fig 16.7, page 611.

A. Lymphatic capillaries:

See Fig 16.2, page 609 and Fig 16.8, page 611.

1. are microscopic closed-ended tubes that extend into interstitial spaces;

2. receive lymph through their thin walls;

3. are associated with anchoring filaments, which serve an important function during edema (discussed later);

4. are located throughout the body, except in:a. avascular tissues;b. CNS;c. splenic pulp;d. bone marrow.

5. include lacteals that are lymphatic capillaries within villi of the small intestine.

B. Lymphatic vessels (LV): See Fig 16.3, page 609, 16.4 & 16.5, page 610.

Page 4: Tissue Fluid Formation - Pages Persos Chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web viewWhen an obstruction occurs, the tissue fluid builds up and causes edema.

1. are formed by the merging of lymphatic capillaries;

2. have walls similar to veins and possess valves that prevent backflow of lymph;

3. lead to lymph nodes as "afferent" LVs, leave lymph nodes as "efferent"

LVs, and then merge into lymphatic trunks.II. LYMPHATIC PATHWAYS

C. Lymphatic trunks:

See Fig 16.4, page 610.

1. drain lymph from relatively large body regions;

2. Principal lymphatic trunks include the following:

a. lumbar;b. intestinal;c. bronchomediastinal;d. subclavian;e. jugular;f. intercostal.

3. pass their lymph into venous blood by joining one of two collecting ducts.

D. Collecting ducts: See Fig 16.6, page 610.

1. Two within the thoracic cavity:a. right lymphatic duct drains the right upper body (25% of total

body);b. thoracic (left lymphatic) duct drains the remaining 75% of the

body's lymph; 2. join the subclavian veins.

See the above figures to study the relationship of lymphatic system to cardiovascular system.

See Summary Figure 16.7, page 611.

Page 5: Tissue Fluid Formation - Pages Persos Chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web viewWhen an obstruction occurs, the tissue fluid builds up and causes edema.

III. TISSUE FLUID AND LYMPH

A. Tissue Fluid Formation1. Tissue fluid is blood plasma that has passed through cardiovascular

capillary walls into interstitial spaces, minus large plasma proteins.2. Recall the constituents of plasma from Chapter 14:

a. primarily waterb. dissolved substances including small plasma proteins, nutrients,

wastes, gases, electrolytes, enzymes and hormones.

B. Lymph Formation1. As protein concentration in interstitial spaces increases, its pressure

increases.2. Increasing pressure forces tissue fluid into lymphatic capillaries.3. This fluid is now called lymph.4. Lymph formation prevents accumulation of excess tissue fluid (i.e.

prevents edema).

C. Lymph Function 1. returns small leaked plasma proteins back to the blood

stream.2. transports foreign particles to the lymph nodes.3. transports lipids and lipid-soluble vitamins absorbed in GI tract to

bloodstream.

D. Lymph Movement

1. Lymph Flowa. Lymph is under low pressure and may not flow readily without aid

from external forces (similar to venous return).o The squeezing action of skeletal muscles aids movement.o The low pressure in the thoracic cavity created by breathing

movements, moves lymph up from abdominal to thoracic region.

o Recall the presence of one-way valves.2. Obstruction of lymph movement

a. Any condition that interferes with the flow of lymph results in edema.o Edema = accumulation of excess interstitial fluid leading to

swelling of tissues.b. Tissue swelling pulls on anchoring filaments making openings

between cells even larger so that more fluid can move into the lymphatic capillary (i.e. reducing swelling). See Fig 16.8, p. 611.

c. The surgical removal of lymph nodes causes obstruction and results in edema (i.e. accompanying mastectomy).

Page 6: Tissue Fluid Formation - Pages Persos Chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web viewWhen an obstruction occurs, the tissue fluid builds up and causes edema.

IV. LYMPHATIC TISSUES

A. Introduction

Lymphatic tissue occurs in the body in various forms. 1. When it is not encapsulated, it is called diffuse lymphatic tissue (i.e.

found in submucosa of mucous lining).2. When it is aggregated into a solitary, oval-shaped mass, it is called a

lymphatic nodule (i.e. tonsils, and recall the lymphatic nodule in the small intestine model).

3. Primary lymphatic organs are the sites of production of immunocompetent cells, B cells and T cells. These cells can carry out an immune response.a. bone marrow (red)b. thymus.

4. Secondary lymphatic organs are the sites where most immune responses occur.a. lymph nodesb. spleen.

B. Lymph Nodes

1. Structure of a lymph node (See Fig 16.9, page 612.)a. Overview: Lymph nodes are located along lymphatic pathways,

contain lymphocytes and macrophages, which destroy invading microorganisms.

b. Size is usually less than 2.5 cm, and shape is bean-like, with blood vessels, nerves, and efferent lymphatic vessels attached to the indented region (hilum); o Afferent lymphatic vessels enter at points on the convex

surface.c. Node is enclosed in a dense CT capsule that extends into the node

and subdivides it into nodules.d. Outer region = cortex; contains germinal centers of densely

packed B cells (+ macrophages) in spaces called lymphatic nodules (or follicles).

e. Inner region = medulla; contains T cells (+ macrophages and plasma cells) arranged as medullary cords (spaces through which lymph flows).

Page 7: Tissue Fluid Formation - Pages Persos Chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web viewWhen an obstruction occurs, the tissue fluid builds up and causes edema.

IV. LYMPHATIC TISSUES

B. Lymph Nodes (continued)

2. Flow of Lymph through Lymph Node: See Fig 16.9, page 612 and Fig 16.10, page 613.

a. One-way direction only.b. Lymph enters the node through one of several afferent lymphatic

vessels on convex surface, c. flows inward through sinuses (between medullary cords), and d. exits the node via one of two efferent lymphatic vessels at the

hilum.

3. Locations of lymph nodes (See Fig 16.11, page 613.)

a. Lymph nodes generally occur in groups or chains along the paths of larger lymphatic vessels.

b. They occur primarily in the following regions:o cervicalo axillaryo inguinal.

c. They also occur within the following body cavities:o pelvico abdominalo thoracic.

4. Functions of lymph nodes

a. Removal and destruction of potentially harmful foreign particles from lymph.o Accomplished through phagocytosis by macrophages.

b. Centers for the production of lymphocytes that act against foreign particles.

Page 8: Tissue Fluid Formation - Pages Persos Chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web viewWhen an obstruction occurs, the tissue fluid builds up and causes edema.

IV. LYMPHATIC TISSUES

C. Thymus See Fig 16.12 page 615.

1. soft, bilobed organ located within the mediastinum. 2. decreases in size (atrophy) after puberty. 3. composed of lymphatic tissue that is subdivided into

lobules.4. Each lobule contains an outer (dark-staining) cortex filled with densely

packed lymphocytes around a central medulla (light staining) filled with swirled epithelial cells (called Hassall's Corpuscles). See Fig 16.12b, p615.

5. Functions:a. immature T cells migrate from the bone marrow to the thymus

(via) the blood.The thymus is the site of maturation of T cells (which will

leave the thymus and provide immunity)b. The epithelial cells secrete a hormone called thymosin, which

stimulates further maturation of T cells after they leave the thymus and migrate to other lymphatic tissues.

