Tìm hiểu tích phan LEBESGUE và không gian Lp

download Tìm hiểu tích phan LEBESGUE và không gian Lp

of 60

Transcript of Tìm hiểu tích phan LEBESGUE và không gian Lp

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    1/60

    I HC QUC GIA H NITRNG I HC KHOA HC T NHIN

    KHOA TON - C - TIN HC

    Trnh Thu Trang

    TM HIU V TCH PHN LEBESGUEV KHNG GIAN Lp

    KHA LUN TT NGHIP I HC H CHNH QUY

    Ngnh: Ton - Tin ng dng

    Ngi hng dn: TS. ng Anh Tun

    H Ni - 2011

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    2/60

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    3/60

    LI CM N

    Trc khi trnh by ni dung chnh ca kha lun, em xin by t lng bit

    n su sc ti Tin s ng Anh Tun ngi thy tn tnh hng dn em

    c th hon thnh kha lun ny.

    Em cng xin by t lng bit n chn thnh ti ton th cc thy c gio

    trong khoa Ton - C - Tin hc, i hc Khoa Hc T Nhin, i Hc Quc

    Gia H Ni dy bo em tn tnh trong sut qu trnh hc tp ti khoa.

    Nhn dp ny em cng xin c gi li cm n chn thnh ti bn b nhng

    ngi lun bn cnh c v, ng vin v gip em.

    c bit cho em gi li cm n chn thnh nht ti gia nh nhng ngi

    lun chm lo, ng vin v c v tinh thn cho em.

    H Ni, ngy 16 thng 05 nm 2011

    Sinh vin

    Trnh Thu Trang

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    4/60

    Mc lc

    M u 1

    1 Tch phn Lebesgue 3

    1.1 i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    1.2 o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    1.2.1 o trn -i s tp hp . . . . . . . . . . . . . . . . . . 7

    1.2.2 o Lebesgue . . . . . . . . . . . . . . . . . . . . . . . . . 11

    1.3 Hm o c Lebesgue . . . . . . . . . . . . . . . . . . . . . . . . . 161.3.1 Hm o c Lebesgue . . . . . . . . . . . . . . . . . . . . . 16

    1.3.2 Cc php ton v hm s o c . . . . . . . . . . . . . . 17

    1.3.3 Cu trc hm o c . . . . . . . . . . . . . . . . . . . . . 19

    1.3.4 Hi t hu khp ni . . . . . . . . . . . . . . . . . . . . . . 20

    1.3.5 S hi t theo o . . . . . . . . . . . . . . . . . . . . . . 22

    1.3.6 Mi lin h gia hi t . . . . . . . . . . . . . . . . . . . . . 24

    1.4 Tch phn Lebesgue . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

    1.4.1 Tch phn ca hm n gin . . . . . . . . . . . . . . . . . 28

    1.4.2 Tch phn ca hm khng m . . . . . . . . . . . . . . . . . 29

    1.4.3 Tch phn ca hm c du bt k . . . . . . . . . . . . . . 29

    1.4.4 Cc tnh cht s cp . . . . . . . . . . . . . . . . . . . . . . 30

    i

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    5/60

    MC LC

    1.4.5 Qua gii hn di du tch phn . . . . . . . . . . . . . . . 33

    1.4.6 Mi lin h gia tch phn Lebesgue v Rie mann . . . . . 36

    2 Khng gian Lp 382.1 Khng gian Lp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

    2.2 Tnh tch c ca Lp . . . . . . . . . . . . . . . . . . . . . . . . . 47

    2.3 Bin i Fourier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    2.3.1 Bin i Fourier trong L1 . . . . . . . . . . . . . . . . . . . 51

    2.3.2 Bin i Fourier trong Lp . . . . . . . . . . . . . . . . . . . 52

    Kt lun 55

    ii

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    6/60

    M u

    Tch phn Lebesgue xut hin vo th k XX nhm gii quyt mt vi

    nhc im ca tch phn Riemann, chng hn hm Dirichlet l hm n gin

    nhng khng kh tch Riemann. C mt iu th v v tng xy dng hai

    loi tch phn ny. Hai loi tch phn ny c xy dng da trn hai cch nhn

    khc nhau v hm s: Bernhard Riemann nhn hm s bt u t min xc nh

    cn Henri Lebesgue nhn hm s t tp gi tr. Kha lun ca em nhm tm

    hiu cch xy dng tch phn Lebesgue v cc lp hm kh tch Lebesgue cng

    nh c nhng so snh vi cc kt qu hc trong tch phn Riemann. Khalun c chia thnh hai chng.

    Trong Chng 1, em trnh by cch thc xy dng tch phn Lebesgue t

    o Lebesgue, hm o c Lebesgue ri tch phn Lebesgue v hm kh tch

    Lebesgue. Trong chng ny c khi nim hi t hu khp ni v hi t theo

    o l s m rng ca khi nim hi t im v hi t u. Em a vo

    cc v d cho thy s khc nhau gia cc khi nim hi t ny. Phn gn cui

    chng c cp n cc kt qu quan trng v vic chuyn gii hn qua du

    tch phn ca Beppo Levi, Pierre Fatou, c bit ca Henri Lebesgue v hi t

    chn. Em a v d cho thy kt qu hc Gii tch v vic chuyn gii hn

    qua du ly tch phn c m rng thc s. Kt thc chng ny l kt qu

    v mi quan h gia tch phn Lebesgue v tch phn Riemann.

    1

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    7/60

    M u

    Trong Chng 2, em trnh by khng gian Lp, 1 p v cc tnh cht.

    y l lp khng gian Banach (nh chun, y ) hn na cn tch c (c

    tp con m c tr mt) ngoi tr trng hp p =

    . Sau khi trnh by cc

    tnh cht c bn ny, em trnh by php bin i Fourier trong Lp, 1 p 2.

    xy dng c php bin i Fourier em da vo Bt ng thc Hausdorff-

    Young. Trong trng hp p > 2 em a vo v d cho thy Bt ng thc

    ny khng cn ng.

    Do thi gian c hn cng nh vic nm bt kin thc cn hn ch nn

    trong Kha lun khng trnh khi thiu st, chng hn em cha a vo chngminh Bt ng thc Hausdorff -Young v chng minh ny i hi kh nhiu kin

    thc chun b (L thuyt ni suy khng gian). Rt mong c s ch bo ca

    thy c v bn b khp ni.

    2

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    8/60

    Chng 1

    Tch phn Lebesgue

    1.1 i s

    nh ngha 1.1.1. [1]Cho tp X l mt tp ty khc rng. Mt h C cc tp

    con ca X c gi l i s cc tp con ca X, nuC tha mn ba iu kin:

    i) X C,

    ii) A C th X\A C,

    iii) A1, A2, A3, . . . An C thn

    k=1

    Ak C.

    Mnh 1.1.1. Cho C l i s tp con ca X th:

    i) C,

    ii) A1, A2, . . . An C thn

    k=1

    Ak C,

    iii) A C, B C th A\B C.

    Chng minh.

    i) Do C l i s tp con ca X nn theo iu kin (i) ca i s X C.

    3

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    9/60

    Chng 1. Tch phn Lebesgue

    M i s kn vi php ly phn b nn X\X = C.

    ii) Do A1, A2, . . . An C nn X\A1, X\A2, . . . X \An C. V C kn vi php hp hu

    hn nnn

    k=1

    (X

    \Ak)

    C. Mt khc

    n

    k=1

    (X

    \Ak) = X

    \(

    n

    k=1

    Ak) nn X\

    (n

    k=1

    Ak)

    C.

    M C kn vi php ly phn b nn X\(X\n

    k=1

    Ak) =n

    k=1

    Ak C. Vyn

    k=1

    Ak C.

    iii) Ta c A\B = A (X\B). M A, X\B C nn A (X\B) C (theo tnh cht

    2 va chng minh). Vy A\B C.

    Mnh 1.1.2. Cho X = R, C = {n

    i=1

    i : i l gian, i = 1, 2,...,n,n N,

    i

    j =

    vi i

    = j

    }l i s cc tp con caR.

    Trong , gian trnR l mt tp im c mt trong cc dng sau

    (a, b), [a, b], (a, b], [a, b), (, a), (, a], (a, +), [a, +), (, +) via, b R v

    = [a, b] th || = a b c gi l di ca trnR.

    Chng minh.

    i)Chn 1 = (

    , 0), 2 = [0, +

    ), 3 = (a, a) th R = 1

    2

    C v

    = 3

    C.

    ii)Gi sA C th khi A l hp ca hu hn ca cc gian khng giao nhau.

    Trng hp A l hp hu hn ca cc gian c dng i = (ai, ai+1) vi ai, ai+1 R.

    Khng mt tnh tng qut, gi sa1 < a2 < .. . < a2n. Khi A =n

    i=1

    i v

    R\A = (, a1] [a2, a3] ... [a2n, +)

    =

    n1i=1

    [a2i, a2i+1] (, a1] [a2n, +),

    cng l hp hu hn ca cc gian.

    Mt cch xy dng tng t vi cc trng hp cn li ca tp A ta cng c

    R\A cng l hp hu hn ca cc gian. Vy C kn vi php ly phn b.

    iii) Gi sP, Q C. Trc ht ta chng minh P Q C.

    t P =n

    i=1Ii , Ii l mt gian Ii

    Ii = vi i = i

    .

    4

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    10/60

    Chng 1. Tch phn Lebesgue

    Q =k

    j=1

    Jj , Jj l mt gian Jj

    Jj = vi j = j

    . Khi

    P

    Q = P

    (

    k

    j=1

    Jj) =

    k

    j=1

    (P

    Jj) =

    k

    j=1

    [(

    n

    i=1

    Ii)

    Jj ] =

    k

    j=1

    n

    i=1

    (Ii

    Jj).

    M Ii Jj = Lij(i = 1, . . . n;j = 1, . . . k) l cc gian khng giao nhau i mt nnk

    j=1

    ni=1

    Lij C hay P Q C.

    Theo chng minh trn th R\P, R\Q C nn (R\P) (R\Q) C,

    hay R\(P Q) C.

