Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631...

54
Time-dependent density functional theory Max-Planck Institute of Microstructure Physics Halle (Saale) E.K.U. Gross OUTLINE Basics of TDDFT Linear response regime: -- Calculation of excitation spectra Beyond the linear regime: -- TD Electron Localisation Function -- TD transport -- Demagnetization of ferromagnetic solids -- Control of harmonic generation

Transcript of Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631...

Page 1: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

Time-dependent density functional theory

Max-Planck Institute ofMicrostructure Physics

Halle (Saale)

E.K.U. Gross

OUTLINE

• Basics of TDDFT

• Linear response regime: -- Calculation of excitation spectra

• Beyond the linear regime: -- TD Electron Localisation Function -- TD transport-- Demagnetization of ferromagnetic solids-- Control of harmonic generation

Page 2: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

What do we want to describe?

System in laser field:Generic situation

α

++=, j

eee W T H(t) + rj·E(t)·sin ωt→→Zα e2

|rj-Rα|

What do we want to describe?

System in laser field:Generic situation

α

++=, j

eee W T H(t) + rj·E(t)·sin ωt→→Zα e2

|rj-Rα|

left lead Lcentral

region Cright lead R

Bias between L and R is turned on: U(t) V

Electronic transport: Generic situation

Page 3: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

α

++=, j

eee W T H(t) + rj·E(t)·sin ωt→→Zα e2

|rj-Rα|

Weak laser (vlaser(t) << ven) :

Calculate 1. Linear density response ρ1(r t)

2. Dynamical polarizability

3. Photo-absorption cross section

( ) ( ) ωρ−=ωα rd,r zE

e 31

( ) απω−=ωσ Imc

4

Strong laser (vlaser(t) ≥ ven) :

Non-perturbative solution of full TDSE required

Photo-absorption in weak lasers

continuum states

unoccupied bound states

occupied bound states

I1

I2

Laser frequency ω

σ(ω)

ph

oto-

abso

rpti

on c

ross

sec

tion

Page 4: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

Example: Oxygen atom (8 electrons)

depends on 24 coordinates

rough table of the wavefunction

10 entries per coordinate: 1024 entries

1 byte per entry: 1024 bytes

1010 bytes per DVD: 1014 DVDs

10 g per DVD: 1015 g DVDs

= 109 t DVDs

( )81 r,,rΨ

Why don’t we just solve the many-particle SE?

ESSENCE OF DENSITY-FUNTIONAL THEORY

• Every observable quantity of aquantum system can be calculatedfrom the density of the systemALONE

• The density of particles interactingwith each other can be calculated asthe density of an auxiliary system ofnon-interacting particles

Page 5: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

Basic 1-1 correspondence:The time-dependent density determines uniquelythe time-dependent external potential and hence allphysical observables for fixed initial state.

( ) ( )v rt rt1-1←⎯→ ρ

Time-dependent density-functional formalism

KS theorem:

The time-dependent density of the interacting system of interest canbe calculated as density

of an auxiliary non-interacting (KS) system

with the local potential

( ) ( )2N

j = 1

ρ r t = r tjϕ

( ) ( ) ( ) ( )3S

r ' tv r ' t ' rt v rt d r '

r r '

ρ ρ = + + −

( ) [ ]( ) ( )2 2

j S ji rt v rt rtt 2m

∂ ∇ϕ = − + ρ ϕ ∂

( ) ( )xcv r ' t ' rt ρ

(E. Runge, E.K.U.G., PRL 52, 997 (1984))

The functional vxc[ρ] is universal:

Curse or blessing?

Page 6: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

The functional vxc[ρ] is universal:

Curse or blessing?

Only ONE functional needs to be approximated

The functional vxc[ρ] is universal:

Curse or blessing?

Only ONE functional needs to be approximated

Functional can be systematically improved, i.e. results will improve -on average- for all systems. Systematic improvementfor a single given system is not possible.

Page 7: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

proof (basic idea):

i.e. v(r t) ≠ v’(r t) + c(t) ρ(r t) ≠ ρ’(r t)→

to be shown that is impossible)t r(v

)t r('v

)t r(' )t r('j )t r(v

)t r( )t r(j )t r(v

ρ

ρ

'

→ →

ρ(r t)

( )

φφ=∂ t tH , rj ttrj t

i

equation of motion for j→

and ( )( ) j

rtdiv rt

t

∂ρ∂

= −

continuity equation

to show that and

0

0 tt tt

t

'j

t

j

==∂∂≠

∂∂

0

0 t

2

2

t

2

2

t

'

t ∂ρ∂≠

∂ρ∂

use

ρ and ρ’ will become differentfrom each other infinitesimallylater than t0

ρ’(t)