D. Spleen See Figure 16.14 page 616.

1. is located in the upper left portion of the abdominal cavity (behind stomach).

2. resembles a large lymph node that is encapsulated and subdivided into lobules by connective tissue.

3. contains two types of tissue. See Fig 16.14b, page 616.a. white pulp = lymphocytes arranged around central arteries.b. red pulp = blood filled sinuses (venous blood that also serves as

blood reservoir).4. Functions:

a. Removal and destruction of foreign particles and worn blood cells from blood.

Macrophages remove and destroy bacteria and damaged or worn red blood cells and platelets through phagocytosis.

b. stores and releases blood during hemorrhage.c. in immunity as a site of B cell proliferation into plasma cells.

* See summary Table 16.1, page 617, which summarizes the locations and major functions of lymph nodes, thymus, and spleen.

Page 9: Tissue Fluid Formation - Pages Persos Chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web viewWhen an obstruction occurs, the tissue fluid builds up and causes edema.

V. BODY DEFENSES AGAINST INFECTION

A. Introduction:Infection is caused by the presence and multiplication of pathogens. Pathogens are viruses and microorganisms (bacteria, fungi, protozoans, parasites) that cause disease. The body is equipped with two types of defense mechanisms to fight infection:o innate (nonspecific) resistance, the 1st and 2nd lines of

defenseo adaptive (specific) resistance (immunity), the 3rd line of

defense.

B. Innate (Nonspecific) Defenses = protection against a wide range of pathogens. Mechanisms include species resistance, mechanical barriers, chemical barriers, fever, inflammation and phagocytosis.1. Species resistance

Each species of organism is resistant to certain diseases that may affect other species, but susceptible to diseases that other species may be able to resist. (See cryptosporidiosis, blue box page 617).

2. Mechanical barriers (First Line of Defense)a. include the skin and mucous membranes.b. As long as mechanical barriers remain unbroken, they prevent the

entrance of some pathogens.

3. Chemical Barriers (First and Second Line of Defense)a. Enzymes

o The enzyme in gastric juice (i.e. pepsin) is lethal to many pathogens.

o The enzyme in tears (i.e. lysozyme) has antibacterial action.

b. Acido Low pH in stomach (hydrochloric acid) prevents growth of

some bacteria.c. Salt

o High salt concentration in perspiration kills some bacteria.d. Interferons

o Interferon is a group of hormone-like peptides produced by certain uninfected cells in response to the presence of viruses.

o These antiviral proteins interfere with the proliferation of viruses, stimulate phagocytosis, and enhance the activity of cells that help resist infections and the growth of tumors.

e. Defensinso Destroy bacteria by making holes in their cell walls and/or

membranes.f. Collectins

Page 10: Tissue Fluid Formation - Pages Persos Chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web viewWhen an obstruction occurs, the tissue fluid builds up and causes edema.

o Protect by attaching themselves to a variety of microbes. Provide broad protection against them.

Page 11: Tissue Fluid Formation - Pages Persos Chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web viewWhen an obstruction occurs, the tissue fluid builds up and causes edema.

V. BODY DEFENSES AGAINST INFECTION

B. Innate (Nonspecific) Defenses

4. Fevera. Infection (by bacteria and viruses) causes some lymphocytes to

produce Interleukin I, which increases body temperature.b. Other factors can also increase body temperature, including

exposure to heat, UV light, acids, and bases.c. Increased body temperature decreases blood iron levels, which

increases phagocytic activity.5. Natural Killer Cells (NK cells)

a. special lymphocytesb. attack foreign material; microbes, cancer cells, other abnormal cellsc. use perforins to rupture cell membranesd. enhance inflammation

6. Inflammation: Second Line Of DefenseSee Table 16.2, page 618.

a. Inflammation is a tissue response to damage, injury, or infection.b. Blood vessels dilate, increasing capillary permeability.

o The response includes localized tissue redness (rubor), swelling (tumor), heat (calor), and pain (dolor).

c. Chemicals released by damaged tissues attract various white blood cells to the site of injury.o Pus may form as WBC’s, bacterial cells, and debris

accumulate.d. Tissue fluid leaks into area.

o A clot (fibrin) may form in affected tissues.e. Fibroblasts arrive.

o A fibrous connective tissue sac may form around the injured tissue and thus prevent the spread of pathogens.

7. Phagocytosis: Second Line of Defensea. Definition: Phagocytosis is the process by which specialized cells engulf and ingest foreign particles in order to destroy them.o Recall function of lysosomes.

b. The most active phagocytes in the blood are neutrophils and monocytes.

c. Monocytes give rise to macrophages (through diapedesis, Chap 14) that migrate to various body tissues.

d. Phagocytic cells associated with the linings of blood vessels in the bone marrow, liver, spleen, and lymph nodes constitute the reticuloendothelial tissue.

e. Phagocytes remove and destroy foreign particles from tissues and body fluids.

* See Summary Table 16.3, page 619 to review nonspecific resistance mechanisms.

Page 12: Tissue Fluid Formation - Pages Persos Chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web viewWhen an obstruction occurs, the tissue fluid builds up and causes edema.

V. BODY DEFENSES AGAINST INFECTION

C. Adaptive (Specific) Defenses or Immunity is protection against particular disease-causing agents. It is our third line of defense against infection.1. Antigens (Ag's)

a. Definition: An antigen is a substance (usually a protein) that causes the formation of an antibody and reacts specifically with that antibody.

b. How does this process occur? Before birth, body cells inventory the proteins and other large molecules present in the body (i.e. “self” proteins). After the inventory, lymphocytes develop receptors that allow them to differentiate between foreign (non-self) antigens and self-antigens.

When non-self or foreign antigens (Ag's) enter human tissues, they combine with T cell and B cell surface receptors, and stimulate these cells to cause an immune response/reaction (IR) against them.

2. Lymphocyte Origins: See Fig 16.16, page 620.a. Lymphocytes originate in red bone marrow and are released

into the blood before they become differentiated.b. About half of these undifferentiated lymphocytes reach the thymus

where they are processed into T cells.c. Some undifferentiated lymphocytes are (probably) processed in the

bone marrow and become B cells.d. Both T cells (70%-80% of circulating lymphocytes) and B (20%-

30%) cells are transported through the blood to the lymphatic organs (lymph nodes, spleen, thymus) where they reside and act in immune responses against foreign antigens.

e. See SEM of circulating lymphocyte in Fig 16.15, page 619.3. Lymphocyte Function

a. Antigen-Presenting Cells Begin the Immune Responseb. A macrophage is typically the first cell to respond to an antigen. It

then alerts lymphocytes to the invader.c. After digestion of the antigen (by the macrophage), a self-protein

attaches a copy of the foreign antigen to the cell membrane of the macrophage.o A gene of the major histocompatibility complex (MHC)

codes for this self-protein.d. A lymphocyte now recognizes and binds to the antigen-presenting

cell.o T cells and B cells are activated and begin a chain of

reactions that ultimately destroy/neutralize the invading antigen.

Page 13: Tissue Fluid Formation - Pages Persos Chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web viewWhen an obstruction occurs, the tissue fluid builds up and causes edema.

