ROOUESITE.BEARING TIN ORES FROM THE …rruff.info/doclib/cm/vol29/CM29_207.pdf · Indium-tin...

9
Canadion Minerologist Yol. 29, pp. 207-215 (1991) ABSTRAc"I Indium-tin mineralization is observedin the Omodani, Akenobe, Fukoku, and Ikuno deposits,which are Cu- dominant polymetallic veins of late Cretaceous to early Tertiary age in the Inner Zone of southwestern Japan. The indium-tin-bearing oresare commonly composed of roque- site (CuInS2), stannoidite, sphalerite, tennantite- tetrahedrite, chalcopyrite and quartz, with local bornite, mawsonite, galena and arsenopyrite. The iron content of the sphalerite that coexists with roquesite, stannoidite and tennantite-tetrahedrite is very low. Temperatures of for- mation based on fluid-inclusion data on quartz from the Omodani and Akenobe deposits are in the rangefrom 285o to 3looc. The 6:+5 values ofthe roquesite-b-earing tin ores are virtually constant (-0.8 to +0.3y65 ). Based on these descriptions, possible rangesin sulfur activity during for- mation of the roquesite-bearingtin ores are estimated to be approximately l0-8 to l0{ atm., and the temperature was greater than 285oC. Keywords: roquesite, polymetallic vein-type deposits, sul- fur isotopes, activity of sulfur, temperature, Omodani, Akenobe, Fukoku, Ikuno, Japan. SoMMAIRE Une min€ralisation i indium-dtain a &6 documentde darrs lesgisements de Omodani, Akenobe, Fukoku et lkuno, tous des systbmes de fissures polym6talliques d dominance de Cu, d'6ge cr€tac6tardif d tertiaire pr6coce, situ6s dans la zone interne du Sud-Ouestdu Japon. Le minerai i In-Sn contient couramment roquesite (CuInS), stannoidite, sphaldrite, tennantile*t6tra6drite, chalcopyrite et quartz, ainsi que bornite, mawsonite, gal&ne et ars6nopyriteacces- soires.La teneur en fer de la sphaldriteen coexistence avec roqucite, stannoidite et tennantite-tetra€drite est trb faible. D'apr0s les donndes sur les inclusions fluides du quartz des gisements d'Omodani et d'Akenobe, la temp€rature de for- mation du minerai aurait 6teentre285 et 3l0oC. Ls valeurs de FaS du minerai d'6tain contenant de la roquesite sont i peu prds constantes (-0.8 e + 0.3700). L'activit€ en sou- fre au cours de la formation du minerai aurait €t6 d'envi- ron l0-8 i 10-6 atm., et la tempdrature, sup6rieure i 2850C. ROOUESITE.BEARING TIN ORES FROM THEOMODANI. AKENOBE, FUKOKU, AND IKUNO POLYMETALLIC VEIN-TYPE DEPOSITS IN THEINNER ZONE OF SOUTHWESTERN JAPAN MASAAKI SHIMIZU University Museum, University of Tokyo, Tokyo 113, Jopan AKIRA KATO NationalScience Museum, Tokyo 169, Japan Mots-dAs. roquesite, gisements polym6talliques en fissu- res, isotopes desoufre, activitd du soufre, temperature, Omodani, Akenobe, Fukoku, Ikuno, Japon. INrnooucrIoN Since the first report of the occurrence of roque- site in Japan, from the Eisei vein of the Akenobe deposit (Kato & Shinohara 1968), no additional roquesitehas beendescribed. This report documents new occurrences of roquesitein tin ores from the Omodani @ukui Pref.), the Akenobe (Hyogo Pref.), the Fukoku (Kyoto Pref.), and the Ikuno deposits (Hyogo Pref.), in the Inner Zone of southwestern Japan. These depositsare subvolcanic-type (e.g., Schneiderhdhn 1955) Cu-dominant polymetallic veins.The indium-bearing tin oresare characteristi cally composed of roquesite, stannoidite, sphalerite, members of the tennantite-tetrahedrite series, bor- nite and chalcopyrite.Stanniteand kesterite havenot beenfound. Information on possibleactiviry of sul- fur and temperature of formation of the roquesite- bearing ores can be estimated on the basis of electron-microprobe and thermochemical data, and fluid-inclusion data obtained on the coexisting quartz. Dnsczuprron oN Tm DEPosrrs AND ORE MTNTNANOCY The Omodani, Akenobe, Fukoku, and Ikuno deposits are located in a former tectonically active zone called the Maizuru belt or the Hida marginal tectonic belt, between metamorphicand nonmeta- morphic belts (Fig. 1). The Maizuru belt probably was a convergent plate margin during the late Paleozoic. Granitic batholiths, ultramafic rocks, and pelitic rocks with lignite exist in the vicinity of each deposit. The specimens are described below, and havebeendeposited at the University Museum of the University of Tokyo and National Scienc€ Museum. Somewere collectedby the presentauthors. 207 (Traduit par la R6daction)

Transcript of ROOUESITE.BEARING TIN ORES FROM THE …rruff.info/doclib/cm/vol29/CM29_207.pdf · Indium-tin...

Canadion MinerologistYol. 29, pp. 207-215 (1991)

ABSTRAc"I

Indium-tin mineralization is observed in the Omodani,Akenobe, Fukoku, and Ikuno deposits, which are Cu-dominant polymetallic veins of late Cretaceous to earlyTertiary age in the Inner Zone of southwestern Japan. Theindium-tin-bearing ores are commonly composed of roque-site (CuInS2), stannoidite, sphalerite, tennantite-tetrahedrite, chalcopyrite and quartz, with local bornite,mawsonite, galena and arsenopyrite. The iron content ofthe sphalerite that coexists with roquesite, stannoidite andtennantite-tetrahedrite is very low. Temperatures of for-mation based on fluid-inclusion data on quartz from theOmodani and Akenobe deposits are in the range from 285oto 3looc. The 6:+5 values ofthe roquesite-b-earing tin oresare virtually constant (-0.8 to +0.3y65 ). Based on thesedescriptions, possible ranges in sulfur activity during for-mation of the roquesite-bearing tin ores are estimated tobe approximately l0-8 to l0{ atm., and the temperaturewas greater than 285oC.

Keywords: roquesite, polymetallic vein-type deposits, sul-fur isotopes, activity of sulfur, temperature, Omodani,Akenobe, Fukoku, Ikuno, Japan.

SoMMAIRE

Une min€ralisation i indium-dtain a &6 documentde darrsles gisements de Omodani, Akenobe, Fukoku et lkuno, tousdes systbmes de fissures polym6talliques d dominance deCu, d'6ge cr€tac6 tardif d tertiaire pr6coce, situ6s dans lazone interne du Sud-Ouest du Japon. Le minerai i In-Sncontient couramment roquesite (CuInS), stannoidite,sphaldrite, tennantile*t6tra6drite, chalcopyrite et quartz,ainsi que bornite, mawsonite, gal&ne et ars6nopyrite acces-soires. La teneur en fer de la sphaldrite en coexistence avecroqucite, stannoidite et tennantite-tetra€drite est trb faible.D'apr0s les donndes sur les inclusions fluides du quartz desgisements d'Omodani et d'Akenobe, la temp€rature de for-mation du minerai aurait 6te entre 285 et 3l0oC. Ls valeursde FaS du minerai d'6tain contenant de la roquesite sonti peu prds constantes (-0.8 e + 0.3700). L'activit€ en sou-fre au cours de la formation du minerai aurait €t6 d'envi-ron l0-8 i 10-6 atm., et la tempdrature, sup6rieure i2850C.