    T chng minh (ii) trn c P

    QC. S dng quy np ta c nu A1, A2, . . . An

    C

    thn

    i=1

    Ai C.

    nh ngha 1.1.2. [1]Cho X l mt tp hp khc rng, mt h F cc tp con

    ca X c gi l -i s, nuF tha mn ba iu kin:

    i) X F,

    ii) A F th X\A F,

    iii) A1, A2, ...An, . . . F th+k=1

    Ak F.

    V d 1.1.1. Cho X = R, C = {n

    i=1

    i : i l cc gian ri nhau, i = 1,...n, n N}

    khng l -i s.

    Tht vy, t Ak = [2k, 2k + 1], kN th Ak

    C. Ta cn i chng minh

    k=1

    Ak khng c dngn

    i=1

    i, vi i l mt gian.

    S dng phn chng, gi s rng

    k=1

    Ak =n

    i=1

    i vi i l gian v ij = (i = j ).

    Gi s1 c u mt l a1, a2 ; 2 c u mt l a3, a4; . . . ; n c u mt l

    a2n1, a2n.

    Do cc gian ri nhau nn khng mt tnh tng qut, gi sa1 < a2 < . . . < a2n1 < a2n.

    Nu a2n < +, chn k0 sao cho 2k0 > a2n. Nh vy 2k0

    k=1

    [2k, 2k + 1] nhng

    5

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    11/60

    Chng 1. Tch phn Lebesgue

    2k0 /n

    i=1

    i. iu ny v l.

    Nu a2n = +, chn k0 sao cho 2k0 > a2n1.

    Nh vy 2k0 +3

    2 n nhng 2k0 +

    3

    2/

    k=1

    [2k, 2k + 1]. iu ny v l.

    Vy iu gi s l sai, C khng l -i s.

    Ta s xy dng mt -i s nh nht cha C.

    nh ngha 1.1.3. [1]-i s nh nht bao hm lp cc tp m trong khng

    gianR c gi l -i s Borel ca khng gianR v nhng tp thuc-i s

    ny c gi l tp Borel trong khng gianR.

    Tp Borel l nhng tp xut pht t tp m v thc hin mt s hu hn hay

    m c php ton hp, giao trn tp .

    Theo nh ngha -i s mt tp l tp Borel th phn b ca n cng l

    tp Borel. Do tp m l tp Borel nn tp ng cng l tp Borel.

    Do -i s ng vi php hp v giao m c nn hp ca mt s m

    c cc tp ng l mt tp Borel v giao ca mt s m c tp m cng

    l tp Borel.

    Mnh 1.1.3.

    i) -i s Borel trong khng gianR cng l-i s nh nht bao hm lp cc

    tp ng.

    ii) -i s Borel trnR cng l -i s nh nht bao hm lp cc khong.

    iii) -i s Borel trnR cng l -i s nh nht bao hm lp cc gian.

    Chng minh. i) Cho M l lp cc tp m trong R. Gi F(M) l -i s nh

    nht bao hm lp M hay -i s Borel. N l lp cc tp ng, F(N) l -i

    s nh nht bao hm N. Ta c N F(M) nn F(N) F(M).

    6

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    12/60

    Chng 1. Tch phn Lebesgue

    Mt khc v mi tp m l phn b ca tp ng nn M F(N). Do

    F(M) F(N). Vy F(M) = F(N) hay -i s nh nht bao hm lp cc tp

    ng cng l -i s Borel.

    ii) Cho M l lp cc tp m trong R, N l lp cc khong. V mi khong

    u l tp m nn N F(M) vi F(M) l -i s nh nht bao hm M v

    F(N) F(M).

    M mi tp m l hp hu hn hay m c cc khong nn M F(N) v

    F(M) F(N).

    Vy F(M) = F(N) hay -i s nh nht bao hm lp cc khong cng l -i

    s Borel.

    iii) Cho G l lp cc gian, N l lp cc khong. Gi F(G), F(N) l -i s nh

    nht bao hm mi tp . Do gian cha cc khong m nn F(N) F(G).

    M mi gian li biu din c thnh hp hu hn hoc m c ca cc tp

    m hoc ng v -i s nh nht bao hm lp cc tp m cng l -i s

    nh nht bao hm cc tp ng. Do F(G) F(N).

    Vy F(G) = F(N).

    1.2 o

    1.2.1 o trn -i s tp hpCho X l tp bt k trong khng gian R, F l -i s cc tp con ca X.

    Xt hm tp : F [0, +].

    nh ngha 1.2.1. [1] c gi l cng tnh nu

    A, B

    F, A

    B =

    , A

    B

    F th (A

    B) = (A) + (B).

    7

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    13/60

    Chng 1. Tch phn Lebesgue

    nh ngha 1.2.2. [1] c gi l cng tnh hu hn nu c mt h hu hn

    cc tp hp i mt ri nhau A1, A2, . . . An F th

    (

    ni=1

    Ai) =

    ni=1

    (Ai).

    nh ngha 1.2.3. [1] c gi l -cng tnh nu c mt h m c cc

    tp hp i mt ri nhau A1, A2, . . . An,... F th

    (

    +i=1

    Ai) =

    +i=1

    (Ai).

    Mt hm -cng tnh th cng tnh nhng ngc li khng ng.

    nh ngha 1.2.4. [1] l o trn -i s nu tha mn hai iu kin sau:

    i) () = 0,

    ii) l -cng tnh.

    Tnh cht ca o

    Vi l o trn F ta c cc tnh cht sau:

    1. A, B F, A B th (A) (B).

    V A B nn B = (B\A) A, B\A A = .

    Do (B) = (B\A) + (A) (A).

    2. Nu A, B F, A B, (A) < + th (B\A) = (B) (A).

    V (B) = ((B\A) A) = (B\A) + (A) hay (B\A) = (B) (A).

    3. Hp ca mt h m c cc tp c o bng 0 l tp c o bng 0.

    Ta c (Ak) = 0 vi k = 1, 2, . . . , n . . . v l -cng tnh nn

    (

    k=1

    Ak) =

    k=1

    (Ak) = 0.

    8

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    14/60

    Chng 1. Tch phn Lebesgue

    nh ngha 1.2.5. o c gi l o nu mi tp con ca tp c

    o bng 0 u l tp o c v c o bng 0.

    nh ngha 1.2.6. [1] Mt hm

    xc nh trn mt lp tt c cc tp conca khng gianR, c gi l o ngoi nu:

    i) (A) 0 vi mi A X,

    ii) () = 0,

    iii) A

    k=1

    Ak th (A)

    k=1

    (Ak).

    nh l 1.2.1. [1](Caratheodory) Cho l o ngoi trn X, k hiu L l

    lp tt c cc tp con A ca X sao cho

    (E) = (E A) + (E\A) vi mi E X. (1.2.1)

    Khi yL l -i s v hm = /L (thu hp ca trn L) l o trn L.

    Chng minh. Trc ht ta chng minh L l mt -i s.

    D nhin L v vi mi E X : (E) = () + (E) = (E ) + (E\).

    Lp L cng kn i vi php ly phn b, v nu A L th vi mi E X ta c

    (E) = (E A) + (E\A) = (E\(X\A)) + (E (X\A)).

    chng minh L l -i s ta cn chng minh L kn vi php hp m c.

    Cho Ai L, i = 1, 2, . . . v tp bt k E X. p dng ng thc 1.2.1, ta c:

    (E) = (E A1) + (E\A1)

    = (E A1) +

    (E\A1) A2

    +

    (E\A1)\A2

    = ...

    =

    k

    j=1

    (E\

    j1

    i=1 Ai) Aj

    +

    (E\

    k

    j=1 Aj).

    9

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    15/60

    Chng 1. Tch phn Lebesgue

    Do

    (E) k

    j=1

    (E\j1i=1

    Ai) Aj

    +(E\

    j=1

    Aj).

    V iu ny ng vi mi k nn

    (E)

    j=1

    (E\j1i=1

    AiAj) + (E\

    j=1

    Aj). (1.2.2)

    Mt khc d dng nhn thy

    E (

    j=1

    Aj) =

    j=1

    (E\

    j1i=1

    Ai) Aj

    ,

    (v nu c mt j vi x E Aj th ly j l ch s nh nht nh vy ta c

    x E\Ai vi mi i = 1, . . . , j 1).

    Vy theo tnh cht di cng tnh (iii) ca :

    (E) (E (

    j=1

    Aj)) + (E\

    j=1

    Aj)

    j=1

    ((E\j1i=1

    Ai) Aj) + (E\

    j=1

    Aj)

    (E) (theo 1.2.2),

    suy ra

    j=1

    Aj L, chng t L l -i s.

    Cho Ai L, i = 1, 2, . . . l cc tp ri nhau. Ly E =

    j=1

    Aj. Khi E\

    j=1

    Aj =

    v (E\j1i=1

    Ai) Aj = Aj .

    Ta c (

    j=1

    Aj)

    j=1

    (Aj ) theo (1.2.2),

    M theo iu kin (iii) ca o ngoi ta c (

    j=1

    Aj)

    j=1

    (Aj).

    Vy (

    j=1

    Aj) =

    j=1

    (Aj) hay trn L l mt o.

    Nh vy nu xy dng mt o ngoi trn R tha mn mn nh l

    Caratheodory th ta c mt o trn R. Ta xy dng o ngoi nh sau.

    10

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    16/60

    Chng 1. Tch phn Lebesgue

    Cho hm : R [0, +]

    (A) = inf{+i=1

    |i| :+i=1

    i A, i l gian, i = 1, 2, . . .},

    khi l mt o ngoi trn R.

    Tht vy, hin nhin (A) 0 vi mi A R, () = 0.

    Vi > 0 bt k, vi mi i = 1, 2, . . . ta ly mt h khong m k,i , k = 1, 2, . . .

    sao chok,i

    k,i Ai v

    k

    |k,i| (Ai) + 2i

    . V A k,i

    k,i ta c

    (A)k,i |

    k,i| i (

    (Ai) +

    2i) =

    i

    (Ai) + .

    Do > 0 ty nn (A)

    i=1

    (Ai). Vy l o ngoi trn R.

    1.2.2 o Lebesgue

    nh ngha 1.2.7. [1]Cho hm : R [0, +]

    (A) = inf{+i=1

    |i| :+i=1

    i A, i l gian, i = 1, 2, 3, . . .},

    c gi l o ngoi Lebesgue trnR.

