TiO2 nanoparticlesfor CO2 photoreduction: a combined...

36
TiO 2 nanoparticles for CO 2 photoreduction: a combined experimental and periodic DFT study of the active sites Lorenzo Mino C. Deiana, A. M. Ferrari, V. Maurino, G. Martra, G. Spoto Department of Chemistry, University of Turin Photocatalysis for energy Lyon, 1517 October 2014

Transcript of TiO2 nanoparticlesfor CO2 photoreduction: a combined...

Page 1: TiO2 nanoparticlesfor CO2 photoreduction: a combined ...projet.ifpen.fr/Projet/upload/docs/application/pdf/2014-11/l_mino.pdf · L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys.

TiO2 nanoparticles for CO2 photoreduction: a 

combined experimental and 

periodic DFT study of the active sites

Lorenzo MinoC. Deiana, A. M. Ferrari, V. Maurino, G. Martra, G. Spoto

Department of Chemistry, University of Turin

Photocatalysis for energy

Lyon, 15‐17 October 2014

Page 2: TiO2 nanoparticlesfor CO2 photoreduction: a combined ...projet.ifpen.fr/Projet/upload/docs/application/pdf/2014-11/l_mino.pdf · L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys.

Background of the study and investigation techniques

Study of the TiO2 exposed surface sites by CO adsorption 

CO2 interaction with dehydroxylatedand hydrated TiO2 anatase surfaces

Conclusions and perspectives

Page 3: TiO2 nanoparticlesfor CO2 photoreduction: a combined ...projet.ifpen.fr/Projet/upload/docs/application/pdf/2014-11/l_mino.pdf · L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys.

Background of the study and investigationtechniques

Section

Background of the study and investigation techniques

Study of the TiO2 exposed surface sites by CO adsorption 

CO2 interaction with dehydroxylated and hydrated TiO2 anatase surfaces

Conclusions and perspectives

Page 4: TiO2 nanoparticlesfor CO2 photoreduction: a combined ...projet.ifpen.fr/Projet/upload/docs/application/pdf/2014-11/l_mino.pdf · L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys.

4Background of the study and investigation techniques

TiO2 for CO2 photoreductionA long story

surface study atan atomic/molecular level

Already in 1979 Honda and coworkers reported the photoreductionof CO2 to form formic acid, formaldehyde, methyl alcohol andmethane in aqueous suspension of TiO2.

Despite a considerable amount ofsubsequent studies, the conversionefficiency of CO2 into usefulhydrocarbons is still too low for large‐scale technological applications.

Page 5: TiO2 nanoparticlesfor CO2 photoreduction: a combined ...projet.ifpen.fr/Projet/upload/docs/application/pdf/2014-11/l_mino.pdf · L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys.

5Background of the study and investigation techniques

The key role of surface sitesShape dependent properties

M.V. Dozzi et al., Catalysts 2013, 3, 455

Page 6: TiO2 nanoparticlesfor CO2 photoreduction: a combined ...projet.ifpen.fr/Projet/upload/docs/application/pdf/2014-11/l_mino.pdf · L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys.

6Background of the study and investigation techniques

Nanoparticle morphologyElectron microscopy

TiO2 HT TiO2 T‐SP (Solaronix)TiO2 P25 (Evonik)

50 nm

study at an atomic level

Information on exposed surfaces

more complex morphology:how can we study the surface?

C. Deiana, et al., Phys. 

Chem. Chem. Phys., 2013, 15, 307

Page 7: TiO2 nanoparticlesfor CO2 photoreduction: a combined ...projet.ifpen.fr/Projet/upload/docs/application/pdf/2014-11/l_mino.pdf · L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys.

7Background of the study and investigation techniques

Nanoparticle morphology and surface propertiesFTIR spectroscopy of adsorbed probe molecules

TiO2 surface

OTi

Page 8: TiO2 nanoparticlesfor CO2 photoreduction: a combined ...projet.ifpen.fr/Projet/upload/docs/application/pdf/2014-11/l_mino.pdf · L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys.