ROOUESITE.BEARING TIN ORES FROM THE OMODANI.AKENOBE, FUKOKU, AND IKUNO POLYMETALLIC VEIN-TYPE DEPOSITS

IN THE INNER ZONE OF SOUTHWESTERN JAPAN

MASAAKI SHIMIZUUniversity Museum, University of Tokyo, Tokyo 113, Jopan

AKIRA KATONational Science Museum, Tokyo 169, Japan

Mots-dAs. roquesite, gisements polym6talliques en fissu-res, isotopes de soufre, activitd du soufre, temperature,Omodani, Akenobe, Fukoku, Ikuno, Japon.

INrnooucrIoN

Since the first report of the occurrence of roque-site in Japan, from the Eisei vein of the Akenobedeposit (Kato & Shinohara 1968), no additionalroquesite has been described. This report documentsnew occurrences of roquesite in tin ores from theOmodani @ukui Pref.), the Akenobe (Hyogo Pref.),the Fukoku (Kyoto Pref.), and the Ikuno deposits(Hyogo Pref.), in the Inner Zone of southwesternJapan. These deposits are subvolcanic-type (e.g.,Schneiderhdhn 1955) Cu-dominant polymetallicveins. The indium-bearing tin ores are characteristically composed of roquesite, stannoidite, sphalerite,members of the tennantite-tetrahedrite series, bor-nite and chalcopyrite. Stannite and kesterite have notbeen found. Information on possible activiry of sul-fur and temperature of formation of the roquesite-bearing ores can be estimated on the basis ofelectron-microprobe and thermochemical data, andfluid-inclusion data obtained on the coexistingquartz.

Dnsczuprron oN Tm DEPosrrsAND ORE MTNTNANOCY

The Omodani, Akenobe, Fukoku, and Ikunodeposits are located in a former tectonically activezone called the Maizuru belt or the Hida marginaltectonic belt, between metamorphic and nonmeta-morphic belts (Fig. 1). The Maizuru belt probablywas a convergent plate margin during the latePaleozoic. Granitic batholiths, ultramafic rocks, andpelitic rocks with lignite exist in the vicinity of eachdeposit. The specimens are described below, andhave been deposited at the University Museum of theUniversity of Tokyo and National Scienc€ Museum.Some were collected by the present authors.

207(Traduit par la R6daction)

208 THE CANADIAN MINERALOGIST

HIDA BELT

136'0 , 5o rookm

Frc. l. Locations oftlte Omodani, Akenobe, Fukoku, andIkuno deposits in the Inner Zone of southwest Japan.

Omodani Cu-Zn-Pb-Ag deposit

Omodani is located at Izumi-mura, Ono-gun,Fukui Prefecture, in the Hida marginal tectonic beltbetween the Hida metamorphic complex (Hida belt)and the nonmetamorphic rocks to the south (Mino-Tamba belt). The veins lie within the Omodani rhyo-lite (Kawai 1956), correlated with the Nohi rhyolite(Makiyama et al. 1975), which covers Mesozoicsedimentary rocks. The Omodani rhyolite is mainlycomposed of welded tuff (70-75 wt. 9o SiO), tuffbreccia, tuff (71-75 wt.9o SiO), and granite por-phyry (ca. 77 wL.tlo of SiO2). The K-feldspar fromthe welded tuff and granite porphyry gives K-Ar ages

of 56.9 t 2.8 Ma and 51.9 x. 2.6Ma, respectively(Ministry of International Trade and Industry ofJapan 1980).

Total production of the deposit from 1888 to 1966was 4.4 x 105 tonnes of ore with average grades of1-5 7o Cu, 3-20 olo Zn,4-6 {o Pb, and 85 gramsper tonne of Ag. Ore specimens studied are largelycomposed of bornite, sphalerite, tennantite, stannoi-dite, chalcopyrite, and small amounts of ldllingite,mawsonite, galena, and native silver (Table l). Gan-gue minerals are quartz, chlorite, fluorite, K-feldspar of the adularia habit and calcite. Roque-site is associated with bornite, sphalerite, stannoi-dite, mawsonite, galena, and arsenopyrite (Fig. 2A).

Akenobe Cu-Zn-Sn-Ag deposit

The geology of the Akenobe mining district, Oya-cho, Yabu-gun, Hyogo Prefecture, has been studiedby Kato (1920), Saigusa (1958), Muraoka & Ikeda(1968), Kojima & Asada (1973), Sato e/ al. (1977),and Shiozawa (1984). It is located in the Maizurubelt between the Sangun metamorphic belt to thenorth and the unmetamorphosed Mino-Tamba beltto the south. The products of mineralization arehosted in sedimentary and volcanic rocks of theMaizuru Group, of Permian age. K-Ar ages of dikesfrom the district indicate that the post-ore felsite(granophyre) is 57.8 + 2.9 Ma and 52.6 t 2.1 Ma,and the pre-ore rhyolite is 72.8 r 2.9 Ma (Ishihara& shibata 1972).

Total production from 1935 to 1986 is 1.7 x 107tonnes of ore, and average grades are I . I 9o Cu,2.00/oZn,0.4Vo Sn, and 20 g/t of Ag. Roquesite was dis-covered in the N 2l stope, -8th level of the Eisei veinof this deposit, where it occurs with chalcopyrite,quartz and siderite (Kato & Shinohara 1968). Theroquesite-bearing ores used in this study were recentlycollected from the l4th level of the Chiemon No. 4vein, and are principally composed of sphalerite,tetrahedrite, stannoidite, bornite, chalcopyrite, andlesser amounts of mawsonite, galena, ferberite, cas-

RYOKE BELTI

TABLE 1. FIINEML ASSEI'tsLAGE OBSERVED IN SPECII'1ENS STUDIED AND MNGE OF FE".NN (ATOilIC)

Ore DelpEltOBodEni

Fez- /Znlff i. wt..8 In (.)

AlenebeFez' / znw . s L . $ I n ( * )

FukokuFez' / znnax . r f .8 In ( r )

Ikune.gez* / Zn&ax. $ t . .9 h ( * )

Sd cp+ +0 . 0 7 - 0 , 3 2

( 8 ) 0 , 0 9 ( 1 0 ) 0 . 0 9 ( 1 3 )+ ++ + Msrcn

0 . 0 5 - 0 . 3 8( 1 0 ) 0 . 1 1 ( 1 1 ) 0 . 0 8 ( 8 )+ ++ + Mw,l'ld

o . 4 5 - O . 7 2( 6 ) o . 3 0 ( 1 4 ) 0 . 2 1 ( 3 3 )+ ++ + Aprcn

0 . 9 7 - 1 . 4 9( 1 5 ) 0 . 1 3 ( 2 3 ) 0 . 3 1 ( 3 5 )

tbbr€viatlong: Ag nativ€ ailver, Ap areenopyrlte, Bn bornlt€, cp chaLcopyrite, cn galena, I- loLlingite,ltd mtlldlte, Ms nausonite, Rq roqueglte, Sd Btmoidite, gp sphalerite, Tn-Td temiltite-t€trahedrite ++ comon, + lesa comn.

.) nuober of enalysisaa) sphalerl-te tmr€st Ln Cui there are &any tiny chalcopyrite inclusions in gphalerite.