ρ(t)

t0 t

ρ(t)

( )

φφ=∂ t tH , rj ttrj t

i

Page 8: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

Simplest possible approximation for [ ]( )trρvxc

Adiabatic Local Density Approximation (ALDA)

( ) ( ) nv : t rv)t r(n

homstat,xc

ALDAxc

ρ=

=

homstat,xcv = xc potential of static homogeneous e-gas

Approximation with correct asymptotic -1/r behavior:time-dependent optimized effective potential (TDOEP)

C. A. Ullrich, U. Gossmann, E.K.U.G., PRL 74, 872 (1995)

LINEAR RESPONSE THEORY

t = t0 : Interacting system in ground state of potential v0(r) with density ρ0(r)

t > t0 : Switch on perturbation v1(r t) (with v1(r t0)=0).

Density: ρ(r t) = ρ0(r) + δρ(r t)

Consider functional ρ[v](r t) defined by solution of interacting TDSE

Functional Taylor expansion of ρ[v] around vo:

[ ]( ) [ ]( )tr vρtrvρ 0 += 1v

[ ]( )( )+ dt'r'd

t'r' δv

tr vδρ 3

0v

( )'t'rv1

[ ]( )tr vρ 0 =

[ ]( )( ) ( ) + dt"dt'r"dr'd

t"r" δvt'r' δv

tr vρδ

2

1 332

0v

( ) ( )"t,"rv't,'rv 11 ( )r tρ2

( )r tρ1

( )rρo

Page 9: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

ρ1(r,t) = linear density response of interacting system

( ) [ ]( )( )

0v

t'r' δv

tr vδρ:'t'r,tr =χ = density-density response function of

interacting system

Analogous function ρs[vs](r t) for non-interacting system

[ ]( ) [ ]( ) [ ]( ) [ ]( )( ) ++=+= dt'r'd

t'r'δv

r t vδρr t vρr t vρr t vρ 3

S

SSS,0SS,0SSS

S,0v

S,1v ( )t'r'vS,1

( ) [ ]( )( )

S,0v

t'r'δv

tr vδρ:'t'r,tr

S

SSS =χ = density-density response function of

non-interacting system

GOAL: Find a way to calculate ρ1(r t) without explicitly evaluating

χ(r t,r't') of the interacting system

starting point: Definition of xc potential

[ ]( ) [ ]( ) [ ]( ) [ ]( )r tρvr tρvr tρv:r tρv HextSxc −−=

vxc is well-defined through non-interacting/ interacting 1-1 mapping.

Page 10: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

[ ]( )( )

[ ]( )( )

[ ]( )( )

( )r'r

t'tδ

t'r'δρ

r tρδv

t'r'δρ

r tρδv

t'r'δρ

r tρδv extSxc

−−−−=

000 ρρρ

[ ]( )( )

[ ]( )( )

[ ]( )( )

( )r'r

t'tδ

t'r'δρ

r tρδv

t'r'δρ

r tρδv

t'r'δρ

r tρδv extSxc

−−−−=

000 ρρρ

( )t'r'r t,fxc ( )t'r'r t,1S−χ ( )t'r'r t,1−χ ( )t'r'r t,WC

Page 11: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

[ ]( )( )

[ ]( )( )

[ ]( )( )

( )r'r

t'tδ

t'r'δρ

r tρδv

t'r'δρ

r tρδv

t'r'δρ

r tρδv extSxc

−−−−=

000 ρρρ

( )t'r'r t,fxc ( )t'r'r t,1S−χ ( )t'r'r t,1−χ ( )t'r'r t,WC

11SCxc Wf −− χ−χ=+

[ ]( )( )

[ ]( )( )

[ ]( )( )

( )r'r

t'tδ

t'r'δρ

r tρδv

t'r'δρ

r tρδv

t'r'δρ

r tρδv extSxc

−−−−=

000 ρρρ

( )t'r'r t,fxc ( )t'r'r t,1S−χ ( )t'r'r t,1−χ ( )t'r'r t,WC

11SCxc Wf −− χ−χ=+ • χχS •

Page 12: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

[ ]( )( )

[ ]( )( )

[ ]( )( )

( )r'r

t'tδ

t'r'δρ

r tρδv

t'r'δρ

r tρδv

t'r'δρ

r tρδv extSxc

−−−−=

000 ρρρ

( )t'r'r t,fxc ( )t'r'r t,1S−χ ( )t'r'r t,1−χ ( )t'r'r t,WC

11SCxc Wf −− χ−χ=+ • χχS •

( ) SCxcS χχχ Wfχ −=+

( )S S ee xcχ χ χ W f χ= + +

Act with this operator equation on arbitrary v1(r t) and use χ v1 = ρ1 :