V. BODY DEFENSES AGAINST INFECTION

C. Adaptive (Specific) Defenses or Immunity

4. T cells provide cell-mediated immunity (CMI):

a. T cells respond to antigens directly (by cell-to-cell contact).

b. T cells secrete cytokines (lymphokines) to enhance other immune responses to antigens. See Table 16.4, page 621.

o Colony stimulating factors stimulate bone marrow to produce lymphocytes.

o Interferons block viral replication, stimulate macrophages to engulf viruses, stimulate B cells to produce antibodies, attack cancer cells.

o Interleukins control lymphocyte differentiation.o Tumor necrosis factor stops tumor growth, etc.

c. Types of T cells:

o Helper T cells (CD4) become activated when they encounter a displayed antigen (on macrophage) for which it is specialized to react (see 3.c. above) Once activated, helper T cells stimulate B cells to

produce antibodies (see B. 5. below). CD4 Helper T cells stimulate Antibody Mediated

Immunity (AMI) and secrete cytokines (CMI). The HIV virus cripples these cells.

o Memory T cells are produced upon initial exposure to an antigen. They allow for immediate response against

subsequent exposure(s) to the same antigen.o Cytotoxic T cells (CD8) recognize foreign antigens on

tumor cells and virus-infected cells. Stimulated cytotoxic T cells proliferate into a large

clone of cells that secrete perforin to destroy target cells.

o Natural Killer Cells also use perforins to destroy tumor cells. Both cytotoxic T cells and natural killer cells can

lyse antigens in other ways also.

Page 14: Tissue Fluid Formation - Pages Persos Chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web viewWhen an obstruction occurs, the tissue fluid builds up and causes edema.

V. BODY DEFENSES AGAINST INFECTION

C. Adaptive (Specific) Defenses or Immunity

5. B cells provide Antibody-mediated immunity (or humoral) (AMI):

a. B cells interact with antigen-bearing agents indirectly, by secreting proteins called antibodies.

b. B Cell Activation

o B Cell becomes activated when it binds to an activated T cell.

o Once activated, a B cell proliferates, enlarging into its clone.

o Activated B cells specialize into plasma cells that secrete antibodies.

o Antibodies react against the specific antigen-bearing agent that stimulated its production.

o A diverse population of B cells defends one against a large number of pathogens.

See Fig 16.17, page 622, Fig 16.18, page 623, and Fig 16.19, page 626 to see the complex cascade of CMI and AMI events involved in an immune response.

c. Antibody molecules: See Figure 16.20, page 627.

o Antibodies are proteins called immunoglobulins.o They constitute the gamma globulin fraction of plasma.o Each immunoglobulin molecule consists of four chains of

amino acids linked together. Two heavy chains. Two light chains.

o Variable regions at the ends of these chains are specialized to react with antigens. Comprise antigen-binding sites.

Page 15: Tissue Fluid Formation - Pages Persos Chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web viewWhen an obstruction occurs, the tissue fluid builds up and causes edema.

V. BODY DEFENSES AGAINST INFECTION

C. Adaptive (Specific) Defenses or Immunity

5. B cells provide Antibody-mediated immunity (or humoral) (AMI):

d. Types of immunoglobulins: See Table 16.7, page 627.

The five major types of immunoglobulins are IgG, IgA, IgM, IgD, and IgE.

o IgG most abundant circulating antibody (80% of total) occurs in plasma and tissue fluids defends against bacterial cells, viruses & toxins activates complement only antibody to cross placenta.

o IgA about 13% of circulating antibodies occurs in exocrine gland secretions (i.e. tears,

saliva, breast milk, etc.) defends against bacterial cells and viruses levels decrease during stress, lowering resistance to

infection.o IgM

about 6 % of circulating antibodies first antibodies to be secreted after initial exposure

to an antigen occurs in plasma produced in blood transfusions activates complement.

o IgD < 1% of antibodies occurs on the surface of most B cells involved in activation of B-cells.

o IgE < 0.1 % of antibodies occurs in exocrine gland secretions. promotes inflammation and allergic reactions

because they cause the release of histamine from mast cells (basophils).

Page 16: Tissue Fluid Formation - Pages Persos Chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web viewWhen an obstruction occurs, the tissue fluid builds up and causes edema.

V. BODY DEFENSES AGAINST INFECTION

C. Adaptive (Specific) Defenses or Immunity

5. B cells provide Antibody-mediated immunity (or humoral) (AMI):e. Antibody Action: See Table 16.8, page 628.

Antibodies attack antigens directly, activate complement, and stimulate local tissue changes that hinder antigen-bearing agents.o Direct attachment involves the following:

agglutination precipitation neutralization.

o Activation of complement (a positive feedback mechanism) involves the following: See Table 16.8, p 628. opsonization chemotaxis inflammation lysis.

o See Table 16.6, page 624, which summarizes the steps in antibody production and compares T & B cell activity.

6. Immune responses (IR): See Fig 16.21, page 628.a. When B cells or T cells first encounter an antigen for which they

are specialized to react, the reaction is called a primary IR.o During this response, antibodies are produced for several

weeks (IgM).o Some B cells and T cells remain dormant as memory cells.

b. A secondary IR occurs rapidly if the same antigen is encountered at a later time (IgG).

7. Practical Classification of Immunity See Table 16.9, page 630.a. A person who encounters a live pathogen, which stimulates a

primary IR, and suffers symptoms of a disease, develops naturally acquired active immunity.

b. A person who receives a vaccine containing a dead or weakened pathogen. However, stimulation of the IR causes the person to develop artificially acquired active immunity.

c. A person who receives an injection of gamma globulin that contains ready-made antibodies has artificially acquired passive immunity. In this instance, the patient does not have time to develop active immunity (i.e. hepatitis), no IR occurs, and the immunity provided is only short-term.

d. When antibodies (IgG) pass through a placental membrane from a pregnant woman to her fetus, the fetus develops naturally acquired passive immunity. This provides short-term immunity without development of an IR.

Page 17: Tissue Fluid Formation - Pages Persos Chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web viewWhen an obstruction occurs, the tissue fluid builds up and causes edema.

VI. Disorders/Homeostatic Imbalances of the Immune System

A. Allergic or Hypersensitivity Reactions (IR gone awry)

1. Allergic reactions involve antigens combining with antibodies (IgE); The resulting IR is likely to be excessive or violent and may cause tissue damage.

2. Types of allergic reactions:

a. Delayed-reaction allergy (type IV), which can occur in anyone and can cause inflammation of the skin, results from repeated exposure to antigenic substances (i.e. household detergents, cosmetics).

b. Antibody-dependent cytotoxic allergic reactions (type III) occur when blood transfusions are mismatched (review incompatible donors from Chapter 14).

c. Immune complex allergic reactions (type II) involve autoimmunity, which is an IR against self-antigens (see VI. C. below).

d. Immediate-reaction allergy (type I), which is inherited, causes the production of an abnormally large amount of IgE (animal dander, pollen, etc.).

o See Fig 16.22, page 631 that summarizes steps involved.o Allergic reactions result from mast cells (recall from Chap 14

that mast cells are basophils that have traveled from the blood into tissues) bursting and releasing allergy mediators, such as histamine and serotonin.

o In anaphylactic shock, these allergy mediators are responsible for the symptoms of the allergic reaction, including decreased blood pressure (vasodilation) and difficulty breathing (bronchoconstriction).

o Suppressor cells that inhibit the production of IgE usually terminate an allergic reaction.