Sp Tn-Td++ ++o . o o l " o . 2 a - o . 3 70 . 8 3 ( 1 6 ) 0 . 0 7 ( 1 9 )++ ++0 . 0 0 3 - 0 . 0 0 5 0 . 0 3 - 0 . 1 20 . 4 8 ( e ) 0 . 0 5 ( 1 9 )a + i0 . 0 0 4 - 0 . 0 1 5 0 . 8 8 - 1 . 2 50 . 0 8 ( 2 0 ) 0 . 9 8 ( 1 2 )* +0 . 0 1 6 - 0 . 0 3 6 1 . 6 5 - 2 . 0 01 . 6 1 ( 7 ) 0 . 0 9 ( 1 0 )

++

0 . 0 2i

0 . 0 3

Rq+

OthersLo,Ap,Mw,Gn,Ag

162)

( e )

o

d

{l

s!

o

o6qtroCO

c).a

A

?1

oE

7J'

d

J'

!

o!

oJ

3R q. a oo ' 6E b

v E9 E

!1 Ax vE;aEo - :oD <).Ea9 { EX O

( 5 8n ^- aI r r

b Ha 9

€ o:t3E Ob 0 @9eo F a

t i .O H

o oi:. llIl -.c

. H

N -; . H

.=

210

siterite, scheelite, and an undetermined Ni-Co sul-fide (Table 1, Fig. 2B). Gangue minerals are quafiz,fluorite, and siderite.

Fukoku Cu-Zn-Ag deposit

Fukoku also is situated in the Maizuru belt, arMiyagai, Fukuchiyama City, Kyoto prefecture. Themining district is geologically composed of sandstonewith subordinate shales of the Triassic yakunoGroup. The Kumohara granite, of probable late Cre-taceous age, and several masses ofultramafic rocksoccur near the deposit.

The ore specimens studied consist of roquesite,sphalerite, stannoidite, tennantite, chalcopyrite, andsmall amounts of mawsonite, selenium-bearingmatildite (up to 4.7 wt.9o Se), and quartz (Table l,Fig. 2C). Cosalite, boulangerite, and native bismuthhave been reported in the deposit (Shimizu et al.1966).

Ikuno Cu-Zn-Pb-Sn-Ag deposit

The Ikuno mining district, located at Ikuno-cho,Asako-gun, Hyogo Prefecture, 17 km southeast ofthe Akenobe deposit, occurs in Cretaceous rhyoliticand andesitic volcanic and pyroclastic rocks of theIkuno Group. The geology and mineralization weredescribed by Maruyama (1957). K-Ar ages fromadularia from the deposit are 63.3 t 1.9 Ma, 65.6x. 2.0Ma, and 70.5 a 2.1 Ma (Ministry of Interna-tional Trade and Industry of Japan, 1984).

Total production ofthe deposit during 1940-1973was 6.9 x 106 tonnes of ore with average grades of

THE CANADIAN MINERALOGIST

TABLE 2. REPRESEI,ITATIVE CHEI.IICAL COI{POSITION OF ROOUESITE

l . l Vo Cu,2.2t /oZn,0.4t /0Pb,0.3 Vo Sn, 58.3e/ tAg, and A3 g/t Au. The ore specimens used in thisstudy are composed of roquesite, stannoidite,sphalerite, tennantite, chalcopyrite, and smallamounts of arsenopyrite, galena and quartz (TableI, Fig. 2D).

Cnslttcar CovpostrtoN oF CoExIsrINc SuLrrleMTNSRALS rN In-Sn Onr

The chemical composition of coexisting mineralsin the roquesite-bearing ore was determined usinga JEOL 733II electron microprobe analyzer at theGeological Institute, Faculty of Science, Universfuyof Tokyo, using the methods of Shimizu et sl. (1986),

Roquesite and chalcopyrite

Representative chemical compositions and atomicproportions of these minerals are given in Tables 2and 3, respectively. All the grains examined axe com-positionally homogeneous. Slight substitution of Fefor In in roquesite is suggested, whereas that of Infor Fe is very limited in the associated chalcopyrite.

Stqnnoidite

Stannoidite is essentially homogeneous in mostcases, but the F€* /Zn ratio varies significantly(Table 4), indicating the presence of material withthe id_eal formula Cur(Zn,Fe)Fe]+Sn2S12, where Zn> Fe4*, inferred following reference to the methodof calculation of the F&+ /Zn ratio in this mineralby Shimizu & Shikazono (1987).

Oao f,lED.OEod.ad

Aterob€

Fu*oLu

Xkuao

NErC&r FEBCBNT9g Ag !E zD cd u! Io g Total25 .44 0 .03 0 .34 0 .30 0 .03 o .o1 46 ,2 ! 25 .OO SS.3525.s9 0 .00 0 .32 0 .32 0 .07 o .o0 qa ,zs za . t ) gg . iz2 6 . 5 4 0 . 0 0 0 . 4 8 0 . 2 5 0 . 0 4 o . 0 2 a s . a z z a . 8 s g . 1 82 6 . 2 4 o . L t 0 . 3 0 0 . 3 4 0 . 0 6 o . o 1 a a . $ z 6 . i s g g . z a2 5 . 9 2 0 . 0 8 0 . 3 0 0 . 4 5 o . 0 3 o . 0 1 e a . s a z a . s i t a . B s26. r7 0 .0 r 0 .41 0 .40 0 .05 o .o1 es . ta za . i i , ; :0 ;' 2 4 . 9 - 1 . 8 0 . 1 - o . 2 4 6 . 3 a s . i , r : o -2 5 . 2 t 0 . 7 3 0 . 4 6 0 . 1 0 0 . 0 4 o . 0 2 a o . e : : o . e z r 0 o . a o25.08 0 .08 0 .s l 0 .05 0 .0s o .03 ae .zs za . t t io i t . i i2 5 . 5 2 0 . 1 5 0 . 8 6 0 . 0 5 0 . 0 5 o . 0 3 a s . z : z s - o s i n n ' i i2 6 . 3 0 0 . 0 9 0 . 4 6 0 . 3 1 0 . o s o . 0 4 a s . a e z s - r z

- i 6 i A

2 6 . 4 s o . o s 0 . 5 4 0 . 3 s 0 . 0 6 o . 0 4 a 5 . B o 2 5 . 1 4 , 6 . f i2 6 . 3 s 0 . 3 3 0 . 9 0 0 . 1 9 0 . 0 5 o . 0 2 e s . g e z o . : g r o 6 . i i