8Background of the study and investigation techniques

Nanoparticle morphology and surface propertiesFTIR spectroscopy of adsorbed probe molecules

TiO2 surface

OTi

C

O

OTi

TiO2 surfaceeffect of the interaction with surface sites on the ν of the internal mode 

Page 9: TiO2 nanoparticlesfor CO2 photoreduction: a combined ...projet.ifpen.fr/Projet/upload/docs/application/pdf/2014-11/l_mino.pdf · L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys.

9Background of the study and investigation techniques

FTIR spectroscopy of adsorbed probe molecules Carbon monoxide

The higher is the blue‐shift, the greater is the Lewis 

acidity of the metal cation

Stretching frequency of adsorbed CO is also influenced 

by the lateral interactions occuring in the adlayers

Information on surfaceproperties and morphology

Page 10: TiO2 nanoparticlesfor CO2 photoreduction: a combined ...projet.ifpen.fr/Projet/upload/docs/application/pdf/2014-11/l_mino.pdf · L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys.

10Background of the study and investigation techniques

FTIR spectroscopy of adsorbed probe moleculesCryostat

G. Spoto et al., Prog. Surf. Sci., 2004, 76, 71

The use of a cryostat allowed us go below the liquid nitrogen 

temperature obtaining spectra of considerably 

improved quality 

Page 11: TiO2 nanoparticlesfor CO2 photoreduction: a combined ...projet.ifpen.fr/Projet/upload/docs/application/pdf/2014-11/l_mino.pdf · L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys.

Study of the TiO2exposed surface sites by CO adsorption 

Section

Background of the study and investigation techniques

Study of the TiO2 exposed surface sites by CO adsorption 

CO2 interaction with dehydroxylated and hydrated TiO2 anatase surfaces

Conclusions and perspectives

Page 12: TiO2 nanoparticlesfor CO2 photoreduction: a combined ...projet.ifpen.fr/Projet/upload/docs/application/pdf/2014-11/l_mino.pdf · L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys.

2220 2200 2180 2160 2140 2120

Abso

rban

ce 0.5 a.u.

Wavenumbers (cm-1)

12Study of the TiO2 exposed surface sites by CO adsorption

Anatase TiO2 nanocrystalsHRTEM and FTIR of CO adsorbed at 60 K

Ti

L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys. Chem. C, 2012, 116, 17008

3800 3700 3600 3500

Wavenumbers (cm-1)

need of modeling for full assignment 

Physisorbed CO

OH ∙∙ COAnatase extended surfaces Outgassedfor 2 h at 773 K

Page 13: TiO2 nanoparticlesfor CO2 photoreduction: a combined ...projet.ifpen.fr/Projet/upload/docs/application/pdf/2014-11/l_mino.pdf · L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys.

8 9 10 11 12 13 14 15 16 17 18 19 200.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

E's

(J/m

2 )

Slab thickness (Å)

(101)

(100)

(103)(110)

(001)

(112)

13

Periodic DFT calculationsAnatase surface energies

Anatase surfaces modeled with bidimensional slabs 

characterized by two infinite dimensions (x, y) and a finite 

thickness exploiting the CRYSTAL09 code and the PBE0 

functional

(001)

(101)

L. Mino et al., J. Phys. Chem. C 2011, 115, 7694

6 Ti‐layers for CO adsorption

Study of the TiO2 exposed surface sites by CO adsorption

Page 14: TiO2 nanoparticlesfor CO2 photoreduction: a combined ...projet.ifpen.fr/Projet/upload/docs/application/pdf/2014-11/l_mino.pdf · L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys.

14

Periodic DFT calculationsCO adsorption on the main anatase surfaces

OTi

Study of the TiO2 exposed surface sites by CO adsorption

Page 15: TiO2 nanoparticlesfor CO2 photoreduction: a combined ...projet.ifpen.fr/Projet/upload/docs/application/pdf/2014-11/l_mino.pdf · L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys.