Page 18: Tissue Fluid Formation - Pages Persos Chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web viewWhen an obstruction occurs, the tissue fluid builds up and causes edema.

VI. Disorders/Homeostatic Imbalances of the Immune System

C. Transplantation and Tissue Rejection

1. There are four types of tissue transplants: See Table 16.10, page 632.a. Isografts occur between identical twins.

o i.e. A bone marrow transplant from a healthy twin to one with leukemia.

b. Autografts are “self” grafts.o i.e. a skin graft from one part of the body to another.

c. Allografts occur between individuals of the same species.o i.e. kidney transplant from a relative

d. Xenografts occur between individuals of different species.o i.e. A pig heart valve into a human.o

2. A transplant recipient’s immune system may react with donated (non-self) tissue in a tissue rejection reaction.

3. Matching cell surface molecules of donor and recipient tissues (MHC) and using immunosuppressive drugs can minimize tissue rejection.

4. Immunosuppressive drugs increase the recipient’s susceptibility to infection (decreases resistance).

D. Autoimmunity 1. In autoimmune disorders, the body produces antibodies against “self”

antigens, resulting in an attack on one’s own tissues.2. The cause of autoimmune disorders is unknown, but researchers feel that

they may be caused by:a. a previous viral infection, b. faulty T cell development, c. reaction to a self antigen that is close in structure to a non-self

antigen, d. by persistent fetal cells, where fetal cells persist in the female’s

circulation as an adult.o For some unknown reason, these “hiding” fetal cells in

tissues such as skin, emerge stimulating antibody production.

o This mechanism called “microchimerism” may explain why so many more females are stricken with autoimmune disorders than males.

o In scleroderma, which means “hard skin”, patients are typically diagnosed between ages 45-55.

Symptoms include fatigue, swollen joints (See Fig 16.23, page 634), stiff fingers and mask-like face.

Hardening may also affect blood vessels, lungs, and esophagus.

Page 19: Tissue Fluid Formation - Pages Persos Chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web viewWhen an obstruction occurs, the tissue fluid builds up and causes edema.

VI. Disorders/Homeostatic Imbalances of the Immune System

C. Autoimmunity (continued)

3. Some autoimmune diseases are presented in Table 16.11, page 633.a. Glomerulonephritis where antibodies attack kidney cells that

resemble streptococcal antigens. See Clinical Application 20.2, page 780.

b. Grave’s Disease where antibodies attack thyroid gland. See Fig 13.22, page 488.

c. Type I Diabetes (IDDM) where antibodies attack beta cells of Islets of Langerhans of pancreas. See CA 13.4, page 499.

d. Hemolytic anemia where antibodies attack erythrocytes.e. Myasthenia Gravis where antibodies attack acetylcholine

receptors in skeletal muscle. See Clinical Application 9.1, page 284.

f. Pernicious Anemia where antibodies attack the vitamin B binding sites in gastric mucosa. See box on page 516.

g. Rheumatic Fever where antibodies attack heart valves that resemble streptococcal antigens.

h. Rheumatoid arthritis where antibodies attack synovial membranes. See Clinical Application 8.2, page 272.

i. Systemic Lupus Erythematosus (SLE) where antibodies attack DNA, neurons, and blood cells.

j. Ulcerative Colitis where antibodies attack colon cells. See Clinical Application 17.5, page 684.

D. Other Disorders/Homeostatic Imbalances of the Immune System1. Severe Combined Immune Deficiency (SCID), page 629.2. Chronic Fatigue Syndrome, page 634.3. Immunity Breakdown: AIDS. Clinical Application 16.1, pp. 635.

VII. LIFE SPAN CHANGESA. The immune system declines early in life, partially due to the decreasing size of

the thymus.B. The activity level of T cells and B cells declines as we age.C. The proportions of the five types of immunoglobulins shift as we age.

VIII. Other interesting TopicsA. Immunotherapy. See pages 624-625B. Vaccines, page 629.C. Tuberculin skin test, page 632.

IX. Innerconnections of the Lymphatic System. See page 636.

X. Clinical Terms Related to the Lymphatic System and Immunity. See page 637

Page 20: Tissue Fluid Formation - Pages Persos Chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web viewWhen an obstruction occurs, the tissue fluid builds up and causes edema.

Chapter 16 Lymphatic System and Immunity

1. Explain how the lymphatic system is related to the cardiovascular system.The lymphatic and cardiovascular systems include a network of capillaries and vessels that assist in circulating the body fluids. The lymphatic vessels transport excess fluid away from the interstitial spaces of tissues and return it to the bloodstream. The walls of both vessels are alike. For instance, they both contain a single layer of epithelial cells that allows fluids and substances to cross into them.

2. Trace the general pathway of lymph from the interstitial spaces to the bloodstream.The lymphatic capillary system is found next to the systemic and pulmonary capillary networks. It then travels through lymph vessels into lymph nodes. It returns to lymph vessels and then is returned into the bloodstream at various points.

3. Identify and describe the locations of the major lymphatic trunks and collecting ducts.The lymphatic trunks are named for the regions they serve. The locations can be found in fig. 16.4, on page 623.The collecting ducts are:

Thoracic duct—It begins in the abdomen. It passes upward medially through the diaphragm to the left subclavian, where it empties.Right lymphatic duct—It begins as the union of the right jugular, right subclavian, and right bronchomediastinal trunks. It empties into the right subclavian vein.

4. Distinguish between tissue fluid and lymph.Lymph is tissue fluid that has entered into a lymphatic capillary.

5. Describe the primary functions of lymph.The primary functions of lymph are to return the proteins to the bloodstream that have leaked out of the blood capillaries and to transport bacteria and other foreign particles to the lymph nodes.

6. Explain why physical exercise promotes lymphatic circulation.The contractions of the skeletal muscles, pressure changes due to the actions of breathing muscles, and smooth muscle contractions of the larger lymphatic trunks all aid in the movement of lymph through the body.

7. Explain how a lymphatic obstruction leads to edema.Continuous movement of fluid from the interstitial spaces into the lymphatic system stabilizes the volume of fluids in these spaces. When an obstruction occurs, the tissue fluid builds up and causes edema.

8. Describe the structure of a lymph node, and list its major functions.Each lymph node is enclosed in a capsule of fibrous connective tissue and subdivides into compartments. The compartments contain dense masses of lymphocytes and macrophages. These masses, called nodules, are the structural units of a lymph node. Lymph nodes function in lymphocyte production and phagocytosis of foreign substances, damaged cells, and cellular debris.

9. Locate the major body regions occupied by lymph nodes.The major body regions include: cervical region, axillary region, inguinal region, pelvic cavity, abdominal cavity, thoracic cavity, and supratrochlear region.

10. Describe the structure and functions of the thymus.The thymus is a soft, bilobed structure whose lobes are surrounded by a capsule of connective tissue. It is composed of lymphatic tissue, which is subdivided into lobules by connective tissues. The lobules contain many lymphocytes. It functions to produce T-lymphocytes that help in the immune response. It also secretes thymosin, which is thought to stimulate the maturation of T-lymphocytes after they leave the thymus.