ATOUIC PROPORTIoN (IOTAL ArOt{S - 4)Cu Ag Fo z\ Cd !4! In S1 . 0 1 4 0 . 0 0 1 0 . 0 1 5 0 . 0 1 1 0 . 0 0 1 o . o o o 0 . 9 8 1 1 . 9 7 61 . 0 1 6 0 . 0 0 0 0 . 0 1 6 0 . 0 1 2 0 . 0 0 1 o . o o o o . s 7 a ! . 9 . 1 . ,1 . 0 1 8 0 . 0 0 0 0 . 0 2 1 0 . 0 0 9 0 . 0 0 1 o . o 0 1 0 . 9 7 2 r . s 7 a1 . 0 0 0 0 . 0 0 2 0 . 0 1 3 0 . 0 1 3 0 . 0 0 1 o . o o o 0 . 9 7 3 1 . 9 9 ?0 . 9 8 6 0 . 0 0 2 0 . 0 1 3 0 . 0 1 7 o . O O 1 o . O 0 o 0 . 9 8 0 2 . 0 0 11 . 0 0 3 0 . 0 0 0 0 . 0 1 8 0 . 0 1 5 0 . 0 0 1 o . o o o 0 . 9 ? o 1 . 9 9 30 . 9 6 - 0 . 0 8 0 . 0 0 - o . o o 0 . 9 9 1 . 9 60 . 9 9 2 0 . 0 0 3 0 . 0 2 0 0 . 0 0 4 0 . 0 0 1 0 . 0 0 1 0 . 9 8 1 2 . O O O0 . 9 4 ? 0 . 0 0 2 0 , 0 2 2 0 . 0 0 2 0 . 0 0 1 o . o o t o . 9 a o 2 . 0 0 51 . 0 1 2 0 . 0 0 3 0 . 0 3 7 0 . 0 0 2 0 . 0 0 r o . o 0 1 0 . 9 7 4 1 . 9 6 91 . 0 0 7 0 . 0 0 2 0 . 0 2 0 0 . 0 1 1 0 . 0 0 1 0 . 0 0 2 0 . 9 7 2 1 . 9 8 5r . 0 0 5 0 . 0 0 1 0 . 0 2 4 0 . 0 1 3 0 . 0 0 1 0 . 0 0 2 0 . 9 ? 1 1 . 9 8 30 . 9 9 9 0 . 0 0 7 0 . 0 3 9 0 . 0 0 ? o . o o 1 0 . 0 0 1 0 . 9 6 4 1 , . s A 2

a' Aato & ALbohala (1968)

IABT"E ]. REPRESEIITATTVE CHHI1ICAL COMPOSITIOT{ OF CHALCOPYRITE

ole -f,bp. cu Ag pe ,ft"To*"T"* s rn rotaroeds l 34 .76 o ;06 29 .e5 o .o1 o .oo i l ,oa le . to 6 ]o1 99 .6534.7e 0 .03 29 .82 o .o3 o .o : o .o i : , i . i e o . io ss .753 4 . ? 3 0 . 0 6 2 e . 6 1 o . r 4 o . o e o . o i i . i . i i o . d z e e . 3 8AkenotE 34 .43 O.0o 30 .46 0 .01 o .Oe o .Oi : i .g i o .de 99 .9934.6e 0 .07 30 .4e o . 04 o . os o . o r i i . g i 6 . d r roo .313 4 . 4 7 0 . 0 0 3 0 . 0 e o . 0 4 o . 0 4 o . 0 2 , i . i ; 6 : i 7 e e . 4 sFukoku 34 .30 o .02 30 .31 o .s2 a :0d 0 .oo i i l 6 i 6 l i : 1oo ,043 4 . 3 s 0 . 0 0 3 0 . 2 4 o . o s o . 0 3 o . 0 3 : i . a t o : 0 4 e e . 6 e- . 34 .68 o .os 2e .97 o .oe . o .o2 o .oz l i . s i i . i s ee .51r k u o 3 4 . 5 9 0 . 1 6 3 0 . 2 9 0 . 0 6 o . o z o . o i : , i . s o o . i g r 0 0 . 2 13 4 . 5 0 0 . 0 2 3 0 . 0 6 0 . 0 3 o . o e o . o : r i . o e o . i g 9 9 . 5 ?3 4 . 5 1 0 . 0 2 2 e , 9 2 o . o 4 o . o 2 o , o 2 i i . i r 6 . i o e s . 4 0

Aroulc pBoponuon (m!At -!,To!ts € 4)s A g F 6 z ^ c d t { n s I u1 . 0 0 9 0 . 0 0 1 0 . 9 a 9 0 . 0 0 0 0 . 0 0 1 0 . 0 0 1 1 . 9 9 8 0 . O O Or. .007 0 .001 0 .982 0 .001 0 .001 0 .001 2 . oo5 o . oo11 . 0 0 9 0 . 0 0 1 0 . 9 8 1 0 . 0 0 4 0 . 0 0 1 o . o o 1 1 . 9 9 ? O . O O 10 . 9 9 4 0 . 0 0 0 1 . 0 0 1 0 . 0 0 0 0 . 0 0 1 o . o o 1 2 . o o o o . o o 11 . 0 0 0 0 . 0 0 1 1 . 0 0 0 0 . 0 0 1 0 . o o l , o . o o l 1 . 9 9 5 o . O O O1 . 0 0 2 0 . 0 0 0 0 . 9 9 5 0 . 0 0 1 0 . 0 0 1 0 . 0 0 1 2 . o o o o . o o 10 . 9 9 1 0 . 0 0 0 0 . 9 9 7 0 . 0 1 5 0 . 0 0 0 0 . 0 0 1 1 . 9 9 5 o . O O O0.996 0 .000 0 .996 0 .002 0 . o0o o . oo1 2 .002 o . o0o1 . 0 0 7 0 . 0 0 1 0 . 9 9 1 0 . 0 0 2 0 . 0 0 0 0 . 0 0 0 I . 9 9 2 o . o o 20 , 9 9 8 0 . 0 0 3 0 . 9 9 4 0 . 0 0 2 0 . 0 0 0 o . o o o 1 . 9 9 6 o . O O 31 . 0 0 2 0 . 0 0 0 0 . 9 9 3 0 . 0 0 1 o . o o 1 o . o o l 1 . 9 9 7 0 . 0 0 31 . 0 0 3 0 . 0 0 0 0 . 9 8 9 0 . 0 0 1 0 . 0 0 0 o . o o 1 1 , 9 9 9 o . O O 3

ROQUESITE.BEARING TIN ORES

TABLE 4. REPRESENTATM CHEI.IICAL C0MPOSITION 0F STANNOIDITE

VIEIGBT ?ERCENTOre Dsp. Cu Ag I'e Zn Cd Mn Sn S In TotalOnodan i 39 .2L 0 .02 9 .63 4 .35 0 .06 0 .01 LA .25 2A .7A 0 .00 100 .32

3 9 . 1 6 0 . 0 1 9 . 5 0 4 . 2 3 0 . 0 9 0 . 0 2 1 8 . 5 1 2 A . 7 9 0 . 0 9 1 0 0 . 4 03 9 . 0 2 0 . 0 1 9 . 5 3 4 . 1 8 0 . 0 9 0 . 0 4 1 8 . 3 9 2 4 . 7 3 0 . 0 7 1 0 0 . 0 5

Akenobe 38 .46 0 .01 9 ,25 4 .13 0 .09 0 .01 18 .16 29 .04 0 .06 99 .2 I3 8 . 8 4 0 . 0 6 9 . 2 7 4 . 4 3 0 . 0 6 0 . 0 1 1 8 . 1 3 2 9 . 4 L 0 . 0 0 1 0 0 . 2 03 8 . 9 0 0 . 0 5 9 . 7 6 3 , 7 4 0 . 0 9 0 . 0 1 L A . 4 4 2 9 . 3 7 0 . 0 3 1 0 0 . 3 93 8 . 5 6 0 . 0 3 1 0 . 2 5 3 . 0 5 0 . 0 3 0 . 0 1 L A . 2 6 2 9 . 2 9 0 . 1 0 9 9 . 5 63 8 . 8 1 0 . 0 6 1 0 . 2 5 2 . 9 L 0 . 0 1 0 . 0 6 1 8 . 5 6 2 9 . 5 A 0 . 1 7 1 0 0 . 4 13 A . 4 7 0 . 0 2 1 0 . 3 ? 2 . 9 2 0 . 0 4 0 . 0 3 1 8 . 5 8 2 8 . 3 5 0 . 0 9 9 9 . 9 23 8 . 8 3 0 . O 2 1 1 . 0 0 2 . 2 0 0 . 0 5 0 . 0 3 1 8 . 5 2 2 9 , 4 0 0 . 0 7 1 0 0 . 1 33 8 , 7 7 0 . 0 0 1 1 . 1 3 2 . L 0 0 . 0 3 0 . 0 2 1 8 . 4 4 2 9 . 4 6 0 . 0 0 9 9 . 9 53 8 . 6 5 0 . 0 6 1 r . . 0 ? 2 . 0 8 0 . 0 7 o . 0 2 1 8 . 2 1 2 9 . L 3 0 . 0 0 9 9 . 2 9