    Hm tp l mt o ngoi trn R nh vy ta c th p dng nh l

    Caratheodory xy dng mt o trn R, chnh l o Lebesgue.

    nh ngha 1.2.8. Hm : L [0, ] trong L l lp tt c cc tp con A

    caR sao cho

    (E) = (E A) + (E\A) vi mi E R,

    l o Lebesgue trnR, k hiu l v A c gi l tp o c Lebesgue.

    Theo nh l Caratheodory th lp cc tp o c Lebesgue L l mt -i s.

    11

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    17/60

    Chng 1. Tch phn Lebesgue

    nh ngha 1.2.9. Tp A R c gi l tp o c Lebesgue trongR nuA

    thuc -i s Lebesgue.

    Vy tp khng o c Lebesgue s nh th no? Ta ly v d sau y t tiliu [4]

    V d 1.2.1. Vi mi tp Ax = {y [0, 1] : x y = r, r Q} chn mt im.

    Tp tt c cc im ny gi l P th P l mt tp khng o c.

    nh ngha 1.2.10. [1] Tp N bt k c gi l tp c o 0 nu(N) = 0,

    tc l sao cho

    inf{

    k=1

    |k| :

    k=1

    k N, k l gian} = 0. (1.2.3)

    nh l 1.2.2. [1] Mt tp N c o 0 khi v ch khi vi mi > 0 c th tm

    c mt h (hu hn hay m c) giank ph N v c di tng cng nh

    hn

    +

    k

    k N, +k=1

    |k| < .

    Chng minh. Tht vy, nu (N) = 0 th theo cng thc (1.2.3) vi > 0 cho

    trc c mt h khong m k ph N sao cho

    k=1

    |k| < .

    Ngc li, nu vi mi > 0 u c mt ph nh vy th

    inf{

    k=1|k| :

    k=1

    k N, k l gian} = 0.

    Vy N l tp c o 0.

    V d 1.2.2.

    1. Tp N = 1, 2, . . . , n l tp c o 0.

    2. Tp cc s hu t c o 0.

    3. Tp Cantor P trn [0, 1] xy dng theo cch di y c o 0.

    12

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    18/60

    Chng 1. Tch phn Lebesgue

    Xt tp hp [0, 1].

    Bc 1. Chia [0, 1] thnh ba khong bng nhau, b i khong gia G1 = (1

    3,

    2

    3).

    Bc 2. Chia ba mi on cn li l [0,1

    3

    ] v [2

    3

    , 1] b i khong gia ca chng.

    t G2 = (1

    9,

    2

    9) (7

    9,

    8

    9) . . . Gi Gn l hp ca 2n1 cc khong b i bc th

    n, G =

    k=1

    Gk l hp ca tt c cc khong b i, P = [0, 1]\G.

    Ta c (Gn) = 2n1.(1

    3)

    n

    =1

    2.(

    2

    3)n.

    Khi (G) =

    n=1 (Gn) =1

    2

    n=1(

    23)

    n = 1.

    M [0, 1] = ([0, 1]\G) G = P G nn ([0, 1]) = (P) + (G).Vy (P) = ([0, 1]) (G) = 1 1 = 0.

    Ta thy tp c o 0 c th c lc lng l hu hn, m c hay khng

    m c. Tp Cantor l mt tp c bit. Lc lng ca tp Cantor trn R l

    khng m c nhng o ca n vn bng 0.

    nh l 1.2.3. [1] o Lebesgue l o .Chng minh. Gi s(A) = 0 ta cn chng minh mi tp con ca A u o c

    v c o bng 0.

    Gi N l tp con ca A th 0 (N) (A). M (A) = 0 th (N) = 0. Li

    c E = (E N) (E\N) nn (E) (E N) + (E\N) vi mi E R.

    Do (E

    N)

    N nn (E

    N)

    (N) = 0 v (E)

    (E

    \N).

    Mt khc (E\N) E nn (E\N) (E). Do (E) = (E\N), tc l

    (E) = (E N) + (E\N).

    Vy N l tp o c Lebesgue v (N) = (N) = 0.

    nh l 1.2.4. Mi tp Borel u o c Lebesgue.

    Chng minh. Trc ht ta i chng minh mi khong m u o c Lebesgue.

    Ly mt khong m bt k. Xt mt tp E R ty v mt h gian k

    13

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    19/60

    Chng 1. Tch phn Lebesgue

    ph E. R rng vi mi k th k = k l gian v k\ =k,i

    k,i l hp

    cc gian.

    Cho nn k

    k = (k

    k)(k

    k,i) v k |

    k

    |=

    k |

    k

    |+

    k,i |

    k,i

    |.

    Do

    (E) = inf{

    k

    |k|}

    = inf{

    k

    |k| +

    k,i

    |k,i|}

    inf

    {k |

    k

    |}+ inf

    {k,i |

    k,i

    |},

    Suy ra (E) (E ) + (E\), E R, hay o c Lebesgue.

    Do l khong m bt k nn mi khong m u o c Lebesgue. M mi

    tp m trong R l mt hp m c nhng khong m, nn -i s nh nht

    bao hm lp cc khong m cng l -i s nh nht bao hm lp cc tp m,

    tc l -i s Borel. M -i sL

    l -i s bao hm lp cc khong. Vy

    -i s L cha -i s Borel, hay tp Borel o c Lebesgue.

    nh l 1.2.5. Mi tp o c Lebesgue l mt tp Borel thm hay bt mt

    tp c o 0.

    Chng minh. B l tp Borel v N l tp c o 0 th B, N L nn vi tp

    A = B\N v A = B N cng o c Lebesgue.Ngc li gi sA L. Ta i chng minh tn ti tp Borel B sao cho (B) = (A).

    V A L nn c th tm c cho mi k = 1, 2, ..., nhng khong m Pik sao cho

    A

    i=1

    Pik v

    i=1

    (Pik) (A) + 1/k = (A) + 1/k.

    t B =

    k=1

    i=1

    Pij ta thy B A v B thuc i s Borel.

    14

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    20/60

    Chng 1. Tch phn Lebesgue

    Mt khc vi mi k, B

    i=1

    Pij nn

    (B)

    i=1

    (Pik) (A) + 1/k.

    Do (B) (A) m B A nn (B) = (A).

    t N = B\A ta c (N) = (B\A) = 0.

    V A L nn R\A L. Tn ti hai tp B l tp Borel v N l tp c o 0

    sao cho R\A = B\N. Suy ra A = (R\B) N, hay A = B N vi B = R\B

    l tp Borel.

    Vy mi tp o c Lebesgue chng qua l mt tp Borel thm hay bt mt

    tp c o 0.

    nh l 1.2.6. i vi mt tp A trnR ba iu kin sau l tng ng:

    i) A o c Lebesgue.

    ii) Vi mi > 0 c th tm c tp m G A sao cho (G\A) < .

    iii) Vi mi > 0 c th tm c mt tp ng F A sao cho

    (A\F) < .Chng minh. (i) (ii). Trc ht ta xt trng hp (A) < . T nh ngha

    o ngoi, vi > 0 cho trc c th tm c mt h khong m k ph

    A sao cho

    k

    |k| < (A) + . ng nhin G l tp m bao hm A v c

    (G) k

    |k| < (A) + . T (G\A) = (G) (A), suy ra (G\A) < .

    Trong trng hp tng qut, A =

    n=1 A [n, n] v mi tp An = A [n, n] c

    (An) < , nn theo trn c nhng tp m Gn An vi (Gn\An) < 1/2n. Khi

    y tp G =

    n=1

    Gn m, bao hm A v tha mn

    (G\A)

    n=1

    (Gn\An) 0 c th tm

    c mt tp m G (R\A) sao cho (G\(R\A)) < . D nhin vi F l phn

    b ca G th F A v (A\F) = (G\(R\A)) < . T suy ra (i) (iii).

    1.3 Hm o c Lebesgue

    1.3.1 Hm o c Lebesgue

    nh ngha 1.3.1. Hm s f : A [, +] c gi l o c trn A vi

    A l mt tp o c Lebesgue nu

    a R, E1 = {x A : f(x) < a} L. (1.3.4)

    nh l 1.3.1. iu kin (1.3.4) trong nh ngha tng ng vi cc ng

    thc sau:

    a R, E2 = {x A | f(x) > a} L. (1.3.5)

    a R, E3 = {x A | f(x) a} L. (1.3.6)

    a

    R, E4 =

    {x

    A

    |f(x)

    a

    } L. (1.3.7)

    Chng minh. (1.3.4) (1.3.7) v E2 v E4 b nhau nn E4 L v L kn i vi

    php ly phn b.

    Tng t (1.3.5) (1.3.6) v E2, E3 b nhau.

    (1.3.4) (1.3.6). Tht vy f(x) a khi v ch khi vi mi n c f(x) < a + 1n

    .

    Nn vi mi n {x A : f(x) a} =+

    n=1{x A : f(x) < a +1

    n} L,

    v {x A : f(x) < a + 1n} L.

    16

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    22/60

    Chng 1. Tch phn Lebesgue

    Ngc li (1.3.6) (1.3.4). Tht vy f(x) < a khi v ch khi mi n c f(x) a 1n

    .

    Nn {x A : f(x) < a} =+n=1

    {x A : f(x) a 1n} L, (v {x A : f(x)

    a

    1

    n} L).

    1.3.2 Cc php ton v hm s o c

    Mnh 1.3.1. Cho A l tp o c Lebesgue.

    i) Nu f(x) o c trn A th vi mi > 0 hm s |f(x)| cng o c.

    ii) Nu f(x), g(x) o c trn A v hu hn th cc hm s

    f(x) g(x), f(x).g(x),max{f(x), g(x)},min{f(x), g(x)}

    cng o c, v nu g(x) khng trit tiu th hm s 1/g(x) cng o c.

    Chng minh. i) Nu f(x) o c th vi mi a > 0

    {x A : |f(x)| < a} = {x A : |f(x)| < a 1}

    = {x A : a 1 < f(x) < a 1}

    = {x A : f(x) < a 1} {x A : f(x) > a 1} L,

    v mi tp {x A : f(x) < a 1} v {x A : f(x) > a 1} u thuc L.