11. Describe the structure and functions of the spleen.The spleen is the largest lymphatic organ. It resembles a large lymph node and is subdivided

Page 21: Tissue Fluid Formation - Pages Persos Chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web viewWhen an obstruction occurs, the tissue fluid builds up and causes edema.

into chambers or lobules. The spaces within the chambers are filled with blood instead of lymph. There are two types of tissues within the lobules of the spleen. They include:

White pulp - distributed throughout the spleen in tiny islands, composed of splenic nodules, and containing large numbers of lymphocytes.Red pulp - surrounds the venous sinuses and contains many red blood cells along with numerous lymphocytes and macrophages.

The spleen functions to filter the blood.12. Distinguish between innate (nonspecific) and adaptive (specific) body defenses against infection.

Nonspecific body defenses include species resistance, mechanical barriers such as the skin and mucous membranes, and chemical barriers such as enzymes, interferon, inflammation, and phagocytosis. Specific body defenses include immune mechanisms, where certain cells recognize the presence of particular foreign substances and act against them. Lymphocytes and macrophages achieve this.

13. Explain species resistance.Species resistance is referring to the fact that a given kind of organism or species develops diseases that are unique to it. A species may be resistant to diseases that affect other species, because its tissues somehow fail to provide the temperature or chemical environment needed by a particular pathogen.

14. Name two mechanical barriers to infection.The skin and the mucous membranes are two mechanical barriers to infection.

15. Describe how enzymatic actions function as defense mechanisms against pathogens.Enzymes provide a chemical barrier to pathogens. By splitting components of the pathogen or decreasing the pH, the enzyme can have lethal effects on pathogens.

16. Distinguish among the chemical barriers (interferons, defensins, and collectins), and give examples of their different actions.Interferons stimulate uninfected cells to synthesize antiviral proteins that block proliferation of viruses; stimulate phagocytosis; and enhance activity of cells that help resist infections and stifle tumor growth. Defensins make holes in bacterial cell walls and membranes.Collectins provide broad protection against a wide variety of microbes by grabbing onto them.

17. List possible causes of fever, and explain the benefits of fever.Viral or bacterial infection stimulates certain lymphocytes to secrete IL-1, which temporarily raises body temperature.Physical factors, such as heat or ultraviolet light, or chemical factors, such as acids or bases, can cause fever.Elevated body temperature and the resulting decrease in blood iron level and increased phagocytic activity hamper infection.

18. Describe Natural Killer (NK) Cells and their action.NK cells are a small population of lymphocytes. NK cells defend the body against various viruses and cancer by secreting cytolytic substances called perforins.

19. List the major effects of inflammation, and explain why each occurs.Localized redness-result of blood vessel dilation and the increase in blood volume of affected tissues.Swelling-result of increased blood volume and increased permeability of nearby capillaries.Heat-due to the presence of blood from deeper body parts, which is generally warmer than that near the surface.Pain-results from the stimulation of nearby pain receptors.

20. Identify the major phagocytic cells in the blood and other tissues.The most active phagocytic cells of the blood are neutrophils and monocytes. Macrophages are fixed phagocytic cells found in lymph nodes, spleen, liver, and lungs. This constitutes reticuloendothelial tissue.

Page 22: Tissue Fluid Formation - Pages Persos Chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web viewWhen an obstruction occurs, the tissue fluid builds up and causes edema.

21. Distinguish between an antigen and a hapten.An antigen is a foreign substance, such as a protein, polysaccharide or a glycolipid, to which lymphocytes respond. A hapten is a molecule that by itself cannot stimulate the immune response. It must combine with a larger molecule.

22. Review the origin of T cells and B cells.T cells originate in the thymus. B cells are those processed in another part of the body, probably the fetal liver.

23. Explain the immune response.The lysosomal digestive process of phagocytosis of an invading bacterium releases antigens. They are moved to the macrophage's surface membrane. They are then displayed on the membrane with major histocompatibility complex. If the antigen then fits the helper T cell, it becomes activated. At this point, the helper T cell seeks out the appropriate T cell and by attaching to it, activates the T cell into a response. Cell-mediated immunity (CMI) is when a T cell, for example, attaches itself to antigen-bearing cells and interacts with the foreign cells directly.

24. Define cytokine.Cytokines (lymphokines) are a variety of polypeptides that are synthesized and secreted by T cells and macrophages. These enhance various cellular responses to antigens. They stimulate the synthesis of lymphokines from other T cells, help activate resting T cells, cause T cells to proliferate, stimulate the production of leukocytes in the red bone marrow, cause growth and maturation of B cells, and activate macrophages.

25. List three types of T cells and describe the function of each in the immune response.a. Helper T cells—mobilize the immune system to stop a bacterial infection through a series of complex

steps.b. Memory T cells—provide for no delay in the response to future exposures to an antigen.c. Cytoxic T cells—recognize non-self antigens that cancerous or virally infected cells display on their

surfaces.26. Define clone of lymphocytes.

Clone of lymphocytes refers to cells that are derived from one early cell that are capable of responding to a certain antigen. As there are many differing antigens, there are also many differing varieties of clones.

27. Explain humoral immunity.A B cell is activated when it binds to an activated T cell.An activated B cell proliferates, enlarging its clone.Some activated B cells specialize into antibody-producing plasma cells.Antibodies react against the antigen-bearing agent that stimulated their production.An individual’s diverse B cells defend against a very large number of pathogens.

28. Explain how a B cell is activated.B cells become activated when they encounter an antigen whose molecular shape fits the shape of the B cell's antigen receptors. As a result of this combination, the B-cells proliferate by mitosis and its clone is enlarged. This mechanism for activation is similar to the lock and key model used by enzymes and substrates.

29. Explain the function of plasma cells.Plasma cells are some of the newly formed members of the activated B cell's clone. They make use of their DNA information and protein-synthesizing mechanism to produce antibody molecules.

30. Describe an immunoglobulin molecule.An immunoglobulin molecule consists of two identical light changes of amino acids and two identical heavy chains of amino acids. See figure 16.20, page 637.

31. Distinguish between the variable region and the constant region of an immunoglobulin molecule.Variable regions are the portion of one end of each of the heavy and light chains consists of

Page 23: Tissue Fluid Formation - Pages Persos Chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web viewWhen an obstruction occurs, the tissue fluid builds up and causes edema.

variable sequences of amino acids making them specific for specific antigen molecules. Constant regions are the remaining portions of the chains whose amino acid sequences are very similar from molecule to molecule.

32. List the major types of immunoglobulins, and describe their main functions.Immunoglobulin G (IgG)—occurs in plasma and tissue fluids.Immunoglobulin A (IgA)—occurs in milk, tears, nasal fluid, gastric juice, intestinal juice, bile, and

urine.Immunoglobulin M (IgM)—develops in blood plasma.Immunoglobulin D (IgD)—is important in activating B cells.Immunoglobulin E (IgE)—occurs in exocrine secretions and is associated with allergic reactions.