2t r

Fukoku

Ikuno

AIO!,IIC PBOPOBTIONS (TCXTAL AIIOMS ' 2s)cu Ag Fe ZD, Ctl 1{! g! g In Fa'', lzn8 . 0 8 2 0 . 0 0 2 2 . 2 5 9 0 . a 7 2 0 . 0 0 ? 0 . 0 0 2 2 . 0 t 4 1 1 . 7 5 8 0 . 0 0 0 0 . 2 08 . 0 7 4 0 . O O t 2 . 2 3 0 0 . 8 4 ? 0 . 0 1 0 0 . 0 0 4 2 , 0 4 4 1 1 . 7 6 5 0 . 0 0 9 0 . 2 L8 . 0 7 0 0 . 0 0 1 2 . 2 4 3 0 . 8 4 1 0 . 0 1 1 0 . 0 0 8 2 . 0 3 6 1 1 . 7 7 6 0 . 0 0 8 0 . 2 27 . 9 a 6 0 . 0 0 1 2 . 1 8 5 0 . 8 3 4 0 . 0 1 0 0 . 0 0 3 2 . o 2 0 1 1 . 9 5 2 0 . 0 0 7 0 . 2 r7 . 9 7 4 o . O 0 ? 2 . 1 t 6 0 . 8 8 4 0 . 0 0 6 0 . 0 0 2 1 . 9 9 3 1 1 . 9 6 6 0 . 0 0 0 0 . 2 4? . 9 8 0 0 . 0 0 6 2 . 2 7 8 0 . 7 4 5 0 . 0 1 1 0 . 0 1 1 2 . O 2 5 1 t . 9 4 2 0 . O 0 4 0 . 3 57 . 9 5 6 0 . 0 0 4 2 . 4 0 6 0 . 6 1 2 0 . 0 0 4 0 . 0 0 2 2 . 0 r 7 1 1 . 9 7 3 0 . 0 1 1 0 . 6 47 . 9 4 5 0 . 0 0 7 2 . 3 8 7 0 . 5 7 9 0 . 0 0 1 0 . 0 1 4 2 . O 3 4 1 1 . 9 9 7 0 . 0 1 9 0 . ? 17 . 9 2 0 0 . 0 0 2 2 . 4 2 2 0 . 5 8 4 0 . 0 0 5 0 . 0 0 7 2 . o 4 4 1 1 . 9 7 2 0 . 0 1 9 0 , 7 27 . 9 6 8 0 . 0 0 2 2 . 5 6 7 0 . 4 3 8 0 . 0 0 6 0 . 0 0 8 2 . 0 3 5 1 1 . 9 5 4 0 . 0 0 8 L . 2 97 . 9 5 6 0 . 0 0 0 2 . 5 9 9 0 . 4 1 9 0 . 0 0 4 0 . 0 0 5 2 . 0 2 6 1 1 . 9 7 8 0 . 0 0 0 1 . 4 07 . 9 9 4 0 . 0 0 7 2 . 6 0 5 0 . 4 1 8 0 . 0 0 8 0 . 0 0 5 2 . 0 1 6 1 1 . 9 3 7 0 . 0 0 0 1 . 4 1

TABLE 5. REPRESENTATIVE CHB'IICAL COMPOSITION OF TENNANTITE-TETMHEDRITE-SERIES PHASE

WEIGET PERCEMTore Dep. cu Ag Fe zn cd Mn sn AsOnodan i 42 .98 0 .06 1 .83 6 .29 O .24 0 .09 0 .04 10 .01

4 3 . 4 7 0 . 0 6 1 . 9 0 6 . 7 4 0 . 2 5 0 . 0 3 0 . 0 0 L 8 . 4 64 ? . L 6 0 . 0 6 2 . 0 4 6 . 7 5 0 . 1 9 0 . 0 3 0 . 0 1 L 7 . 6 9

A k e n o b e 3 9 . 0 9 0 . 3 3 0 . 2 0 8 . 1 6 0 . 0 ? 0 . 0 2 0 . 1 0 7 . A 73 9 . 6 5 0 . 2 5 0 . 4 2 7 . 9 7 0 . 0 9 0 . 0 1 0 . 0 3 8 . 1 13 9 . 0 6 0 . 3 6 0 . 3 9 7 . 9 9 0 . 1 0 0 . 0 2 0 . 0 6 5 . 5 2

t rukoku 34 .86 7 .46 3 .22 3 .52 0 .15 0 .04 0 .03 9 .503 5 . 4 3 6 . 6 6 3 . 2 5 3 . 4 1 0 . L 2 0 . 0 6 0 . 0 4 1 0 . 0 13 2 . s 8 9 . 5 1 3 . 3 0 3 . 1 0 0 . 1 6 0 . 0 9 0 . 0 3 7 , 3 7

I k u n o 3 9 . 9 1 1 . 1 6 4 . 5 L 3 . 2 O 0 . 0 6 0 . 0 1 0 . 0 0 L 2 . 7 34 L . 2 3 0 . 8 2 4 . 6 6 3 . L 2 0 . 0 5 0 . 0 1 0 . 0 3 1 3 . ? 04 0 . 0 6 1 . 1 6 4 . 7 7 2 . 7 8 0 . 0 6 0 . 0 3 0 . 0 0 1 3 . 9 1

s b B i s se In lrotalL . 9 2 0 . 0 0 2 7 . 7 0 0 . L 2 0 . 0 1 9 9 . 7 51 . 3 6 0 . 0 0 2 8 . 0 3 0 . 0 2 0 . 0 4 l - 0 0 . 3 52 . 4 5 0 . 0 0 2 ? . 8 2 0 . 0 7 0 . 0 4 1 0 0 . 3 0

1 8 . 4 8 0 . 0 0 2 5 . 7 L 0 . 0 8 0 . 0 0 9 9 . 3 01 7 . 0 6 0 . 0 0 2 s . 7 8 0 . 0 7 0 . 0 0 9 9 . 4 42 I . 3 L 0 . 0 0 2 5 . 5 6 0 . 0 7 0 . 0 1 1 0 0 . 4 5

9 . 9 1 4 . 8 9 2 4 . 9 5 0 . 0 2 0 . 7 8 9 9 . 3 39 . 0 0 5 . 5 8 2 5 . 1 8 0 . 0 4 0 . 7 2 9 9 . 5 0

1 1 . 3 3 6 . 9 7 2 4 . 7 4 0 . 0 0 0 . 8 2 1 0 0 . 0 01 - 0 . 4 6 0 . 9 8 2 6 . A 2 0 . 0 3 0 . 0 5 9 9 . 9 28 . 8 0 0 . 0 0 2 6 . 7 A 0 . 0 6 0 . 0 7 9 9 . 3 17 . 7 r 2 .37 26 .79 0 . 03 0 . 08 99 . 75 .