15

Periodic DFT calculationsMain computed parameters

OTi

L. Mino et al., J. Phys. Chem. C 2011, 115, 7694

Study of the TiO2 exposed surface sites by CO adsorption

Page 16: TiO2 nanoparticlesfor CO2 photoreduction: a combined ...projet.ifpen.fr/Projet/upload/docs/application/pdf/2014-11/l_mino.pdf · L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys.

2220 2200 2180 2160 2140 2120

Abso

rban

ce

0.5 a.u.

Wavenumbers (cm-1)

16Oxide surface properties and particle morphology

CO adsorbed at 60 K on nanoanataseComplete spectral assignment

L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys. Chem. C, 2012, 116, 17008

Physisorbed CO

(112)

(101)

(001)

OH ∙∙ CO

Page 17: TiO2 nanoparticlesfor CO2 photoreduction: a combined ...projet.ifpen.fr/Projet/upload/docs/application/pdf/2014-11/l_mino.pdf · L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys.

17Oxide surface properties and particle morphology

Rutile TiO2Modeling of CO adsorption

(001) (100)

(110)

(011)

L. Mino et al., J. Phys. Chem. C 2013, 117, 11186

Page 18: TiO2 nanoparticlesfor CO2 photoreduction: a combined ...projet.ifpen.fr/Projet/upload/docs/application/pdf/2014-11/l_mino.pdf · L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys.

18Oxide surface properties and particle morphology

Rutile TiO2 model systemFESEM and FTIR of CO adsorbed at 60 K

OTi

BET surface area: 2 m2/g 

2220 2200 2180 2160 2140 2120

0.3 a.u.

Abso

rban

ce

Wavenumbers (cm-1)

Reconstructed(110)

Rutile Wulffconstruction

(110)

L. Mino et al., J. Phys. Chem. C 2013, 117, 11186

OH ∙∙ CO

Page 19: TiO2 nanoparticlesfor CO2 photoreduction: a combined ...projet.ifpen.fr/Projet/upload/docs/application/pdf/2014-11/l_mino.pdf · L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys.

19Oxide surface properties and particle morphology

Mixture of different polymorphsEvonik (Degussa) TiO2 P25

Mixture of about 85% anatase and 15% rutile with a surface area of 60 m2/g prepared by flame hydrolysis of TiCl4.Its outstanding photocatalytic activity makes it a benchmark for testing new synthesized materials.

HRTEM particles in 10‐50 nm range

XRD anatase 26 nm – rutile 42 nm 

Page 20: TiO2 nanoparticlesfor CO2 photoreduction: a combined ...projet.ifpen.fr/Projet/upload/docs/application/pdf/2014-11/l_mino.pdf · L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys.

20Oxide surface properties and particle morphology

TiO2 P25Ingredients for complete spectral assignment

Page 21: TiO2 nanoparticlesfor CO2 photoreduction: a combined ...projet.ifpen.fr/Projet/upload/docs/application/pdf/2014-11/l_mino.pdf · L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys.

21Oxide surface properties and particle morphology

TiO2 P25Complete spectral assignment

L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys. Chem. C, 2012, 

116, 17008

Informatio on face distribution, 

surface  regularity and crystallinity

Page 22: TiO2 nanoparticlesfor CO2 photoreduction: a combined ...projet.ifpen.fr/Projet/upload/docs/application/pdf/2014-11/l_mino.pdf · L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys.

22Oxide surface properties and particle morphology

Anatase TiO2 model systemFTIR of CO adsorbed at 100 K

C. Deiana, M. Minella, G. Tabacchi, V. Maurino, E. Fois, G. Martra, Phys. Chem. Chem. Phys., 2013, 15, 307‐315

Page 23: TiO2 nanoparticlesfor CO2 photoreduction: a combined ...projet.ifpen.fr/Projet/upload/docs/application/pdf/2014-11/l_mino.pdf · L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys.