• Exact integral equation for ρ1(r t), to be solved iteratively

• Need approximation for

(either for fxc directly or for vxc)

( ) ( ) ( ) ( ) ( ) ( )ee

= + + 3 3

1 S 1 xc 1ρ r t d r'dt'χ r t,r't' v r t d r"dt" W r't',r"t" f r't',r"t" ρ r"t"

( ) [ ]( )( )

0ρt"r"δρ

t'r'ρδvt"r",t'r'f xc

xc =

Page 13: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

Total photoabsorption cross section of the Xe atom versus photonenergy in the vicinity of the 4d threshold.

Solid line: self-consistent time-dependent KS calculation [A. Zangwill and P.Soven, Phys. Rev. A 21, 1561 (1980)]; crosses: experimental data [R. Haensel, G.Keitel, P. Schreiber, and C. Kunz, Phys. Rev. 188, 1375 (1969)].

Photo-absorption in weak lasers

continuum states

unoccupied bound states

occupied bound states

I1

I2

Laser frequency ω

σ(ω)

ph

oto-

abso

rpti

on c

ross

sec

tion

Previous slide

Page 14: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

Looking at those frequencies, Ω, for which ρ1(ω) has poles,leads to the (non-linear) eigenvalue equation

(T. Grabo, M. Petersilka, EKUG, J. Mol. Struc. (Theochem) 501, 353 (2000))

( )( ) q'q

'q'qqq'qq A βΩ=βδω+Ωwhere

( ) ( ) ( )r'ΦΩ,r'r,fr'r

1 rΦ'rdrdαA q'xcq

33q'qq'

+

−=

( )a,jq =

( ) ( ) ( )rrr j*aq ϕϕ=Φ

jaq ff −=α

jaq ε−ε=ω

double index

Atom Experimental Excitation

Energies 1S→1P (in Ry)

KS energy differences Δ∈KS (Ry)

Δ∈KS + K

Be 0.388 0.259 0.391

Mg 0.319 0.234 0.327

Ca 0.216 0.157 0.234

Zn 0.426 0.315 0.423

Sr 0.198 0.141 0.210

Cd 0.398 0.269 0.391

from: M. Petersilka, U. J. Gossmann, E.K.U.G., PRL 76, 1212 (1996)

TDDFT

Page 15: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

Excitation energies of CO molecule

State Ωexpt KS-transition Δ∈KS Δ∈KS + K

A 1Π 0.3127 5Σ→2Π 0.2523 0.3267

a 3Π 0.2323 0.2238

I1Σ - 0.3631 1Π→2Π 0.3626 0.3626

D 1Δ 0.3759 0.3812

a'3Σ+ 0.3127 0.3181

e3Σ - 0.3631 0.3626

d3Δ 0.3440 0.3404

approximations made: vxc and fxcLDA ALDA

T. Grabo, M. Petersilka and E.K.U. Gross, J. Mol. Struct. (Theochem) 501, 353 (2000)

TDDFT

Failures of ALDA in the linear response regime

• response of long chains strongly overestimated(see: Champagne et al., J. Chem. Phys. 109, 10489 (1998) and 110, 11664 (1999))

• in periodic solids, whereas,

for insulators, divergent.2

0qexactxc q1 f ⎯⎯→⎯ →

( ) ( )ρ=ρω c,,qf ALDAxc

• charge-transfer excitations not properly described (see: Dreuw et al., J. Chem. Phys. 119, 2943 (2003))

• H2 dissociation is incorrect:

(see: Gritsenko, van Gisbergen, Görling, Baerends, J. Chem. Phys. 113, 8478 (2000))

( ) ( ) 0 EERg

1u

1 ⎯⎯ →⎯Σ−Σ ∞→++ (in ALDA)

Page 16: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

Failures of ALDA in the linear response regime

• response of long chains strongly overestimated(see: Champagne et al., J. Chem. Phys. 109, 10489 (1998) and 110, 11664 (1999))

• in periodic solids, whereas,

for insulators, divergent.2

0qexactxc q1 f ⎯⎯→⎯ →

( ) ( )ρ=ρω c,,qf ALDAxc

• charge-transfer excitations not properly described (see: Dreuw et al., J. Chem. Phys. 119, 2943 (2003))

• H2 dissociation is incorrect:

(see: Gritsenko, van Gisbergen, Görling, Baerends, J. Chem. Phys. 113, 8478 (2000))