33. Describe three ways in which antibody attack on a direct antigen helps in the removal of antigen.Agglutination—antibodies combine with antigens and clumping results.Precipitation—antibodies combine with antigens and insoluble substance forms.Neutralization—antibodies cover the toxic portions of antigen molecules and neutralize their

effects.Lysis—antibodies cause the cell membranes to rupture.

34. Explain the function of complement.It is a group of inactive enzymes that become activated when certain IgG or IgM antibodies combine with antigens and the reactive sites become exposed. The activated enzymes produce chemotaxis, agglutination, opsonization, and lysis. It can also promote the inflammation reaction.

35. Distinguish between a primary and a secondary immune response.A primary immune response occurs when B cells or T cells become activated after first encountering the antigens to which they are specifically reactant. A secondary immune response happens when memory cells are activated and increased in size, so they can respond rapidly to the antigen to which they were previously sensitized.

36. Distinguish between active and passive immunity.Active immunity can be either naturally acquired or artificially acquired. Naturally acquired active immunity is stimulated as a result of exposure to live pathogens. Artificially acquired active immunity is stimulated by exposure to a vaccine containing weakened or dead pathogens. Passive immunity can also be either naturally acquired or artificially acquired. Naturally the antibodies passed to a fetus from a mother with active immunity stimulate acquired passive immunity. Artificially acquired passive immunity is stimulated by an injection of gamma globulin that contains antibodies.

37. Define vaccine.A vaccine is a substance that contains an antigen that can stimulate a primary immune response against a particular disease-causing agent, but does not cause severe disease symptoms.

38. Explain how a vaccine produces its effect.A vaccine contains bacteria or viruses that have been killed or weakened so they cannot cause a serious infection; or it may contain a toxin of an infectious organism that has been chemically altered to destroy its toxic effects. The antigens present still retain the characteristics needed to simulate a primary immune response.

39. Describe how a fetus may obtain antibodies from the maternal blood.Receptor-mediated endocytosis utilizing receptor sites on cells of the fetal yolk sac transfers IgG molecules to the fetus.

40. Explain the relationship between an allergic reaction and an immune response.Allergic reactions are closely related to immune responses in that both may involve the sensitizing of lymphocytes or the combining of antigens with antibodies. Allergic reactions are likely to be excessive and to cause tissue damage.

41. Distinguish between an antigen and an allergen.An antigen is a substance that stimulates cells to produce antibodies. An allergen is a

Page 24: Tissue Fluid Formation - Pages Persos Chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web viewWhen an obstruction occurs, the tissue fluid builds up and causes edema.

foreign substance capable of stimulating an allergic reaction.42. Describe how an immediate-reaction allergic response may occur.

In an immediate-reaction allergy, the individuals have an inherited ability to synthesize abnormally large quantities of antibodies in response to certain antigens. In this instance, the allergic reaction involves the activation of B-cells.

43. List the major events leading to a delayed-reaction allergic response.It results from repeated exposure of the skin to certain chemical substances. As a consequence of these repeated contacts, the foreign substance and a large number of T cells collect in the skin and eventually activate the T cells. Their actions and the actions of macrophages they attract cause the release of various chemical factors. This causes eruptions and inflammation of the skin. It is called delayed since it takes about forty-eight hours to occur.

44. Explain the relationship between a tissue rejection and an immune response.Tissue rejection is when the immune system sees transplanted tissue as foreign and starts the immune response to try to rid the body of it.

45. Describe two methods used to reduce the severity of a tissue rejection reaction.Matching the donor and recipient tissues may reduce it. It can also involve giving drugs that suppress the immune system.

46. How do immunosuppressant drugs increase the likelihood of success of a transplant, yet place the patient at a higher rise of developing infections?An immunosuppressive drug interferes with the recipient’s immune response by suppressing formation of antibodies or production of T cells. This will ultimately leave the recipient relatively unprotected against infection.

47. Explain the relationship between autoimmunity and an immune response.Autoimmunity occurs when the immune system does not distinguish between self and nonself and manufactures autoantibodies that attack the body's own cells. For whatever reason, the autoantibodies treat a certain cell type in the body as a foreign object and signal the immune system to defend against the perceived invader.

48. Describe the causes for a decline in the strength of the immune response in the elderly.The immune system begins to decline early in life, in part due to the decreasing size of the thymus.Numbers of T cells and B cells do not change significantly, but activity levels do.Proportions of the different antibody classes shift.

Chapter 16: Lymphatic System and Immunity

A. I. Introduction

A. The lymphatic system is closely associated with_______________________________

_________________________________________________________________________

B. Lymphatic vessels transport____________________________________________and

return it to the_____________________________________________________________

C. Lacteals are _____________________ and function to__________________________

_________________________________________________________________________

Page 25: Tissue Fluid Formation - Pages Persos Chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web viewWhen an obstruction occurs, the tissue fluid builds up and causes edema.

D. The organs of the lymphatic system also defend_______________________________

_________________________________________________________________________

B. II. Lymphatic Pathways

A. Lymphatic Capillaries

1. Lymphatic capillaries are_________________________________________thatextend into__________________________________________________________2. The walls of lymphatic capillaries are similar to__________________________3. The thin walls of capillaries make it possible for____________________________________________________________________________________________4. Lymph is________________________________________________________

B. Lymphatic Vessels

1. The walls of lymphatic vessels are similar to those of_____________________

2. Lymphatic vessels have_________________which prevents backflow of lymph.

3. Larger lymphatic vessels lead to______________________________________

4. After leaving nodes, lymphatic vessels merge together to form______________

___________________________________________________________________

C. Lymphatic Trunks and Collecting Ducts

1. Lymphatic trunks drain__________________________________________and

are named for_______________________________________________________

Page 26: Tissue Fluid Formation - Pages Persos Chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web viewWhen an obstruction occurs, the tissue fluid builds up and causes edema.

2. Examples of lymphatic trunks are_____________________________________

___________________________________________________________________

3. Lymphatic trunks join______________________________________________

4. The two collecting ducts are_________________________________________

5. The thoracic duct is located__________________________________________

_________________________ and empties into___________________________

6. The thoracic duct drains_____________________________________________

___________________________________________________________________

7. The right lymphatic duct is located____________________________________

________________________ and empties into____________________________

8. The right lymphatic duct drains_______________________________________

___________________________________________________________________

9. After leaving the two collecting ducts, lymph enters____________________and

becomes part of______________________________________________________

C. III. Tissue Fluid and Lymph

A. Introduction

1. Lymph is________________________________________________________

2. Lymph formation depends on________________________________________

B. Tissue Fluid Formation

1. Capillary blood pressure filters_______________________________________________________________________________________________________andthe resulting fluid consists of___________________________________________2. Water is drawn back into capillaries because_______________________________________________________________________________________________

C. Lymph Formation

1. Filtration from the plasma normally exceeds____________________________,leading to___________________________________________________________2. Tissue fluid moves into lymphatic capillaries because_____________________

___________________________________________________________________

3. Lymph formation prevents___________________________________________

Page 27: Tissue Fluid Formation - Pages Persos Chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web viewWhen an obstruction occurs, the tissue fluid builds up and causes edema.