    Nu a

    0 th{

    x

    A :

    |f(x)

    | < a

    }=

    L. Vy

    |f(x)

    | o c.

    ii) Cho a l mt s thc bt k, r1, r2, r3, . . . , rn, . . . l dy cc s hu t. Khi

    f(x) + g(x) < a f(x) < a g(x).

    Do tp hu t tr mt trong tp s thc nn tn ti s hu t rn sao cho

    f(x) < rn < a g(x). Nh vy

    {x A : f(x) g(x) < a} =

    n{x A : f(x) < rn < a g(x)}

    =

    n=1

    {x A : f(x) < rn} {x A : g(x) < a rn} L,17

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    23/60

    Chng 1. Tch phn Lebesgue

    v mi tp {x A : f(x) < rn}, {x A : g(x) < a rn} u thuc L.

    Vy f(x) + g(x) l o c. Tng t ta c f(x) g(x) l o c.

    Ta c cc h thc sau

    f(x).g(x) =1

    4[(f(x) + g(x))2 (f(x) g(x))2],

    max{f(x), g(x)} = 12

    (f(x) + g(x) + |f(x) g(x)|),

    min{f(x), g(x)} = 12

    (f(x) + g(x) |f(x) g(x)|).

    Vy cc hm s f(x).g(x),max{

    f(x), g(x)

    },min

    {f(x), g(x)

    }cng o c.

    nh l 1.3.2. Cho A l mt tp o c Lebesgue, fn : A R, n = 1, 2, 3 . . . l

    nhng hm o c v hu hn trn A th cc hm

    supn

    fn(x), infn

    fn(x), limn

    fn(x), limn

    fn(x)

    cng o c trn A, v nu hm s limn

    fn(x) tn ti th n cng o c.

    Chng minh. Chn s thc a bt k c

    {x A : supn

    fn(x) a} =

    n=1

    {x A : fn(x) a} L,

    {x A : infn

    fn(x) a} =

    n=1

    {x A : fn(x) a} L.

    Suy ra cc hm s supn

    fn(x), infn

    fn(x) o c.

    Do ta c

    limn

    fn(x) = infn

    {supk

    fn+k(x)},

    limn

    fn(x) = supn

    {infk

    fn+k(x)},

    cng o c.

    Nu dy fn(x) hi t th limn fn(x) = limn fn(x). Vy limn fn(x) o c.

    18

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    24/60

    Chng 1. Tch phn Lebesgue

    1.3.3 Cu trc hm o c

    nh ngha 1.3.2. Cho A l mt tp bt k trong khng gianR, ta gi hm

    c trng ca A l hm sXA(x) xc nh nh sau

    XA(x) =

    0 nu x / A ,

    1 nu x A .

    nh ngha 1.3.3. Cho A l tp o c Lebesgue, hm f : A R c gi l

    hm n gin nu n hu hn, o c v ch ly mt s hu hn gi tr. Gi

    f1, f2, . . . , f n l cc gi tr khc nhau ca f(x) v Ai = {x : f(x) = fi} th tp Aio c, ri nhau v ta c

    f(x) =

    ni=1

    fiXAi(x).

    nh l 1.3.3. Mi hm f(x) o c trn tp o c A l gii hn ca mt

    dy hm n gin fn(x),f(x) = lim

    nfn(x).

    Nu f(x) 0 vi mi x A th c th chn cc fn cho

    fn(x) 0, fn+1(x) fn(x),

    vi mi n v mi x

    A.

    Chng minh. t f(x) = 0 vi mi x / A ta c th coi nhf(x) xc nh v o

    c trn ton R.

    Nu f(x) 0. t

    fn(x) =

    n nu f(x) n,

    i 12n

    nu i 12n

    f(x) < i2n

    (i = 1, 2, . . . , n .2n).

    19

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    25/60

    Chng 1. Tch phn Lebesgue

    R rng fn(x) l hm n gin v fn(x) 0, fn+1(x) fn(x).

    Ta cn chng minh f(x) = limn

    fn(x).

    Nu f(x) 0 limn+

    ({x A : |fn(x) f(x)| }) = 0.

    Ni cch khc > 0, > 0 tn ti n0 N sao cho

    n N : n > n0 th ({x A : |fn(x) f(x)| }) < .

    nh l 1.3.5.

    i) Nu f(x), g(x) o c v f(x), g(x) bng nhau h.k.n trn A, fn f trn A

    th fn g trn A.

    ii) Nu fn f trn A v fn g trn A th f(x), g(x) bng nhau h.k.n trn A.

    Chng minh. i) V f(x), g(x) bng nhau h.k.n trn A nn tn ti mt tp

    B = {x A : f(x) = g(x)} c o (B) = 0 (v f(x), g(x) o c nn B L).

    Vi mi > 0 ta c:

    An = {x A : |fn(x) g(x)| }

    = {x A\B : |fn(x) f(x)| } {x B : |fn(x) g(x)| }

    {x A\B : |fn(x) g(x)| } B.

    M {x A\B : |fn(x) g(x)| } = {x A\B : |fn(x) f(x)| },

    nn An {x A : |fn(x) f(x)| } B. Suy ra

    (An) ({x A : |fn(x) f(x)| }) + (B)

    = ({x A : |fn(x) f(x)| }) 0 khi n ,

    22

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    28/60

    Chng 1. Tch phn Lebesgue

    v fn f trn A. Do lim

    n(An) = 0. Vy fn

    g trn A.

    ii) t A0 = {x A : |f(x) g(x)| > 0} = {x A : f(x) = g(x)},

    A =

    {x

    A :

    |f(x)

    g(x)

    |

    }, > 0,

    Ak = {x A : |f(x) g(x)| 1k}, k N,

    Bn = {x A : |fn(x) f(x)| 2}, n N,

    Cn = {x A : |fn(x) g(x)| 2}, n N.

    Cc tp hp ny u o c v fn(x), f(x), g(x) u o c trn A.

    Ta cn chng minh (A0) = 0.Trc ht ta chng minh

    A0 =

    k=1

    Ak (1.3.8)

    Ly x0 A0, ta c x A v |f(x) g(x)| > 0.

    Theo tnh tr mt ca tp s thc s tn ti s t nhin k0 sao cho

    |f(x) g(x)| 1k0

    > 0,

    suy ra x Ak0. Do x

    k=1

    Ak

    Ngc li ly x

    k=1

    Ak th tn ti s t nhin k0 sao cho x0 A.

    Suy ra x A v |f(x) g(x)| 1k0

    nn |f(x) g(x)| > 0, do x A0.

    Vy ng thc (1.3.8) c chng minh. Khi ta c

    (A0)

    k=1(Ak) (1.3.9)

    By gi ta chng minh

    A Bn Cn, n N, > 0 (1.3.10)

    hay A\A A\(Bn Cn) = (A\Bn) (A\Cn). Tht vy, ly x (A\Bn) (A\Cn)

    23

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    29/60

    Chng 1. Tch phn Lebesgue

    Ta c x A v |fn(x) f(x)| < 2

    , |fn(x) g(x)| < 2

    . Suy ra

    |f(x) g(x)| = |f(x) fn(x) + fn(x) g(x)|

    |fn(x) f(x)| + |fn(x) g(x)| < .

    Do x A\A. Vy (1.3.10) c chng minh.

    Khi

    (A) (Bn) + (Cn). (1.3.11)

    M limn

    (Bn) = 0, limn

    (Cn) = 0.

    V fn f, fn g trn A, nn ly gii hn hai v ca (1.3.11) ta c (A) = 0,

    vi mi > 0.

    Suy ra (Ak) = 0, khi =1

    k> 0, vi mi k N.

    T (1.3.9) ta c (A0) = 0.

    1.3.6 Mi lin h gia hi tnh l 1.3.6. (Egorov) Cho mt dy hm{fn} o c, hu hn h.k.n, trn

    mt tp o c A c o (A) < +. Vi mi > 0 tn ti mt tp o c

    B A sao cho (A\B) < v dy hm{fn} hi t u trn tp B.

    Trc ht ta chng minh b sau

    B 1.3.1. Cho , > 0 th c mt tp ng B l con ca A v mt s thc

    K sao cho (A\B) < v |f(x) fk(x)| < vi mi x F v k > K.

    Chng minh. C nh , > 0. Cho m bt k, t Am = {x A : |f(x)

    fk(x)| < vi mi k > m}. Nh vy Am =

    k>m{x A : |f(x) fk(x)| < }

    v Am l o c.

    R rng Am Am+1. Ngoi ra fk(x) hi t h.k.n n hm s f(x) trn A v f(x)

    24

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    30/60

    Chng 1. Tch phn Lebesgue

    l hu hn nn Am tng n A\Z vi (Z) = 0. Do (Am) (A\Z) = (A).

    T(A) < ta thy rng (A\Am) 0.

    Chn m0 sao cho (A\

    Am0) 0 p dng b 1.3.1 chn tp ng

    Bm A, m 1 v s thc Km, sao cho (A\Bm) < 12m

    v |f(x) fk(x)| < 1m

    trong Bm nu k > Km,. B =m

    Bm l tp ng v B Bm vi mi m nn fk(x)

    hi t u ti f(x) trn B.

    Suy ra A\B = A\m

    Bm =m

    (A\Bm). Vy (A\B)

    (A\Bm) < .

    nh l 1.3.7. Nu mt dy hm{fn} o c trn mt tp A hi t h.k.n ti

    mt hm s f(x) th f(x) o c v nu (A) < th fn f.

    Chng minh. {fn(x)} hi t h.k.n ti f(x) trn A nn tn ti B = {x A :

    fn(x) f(x)}, (B) = 0 v mi tp con ca B cng o c v c o 0 (v

    l o ). Do f(x) o c trn B.

    Mt khc fn(x) f(x) vi mi x A\B nn theo nh l 1.3.2 f(x) o c

    trn A\B.

    Vy f(x) o c trn B (A\B) = A.

    Chn > 0 ty . Vi mi n tn ti i sao cho |fn+i(x) f(x)| suy ra x B,

    cho nn n=1

    i=1

    {x A : |fn+i(x) f(x)| } B,

    do

    n=1

    i=1

    {x A : |fn+i(x) f(x)| }

    = 0.

    t En =

    i=1{x A : |fn+i(x) f(x)| }, ta c

    E1 E2 . . . En . . .