( ) ( ) 0 EERg

1u

1 ⎯⎯ →⎯Σ−Σ ∞→++ (in ALDA)

These difficulties have largely been solved by xc functionals more advanced than ALDA

Source: Web of Science as of June 2015

27 40 5078 91 111

158199

299340

492

563

631671

805 811

1012

1136

1248

1479

674

0

200

400

600

800

1000

1200

1400

1600

TDDFT Publications1995 - 2015 (June)

Page 17: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

How can one give a rigorous mathematical meaning to chemical concepts such as

• Single, double, triple bonds• Lone pairs

Note: • Density ρσ (r) is not useful!• Orbitals are ambiguous (w.r.t. unitary

transformations)

Time-Dependent Electron Localization Function

( ) ( )( )

D r, r'P r, r' :

rσσ

σσ

= conditional probability of finding an electronwith spin σ at if we know with certainty thatthere is an electron with the same spin at .

= diagonal of two-body density matrix

( ) ( )3 4 N

23 33 N 3 3 N N

...

D r, r' d r ... d r r , r' , r ..., rσσ σ σ

= Ψ σ σ σ σ

= probability of finding an electron with spin σ at and another electron with the same spin at .

r

r'

r'

r

Page 18: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

Coordinate transformation

r'

r

s If we know there is an electron with spin σ at , thenis the (conditional) probability of

finding another electron at .

( ) ( ) ( ) ( ) 2

s 0

dp r, s 1p r, s p r, 0 s C r s

ds 3σ

σ σ σ

=

= + ⋅ +

0 0

Expand in a Taylor series:

The first two terms vanish.

Spherical average ( ) ( )2

0 0

1p r, s sin d d P r, s , ,

4

π π

σ σ= θ θ ϕ θ ϕπ

r

( )P ,σ +r r s

r + s

If we know there is an electron with spin σ at , then is theconditional probability of finding another electron at the distance sfrom .

( )p ,r sσr

is a measure of electron localization.

small means strong localization at

( )σC r

Why? , being the s2-coefficient, gives the probability of

finding a second like-spin electron very near the reference

electron. If this probability very near the reference electron is

low then this reference electron must be very localized.

( )σC r

( )σC r

r

Page 19: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

Cσ is always ≥ 0 (because pσ is a probability) and is notbounded from above.

Define as a useful visualization of localization(A.D. Becke, K.E. Edgecombe, JCP 92, 5397 (1990))

1 ELF 0 ≤≤Advantage: ELF is dimensionless and

where

is the kinetic energy density of the uniform gas.

( )( )

1

1ELF 2

rC

rCuni

σ

σ+=

( ) ( ) ( ) ( )rr65

3rC uni35322uni

σσσ τ=ρπ=

( )σC r

ELF

A. Savin, R. Nesper, S. Wengert, and T. F. Fässler, Angew. Chem. Int. Ed. 36, 1808 (1997)

Page 20: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

For a determinantal wave function one obtains

( ) ( ) ( )( )( )

2N

2deti

i 1

r1C r r

4 r

σσ

σ σ= σ

∇ρ= ∇ϕ −

ρ

in the static case:

(A.D. Becke, K.E. Edgecombe, JCP 92, 5397 (1990))

in the time-dependent case:

(T. Burnus, M. Marques, E.K.U.G., PRA (Rapid Comm) 71, 010501 (2005))

( ) ( ) ( )( )( )

2N

2deti

i 1

r, t1C r, t r, t

4 r, t

σσ

σ σ= σ

∇ρ= ∇ϕ −

ρ

( ) ( )2

j r, t r, tσ σ− ρ

Acetylene in laser field(ħω = 17.15 eV, I = 1.2×1014 W/cm2)

Scattering of a proton from ethylene(Ekin(proton) = 2 keV)

Page 21: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

TDELF for acetylene in strong laser field(ħω = 17.15 eV, I = 1.2×1014 W/cm2)

TDELF for scattering process2 keV proton colliding with ethylene

Page 22: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

TDELF movies produced from TD Kohn-Sham equations

( )[ ]( ) ( ) ( ) +−ρ+=ρ 'rr

t'r'rdrtvrt't'rv 3

KSvxc[ρ (r’t’)](r t)

( ) [ ]( ) ( )rt rtvm2

rtt

i jKS

22

j ϕ

ρ+∇−=ϕ

∂∂

propagated numerically on real-space grid using octopus code

octopus: a tool for the application of time-dependent density functional theory, A. Castro, M.A.L. Marques, H. Appel, M. Oliveira, C.A. Rozzi, X. Andrade, F. Lorenzen, E.K.U.G., A. Rubio, Physica Status Solidi 243, 2465 (2006).