AToMIC PROPORTIONS (TOTAL ATOMS = 29)cu Ag l'€ z\ cd Mn sn A6 sb Bi s se In Ee/zrt1 0 . 1 1 9 0 . 0 0 8 0 . 4 9 1 1 . 5 5 4 0 . 0 3 2 0 . 0 1 3 0 . 0 0 s 3 . 5 9 s 0 . 2 3 7 0 . 0 0 0 L 2 . 9 2 3 0 . 0 2 2 0 . 0 0 2 0 . 3 21 0 . 1 3 8 0 . 0 0 8 0 . 5 0 5 1 . s 2 ? 0 . 0 3 3 0 . 0 0 7 0 . 0 0 0 3 . 6 5 1 0 . 1 6 6 0 . 0 0 0 L 2 . 9 5 7 0 . 0 0 4 0 . 0 0 5 0 . 3 31 0 . 1 1 7 0 . 0 0 9 0 . 5 4 4 1 . 5 3 ? 0 . 0 2 6 0 . 0 0 7 0 . 0 0 1 3 . 5 t 7 0 . 3 0 0 0 . 0 0 0 L 2 . 9 2 6 0 . 0 1 4 0 . 0 0 5 0 . 3 5

9 . 9 2 5 0 . 0 4 9 0 . 0 5 9 2 . 0 1 4 0 . 0 1 1 0 . 0 0 5 0 . 0 1 4 r . s 2 2 2 . 4 4 9 0 . 0 0 0 L 2 . 9 3 6 0 . 0 1 5 0 . 0 0 0 0 . 0 39 . 9 9 6 0 . 0 3 6 0 . 1 2 0 1 . 9 5 2 0 . 0 1 2 0 . 0 0 3 0 . 0 0 5 1 . 7 3 5 2 . 2 4 4 0 . 0 0 0 1 2 . 8 8 1 0 . 0 1 4 0 . 0 0 0 0 . 0 69 . 9 2 7 0 . 0 5 4 0 . 1 1 4 1 . 9 ? 3 0 . 0 1 5 0 . 0 0 6 0 . 0 0 9 1 . 1 9 1 2 . A 2 6 0 . 0 0 0 L 2 . A 7 L 0 . 0 1 4 0 . 0 0 2 0 . 0 69 . 0 9 8 L . L 4 7 0 . 9 5 7 0 . 8 9 4 0 . 0 2 3 0 . 0 1 2 0 . 0 0 4 2 . 1 0 3 1 . 3 5 0 0 . 3 8 8 1 2 . 9 0 8 0 . 0 0 3 0 . 1 1 3 1 . 0 79 . X 9 6 1 . 0 1 8 0 . 9 s 9 0 . 8 5 9 0 . 0 1 8 0 . 0 1 8 0 . 0 0 6 2 . 2 0 4 L . 2 I 9 0 . 4 4 0 1 2 . 9 5 0 0 . 0 0 9 0 . 1 0 3 L . L 28 . 6 7 3 L . 4 9 L 1 . 0 0 0 0 . 8 0 2 0 . 0 2 4 0 . 0 2 9 0 . 0 0 4 1 . 6 6 4 1 . 5 7 5 0 . 5 6 4 X 3 . 0 5 3 0 . 0 0 1 0 . 1 2 1 L . 2 59 . 7 5 7 0 . 1 6 7 1 . 2 5 4 0 . 7 6 0 0 . 0 0 8 0 . 0 0 3 0 . 0 0 0 2 . 6 4 0 1 . 3 3 4 0 . 0 7 3 1 2 . 9 9 L 0 . 0 0 6 0 . 0 0 ? 1 . 6 5

1 0 . 0 0 9 0 . 1 1 7 L . 2 4 7 0 . 7 3 6 0 . 0 0 ? 0 . 0 0 3 0 . 0 0 3 2 . A 2 0 1 . 1 1 5 0 . 0 0 0 1 2 . 8 8 3 0 . 0 1 0 0 . 0 0 9 L . 7 59 . 7 9 3 0 . 1 6 ? 1 . 3 2 7 0 . 6 6 1 0 . 0 0 8 0 . 0 0 9 0 . 0 0 0 2 . A A 4 0 . 9 8 3 0 . 1 7 6 L 2 . 9 7 6 0 . 0 0 6 0 . 0 1 1 2 . 0 0

Tenn ant i t e - t e t r q h e d r i t e

The grains examined are generally heterogeneous,although the general formula (Cu,Ag)16@e,Zn)2(As,Sb,Bi,In)aSt3 is applicable to all of them (Iable5). Tennantite from the Fukoku deposit shows thehighest silver, bismuth and indium contents of the

materials studied. The total of As + Sb + Bi + In isvery close to 4, which suggests that the In3*, thoughlow in content, can lodge in a trigonal prism.

Sphalerite

Compositional homogeneity is confirmed in the

2t2 THE CANADIAN MINERALOGIST

TABI.T 6. REPRESEJTATIVE CHS'UCAL COMPOSITION OF SPHALERITE

Or€ Dep.OBodml-

!Ielobe

nrtoku

Cu Fe0 . 8 2 0 . 3 90 . s 4 0 . 4 40 . 5 9 0 . 6 50 . 3 0 0 . 1 90 . 3 8 0 . 2 90 . 3 9 0 . 3 00 . 4 7 0 . 4 40 . 4 6 0 . 4 41 . 2 8 0 . 8 70 . 4 s 0 . 9 10 . 5 ? 0 . 9 ?0 . 4 9 1 . 0 5

I{EI@I' PERCEIIIZ\ Cd !4n g X!6 4 . 4 5 0 . 6 5 0 . 0 2 3 2 . 1 4 0 . 1 25 5 . 2 2 0 . 5 6 0 . 0 1 3 2 . 3 6 0 . ? S6 5 . 4 1 0 . 6 7 0 . 0 3 3 2 . 4 5 0 . 2 15 5 . 2 3 0 . 5 8 0 . 0 3 3 3 . 0 S 0 . 3 06 5 , 6 3 0 , 6 7 0 . 0 3 3 3 . 0 4 0 . 3 66 4 . 7 4 0 . 5 9 0 . 0 3 3 2 . 7 1 0 . 4 86 6 . 4 0 0 . 2 0 0 . 1 4 3 2 . 6 2 0 . 0 86 s . 9 3 0 . 2 5 0 . 0 9 3 3 . 0 1 0 . 0 26 4 . 7 8 0 . 2 5 0 . 0 7 3 2 . 3 7 0 . 0 56 5 . 5 S 0 . 4 1 0 . 0 5 3 2 . 4 9 0 . 0 46 5 . 0 1 0 . 4 9 0 . 0 4 3 2 . 6 2 0 . 0 55 5 . 1 7 0 . 5 1 0 . 0 5 3 2 . 7 0 0 . 0 4

lotal9 9 . 2 1

1 0 0 . 3 11 0 0 . 1 1

99.74100.41 .

99 .241 0 0 . 3 51 0 0 . 2 0

9 9 . 6 49 9 . 9 69 9 . 7 5

100.01 .