    25

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    31/60

    Chng 1. Tch phn Lebesgue

    v E1 A nn (E1) (A) < nn (

    n=i

    En) = limn

    (En),

    do (

    i=1

    {x A : |fn+i(x) f(x)| }) (En) 0.

    Vy fn

    f.

    nh l 1.3.8. Nu dy hm s o c fn(x) hi t theo o ti f(x), th c

    mt dy con fnk(x) hi t h.k.n ti f(x).

    Chng minh. Chn dy gk 0 v dy tk > 0 sao cho

    k=1 tk < . Vi mi k

    tn ti mt s t nhin n(k) sao cho vi mi n n(k)

    ({x : |fn(x) f(x)| gk}) < tk.

    t n1 = n(1), n2 = max{n1 + 1, n(2)},... ta s c n1 < n2 < . . . v dy ny hi t

    ti +. Vi mi k ta c

    ({x : |fnk(x) f(x)| gk}) < tk.

    Xt tp B =

    i=1

    Qi vi Qi =

    k=1{x : |fnk(x)f(x)| gk}. Vi mi i ta c B Qicho nn

    (B) (Qi)

    k=i

    ({x : |fnk(x) f(x)| gk}) n0 th x [0, 1 1n

    ] suy ra fn(x) = x = f(x)

    Do fn(x) hi t im n f(x) trn [0, 1)

    sup[0,1)

    |fn(x)

    f(x)

    |= 1 +

    1

    n

    1 khi n

    .

    fn(x) khng hi t u. Vy fn(x) hi t theo o nhng khng hi t u.

    27

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    33/60

    Chng 1. Tch phn Lebesgue

    Ta xt v d v mt hm hi t h.k.n nhng c o l v cng th s khng

    hi t theo o.

    V d 1.3.3. Chof

    n xc nh trnR

    fn(x) =

    1 khi x [n, n + 1],

    0 ti cc im khc,

    v hm f(x) = 0.

    Ly x R. Chn n0 = [x]+1 th vi mi n > n0 tc l n > [x]+1 > x th fn(x) = 0.

    Nn limn fn(x) = 0 hay fn(x) hi t h.k.n n f(x) = 0 trn R v (R) = Chn =

    1

    2th

    |fn(x) 0| 12

    khi x [n, n + 1].

    Do Bn = {x R : |fn(x) 0| 12} = [n, n + 1].

    (Bn) = 1 1 khi n , hay fn(x) khng hi t theo o n f(x) = 0.

    Vyf

    n(x)

    hi t h.k.n trnR

    nhngf

    n(x)

    khng hi t theo o.

    1.4 Tch phn Lebesgue

    1.4.1 Tch phn ca hm n gin

    nh ngha 1.4.1. Cho A l tp o c, f : A [, +] l hm n gin,

    o c trn A. Gi f1, f2, . . . f n l cc gi tr khc nhau i mt ca f(x).

    t Ak = {x A : f(x) = fk}, k = 1, ...n.

    A =

    nk=1

    Ak v f(x) =n

    k=1

    fkXAk , x A.

    Khi tch phn ca hm n gin f(x) trn A vi o l s

    A

    f(x)d =

    n

    k=1

    fk(Ak).

    28

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    34/60

    Chng 1. Tch phn Lebesgue

    V d 1.4.1. Cho hm s f : [0, 1] R

    f(x) =

    1 khi x [0, 1] Q,

    0 khi x [0, 1]\Q.

    Khi

    [0,1]

    f(x)d = 1. ([0, 1] R) + 0. ([0, 1]\Q) = 1.0 + 0.1 = 0.

    1.4.2 Tch phn ca hm khng m

    Cho A l tp o c Lebesgue, hm f : A [0, +] l hm o c. Khi

    tn ti dy n iu tng cc hm n gin o c fn(x) 0 hi t h.k.n v

    f(x) trn A.

    nh ngha 1.4.2. Tch phn ca hm f(x) trn A i vi o o l

    A

    f(x)d = limn+

    (

    A

    fn(x)d).

    1.4.3 Tch phn ca hm c du bt k

    nh ngha 1.4.3. Cho A l tp o c Lebesgue, hm f : A R l hm o

    c trn A. Khi ta c

    f(x) = f+(x) f(x) vi f+(x), f(x) 0.

    Cc hm sf+(x), f(x) c tch phn tng ng trn A lA

    f+(x)d,A

    f(x)d.

    Nu hiuA

    f+(x)d A

    f(x)d c ngha th tch phn ca hm o c f(x)

    trn A vi o l

    A

    f(x)d =

    A

    f+(x)d A

    f(x)d.

    29

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    35/60

    Chng 1. Tch phn Lebesgue

    1.4.4 Cc tnh cht s cp

    1. Cng tnh

    Nu A B = th

    ABf(x)d =

    A

    f(x)d +B

    f(x)d.

    Chng minh. Nu f(x) l hm n gin trn A B.

    Tn ti f1, f2, . . . f n l cc gi tr khc nhau i mt ca f(x).

    t Ek = {x A B : f(x) = fk}, k = 1, . . . n th thn

    k=1

    Ek = A B.

    Ta c f(x) =n

    k=1 fkXEk(x), Ek = (A B) Ek = (A Ek) (B Ek).

    V A B = nn A Ek, B Ek ri nhau. Do AB

    f(x)d =

    nk=1

    fk(x)(Ek)

    =

    nk=1

    fk(x)(A Ek) +n

    k=1

    fk(x)(B Ek)

    =

    A

    f(x)d +

    B

    f(x)d.

    Nu f(x) > 0 trn tp A B, fn(x) l dy hm n gin khng m v hi

    t ti f(x) ti mi im x A B.

    Theo chng minh trn

    AB

    fn(x)d =

    A

    fn(x)d +

    B

    fn(x)d.

    Suy ra limn

    AB

    fn(x)d = limn

    A

    fn(x)d + limn

    B

    fn(x)d.

    Hay

    ABf(x)d =

    A

    f(x)d +B

    f(x)d.

    Nu f(x) c du bt k.

    Ta t f(x) = f+(x) f(x)

    AB

    f(x)d = AB

    f+(x)d

    ABf(x)d.

    30

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    36/60

    Chng 1. Tch phn Lebesgue

    Theo chng minh trn th

    AB

    f+(x)d =

    A

    f+(x)d +

    B

    f+(x)d. (1.4.12)

    AB

    f(x)d =

    A

    f(x)d +

    B

    f(x)d. (1.4.13)

    Ly (1.4.12)-(1.4.13) ta c

    AB

    f(x)d =

    A

    f+(x)d

    A

    f(x)d +

    B

    f+(x)d

    B

    f(x)d

    =

    A

    f(x)d +

    B

    f(x)d.

    2. Bo ton th t

    Nu f(x), g(x) bng nhau h.k.n trn A th

    Af(x)d =

    A

    g(x)d.

    3. Tuyn tnh

    i)

    Ac f(x)d = c

    Af(x)d (c l hng s).

    ii) f(x) + g(x) xc nh h.k.n trn A th

    A

    f(x) + g(x)

    d =

    A

    f(x)d +

    A

    g(x)d.

    4. Kh tch

    i) Nu

    A f(x)d c ngha th

    A f(x)d A |f(x)|d.

    ii)f(x) kh tch khi v ch khi |f(x)| kh tch.

    iii) Nu |f(x)| g h.k.n trn A v g(x) kh tch th f(x) cng kh tch.

    iv) Nu f(x), g(x) kh tch th f(x) g(x) cng kh tch. Nu f(x) kh tch,

    g(x) b chn th f(x).g(x) cng kh tch.

    31

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    37/60

    Chng 1. Tch phn Lebesgue

    Chng minh. i)Ta c

    |

    A

    f(x)d| = |

    A

    f+(x)d

    A

    f(x)d|

    A

    f+(x)d +

    A

    f(x)d

    =

    A

    (f+(x) + f(x))d =

    A

    |f(x)|d.

    ii)Nu |f(x)| kh tch th A

    |f(x)|d < + suy ra | A

    f(x)d| < + hay

    f(x) kh tch.

    Nu f(x) kh tch, A

    f+(x)d A f

    d < +

    nn A

    f+(x)d < +

    ,

    Af(x)d < +.

    Vy

    A|f(x)|d =

    A

    f+(x) + f(x)

    d < + hay |f(x)| kh tch.

    iii) V |f(x)| g(x) h.k.n trn A, g(x) kh tch nn

    A

    |f(x)|d

    A

    g(x)d < +.

    Do |f(x)| kh tch nn theo chng minh trn f(x) kh tch.iv) Nu f(x), g(x) kh tch th

    A

    f(x)d,

    Ag(x)d hu hn.

    A

    (f(x) + g(x)) d =

    Af(x)d +

    A

    g(x)d hu hn hay f(x) + g(x) kh tch.

    Tng t ta c f(x) g(x) kh tch.

    Nu f(x) kh tch, g(x) b chn. Gi s |g(x)| m.

    Ta c|f(x).g(x)

    | m.

    |f(x)

    |nn

    A

    |f(x).g(x)|d A

    (m.|f(x)|)d = m. A

    f(x)d.

    Mt khc f(x) kh tch nn |f(x)| cng kh tch (chng minh trn).

    Do A

    |f(x)|d < suy ra A

    |f(x)g(x)|d < hay |f(x)g(x)| kh tch. Vy

    f(x)g(x) cng kh tch.

    32

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    38/60

    Chng 1. Tch phn Lebesgue

    1.4.5 Qua gii hn di du tch phn

    nh l 1.4.1. (hi t n iu Beppo Levi) Nu fn(x) 0 v fn(x) n iu

    tng n f(x) trn A th

    limn

    A

    fn(x)d =

    A

    f(x)d.

    Chng minh. Nu fn(x) l hm n gin th y chnh l nh ngha tch phn

    ca hm n gin.

    Nu hm fn(x) bt k v o c. Vi mi n c mt dy hm n gin, khng

    m g(n)m (x) fn(x). V fn+1(x) > fn(x) nn c th coi g(n+1)m (x) g(n)m (x).