T. Burnus, M. Marques, E.K.U.G, PRA (Rapid Comm) 71, 010501 (2005)

Electronic transport with TDDFT

left lead Lcentral

region Cright lead R

Page 23: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

Electronic transport with TDDFT

left lead Lcentral

region Cright lead R

TDKS equation (E. Runge, EKUG, PRL 52, 997 (1984))

( )[ ]( ) ( ) ( ) +−ρ+=ρ 'rr

t'r'rdrtvrt't'rv 3

KSvxc[ρ (r’t’)](r t)

( ) [ ]( ) ( )rt rtvm2

rtt

i jKS

22

j ϕ

ρ+∇−=ϕ

∂∂

( )( )( )

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )

( )( )( )

ϕϕϕ

=

ϕϕϕ

∂∂

t

t

t

tHtHtH

tHtHtH

tHtHtH

t

t

t

ti

R

C

L

RRRCRL

CRCCCL

LRLCLL

R

C

L

left lead Lcentral

region Cright lead R

TDKS equation

Electronic transport with TDDFT

Page 24: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

Effective TDKS Equation for the central (molecular) region only

S. Kurth, G. Stefanucci, C.O. Almbladh, A. Rubio, E.K.U.G.,Phys. Rev. B 72, 035308 (2005)

( ) ( ) ( )ttHtt

i CCCC ϕ=ϕ∂∂

source term: L → C and R → C charge injection

memory term: C → L → C and C → R → C hopping

( ) ( ) ( ) ( )00,tGiH00,tGiH RRCRLLCL ϕ+ϕ+

( ) ( )[ ] ( ) ϕ++t

0

CRCRCRLCLCL 'tH't,tGHH't,tGH'dt

Note: So far, no approximation has been made.

UV(x)

left lead right leadcentral region

Numerical examples for non-interacting electrons

Recovering the Landauer steady state

Time evolution of current in response to bias switched on at time t = 0,

Fermi energy εF = 0.3 a.u.

Steady state coincides with Landauer formula

and is reached after a few femtoseconds

U

Page 25: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

Does one always reach a steady state after switching-on the bias?

Two-site Anderson model

E. Khosravi, A.M. Uimonen, A. Stan, G. Stefanucci, S. Kurth, R. van Leeuwen, E.K.U. Gross, Phys. Rev. B 85, 075103 (2012)

Page 26: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

ELECTRON PUMP

Device which generates a net current between twoelectrodes (with no static bias) by applying a time-dependent potential in the device region

Experimental realization : Pumping through carbonnanotube by surface acoustic waves on piezoelectricsurface (Leek et al, PRL 95, 256802 (2005))

-8 -4 0 4 8x/a.u.

-0.05

-0.025

0

0.025

0.05

n(x,

t)/a

.u.

-0.5

-0.25

0

0.25

0.5

U(x

,t)/a

.u.

Pumping through a square barrier (of height 0.5 a.u.) using a travelling wave in device regionU(x,t) = Uosin(kx-wt)(k = 1.6 a.u., w = 0.2 a.u.Fermi energy = 0.3 a.u.)

Patent: Archimedes (250 b.c.)

Page 27: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

Experimental result:

Current flows in direction opposite to sound wave

Page 28: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

Current goes in direction opposite to the external field !!

G. Stefanucci, S. Kurth, A. Rubio, E.K.U. Gross, Phys. Rev. B 77, 075339 (2008)

Laser-induced ultrafast demagnetization of solids:The first 100 femto-seconds

Page 29: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

Beaurepaire et al, PRL 76, 4250 (1996)

First experiment on ultrafast laser induced demagnetisation

Beaurepaire et al, PRL 76, 4250 (1996)

First experiment on ultrafast laser induced demagnetisation

More recent experiments show demagnetization in less than 100 fs

Page 30: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

Possible mechanisms for demagnetisation

Possible mechanisms for demagnetisation

• Direct interaction of spins with the magnetic component of the laserZhang, Huebner, PRL 85, 3025 (2000)

Page 31: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

Possible mechanisms for demagnetisation

• Direct interaction of spins with the magnetic component of the laserZhang, Huebner, PRL 85, 3025 (2000)

• Spin-flip electron-phonon scattering(ultimately leading to transfer of spin angular momentum to the lattice)Koopmans et al, PRL 95, 267207 (2005)

Possible mechanisms for demagnetisation

• Direct interaction of spins with the magnetic component of the laserZhang, Huebner, PRL 85, 3025 (2000)