AToMIc PRoPoRTIoNS (TOTAI AToMs = 2)Cu Fe Zn Cd l{n g In ?elZD0 . 0 1 3 0 . 0 0 ? 0 . 9 7 5 0 . 0 0 6 0 . 0 0 0 0 . 9 9 1 0 . 0 0 6 0 . 0 0 ?0 . 0 1 3 0 . 0 0 8 0 . 9 ? 7 0 . 0 0 5 0 . 0 0 0 0 . 9 8 9 0 . 0 0 ? 0 . 0 0 80 . 0 1 1 0 . 0 1 r 0 . 9 7 9 0 . 0 0 5 0 . 0 0 1 0 . 9 9 1 0 . 0 0 2 0 . 0 1 10 . 0 0 5 0 . 0 0 3 0 . 9 7 5 0 . 0 0 5 0 . 0 0 1 1 . 0 0 8 0 . 0 0 3 0 . 0 0 40 . 0 0 6 0 . 0 0 5 0 . 9 7 7 0 . 0 0 6 0 . 0 0 1 1 . 0 0 2 0 . 0 0 3 0 . 0 0 5o . 0 0 6 0 . 0 0 5 0 . 9 7 4 0 . 0 0 5 0 . 0 0 1 1 . 0 0 4 0 . 0 0 4 0 . 0 0 50 . 0 0 ? 0 . 0 0 7 0 . 9 8 9 0 . 0 0 1 0 . 0 0 2 0 . 9 9 1 0 . 0 0 1 0 . 0 0 70 . 0 0 7 0 . 0 0 8 0 . 9 7 9 0 . 0 0 2 0 . 0 0 2 1 . 0 0 0 0 . 0 0 0 0 . 0 0 40 . 0 2 0 0 . 0 1 5 0 . 9 7 1 0 . 0 0 2 0 . 0 0 1 0 . 9 9 0 0 . 0 0 0 0 . 0 1 50 . 0 0 7 0 . 0 1 6 0 . 9 8 1 0 . 0 0 4 0 . 0 0 1 0 . 9 9 1 0 . 0 0 0 0 . 0 1 60 . 0 0 9 0 . 0 t 7 0 . 9 ? 3 0 . 0 0 4 0 . 0 0 1 0 . 9 9 6 0 . 0 0 0 0 . 0 1 70 . 0 0 8 0 . 0 1 8 0 . 9 7 3 0 . 0 0 4 0 . 0 0 1 . 0 . 9 9 6 0 . 0 0 0 0 . 0 1 8

IABLE 7. REPRESENTATIVE CHB.IICAL CfiPOSITIONS OF BORNITE

Ole &p.hodani 4 5 . 4 6

4 1 . t 24 9 . 3 86 2 . 0 162.54

,rksob€

NBI@T PERNAs re s s6 TotaL2 0 . 1 9 1 0 . 1 A 2 3 . 4 1 0 . 0 6 9 9 . 1 01 8 . 4 6 1 , 0 . 2 5 2 3 . 5 ? 0 . 0 1 9 9 . 1 r1 6 . 0 4 1 0 . 3 0 2 3 . 6 9 0 . 0 6 9 9 . 4 7

o . 2 7 L t . 2 4 2 5 . 4 7 0 . 0 3 9 9 . 0 10 . 2 7 1 r . 6 2 2 5 . 5 9 0 . 1 2 1 0 0 . 1 50 . 2 7 1 r . . 3 9 2 5 . 4 5 0 . 1 3 9 9 . 4 A

AToUIC PBOPOBTINS (TOas Arouil - X0)c u A s F € g 9 e3 . 9 6 1 " ! . O 2 7 1 . 0 0 0 4 . 0 0 7 0 . 0 0 44 . 0 6 4 0 . 9 3 2 0 . 9 9 9 4 . 0 0 4 0 . 0 0 r .4 . 2 0 1 0 . 8 0 4 0 . 9 9 7 3 . 9 9 3 0 . 0 0 44 . 9 3 6 0 , 0 1 3 1 . 0 1 9 4 . 0 1 8 0 , 0 0 24 . 9 3 1 0 . 0 1 3 1 . 0 4 2 3 . 9 9 8 0 . 0 0 84 . 9 3 9 0 . 0 1 3 1 . 0 2 8 4 . 0 0 2 0 . 0 0 8

I rKUNo-T-

FUKOKU-l-L AKENOBEF*.-OMODANI

!tnc

N+ i

N I

LL

Frc. 3. Atomic Fe2+ /Zn ratio of sphalerite (A) and of tennantite-tetrahedrite (B)as a function of Fe?+/Zn in stannoidite. Symbols: Sp sphalerite, Sd stannoidite,Tn-Td tennantite-tetrahedrite.

gains examined. As shown in Table 6, the iron con-tents are very low in all of them. Note that the ironcontent of sphalerite associated viith stannite is quitehigh (Shimizu & Shikazono 1985, 1987).

Bornite

Bornite is common in the roquesite-bearing oresfrom the Omodani and Akenobe deposits (Table l),although it is not found in the ores studied by Kato& Shinohara (1968). The material from the latterdeposit fits the ideal formula, but that from theformer has an unusually high Ag content, giving anideal formula AgCuoFeSn (Table 7). It is accompa-nied by native silver. It iii tentatively handled as bor-nite here in favor of its optical similarity to ordinary

1 2 3 4 0(Fe/ Zn)sp x 102

1

(Fe/Zn)rn-to

bornite, but it may be a discrete species from bor-nite, if it is found to be compositionally discontinu-ous with bornite, or structurally different from it.

DISCUSSIoN

Mineral assemblages of the specimens studied andranges of atomic F€+ /Zn ratios are summarized inTable l. There is a wide range of Fd*-for-Zn sub-stitution in coexisting stannoidite, sphalerite, andtennantite-tetrahedrite (Figs. 3A., B). The F** /Znratio of stannoidite is positively correlated with thatof sphalerite and tennantite-tetrahedrite. Noexperimental data bearing on the influence of tem-perature on iron and zinc partitioning among theseminerals have been obtained yet, but could be of use

ROQUESITE-BEARING TIN ORES

200

Akenobe Deo

Roquesite-beoring

200 300 3s0cTemperoture

Frc. 4. Histograms of filling temperatures of fluid inclusions in quartz associatedwitl roquesite from &e Omodani (A) and Chiemon No. 4 vein, Akenobe deposits(B).

2t3

A

C.'cof,

B8-L

l!

NooOleI

Fro. 5. Temperature - log a(S) diagram for roquesite-bearing ores. Curves A andB correspond to a($) - temperature relationships for the assemblage of stannoidite - chalcopyrite - borpite - mawsonile - SzGas) for a@e) = I and a(Fe) :0.1 a(Fe) is defined as the activity of the CqFel+F*+Sn2Sl2 component intle stannoidite solid solution. Symbols: Mw mawsonite, Sd stannoidite, Bn bor-nite, Cp chalcopyrite.

20200 250

Stonnoidite fietd(Shimizu & Strikozono 1987)

Xp"s= 0O01

:0.0050.01

ite fietd

Stonnite fietd(Shimizu & Shikozono 1985)

Temperoture

300 350"C

B'yr ..'

214 THE CANADIAN MINERALOCIST

TABI..E 8. SULFUR ISOTOPIC COI{POSITIONSOF ROOUESITE-BEARING BULK ORES

ore Delpsit 534s lper nlt;onodsl -0.8Ak'sobe -0.9 (average' n-32)in*.oku -0.5lkuo +0. 3

r) ghiozara,s mpublished data

as a geothermometer. The comparison of estimatedtemperatures of formation of roquesite-bearing oresfrom the geological standpoint enables the group-ing of four deposits into two pairs, Ikuno-Fukokuand Akenobe-Omodani: the estimated temperatureof formation of the former is higher than the latter.