    Vy vi k n ta c

    g(k)n (x) g(n)n (x) fn(x),

    A

    g(k)n (x)d

    A

    g(n)n (x)d

    A

    fn(x)d,

    cho n ta c fk(x) limn

    g(n)n (x) f(x) v

    A

    fk(x)d

    A

    limn

    g(n)n (x)d lim

    n

    A

    fn(x)d.

    Cho k ta c f(x) limn

    g(n)n (x) f(x) v

    limk

    A

    fk(x)d

    A

    limn

    g(n)n (x)d lim

    n

    A

    fn(x)d.

    Nh vy limn

    g(n)n (x) = f(x), lim

    nA

    fn(x)d = A

    f(x)d.

    Ch rng c th thay iu kin fn(x) 0 bi iu kin f1(x) kh tch.

    nh l 1.4.2. (nh l Dini) Nu fn(x) l dy hm lin tc, n iu, hi t

    im n mt hm f(x) lin tc trnR th fn(x) hi t u ti f(x).

    Chng minh. Gi sfn(x) l dy hm n iu gim.

    Cho mi n N, t gn(x) = fn(x)f(x) th gn(x) l hm lin tc v limn

    gn(x) = 0.

    33

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    39/60

    Chng 1. Tch phn Lebesgue

    Hn na gn(x) > gn+1(x) > 0. Gi Mn = sup gn(x) : x R. Ta cn chng minh

    limn

    Mn = 0. Ly > 0, gi On = {xn : g1n (x) < }. V gn(x) l hm lin tc nn

    tp On l tp m. T gn(x) > gn+1n (x) c On

    On+1.

    Vi mi x R, limn

    gn(x) = 0 s c n N vi gn(x) < th x On. Vy

    n=1

    = R.

    Ta c R l compact nn h tp m On ph R s cha mt h ca On hu hn

    vn ph R. TOn On+1 nn s c mt tp hu hn ln nht ph R. Vy tn

    ti s N N sao cho ON = R. Do gN(x) < vi mi x R. Vy MN . T

    Mn gim vi mi n N nn vi mi Mn 0 ta s c limn

    Mn = 0. Nh vy nu

    fn(x) hi t u n f(x) trn tp A o c th limn

    A fn(x)d =

    A f(x)d.

    V d 1.4.2. Cho fn(x) =x + 2

    xn + 1vi x [0, 1].

    Ta c fn(x) 0 vi x [0, 1] v fn(x) tng n hm f(x) = x + 2 trn [0, 1] nn

    limn

    [0,1]

    fnd =

    [0,1]

    (x + 2)d.

    nh l 1.4.3. (B Fatou) Nu fn(x) 0 trn A th

    A

    limn

    fn(x)d limn

    A

    fn(x)d.

    Chng minh. t gn(x) = inf{fn(x), fn+1(x), . . .}.

    Ta c gn(x) 0 v gn(x) limn

    fn(x), cho nn theo nh l 1.4.1 c

    limn

    A

    gn(x)d =

    A

    limn

    fn(x)d.

    Nhng gn(x) fn(x) nnA

    gn(x)d A

    fn(x)d v limn

    A

    gn(x)d limn

    A

    fn(x)d.

    Do A

    limn

    fn(x)d limn

    A

    fn(x)d.

    nh l 1.4.4. (hi t chn Lebesgue) Nu |fn(x)| g(x), g(x) kh tch v

    fn(x) f(x) (h.k.n hay theo o) trn A th

    A

    fn(x)d A

    f(x)d.

    34

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    40/60

    Chng 1. Tch phn Lebesgue

    Chng minh. Trng hp fn(x) f(x) h.k.n trn A.

    Ta c g(x) fn(x) g(x) v g(x) kh tch. Theo b Fatou cho cc hm

    g(x)

    fn(x)

    0 v fn(x) + g(x)

    0 ta c

    A

    limn

    fn(x)d limn

    A

    fn(x)d,

    A

    limn

    fn(x)d limn

    A

    fn(x)d.

    Nhng fn(x) f(x) h.k.n trn A nn limn

    fn(x) = limn

    fn(x) = f(x), nn

    A

    f(x)d limn

    A

    fn(x)d limn

    A

    fn(x)d

    A

    f(x)d,

    suy ra limn

    A fn(x)d =

    A f(x)d.

    Trng hp fn f theo o. Theo nh ngha gii hn trn ta c mt dy nksao cho

    A

    fnk(x)d limn

    A

    fn(x)d.

    Mt khc do fn(x) f(x) theo o nn c th trch ra mt dy con nki hi t

    h.k.n n f(x) (theo nh l 1.3.8) hay fnki (x) f(x) h.k.n.Do

    limn

    Afn(x)d = limk

    A

    fnk(x)d = limi

    Afnki (x)d =

    A

    f(x)d.

    Tng t ta c

    limn

    A

    fn(x)d =

    A

    f(x)d,

    cho nn limn

    A

    fn(x)d =

    Af(x)d.

    Nh hc, chuyn gii hn qua du tch phn th iu kin cn l dy hm

    {fn} hi t u n f(x) trn mt on [a, b]. y l mt iu kin ngt ngho.

    Trong khi iu kin hi t n iu v hi t chn th rng ri hn.

    V d 1.4.3. Cho hm fn : [0, 1] R, fn(x) =

    nxenx2

    .

    Vi mi x [0, 1] ta c f(x) = limn

    nxenx

    2

    = 0.

    sup

    [0,1]

    |fn(x) f(x)| = sup[0,1]

    nxenx

    2

    = (2e)1 0 khi n .

    Nh vy fn(x) khng hi t u n f(x) trn [0, 1]. Mt khc10

    f(x)dx = 0.

    35

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    41/60

    Chng 1. Tch phn Lebesgue

    limn

    10

    fn(x)dx = limn

    10

    nxenx

    2

    = limn

    1

    2(

    1 enn

    ) = 0.

    Do limn

    10

    fn(x)dx =10

    f(x)dx.

    L do c du = xy ra l v 0

    fn(x)

    g(x) = (2e)1 x

    [0, 1], g(x) l mt

    hm kh tch v fn(x) f(x) trn [0, 1] nn fn(x), f(x) tha mn iu kin ca

    nh l hi t chn. Nh vy ta c th chuyn gii hn qua du tch phn.

    1.4.6 Mi lin h gia tch phn Lebesgue v Rie mann

    nh l 1.4.5. Cho f : [a, b] R

    Nu f kh tch Riemann trn [a, b] th kh tch Lebesgue trn [a, b] v

    [a,b]

    f(x)d =

    ba

    f(x)dx

    Chng minh. Nu f(x) kh tch Riemann trn on [a, b] th f(x) b chn v lin

    tc h.k.n trn [a, b].

    Xt dy phn hoch Dn ca on [a, b] vi||

    Dn||

    0. Gi Sn l tng Darboux

    di ng vi phn hoch Dn.

    Gi i l phn hoch th i ca phn hoch Dn trn [a, b].

    Sn =

    ni=1

    ti|i| ti = infxi

    f(x).

    t fn(x) =n

    i=1tiXi(x). Ta c f(x) lin tc h.k.n trn [a, b], vi n ln th

    ||Dn|| 0 v do i s nh Vi > 0 bt k, |f(x) fn(x)| = |f(x) ti| < . Suy ra fn(x) f(x) h.k.n trn

    [a, b]. Do theo nh l v hi t chn ta c

    Sn =

    [a,b]

    fn(x)d [a,b]

    f(x)d.

    Mt khc Sn

    b

    af(x)dx.

    Vy[a,b]

    f(x)d =b

    af(x)dx.

    36

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    42/60

    Chng 1. Tch phn Lebesgue

    Tuy nhin mt hm kh tch Lebesgue th khng kt lun c s kh tch

    Riemann. Ta c v d 1.4.1 v hm Dirichlet kh tch Lebesgue trn [0, 1] nhng

    khng kh tch Riemann trn .

    V d 1.4.4. Cho hm s D : [0, 1] R

    D(x) =

    1 khi x [0, 1] Q,

    0 khi x [0, 1]\Q.

    Chng minh. Ta s i chng minh hm Dirichlet khng kh tch Riemann.

    Tht vy, vi mi phn hoch T ca on [0, 1], gi i l phn hoch th i ca

    T. Nu ly l im c ta l nhng s hu t th D(T, ) =n

    i=1

    D(i)|i| = 1

    cn nu ly

    l im c ta l nhng s v t th D(T,

    ) = 0 nn hm

    Dirichlet khng kh tch Riemann.

    37

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    43/60

    Chng 2

    Khng gian Lp

    2.1 Khng gian Lp

    Cho khng gian R, E l tp o c Lebesgue v mt o .

    nh ngha 2.1.1. [1] H cc hm s f(x) c ly tha bc p (1 p < ) ca

    modun kh tch trn E, tc l sao choE

    |f(x)|pd < ,

    gi l khng gian Lp(E).

    Hm s f(x) o c trn E gi l b chn ct yu nu tn ti mt tp hp

    P c o 0, sao cho f(x) b chn trn tp hp E\

    P, tc l tn ti s K sao cho

    |f(x)| K vi mi x E\P.

    Cn di ng ca tp hp cc s K tha mn bt ng thc trn gi l cn

    trn ng ct yu ca hm f(x), c k hiu l ess supE

    |f(x)|.

    nh ngha 2.1.2. [2] H tt c cc hm f(x) b chn ct yu trn E c gi

    l khng gian L(E).

    38

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    44/60

    Chng 2. Khng gian Lp

    Mnh 2.1.1. [2] Nu hm f(x) L(E) th

    |f(x)| ess supE

    |f(x)| h.k.n trn E.

    Chng minh. Gi s{Kn} l mt dy s thc n iu gim n K = ess supE

    |f(x)|.

    Khi , tp hp

    Pn = {x E : |f(x)| > Kn},

    c o 0 vi mi n. Hin nhin tp hp P =

    n=1

    Pn c o 0 v

    |f(x)| K vi mi x E\P.