• Spin-flip electron-phonon scattering(ultimately leading to transfer of spin angular momentum to the lattice)Koopmans et al, PRL 95, 267207 (2005)

• Super-diffusive spin transportBattiato, Carva, Oppeneer, PRL 105, 027203 (2010)

Page 32: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

Possible mechanisms for demagnetisation

• Direct interaction of spins with the magnetic component of the laserZhang, Huebner, PRL 85, 3025 (2000)

• Spin-flip electron-phonon scattering(ultimately leading to transfer of spin angular momentum to the lattice)Koopmans et al, PRL 95, 267207 (2005)

• Super-diffusive spin transportBattiato, Carva, Oppeneer, PRL 105, 027203 (2010)

• Ab-initio (TDDFT) result for the first 50 fs: Laser-driven charge excitation followed by spin-orbit-driven demagnetization of the localized d-electrons

K. Krieger, J.K. Dewhurst, P.Elliott, S. Sharma, E.K.U. Gross, arXiv:1406.6607 (2014), to appear in JCTC (2015).

( ) ( )( ) [ ]( ) [ ]( )

[ ]( )( ) ( ) ( )

21, , , , ,

2

, , ,2

k laser S B S

BS k

i r t i A t v r t B r tt

v r t i r tc

ϕ ρ μ σ ρ

μ σ ρ ϕ

∂ = − ∇− + − ⋅∂ + ⋅ ∇ × − ∇

m m

m

Theoretical approach: TDDFT with SOC

[ ]( ) ( ) ( ) [ ]( )3,, , , ,S lattice xc

r tv r t v r d r v r t

r r

ρρ ρ

′′= + +

′−m m

[ ]( ) ( ) [ ]( ), , , , ,S external xcB r t B r t B r tρ ρ= +m m

( ),k r tϕwhere are Pauli spinors

Page 33: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

• Wave length of laser in the visible regime(very large compared to unit cell)

• Dipole approximation is made(i.e. electric field of laser is assumed to be spatially constant)

• Laser can be described by a purely time-dependent vector potential

• Periodicity of the TDKS Hamiltonian is preserved!

• Implementation in ELK code (FLAPW)(http://elk.sourceforge.net)

Aspects of the implementation

Page 34: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

Cr monolayer

Analysis of the results

Page 35: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

components of spin moment

Calculation without spin-orbit coupling

Page 36: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

Demagnetization occurs in two steps:

- Initial excitation by laser moves magnetization from MT regioninto interstitial region. Total Moment is basically conservedduring this phase.

- Spin-Orbit term drives demagnetization of localized electrons until stabilization at much lower moment is achieved

K. Krieger, J.K. Dewhurst, P. Elliott, S. Sharma, E.K.U. Gross, arXiv:1406.6607 (2014)

Page 37: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

Playing with laser parameters

Page 38: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

Influence of approximation for xc functional

Page 39: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

Problem: In all standard approximations of Exc (LSDA, GGAs)m(r) and Bxc(r) are locally collinear

S. Sharma, J.K. Dewhurst, C. Ambrosch-Draxl, S. Kurth, N. Helbig, S. Pittalis, S. Shallcross, L. Nordstroem E.K.U.G., Phys. Rev. Lett. 98, 196405 (2007)

Why is that important?

Ab-initio description of spin dynamics:

microscopic equation of motion (following from TDSDFT)

XC Sm(r, t) m(r, t) B (r, t) J (r, t)= × − ∇⋅

in absence of external magnetic field

Consequence of local collinearity: m×Bxc = 0: → wrong spin dynamics→ how important is this term in real-time dynamics?

Page 40: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

Construction of a novel GGA-type functional

Traditional LSDA: Start from uniform electron gas in collinear magnetic state. Determine from QMC or MBPT and parametrize touse in LSDA.

New non-collinear functional: Start from spin-spiralphase of e-gas. Determine from MBPT andparametrize to use as non-collinear GGA.

XCe [n, m]

XCe [n, m]

XCe [n, m]XCe [n, m]

F.G. Eich and E.K.U. Gross, Phys. Rev. Lett. 111, 156401 (2013)

( )( )( )

2

scos

m m ssin

1 s

= ⋅ −

q r

r q r

Magnetisation of a spin-spiral state in the uniform electron gas

SSW SSWxc xc (n, m,q,s)ε = ε

Illustration of spin spiral waves along one spatial coordinate for two different choices of wavevectorq=k1/2.