CO2 interaction with dehydroxylated and hydrated TiO2anatase surfaces

Section

Background of the study and investigation techniques

Study of the TiO2 exposed surface sites by CO adsorption 

CO2 interaction with dehydroxylated and hydrated TiO2 anatase surfaces

Conclusions and perspectives

Page 24: TiO2 nanoparticlesfor CO2 photoreduction: a combined ...projet.ifpen.fr/Projet/upload/docs/application/pdf/2014-11/l_mino.pdf · L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys.

24

Dehydroxylated TiO2 anatase surfacesThe CO surface picture

CO2 interaction with dehydroxylated and hydrated TiO2 anatase surfaces 

Physisorbed CO

(101)

Low coordinated 

Ti sites

OH ∙∙ CO

(001)

Nanoanataseoutgassed for 2h

at 823 K

Page 25: TiO2 nanoparticlesfor CO2 photoreduction: a combined ...projet.ifpen.fr/Projet/upload/docs/application/pdf/2014-11/l_mino.pdf · L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys.

25

Dehydroxylated TiO2 anatase surfacesFTIR of adsorbed CO2 (pressure up to 10 mbar)

CO2 interaction with dehydroxylated and hydrated TiO2 anatase surfaces 

L. Mino, G. Spoto, A.M. Ferrari, J. Phys. Chem. C, 2014, DOI: 10.1021/jp507443k in press

Nanoanataseoutgassed for 2h

at 823 K

Page 26: TiO2 nanoparticlesfor CO2 photoreduction: a combined ...projet.ifpen.fr/Projet/upload/docs/application/pdf/2014-11/l_mino.pdf · L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys.

26

Dehydroxylated TiO2 anatase surfacesPossible adsorption geometries on the (101) surface

CO2 interaction with dehydroxylated and hydrated TiO2 anatase surfaces 

ΔEform = ‐9.5 Kcal/mol ‐7.8 Kcal/mol

‐8.5 Kcal/mol2.7 Kcal/mol

Page 27: TiO2 nanoparticlesfor CO2 photoreduction: a combined ...projet.ifpen.fr/Projet/upload/docs/application/pdf/2014-11/l_mino.pdf · L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys.

27

Dehydroxylated TiO2 anatase surfacesPossible adsorption geometries on the (001) surface

CO2 interaction with dehydroxylated and hydrated TiO2 anatase surfaces 

ΔEform = ‐5.3 Kcal/mol ‐30.1 Kcal/mol

‐3.4 Kcal/mol ‐20.9 Kcal/mol

Page 28: TiO2 nanoparticlesfor CO2 photoreduction: a combined ...projet.ifpen.fr/Projet/upload/docs/application/pdf/2014-11/l_mino.pdf · L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys.

28

Dehydroxylated TiO2 anatase surfacesComputed vibrational frequencies

CO2 interaction with dehydroxylated and hydrated TiO2 anatase surfaces 

L. Mino, G. Spoto, A.M. Ferrari, J. Phys. Chem. C, 2014, DOI: 10.1021/jp507443k in press

Page 29: TiO2 nanoparticlesfor CO2 photoreduction: a combined ...projet.ifpen.fr/Projet/upload/docs/application/pdf/2014-11/l_mino.pdf · L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys.

2400 23001700 1600 1500 1400 1300 1200

Experimental

Abso

rban

ce

Wavenumbers (cm-1)

0.5 a.u.

29

Dehydroxylated TiO2 anatase surfacesExperimental vs simulated FTIR spectra

CO2 interaction with dehydroxylated and hydrated TiO2 anatase surfaces 

101-L1

001-MC

Page 30: TiO2 nanoparticlesfor CO2 photoreduction: a combined ...projet.ifpen.fr/Projet/upload/docs/application/pdf/2014-11/l_mino.pdf · L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys.

2220 2200 2180 2160 2140 2120Wavenumbers (cm-1)

0.5 a.u.