The indium contents of sphalerite, tennantite-tetrahedrite, stannoidite, and chalcopyrite from theIkuno and Fukoku deposits generally tend to behigher than those from the Omodani and Akenobedeposits (Table l). The high indium contents of theseminerals are probably favored by higher tempera-tures of formation, provided that the degree of con-centration of indium in all the deposits was approx-imately equal. Filling temperatures of fluid inclusionsin the coexisting quartz from the Omodani andAkenobe deposits give a temperature ranging from285 to 310'C (Frg. 4).

Shimizu & Shikazono (1985, 1987) estimated theprobable physicochemical environment of formationofstannoidite- and stannite-bearing tin ores in Japan(Fig. 5). In this figure, the log a(S, - temperaturefield of the roquesite-bearing tin ores from theOmodani and Akenobe deposits can be estimated tobe approximately l0-8 atm. at 285oC to l0{ atm. at3l0oc, based on the thermochemical data on themineral assemblage, FeS contents of sphalerite, andfluid-inclusion data. The approach referred to hereis the same as that used by Shimizu & Shikazons(1987). The field ofthe roquesite-bearing ores fallswithin that of the stannoidite-bearing ores.

The isotopic compositions of sulfur in theAkenobe and Ikuno deposits have been reported byYamamoto (1974\, Sasaki & Ishihara (1980), andIshihara et ol. (198L), but those of the roquesite-bearing ores are reported here for the first time. Itis worthy of note that preliminary sulfur isotopestudy on the roquesite-bearing ores indicates a verynarrow range of 63aS values, from -0.9 to +0.3%0(Iable 8). This could indicate a magmatic origin, andsuggsts either that the physicochemical environmentof the deposits did not change during the indiummineralization, or that the metaVsulfur ratios in theore fluids responsible for the indium mineralizationwere too small to change the isotopic compositionsin the fluids sienificantly.

Roquesite also occurs in the Ulsan Fe-W-Asskarn-type deposit in the Republic of Korea (Imai& Choi 1984). The deposit is located about 80 km

NNE of Busan, and is related to the emplacementof the Bulgugsa granite. We believe that the indiummineralization there is of the same age as that inJapan, on the other side of the Sea of Japan.

ACKNOWLEDGEMENTS

We are grateful to Professor Akio Tsusue ofKumamoto University for the organization of thisproject, Mr. Takuya Shiozawa, whose previous workstimulated this study, and Professor R.F. Martin,Drs. Chris Stanley, M. Gunnesch and anonymousreferees for their comments, which served to improvethe manuscript. This work was partly supported byGrant-in-Aid for Scientific Research (Nos. 623030ard 01740471) from the Ministry of Education,Science, and Culture of Japan, and by the FujiwaraFoundation of Natural History.

REFERENcES

Iuer, N. & Cnor, S. (1984): The first Korean occur-rence of roquesite. Mineral. J. 12, 162-172.

Isrunene, S., Sero, K. & Tsurruune, K. (1981): Someaspects on the tin-polymetallic veins in the Akenobemine area, southwest Japan. Mining Geol. 3L,147-156 (in Japanese with English abstr.).

& Snrnere, K. (1972)z Re-examination of themetallogenic epoch of the lkuno-Akenobe provincein Japan. Mining Geol. 22, 67-73.

Kero, A. & Snnonane, K. (1968): The occurrence ofroquesite from the Akenobe mine, Hyogo Prefec-ture, Japan. Mineral. J. 5,276-284.

Karo, T. (1920): A contribution to the knowledge ofthe cassiterite veins of pneumato-hydatogenetic orhydrothermal origin. A study of the copper-tin veinsof the Akenobe district in the province of Tajima,Japan. "/. Coll. Sci,, Tokyo Imperial Univ.43, Art,5, l-60.

Kawer, M. (1956): On the late Mesozoic movement inthe western part of the Hida plateau. I. Geologicalstudy in the southern mountainland ofArashimadake, Fukui Prefecture. J. Geol. Soc.Iapan 62, 559-573 (in Japanese).

Kotrraa, Y. & Asaoe, I. (1973): The Akenobe oredeposits: their geologic structure and fracture pat-terns. Mining Geol. 23, 137-l5l (in Japanese withEnglish abstr.).

Marttaua, J., MonrsHtre, A. & Irorcewe, J. (1975):Regional Geologlt of Jopan, Chubu-chihou (revisededition). Asakura Shoten, Tokyo (in Japanese).

MAnunuMa, S. (1957): The relations between ore veinsand igreous intrusives. Mining Geol.7,28l-284 QnJapanese with English abstr.).

ROQUESITE-BEARJNG TIN ORES 215

MINISTRY OF INTERNATIONAL TRADE ANDINDUSTRY OF JAPAN (1980): Report on RegionalGeological Sumey in the Hida District. Part I (inJapanese).

MINISTRY OF INTERNATIONAL TRADE ANDINDUSTRY OF JAPAN (1984): Report on RegionalGeological Sumey in the Bantan District (lnJapanese).

Muneore, N. & kme, S. (1968): Recent geologicexploraiion and development of the Akenobe mine.Mining Geol, Lt,79-91 (in Japanese with Englishabstr.).

Sarcusa, M. (1958): Geology and mineralization of theAkenobe mine, Hyogo Prefecture, Japan. MiningGeol. t,218-238 (in Japanese with English abstr.).

Sesarr, A. & Issrrnre, S. (1980): Sulphur isotopecharacteristics of granitoids and related rnineraldeposits in Japan. Proc. 5th Quort. IAGOD Symp.l, 325-335.

Sano, N., Aseoan I. & Kesaversu, S. (1977): Geo-logical structure and ore deposits of the Akenobemine, Hyogo Prefecture, Japan, Mining Geol. 21,245-262 (in Japanese with English abstr.).

ScHNnrnrnsdsN, H. (1955): Erzlagerstiitten, Kurz-vorlesung zur Einfuhrung und zur lAiederholung.Gustav Fischer Verlag, Stuttgart, Germany.

Sttrrvrrzu, M., KATo, A. & Surozawa, T. (1986):Sakuraiite: chemical composition and extent of(Zn,Fe)In-for-CuSn substitution. Can. Mineral. A,405-409.

& SHmezoNo, N. (1985): Iron and zinc parti-tioning between coexisting stannite and sphalerite:a possible indicator oftemperature and sulfur fuga-city, Miner. Deposila 20,314-320,

& - (1987): Stannoidite-bearing tin ore::ralogy, texture and physicochemical environ-mineralogy, texture and physicochemical environ-

ment of formation. Can. Mineral. 25,229-236.

Sunrazu, T., Kano, A. & Mersuo, G. (1966): Mineralsfrom the Fukoku mine, Kyoto Prefecture, with spe-cial reference to cosalite, boulangerite, hexastanniteand some secondary arsenic minerals. ChigakuKenkyu 17,201-209 (in Japanese with Englishabstr.).

SHrozawe, T. (1984): Mineralization of the AkenobeTin - Polymetallic Deposits, Hyogo Prefecture, Cen-tral Japan. M.S. thesis, Univ. Tokyo, Tokyo, Japan.

Yevarvoro, M. (1974): Distribution of sulfur isotopesin the Ryusei vein of the Akenobe mine, HyogoPrefecture, Japan. Geochem. J. 8, 75-76.

Received April 4, 1990, revised manuscript acceptedOctober 12, 1990.