Page 41: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

( ) ( )( ) ( ) ( )

2T2

2 4T T

Ds

D m d=

+r

rr r r

( ) ( ) ( ) ( )( ) ( )

2 4T T2

4T

D m dq

m D

+=

r r rr

r r

[ ] ( ) ( ) ( ) ( ) ( )( )GGA 3 SSWxc xcE n, m d r n n , m ,q ,s= ε r r r r r

( ) ( ) ( )( ) 22

Td m m= × ∇r r r ( ) ( ) ( )( ) 2

TD m m= × ∇⊗r r r

F.G. Eich and E.K.U. Gross, Phys. Rev. Lett. 111, 156401 (2013)

m×Bxc

Page 42: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

Summary• No demagnetization without Spin-Orbit coupling

• Demagnetization in first 100 fs is a two-step process:1. Initial excitation of electrons into highly excited states

(without much of a change in the total magnetization)2. Spin-orbit coupling drives demagnetization of localized

electrons (mainly d electrons)

• Similar demagnetization behavior for Fe, Co, Ni

• No significant change in Mx and My

• New xc functional derived from spin-spiral phase of uniform e-gas

• Very little difference in demagnetization dynamics comparingthe new xc functional with the traditional non-collinear LSDA

Page 43: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

Optimal control of ultra-short processes

Review Article on Quantum Optimal Control Theory: J. Werschnik, E.K.U. Gross, J. Phys. B 40, R175-R211 (2007)

Normal question:

What happens if a system is exposed to a given laser pulse?

Inverse question (solved by OCT):

Which is the laser pulse that achieves a prescribed goal (target)?

Optimal Control Theory (OCT) of static targets

possible targets: a) system should end up in a given final state φf

at the end of the pulseb) wave function should follow a given trajectory in

Hilbert spacec) density should follow a given classical trajectory r(t)

Page 44: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

Optimal control of static targets(standard formulation)

( ) ( ) ( ) ( ) ( )TOTTTTJ f f 2

f 1 ΨΨ=ΨΦΦΨ=ΦΨ=

For given target state Φf , maximize the functional:

Optimal control of static targets(standard formulation)

( ) ( ) ( ) ( ) ( )TOTTTTJ f f 2

f 1 ΨΨ=ΨΦΦΨ=ΦΨ=

Ô

For given target state Φf , maximize the functional:

Page 45: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

Optimal control of static targets(standard formulation)

( ) ( ) ( ) ( ) ( )TOTTTTJ f f 2

f 1 ΨΨ=ΨΦΦΨ=ΦΨ=

Ô

( )

−εα−= 0

T

0

22 EtdtJ E0 = given fluence

with the constraints:

For given target state Φf , maximize the functional:

Optimal control of static targets(standard formulation)

( ) ( ) ( ) ( ) ( )TOTTTTJ f f 2

f 1 ΨΨ=ΨΦΦΨ=ΦΨ=

Ô

( )

−εα−= 0

T

0

22 EtdtJ E0 = given fluence

with the constraints:

[ ] ( ) ( )[ ] ( ) Ψμε−+−∂ι−χ−=χΨεT

0

t3 t tVT tdtIm2,,J

For given target state Φf , maximize the functional:

Page 46: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

Optimal control of static targets(standard formulation)

( ) ( ) ( ) ( ) ( )TOTTTTJ f f 2

f 1 ΨΨ=ΨΦΦΨ=ΦΨ=

Ô

( )

−εα−= 0

T

0

22 EtdtJ E0 = given fluence

with the constraints:

TDSE

[ ] ( ) ( )[ ] ( ) Ψμε−+−∂ι−χ−=χΨεT

0

t3 t tVT tdtIm2,,J

For given target state Φf , maximize the functional:

Optimal control of static targets(standard formulation)

( ) ( ) ( ) ( ) ( )TOTTTTJ f f 2

f 1 ΨΨ=ΨΦΦΨ=ΦΨ=

Ô

( )

−εα−= 0

T

0

22 EtdtJ E0 = given fluence

with the constraints:

TDSE

[ ] ( ) ( )[ ] ( ) Ψμε−+−∂ι−χ−=χΨεT

0

t3 t tVT tdtIm2,,J

For given target state Φf , maximize the functional:

GOAL: Maximize J = J1 + J2 + J3

Page 47: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

Control equations

1. Schrödinger equation with initial condition:

2. Schrödinger equation with final condition:

3. Field equation:

ˆ( ) ( ) ( ), (0)ti t H t tψ ψ ψ φ∂ = =

ˆˆ( ) ( ) ( ), ( ) ( )ti t H t t T O Tχ χ χ ψ∂ = =

1ˆ( ) Im ( ) ( )t t tε χ μ ψ

α=

0Jχδ = →

0Jψδ = →

0Jεδ = →

Set the total variation of J = J1 + J2 + J3 equal to zero:

Algorithm

Forward propagation

Backward propagation

New laser field

Algorithm monotonically convergent: W. Zhu, J. Botina, H. Rabitz,J. Chem. Phys. 108, 1953 (1998))

Quantum ring: Control of circular current

TDSE:

30 nm

1

1.04

1.12

1.24

Page 48: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

Control of currents|ψ(t)|

l = -1 l = 1

l = 0

|ψ(t)|2 j (t)j and

I ~ μA

E. Räsänen, A. Castro, J. Werschnik, A. Rubio, E.K.U.G., PRL 98, 157404 (2007)

OCT of ionization

• Calculations for 1-electron system H2+ in 3D

• Restriction to ultrashort pulses (T<5fs)

nuclear motion can be neglected

• Only linear polarization of laser (parallel or

perpendicular to molecular axis)

• Look for enhancement of ionization by pulse-shaping

only, keeping the time-integrated intensity (fluence)

fixed

Page 49: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

Control target to be maximized:

( ) ( )1ˆJ T O T= Ψ Ψ

with ϕϕ−=bound

iii1O

Standard OCT algorithm (forward-backward propagation) does notconverge:

Acting with before the backward-propagation eliminates the smooth(numerically friendly) part of the wave function.

O

Instead of forward-backward propagation, parameterize the laser pulse to beoptimized in the form

( ) ( ) ( )0t cot s t ,∈ = ωf

( ) ( ) ( )N

n nn

n1

n

2 2cos t sin t ,

T Tt

=

= ω + ω

f f g

Maximize J1 (f1…fN, g1…gN) directly with constraints:

( ) ( ) ( )

( )

N

nn 1

T 200

i f 0 f T 0 f 0

ii dt (t) E .

=

= = =

ε =

using algorithm NEWUOA (M.J.D. Powell, IMA J. Numer. Analysis 28, 649 (2008))

with ωn = 2πn/T

with ω0 = 0.114 a.u. (λ = 400 nm)

Choose N such that maximum frequency is 2ω0 or 4ω0 . T is fixed to 5 fs.

Page 50: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

Ionization probability for the initial (circles) and the optimized (squares) pulse as function of the peak intensity of the initial pulse. Pulse length and fluence is kept fixed during the optimization.

of initial pulse of initial pulse

• Formally the same OCT equations

• Problem: For 3 or more degrees of freedom, the full solution of the TDSE becomes computationally very hard

Control of many-body systems

Page 51: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

• Formally the same OCT equations

• Problem: For 3 or more degrees of freedom, the full solution of the TDSE becomes computationally very hard

Control of many-body systems

Instead of solving the many-body TDSE, combine OCT with TDDFTA. Castro, J. Werschnik, E.K.U. Gross, PRL 109, 153603 (2012)

• Formally the same OCT equations

• Problem: For 3 or more degrees of freedom, the full solution of the TDSE becomes computationally very hard

Control of many-body systems

Instead of solving the many-body TDSE, combine OCT with TDDFTA. Castro, J. Werschnik, E.K.U. Gross, PRL 109, 153603 (2012)

Important: Control target must be formulated in terms ofthe density!

Page 52: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

Enhancement of a single harmonic peak

Harmonic Spectrum:

( ) ( )2

2i t 3

t

dH dte d r r, t

dtω ω =

ρ

z

Maximize:

To maximize, e.g., the 7th harmonic of ω0 , choose coefficients asα7= 4, α3 = α5 = α9 = α11 = -1

[ ]( )

0 0k

k ,kk

F max Hω∈ ω −β ω +β

= α ω

( ) ( )ref 0

2t Tt cos cos t

2 T

π − ε = ε ω

[ ] ( )( )

0 0j , j

jref 0

max H

H jω∈ ω −β ω +β ω

κ =ω

Measure of enhancement: Compare with reference pulse:

Page 53: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

Harmonic spectrum of reference pulse for hydrogen atom

Results for Hydrogen

A. Castro, A. Rubio, E.K.U.Gross,arXiv:1409.4070,to appear in EPJ B (2015).

Page 54: Time-dependent density functional theoryD 1Δ 0.3759 0.3812 a' 3 Σ+ 0.3127 0.3181 e 3Σ-0.3631 0.3626 d 3Δ 0.3440 0.3404 approximations made: vxc and fxc LDA ALDA ...

Results for Helium

(Using TDDFT with EXX functional)

A. Castro, A. Rubio, E.K.U.Gross,arXiv:1409.4070, to appear in EPJ B (2015).

Lecture Notes in Physics 706(Springer, 2006)

Lecture Notes in Physics 837(Springer, 2012)