D. Lymph Function

1. Lymphatic vessels in the small intestine play a major role in________________

___________________________________________________________________

2. Lymph returns_____________________________________to the bloodstream.

3. Lymph transports_____________________________________to lymph nodes.

4. Lymphatic capillaries can receive proteins and foreign particles that blood

capillaries cannot because______________________________________________

___________________________________________________________________

5. The lumen of a lymphatic capillary remains open because__________________

___________________________________________________________________

D. IV. Lymph Movement

A. Introduction

1. The _______________ pressure of tissue fluid drives lymph into____________

___________________________________________________________________

2. _______________________________________largely influences movement oflymph through lymphatic vessels.

B. Lymph Flow

1. Lymph is under____________________________________________pressure.

2. Contracting________________________________compress lymphatic vessels.

3. Lymph does not flow back because____________________________________

4. Breathing aids lymph circulation by___________________________________

___________________________________________________________________

C. Obstruction of Lymph Movement

1. Conditions that interfere with lymph movement causes____________________

___________________________________________________________________

2. The continuous movement of lymph from_______________________________

___________________________________________stabilizes the volume of fluid

in interstitial spaces.

Page 28: Tissue Fluid Formation - Pages Persos Chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web viewWhen an obstruction occurs, the tissue fluid builds up and causes edema.

E. V. Lymph Nodes

A. Introduction

1. Lymph nodes are located____________________________________________2. Lymph nodes contain_________________________________________, which

fight_______________________________________________________________

B. Structure of a Lymph Node

1. The hilum of a lymph node is________________________________________

2. Afferent lymphatic vessels are________________________________________

3. Efferent lymphatic vessels are________________________________________

4. Lymph nodules are_________________________________________________

5. Germinal centers contain____________________________________________

6. Tonsils are composed of____________________________________________

7. Peyer’s patches are located_______________________________________and

are composed of_____________________________________________________

8. Lymph sinuses are_________________________________________________

C. Locations of Lymph Nodes

1. Lymph nodes generally occur in________________________along the paths of

_______________________________________________________but are absent

___________________________________________________________________

2. Major locations of lymph nodes are____________________________________

___________________________________________________________________

3. Lymph nodes of the cervical region are associated with lymphatic vessels that

drain______________________________________________________________

4. Lymph nodes of the axillary region are associated with lymphatic vessels that

drain______________________________________________________________

5. Lymph nodes of the inguinal region are associated with lymphatic vessels that

drain______________________________________________________________

6. Lymph nodes of the pelvic cavity are associated with lymphatic vessels that

drain______________________________________________________________

7. Lymph nodes of the abdominal cavity are associated with lymphatic vessels that

drain______________________________________________________________

8. Lymph nodes of the thoracic cavity are associated with lymphatic vessels that

drain______________________________________________________________

9. Lymph nodes of the supratrochlear region are associated with lymphatic vessels

Page 29: Tissue Fluid Formation - Pages Persos Chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web viewWhen an obstruction occurs, the tissue fluid builds up and causes edema.

that drain___________________________________________________________

D. Functions of Lymph Nodes

1. The two primary functions of lymph nodes are___________________________

___________________________________________________________________

2. Along with________________________________, lymph nodes are centers for

lymphocyte production.

3. Lymphocytes attack________________________________________________

4. The functions of macrophages are_____________________________________

___________________________________________________________________

F. VI. Thymus and Spleen

A. Thymus

1. The thymus is composed of__________________________________________

and is located________________________________________________________

2. After puberty, the thymus___________________________________________

3. Most cells of the thymus gland are____________________________________

4. The hormones secreted by the thymus gland are called____________________

5. Thymosins function to______________________________________________

B. Spleen

1. The largest lymphatic organ is________________________________________

2. The spleen is located_______________________________________________

3. The spleen resembles_______________________________________________

___________________________________________________________________

4. White pulp contains________________________________________________

5. Red pulp contains__________________________________________________

6. The functions of the spleen are_______________________________________

___________________________________________________________________

Page 30: Tissue Fluid Formation - Pages Persos Chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web viewWhen an obstruction occurs, the tissue fluid builds up and causes edema.

VII. Body Defenses Against Infection

A. A pathogen is__________________________________________________________

B. An infection is__________________________________________________________

C. Examples of pathogens are________________________________________________

D. Innate defenses are_____________________________________________and include

_________________________________________________________________________

E. Adaptive defenses are______________________________________________and are

carried out by_____________________________________________________________

VIII. Innate Defenses

A. Species Resistance

1. Species resistance refers to__________________________________________

___________________________________________________________________

2. A species may be resistant to diseases that affect other species because_______

___________________________________________________________________

B. Mechanical Barriers

1. Mechanical barriers prevent__________________________________________

2. Examples of mechanical barriers are___________________________________

___________________________________________________________________

3. The first line of defense is___________________________________________

4. The second line of defense is_________________________________________

C. Chemical Barriers

1. Chemical barriers are_______________________________________________

2. Examples of chemical barriers are_____________________________________

___________________________________________________________________

3. Interferon is produced by_________________________________________and

its functions include__________________________________________________

4. Defensins are produced by___________________________________________

5. The functions of defensins are________________________________________

___________________________________________________________________

6. Collectins are__________________________________________________and

their functions include_________________________________________________

D. Fever

1. A fever begins when_______________________________________________

___________________________________________________________________

Page 31: Tissue Fluid Formation - Pages Persos Chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web viewWhen an obstruction occurs, the tissue fluid builds up and causes edema.

2. The functions of fever are___________________________________________

___________________________________________________________________

E. Natural Killer Cells

1. Natural killer cells are______________________________________________2. Functions of natural killer cells are_______________________________________________________________________________________________________3. Perforins are______________________________________________________

F. Inflammation1. Inflammation produces_____________________________________________ 2. Redness of inflammation is the result of___________________________________________________________________________________________________3. Swelling of inflammation is the result of___________________________________________________________________________________________________4. Heat of inflammation is the result of______________________________________________________________________________________________________5. Pain of inflammation is the result of______________________________________________________________________________________________________6. Cells that commonly migrate to areas of inflammation are_____________________________________________________________________________________7. Pus is the result of_________________________________________________8. The functions of inflammation are________________________________________________________________________________________________________

G. Phagocytosis

1. Phagocytosis removes______________________________________________

___________________________________________________________________

2. Examples of phagocytic cells are______________________________________

___________________________________________________________________

Page 32: Tissue Fluid Formation - Pages Persos Chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web viewWhen an obstruction occurs, the tissue fluid builds up and causes edema.

3. The mononuclear phagocytic system is_________________________________

___________________________________________________________________

IX. Adaptive Defenses or Immunity

A. Introduction

1. Immunity is______________________________________________________

2. An immune response is based on______________________________________

___________________________________________________________________

3. Antigens are______________________________________________________

4. _________________________________________carry out immune responses.