    Vy |f(x)| ess supE

    |f(x)| h.k.n trn E.

    nh l 2.1.1. [1] (Bt ng thc Holder) Nu f(x), g(x) o c, xc nh trn

    mt tp o c E v p, q l hai s thc sao cho 1 < p < v 1p

    +1

    q= 1 th

    E

    |f(x) g(x)|d E

    |f(x)|pd1p

    E|g(x)|qd

    1q

    .

    Cch chng minh da vo b sau

    B 2.1.1. Nu a,b khng m v p, q l hai s thc sao cho 1 < p < v1

    p+

    1

    q= 1 th ta c

    ab

    ap

    p

    +bq

    q

    .

    Chng minh. Xt f(t) =t

    p+

    1

    q t1/p (t 0).

    Ta thy f(1) = 0 v f

    (t) =1

    p 1

    p t1/(p1) dng vi t > 1, m vi t < 1, chng

    t rng f(t) t cc tiu ti t = 1.

    Do vi mi t 0 ta c tp

    +1

    q t1/p 0. Vi t = apbq 0 ta c

    apbq

    p

    +1

    q abp/q

    0 hay

    ap

    p

    +bq

    q ab

    0.

    39

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    45/60

    Chng 2. Khng gian Lp

    Chng minh. ( Chng minh bt ng thc Holder)

    NuE

    |f(x)|d, E

    |g(x)|d hu hn v dng. p dng bt ng thc va chng

    minh vi

    a =|f(x)|

    E|f(x)|pd 1p , b =

    |g(x)|E

    |g(x)|qd 1q .Ta c

    |f(x).g(x)|E

    |f(x)|pd 1p E

    |g(x)|qd 1q |f(x)|p

    p

    E|f(x)|pd +

    |g(x)|qq

    E|g(x)|qd .

    Ly tch hai v

    E

    |f(x)g(x)|dE

    |f(x)|pd 1p

    E|g(x)|qd

    1q

    E|f(x)|pd

    p

    E|f(x)|pd

    +

    E|g(x)|qd

    q

    E|g(x)|qd

    =1

    p+

    1

    q= 1.

    NuE

    |f(x)|d hoc E

    |g(x)|d bng v cng th bt ng thc ng.

    Nu E |

    f(x)|d hoc

    E |g(x)

    |d bng 0, chng hn

    E |f(x)

    |d = 0 th f(x) = 0

    h.k.n trn E nn f(x)g(x) = 0 h.k.n trn E. Do bt ng thc ng.

    nh l 2.1.2. [1](Bt ng thc Minkowski) Nuf(x), g(x) l hai hm o c

    trn E v 1 p < th

    E

    |f(x) + g(x)|pd 1

    p

    E

    |f(x)|pd 1

    p

    +

    E

    |g(x)|pd 1

    p

    .

    Chng minh. Vi p=1, bt ng thc ng.

    Xt vi 1 < p < . Chn q sao cho 1p

    +1

    q= 1.

    40

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    46/60

    Chng 2. Khng gian Lp

    p dng bt ng thc Holder ta c

    E

    |f(x) + g(x)|pd

    E

    |f(x)| + |g(x)|

    .|f(x) + g(x)|p1d

    =

    E

    |f(x)|.|f(x) + g(x)|p1d +

    E

    |g(x)|.|f(x) + g(x)|p1d

    E

    |f(x)|pd 1

    p

    E

    |f(x) + g(x)|(p1)qd 1

    q

    +

    E

    |g(x)|pd 1

    p

    E

    |f(x) + g(x)|(p1)qd 1

    q

    =

    E

    |f(x)|pd 1

    p

    +

    E

    |g(x)|pd 1

    p

    E

    |f(x) + g(x)|pd 1

    q

    .

    T

    E

    |f(x) + g(x)|pd1 1

    q

    E

    |f(x)|pd 1

    p

    +

    E

    |g(x)|pd 1

    p

    .

    v 1 1q

    =1

    pnn

    E

    |f(x) + g(x)|pd 1p E

    |f(x)|pd 1p + E

    |g(x)|pd 1p .

    nh l 2.1.3. Tp hp Lp

    (E), trong khng phn bit cc hm bng nhauh.k.n l mt khng gian vector nh chun, vi cc php ton thng thng v

    cng hm s, nhn hm s vi s, v vi chun

    ||f||p =

    E

    |f(x)|pd 1

    p

    khi 1 p < ,

    ||f|| = ess supE

    |f(x)| khi p = .

    Chng minh. Vi 1 p < .

    Gi sf(x), g(x) Lp(E). Ta c |f(x) + g(x)| 2max{|f(x)|, |g(x)|}

    suy ra |f(x) + g(x)|p 2p(max{|f(x)|, |g(x)|})p 2p|f(x)|p + |g(x)|p.Do |f(x)|p, |g(x)|p kh tch th |f(x) + g(x)|p cng kh tch, hay

    f(x) + g(x)

    Lp(E) (2.1.1)

    41

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    47/60

    Chng 2. Khng gian Lp

    Mt khc, nu f(x) Lp(E), l s thc bt k th |f(x)|p = ||p.|f(x)|p kh

    tch, nn

    f(x)

    Lp(E) (2.1.2)

    T (2.1.1) v (2.1.2) suy ra Lp(E) l khng gian vector.

    Ta li c||f||p > 0 khi f(x) = 0 v ||f||p = 0 khi f(x) = 0 h.k.n v khng phn bit

    hai hm bng nhau h.k.n nn tha mn tin 1 v chun.

    ||.f||p =

    E

    |f(x)|pd 1

    p

    = ||

    E

    |f(x)|pd 1

    p

    = ||.||f||p,

    tha mn iu kin thun nht ca chun.

    p dng bt ng thc Minkowski ta c bt ng thc tam gic

    ||f + g||p =

    E

    |f(x) + g(x)|pd 1

    p

    E

    |f(x)|pd 1

    p

    +

    E

    |g(x)|pd 1

    p

    = ||f||p + ||g||p.

    Vi p = +.Gi sf(x) L(E).Ta c ||f|| > 0 nu f(x) = 0 v ||f|| = 0 nu f(x) = 0 h.k.n trn E nn tha

    mn tin 1 v chun.

    Ta i chng minh iu kin thun nht ca chun. Vi l s thc bt k ta

    cn chng minh

    ||.f

    || =

    |

    |.

    ||f

    ||. (2.1.3)

    Nu = 0 th iu kin (2.1.3) lun ng.

    Nu = 0. Gi s phn chng ||.f|| < M < ||.||f||. Ta c

    ||.|f(x)| = |.f(x)| ess supE

    |.f(x)| < M.

    Do .f(x) L(E) v ||.||f|| < M. Nh vy th ||.||f|| < M < ||.||f||.

    iu ny v l. Chng minh mt cch tng t ta cng c ||.||f|| < M < ||.f||

    42

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    48/60

    Chng 2. Khng gian Lp

    l iu v l hay ||.f|| = ||.||f||.

    Cui cng ta i chng minh iu kin v bt ng thc tam gic.

    Tht vy, gi sf(x), g(x)

    L(E).

    |f(x)+g(x)| |f(x)|+|g(x)| ess supE

    |f(x)|+ess supE

    |g(x)| nn f(x)+g(x) L(E).

    V ess supE

    |f(x)+g(x)| ess supE

    |f(x)|+ess supE

    |g(x)| hay ||f+g|| ||f||+ ||g||.

    nh l 2.1.4. Lp(E) l khng gian vector nh chun .

    Chng minh. Cho fn(x) l dy c bn trong Lp

    (E), tc l ||fn fm||p 0. Nhvy lun tm c n1 ln cho ||fn fm||p < 1/2 vi mi n, m n1. Tip

    tc tm c n2 > n1 sao cho ||fn fm||p < 1/22 vi mi n, m n2. Do ta c

    th chn c mt dy n1 < n2 < .. . < nk < . . . cho vi mi k ta c

    n, m nk ||fn fm||p < 1/2k.

    Nh vy ||fnk+1 fnk ||p < 1/2k. p dng b Fatou (1.4.3) cho dy hm khng

    m gs(x) = |fn1(x)| +s

    k=1 |fnk+1(x) fnk(x)| Lp(E).

    Vi mi x c nh gs(x) khng gim theo s nn tn ti limn

    gs(x).

    Do E

    lims

    (gs(x))pd lim

    s

    E

    (gs(x))pd = lim

    s(||gs||p)p.

    Mt khc

    ||gs||p ||fn1||p +s

    k=1

    ||fnk+1 fnk ||p

    < ||fn1||p +s

    k=1

    (1/2k) < ||fn1||p + 1.

    nn lims

    (||gs||p)p < . Do

    Elim

    s(gs(x))

    p d < .

    iu ny chng t lims

    |gs(x)|p < h.k.n, hay tn ti lims

    gs(x) v hu hn

    h.k.n trn E.

    43

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    49/60

    Chng 2. Khng gian Lp

    Suy ra fn1(x) +

    k=1

    fnk+1(x) fnk(x)

    hi t tuyt i h.k.n.

    Nh vy khi s s tn ti gii hn hu hn h.k.n ca hm

    fns+1(x) = fn1(x) +

    sk=1

    fnk+1(x) fnk(x) .

    Ta gi gii hn ny l f0(x), fns+1 f0(x) h.k.n. V |fns+1(x)| lims

    gs(x) Lp(E).

    Theo nh l hi t chn c

    E

    |f0(x)|pd = lims

    E

    |fns+1(x)|pd,

    tc l f0(x) Lp(E). p dng b Fatou ta c

    ||f0 fnk ||p =

    E

    lims

    |fns+1(x) fnk(x)|pd

    limn

    E

    |fns+1(x) fnk(x)|pd = lims

    ||fns+1 fnk ||p

    = lims

    ||s

    t=k

    fnt+1 fnk ||p lims

    st=k

    ||fnt+1 fnk ||p

    lims

    st=k

    12t

    =

    t=k

    12t

    .

    Suy ra limk

    ||f0 fnk ||p = 0. Cui cng v {fn} l dy c bn nn vi n, nk

    ln ta s c ||fnk fn||p < . Khi ta chn k ln va c nk n0 v

    ||f0 fnk ||p < th s c vi mi n n0

    ||f0

    fn||p ||

    f0

    fnk ||

    +||

    fnk

    fn||

    + ,

    chng t dy fn(x) hi t ti f0(x).