Abso

rban

ce

30

Hydrated TiO2 anatase surfacesThe CO surface picture

CO2 interaction with dehydroxylated and hydrated TiO2 anatase surfaces 

Physisorbed CO

(101) halved intensity

Low coordinated Ti sites missing

OH ∙∙ COmore intense

(001) missing

Nanoanataseoutgassed for 2h at 823 K and then

partially rehydrated

Page 31: TiO2 nanoparticlesfor CO2 photoreduction: a combined ...projet.ifpen.fr/Projet/upload/docs/application/pdf/2014-11/l_mino.pdf · L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys.

31

Hydrated TiO2 anatase surfacesFTIR of adsorbed CO2 (pressure up to 10 mbar)

CO2 interaction with dehydroxylated and hydrated TiO2 anatase surfaces 

L. Mino, G. Spoto, A.M. Ferrari, J. Phys. Chem. C, 2014, DOI: 10.1021/jp507443k in press

Nanoanataseoutgassed for 2h at 823 K and then

partially rehydrated

Page 32: TiO2 nanoparticlesfor CO2 photoreduction: a combined ...projet.ifpen.fr/Projet/upload/docs/application/pdf/2014-11/l_mino.pdf · L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys.

32

Hydrated TiO2 anatase surfacesPossible bicarbonates on the (001) surface

CO2 interaction with dehydroxylated and hydrated TiO2 anatase surfaces 

‐14.6 Kcal/mol

‐4.3 Kcal/mol

‐1.5 Kcal/mol

0.1 Kcal/mol 3.5 Kcal/mol 8.6 Kcal/mol

ΔEform = ‐10.3 Kcal/mol

Page 33: TiO2 nanoparticlesfor CO2 photoreduction: a combined ...projet.ifpen.fr/Projet/upload/docs/application/pdf/2014-11/l_mino.pdf · L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys.

33

Hydrated TiO2 anatase surfacesBicarbonates computed vibrational frequencies

CO2 interaction with dehydroxylated and hydrated TiO2 anatase surfaces 

L. Mino, G. Spoto, A.M. Ferrari, J. Phys. Chem. C, 2014, DOI: 10.1021/jp507443k in press

Page 34: TiO2 nanoparticlesfor CO2 photoreduction: a combined ...projet.ifpen.fr/Projet/upload/docs/application/pdf/2014-11/l_mino.pdf · L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys.

34

Hydrated TiO2 anatase surfacesExperimental vs simulated FTIR spectra

CO2 interaction with dehydroxylated and hydrated TiO2 anatase surfaces 

101-L1

001-MB1 001-BB2 001-BB3

Page 35: TiO2 nanoparticlesfor CO2 photoreduction: a combined ...projet.ifpen.fr/Projet/upload/docs/application/pdf/2014-11/l_mino.pdf · L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys.

Conclusions and perspectives

Section

‐ The use of adsorbed CO as probe moleculeallowed us to highlight the exposed surface sitesand to determine the average nanoparticlemorphology.

‐ Study of mixtures of different polymorphs ormixtures of different oxides.

- On the most stable anatase (101) surface CO2 isweakly adsorbed and retains its molecularproperties.

‐ On the dehydroxylated anatase (001) surface theformation of monodentate carbonates occurs.

‐ On the partially hydrated (001) surface theformation of bidentate bicarbonates is favored.

‐ Basis for future in situ study under UV irradiation.

Background of the study and investigation techniques

Study of the TiO2 exposed surface sites by CO adsorption 

CO2 interaction with dehydroxylated and hydrated TiO2 anatase surfaces

Conclusions and perspectives

Page 36: TiO2 nanoparticlesfor CO2 photoreduction: a combined ...projet.ifpen.fr/Projet/upload/docs/application/pdf/2014-11/l_mino.pdf · L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys.

Acknowledgments

A. Zecchina

S. Bordiga

C. Negri

Thank you for the kind attention