B. Antigens

1. Receptors on lymphocyte surfaces enable cells to recognize________________

___________________________________________________________________

2. Antigens may be__________________________________________________

___________________________________________________________________

3. The antigens most effective in eliciting an immune response is______________

___________________________________________________________________

4. A hapten is_______________________________________________________

5. Examples of haptens are____________________________________________

C. Lymphocyte Origins

1. T cells are derived from________________________________________________________________________________________________________________2. B cells are derived from________________________________________________________________________________________________________________3. The blood distributes___________________________________________cells.4. B cells and T cells are abundant in_______________________________________________________________________________________________________

D. Lymphocyte Functions

1. The cellular immune response is______________________________________

___________________________________________________________________

2. Cytokines are produces by___________________________________________

3. Examples of cytokines are___________________________________________

4. Functions of cytokines are___________________________________________

___________________________________________________________________

5. T cells may also secrete toxins that____________________________________,

growth-inhibiting factors that________________________________________, or

interferon that_______________________________________________________

Page 33: Tissue Fluid Formation - Pages Persos Chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web viewWhen an obstruction occurs, the tissue fluid builds up and causes edema.

6. B cells differentiate into_____________________________________________

7. Plasma cells produce_______________________________________________

8. The humoral immune response is_____________________________________

___________________________________________________________________

9. A clone is________________________________________________________

10. Different varieties of T cells and B cells have a particular type of___________

____________________________________________on their cell membranes that

___________________________________________________________________

E. T Cells and the Cellular Immune Response

1. A lymphocyte must be___________________________before it can respond to

an antigen.

2. T cell activation requires____________________________________________

___________________________________________________________________

3. Antigen-presenting cells are_________________________________________

___________________________________________________________________

4. T cell activation begins when________________________________________

___________________________________________________________________

5. The major histocompatibility complex is_______________________________

___________________________________________________________________

6. MHC antigens help________________________________________________

7. Class I MHC antigens are located_____________________________________

___________________________________________________________________

8. Class II MHC antigens are located____________________________________

___________________________________________________________________

9. The functions of helper T cells are____________________________________

___________________________________________________________________

10. The functions of cytotoxic T cells are_________________________________

___________________________________________________________________

11. The functions of memory T cells are__________________________________

___________________________________________________________________

F. B Cells and the Humoral Immune Response

1. Introduction

a. B cells may become activated when__________________________________________________________________________________________

Page 34: Tissue Fluid Formation - Pages Persos Chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web viewWhen an obstruction occurs, the tissue fluid builds up and causes edema.

b. Upon activation, B cells_______________________________________

c. T cells help B cells by________________________________________

_____________________________________________________________

d. The functions of memory B cells are_____________________________

_____________________________________________________________

e. The functions of plasma cells are________________________________

_____________________________________________________________

f. An immune response may include several types of antibodies

manufactured against a single microbe because_______________________

_____________________________________________________________

g. A polyclonal response is______________________________________

2. Antibody Molecules

a. Antibodies are______________________________________________

b. Each antibody is composed of__________________________________

_____________________________________________________________

c. The light chains are__________________________________________

d. The heavy chains are_________________________________________

e. The five major types of antibodies are distinguished by______________

_____________________________________________________________

f. The variable region is_________________________________________

_____________________________________________________________

g. Variable regions are specialized to______________________________

_____________________________________________________________

h. Antigen-binding sites are______________________________________

i. Idiotypes are________________________________________________

j. Constant regions are__________________________________________

3. Types of Immunoglobulins

a. The five major types of immunoglobulins are______________________

_____________________________________________________________

b. The three types of immunoglobulins that make up the bulk of circulating

antibodies are_________________________________________________

c. IgG is found in______________________________________________

d. The functions of IgG are______________________________________

_____________________________________________________________

Page 35: Tissue Fluid Formation - Pages Persos Chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web viewWhen an obstruction occurs, the tissue fluid builds up and causes edema.

e. IgA is found in______________________________________________

f. The functions of IgA are_______________________________________

_____________________________________________________________

g. IgM is found in______________________________________________

h. The functions of IgM are______________________________________

_____________________________________________________________

i. IgD is found in______________________________________________

j. The functions of IgD are_______________________________________

_____________________________________________________________

k. IgE is located_______________________________________________

l. The functions of IgE are_______________________________________

_____________________________________________________________

4. Antibody Actions

a. The three ways antibodies react to antigens are_____________________

_____________________________________________________________

b. In a direct attack, antibodies combine with________________________

and cause them to______________________________________________

c. Phagocytic cells can engulf antigens more readily when______________

_____________________________________________________________

Page 36: Tissue Fluid Formation - Pages Persos Chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web viewWhen an obstruction occurs, the tissue fluid builds up and causes edema.

d. Antibodies can also cover__________________________________and

neutralize____________________________________________________

e. Complement is______________________________________________

f. Complement is activated by____________________________________

g. Functions of complement are___________________________________

_____________________________________________________________

h. IgE antibodies are usually attached to membranes of________________

i. Mast cells release their biochemicals when________________________

_____________________________________________________________

G. Immune Responses

1. The primary immune response occurs when_____________________________

___________________________________________________________________

2. Following a primary immune response, some B cells produce_______________

___________________________________________________________________

3. The secondary immune response occurs when___________________________

___________________________________________________________________

H. Practical Classification of Immunity

1. Naturally acquired active immunity develops when_______________________

___________________________________________________________________

2. Artificially acquired active immunity develops when______________________

__________________________________________________________________`

3. A vaccine is______________________________________________________

4. Artificially acquired passive immunity occurs when_______________________

___________________________________________________________________

5. Naturally acquired passive immunity occurs when________________________

___________________________________________________________________

I. Allergic Reactions

1. An allergic reaction is______________________________________________

___________________________________________________________________

2. Allergens are_____________________________________________________

Page 37: Tissue Fluid Formation - Pages Persos Chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web viewWhen an obstruction occurs, the tissue fluid builds up and causes edema.

3. An immediate-reaction allergy occurs when_____________________________

___________________________________________________________________

4. Anaphylactic shock is______________________________________________

___________________________________________________________________

5. Antibody-dependent cytotoxic reactions occur when______________________

___________________________________________________________________

6. Immune complex reactions occur when________________________________

___________________________________________________________________

7. Autoimmunity refers to_____________________________________________

___________________________________________________________________

8. A delayed-reaction allergy occurs when________________________________

___________________________________________________________________

J. Transplantation and Tissue Rejection

1. Transplanted tissues and organs include________________________________

___________________________________________________________________

2. A tissue rejection reaction is_________________________________________

___________________________________________________________________

3. Tissues are rejected because_________________________________________

___________________________________________________________________

4. Isografts are______________________________________________________

5. Autografts are_____________________________________________________

6. Allografts are_____________________________________________________

7. Xenografts are____________________________________________________

8. Immunosuppressive drugs are used to__________________________________

___________________________________________________________________

K. Autoimmunity

1. Autoantibodies are_________________________________________________

2. Reasons people develop autoimmunities are_____________________________

___________________________________________________________________

___________________________________________________________________

Page 38: Tissue Fluid Formation - Pages Persos Chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web viewWhen an obstruction occurs, the tissue fluid builds up and causes edema.

3. Scleroderma is____________________________________________________

___________________________________________________________________

G. X. Life-Span Changes

A. The immune system begins to decline_______________________________________

_________________________________________________________________________

B. By age 70, the thymus____________________________________________________

C. Elderly people have a higher risk of developing cancer and infections because_______

_________________________________________________________________________

D. AIDS is more difficult to diagnose in older people because_______________________

_________________________________________________________________________

E. Elderly people may not be candidates for certain medical treatments because________

_________________________________________________________________________