    H qu 2.1.1. Nu mt dy{fn} hi t trong Lp(E) th n cha mt dy con

    {fnk} hi t h.k.n trn E.

    Tht vy, nu

    {fn

    }hi t th n l dy c bn nn theo nh l 2.1.4 c th

    trch ra mt dy con {fnk} hi t h.k.n.

    44

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    50/60

    Chng 2. Khng gian Lp

    nh l 2.1.5. Nu 1 p < p < v (E) < th Lp

    (E) Lp(E).

    Chng minh. p dng bt ng thc Holder ta c

    ||f.g||1 ||f||p.||g||q vi 1 p < , 1p

    +1

    q= 1.

    Ta ly g(x) = 1, thay f(x) bi |f(x)|p, thay p, q bi p/p,p/(p p) ta c

    || |f| ||1 || |f|p || pp

    .(E)p

    p

    p .

    Do (E) 0, t B = {x : |fn(x) f(x)| }, ta cE

    |fn(x) f(x)|pd

    B

    |fn(x) f(x)|pd

    B

    pd = p.(B),

    iu ny chng t rng (B) 0 khi n , nu fn(x) Lp

    f(x).

    45

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    51/60

    Chng 2. Khng gian Lp

    Mi quan h gia hi t

    Hi t hu khp ni (A) < Hi t theo o

    Hi t trung bnh

    ( ch ra rng c th trch ra mt dy con hi t).

    Mt hm hi t trung bnh th hi t theo o nhng iu ngc li khng ng.

    V d 2.1.3. Xt dy hm fn(x) trn on [0, 1] c xc nh nh sau

    fn(x) =

    n nu x 0,

    1

    n

    0 nu x

    1

    n, 1

    .

    v hm f(x) = 0.

    Ta c

    ({x [0, 1] : |fn(x) f(x)| }) = ([0, 1n

    ]) =1

    n 0 khi n .

    Do fn(x) f(x).Tuy nhin,

    [0,1]

    |fn(x) f(x)|d = n.

    0,1

    n

    = 1 0 khi n nn fn(x)

    khng hi t trung bnh n f(x) trn [0, 1].

    V d sau cho thy mt hm hi t h.k.n nhng khng hi t trung bnh.

    V d 2.1.4. Cho hm fn(x) xc nh trn [0, 1]

    fn(x) =n

    1 + n2x2,

    v hm f(x)=0.

    Ta c limn

    fn(x) = limn

    n

    1 + n2x2= lim

    n

    11

    n+ nx2

    = 0. Do fn(x) hi t

    h.k.n n f(x) = 0 trn [0, 1]. Tuy nhin

    limn

    10

    fn(x)dx = limn

    10

    n1 + n2x2

    dx.

    46

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    52/60

    Chng 2. Khng gian Lp

    t u = nx ta c

    limn

    n0

    1

    1 + u2du = lim

    n(arctan u)|n0 = lim

    narctan n =

    2.

    Vy fn(x) khng hi t trung bnh v f(x) = 0.

    2.2 Tnh tch c ca Lp

    nh l 2.2.1. Mi h hm sau y l tr mt trong Lp(E), 1 p < .

    1. Cc hm n gin.

    2. Cc hm lin tc.

    Chng minh. H cc hm gi l tr mt trong Lp(E) nu vi mi f(x) Lp(E)

    v mi > 0, u tn ti mt hm g(x) thuc h sao cho ||f g||p < .

    a) Xt mt hm bt k f(x)

    Lp(E).

    Ta c f(x) = f+(x) + f(x), vi f+(x), f(x) 0.

    Tn ti mt dy hm n gin khng m f+n (x) f+(x).

    V

    f+(x) f+n (x)p 0 nn

    E

    (f+(x) f+n (x))pd

    E

    0d = 0,

    ngha l ||f+ f+n ||p 0.Vy vi n ln ta s c mt hm n gin fn (x) vi ||f fn ||p 0 tn ti mt tp m G A v mt tp ng F A sao cho (G\A) < p

    2,

    (A\F) < p

    2, tc l (G\F) < p. Ta ly

    g(x) =(x,R

    \G)

    (x,R\G) + (x, F) .

    Trong (x, M) = infyM

    ||x y|| ch khong cch t x n M. R rng x R\G

    th (x,R\G) = 0 nn g(x) = 0. Vi x F th (x,R\G) = 0, (x, F) = 0 nn

    g(x) = 1. Hm (x,R\G), (x, F) u lin tc v c tng khc 0 nn g(x) cng

    lin tc. Hiu XA(x) g(x) c gi tr gm 0 v 1 trn tp G\F v bng 0 ngoi

    tp . Cho nn

    ||XA g||p =

    E

    XA(x) g(x)pd 1

    p

    (G\F) 1p < .Do mi hm c dng XA(x) vi A o c u c th xp x ty bi

    mt hm lin tc. Suy ra h cc hm lin tc tr mt trong h cc hm n

    gin, v mi hm n gin c dng

    vi=1 iXAi(x) ch vic chn hm lin tc

    gi(x) sao cho ||XAi gi||p < v|i| , th s c hm lin tc g(x) =

    igi(x) vi

    ||iXAi g||p v1 i||XAi g||p < .Mt khc mt h M tr mt trong Lp(E) v mt h N tr mt trong M th h

    N cng tr mt trong Lp(E). Vy h cc hm lin tc tr mt trong Lp(E).

    nh l 2.2.2. Khng gian Lp(R), 1 p < tch c (ngha l cha mt tp

    con m c tr mt trong n).

    Chng minh. Ly f(x) Lp(R). Gi fn0 : R R xc nh

    fn0(x) =

    f(x) khi |x| < n0,

    0 khi |x| n0.

    th fn0(x) f(x) Lp(R) khi n .

    Nh vy tn ti s n0 sao cho ||f fn0 ||p 3 v tn ti hm lin tc

    48

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    54/60

    Chng 2. Khng gian Lp

    gn0 : [n0, n0] R sao chon0n0

    |fn0(x) gn0(x)|pdx 1

    p

    0 sao cho |z| < 1 th

    |ez 1| < 2 2||f||1 ,

    nn vi |x| < R0 v |( 0)| < 1R0

    th

    |x| 0 sao cho

    |

    0

    |< th

    |Ff() Ff(0)| < 12

    2

    2+

    2

    2

    = .

    Vy Ff L(R) C(R).

    2.3.2 Bin i Fourier trong Lp

    Ta xy dng bin i Fourier trong Lp(R) nh sau. t

    X[R,R](x)f(x) =

    0 nu |x| > R

    f(x) cn li .

    Ta c |X[R,R](x)f(x) f(x)| 0 khi R nn |X[R,R](x)f(x) f(x)|p 0 khi

    R

    .

    M |X[R,R](x)f(x) f(x)|p |f(x)|p, |f(x)|p Lp(R).

    Theo nh l v hi t chn ta c

    R

    |X[R,R](x)f(x) f(x)|pd 0 khi R .

    Do X[R,R](x)f(x) Lp(R) l dy Cauchy hi t n f(x) trong Lp(R).

    Ta cn chng minh {F(X[R,R]f)} hi t trong Lq(R) vi 1 p 2, 1p + 1q = 1.

    52

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    58/60

    Chng 2. Khng gian Lp

    Theo bt ng thc Hausdorff-Young ta c

    Vi g(x) L1(R) Lp(R), 1 p 2, 1p

    +1

    q= 1 th Fg Lp(R) v

    ||Fg||q C||g||p.

    Nh vy vi g(x) = X[R,R](x)f(x) ta c {F(X[R,R]f)} l dy Cauchy v hi t

    n mt hm Ff trong Lq(R) vi 1 p 2, 1p

    +1

    q= 1.

    Nhng vi 2 < p < vic xy dng nh th ny khng cn ng. Ngi ta phi

    xy dng bin i Fourier theo cch khc. V d sau cho thy vi 2 < p < bt

    ng thc Hausdorff-Young nh trn khng cn ng.

    V d 2.3.1. [3] Chn dy fk(x) = e(1ik)x2

    , k = 1, 2 . . .. Bin i Fourier ca

    f(x) l

    Ff() = (2)12

    R

    eixe(1ik)x2

    d.

    Bin i ny tha mn bi ton Cauchy

    2(1 ik)dFfkd

    () Ffk() = 0,

    vi iu kin ban u lFfk(0) =1

    2(1 ik)nnFfk() =

    12(1 ik)

    e (1+ik)

    2

    4(1+k2) .

    Khi chun trong Lp(R) l

    ||fk||p = 1/2p

    p1/2p

    Cn chun trong Lq(R) l

    ||Ffk||q = 21q 12 (1 + k2)

    12q

    14

    12p

    q12q

    .

    V 2 < p < nn 1 q < 2 nn ||Ffk||q khi k .

    53

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    59/60

    Kt lun

    Kha lun trnh by hai ni dung chnh l:

    Xy dng tch phn Lebesgue t o Lebesgue, hm o c Lebesgue,tch phn Lebesgue, chuyn gii hn qua du ly tch phn.

    Khng gian Lp, 1 p , tnh cht y v tch c, php bin i

    Fourier trong Lp, 1 p 2.

    Tuy nhin do thi gian lm kha lun cn hn ch khng th trnh c nhng

    nhm ln, sai st nn em mong nhn c s gp ca thy c v bn c.

    54

  • 7/30/2019 Tm hiu tch phan LEBESGUE v khng gian Lp

    60/60

    Ti liu tham kho

    Ting Vit

    [1] Hong Ty (2005), Hm thc v gii tch hm, Nh xut bn i hc Quc

    gia H Ni.

    [2] Nguyn Xun Lim (2007), Gii tch hm, Nh xut bn Gio dc.

    Ting Anh

    [3] Elliott H. Lieb and Michael Loss (2001), Analysis (second edition), American

    Mathematical, Society.

    [4] Frank Burk (1998), Lebesgue Measure and Integral An Introduction, John

    Wiley & Sons, Inc.

    [5] Richard L. Wheeden and Antoni Zygmund (1977), Measure and Integral an

    Introduction to Real Analysis, Marcel Dekker, Inc. New York.

    Ting Php

    [6] H. Brezis (1983), Analyse Fonctionnelle, Masson.