Thiet Ke Mixer

26
LÍ THUYẾT MIXER: Mixer là một thiết bị chuyển đổi tần số, cho phép chuyển đổi tín hiệu giữa các tần số khác nhau. Trong các hệ thống thông tin, tại phía thu, nhờ mixer như trong hình 1, tần số RF được chuyển xuống tần số IF thấp hơn cho phép tăng tính chọn lọc (bộ lọc) và thiết kế các bộ khuếch đại dễ dàng hơn. Hình 1 – Vai trò của mixer ở máy phát và máy thu Đặc tính phi tuyến của một thiết bị mixer là cơ sở để thực hiện chức năng trộn tần. Những thiết bị này bao gồm FET, diode và các BJT. Mixer thường được dùng để nhân các tín hiệu ở các tần số khác nhau để thực hiện chuyển đổi tần số. Lí do thực hiện chuyển đổi tần số là do nếu thực hiện lọc trực tiếp với tần số trung tâm ở tần số cao tần thì sẽ đòi hỏi các bộ lọc có hệ số phẩm chất rất cao và rất khó thực hiện trong thực tế. Điều này sẽ được giải quyết nếu tần số sóng mang RF được đổi tần xuống trong một hệ thống thông tin. Một hệ thống thường gặp đó là các máy thu đổi tần (máy thu hetorodyne) được minh họa như trong hình 2:

Transcript of Thiet Ke Mixer

Page 1: Thiet Ke Mixer

LÍ THUYẾT MIXER:

Mixer là một thiết bị chuyển đổi tần số, cho phép chuyển đổi tín hiệu giữa các tần số khác

nhau. Trong các hệ thống thông tin, tại phía thu, nhờ mixer như trong hình 1, tần số RF được

chuyển xuống tần số IF thấp hơn cho phép tăng tính chọn lọc (bộ lọc) và thiết kế các bộ khuếch

đại dễ dàng hơn.

Hình 1 – Vai trò của mixer ở máy phát và máy thu

Đặc tính phi tuyến của một thiết bị mixer là cơ sở để thực hiện chức năng trộn tần. Những

thiết bị này bao gồm FET, diode và các BJT.

Mixer thường được dùng để nhân các tín hiệu ở các tần số khác nhau để thực hiện chuyển

đổi tần số. Lí do thực hiện chuyển đổi tần số là do nếu thực hiện lọc trực tiếp với tần số trung

tâm ở tần số cao tần thì sẽ đòi hỏi các bộ lọc có hệ số phẩm chất rất cao và rất khó thực hiện

trong thực tế. Điều này sẽ được giải quyết nếu tần số sóng mang RF được đổi tần xuống trong

một hệ thống thông tin. Một hệ thống thường gặp đó là các máy thu đổi tần (máy thu

hetorodyne) được minh họa như trong hình 2:

Hình 2 – Hệ thống máy thu đổi tần

Tín hiệu RF sau khi được đưa qua khuếch đại tạp âm thấp, đưa vào mixer như là thành

phần tín hiệu đầu vào, nó sẽ được nhân với tín hiệu có tần số f LO từ bộ tạo dao động nội. Tín

hiệu thu được sau mixer chứa các thành phần tần số fRFfLO sau khi qua lọc thông thấp được

thành phần fRF – fLO được gọi là thành phần tần số trung tần (IF).

Page 2: Thiet Ke Mixer

Hai thành phần chính cấu tạo nên mixer là bộ kết hợp và bộ phát hiện. Bộ kết hợp sử dụng

các bộ ghép nối định hướng 900 hoặc 180 0. Bộ phát hiện thường sử dụng một diode như một

thiết bị phi tuyến. Tuy nhiên, những cấu hình gồm hai hoặc bốn diode cũng có thể được sử

dụng. Bên cạnh diode, các phần tử phi tuyến khác như BJT, FET với hệ số tạp âm thấp và độ

khuếch đại chuyển đổi cao cũng được sử dụng.

Nguyên lí hoạt động cơ bản của Mixer

Để thực hiện chức năng nhân tần số, phải sử dụng các thiết bị phi tuyến. Hình 3 miêu tả

cách thức chuyển đổi tần số của một mixer với đầu vào là tín hiệu RFF VRF (t) và tín hiệu từ bộ

dao động nội VLO (t) được xem như tín hiệu bơm.

Hình 3 - Sơ đồ mixer, hai thành phần tần số đầu vào tạo các tần số mới ở đầu ra

Cả diode và BJT đều có đặc tính truyền đạt là phi tuyến dạng mũ, biểu diễn như sau:

Điện áp đầu vào được biểu diễn như tổng của tín hiệu RF và tín hiệu

LO và một điện áp phân cực VQ:

Điện áp này đưa vào một thiết bị phi tuyến nên đặc tính dòng đầu ra có thể biểu diễn qua

chuỗi Taylor khai triển quanh điểm hoạt động Q:

Bỏ qua các thành phần phân cực VQ và IQ, thay biểu thức V vào I(V) thu được:

Có thể viết lại như sau:

Như vậy, có thể thấy rằng, đặc tính phi tuyến của diode hoặc transistor tạo các thành phần

tần số mới có dạng . Các biên độ cũng được khuếch đại lên với B là một hệ số phụ

thuộc vào thiết bị.

Page 3: Thiet Ke Mixer

Ở trên, chuỗi Taylor mới chỉ biểu diễn đến số hạng thứ 3, tức là sản phẩm xuyên nhiễu bậ

hai (V2B) các thành phần bậc cao hơn đã bị loại bỏ. Với diode hay BJT, các thành phần bậc cao

này ảnh hưởng rõ đến hiệu năng của mixer.

Xem xét trong miền tần số:

Giả thiết rằng tần số trung tâm RF có hai thành phần tần số khác cách một khoảng

. Thành phần LO chỉ có một thành phần tần số tại . Sau khi thực hiện trộn tần, biểu diễn phổ

gồm cả các thành phần được nâng tần và hạ tần như trong hình 4.

Thông thường, quá trình đổi tần lên xảy ra ở phía phát và quá trình hạ tần thực hiện ở phía

thu. Một số khái niệm thường được sử dụng như:

- Dải tần dưới (Lower sideband):

- Dải tàn trên (Upper sideband):

- Hai dải tần (DSB): ( , )

Hình 4-Các thành phần sau khi đổi tần lên và đổi tần xuống

Page 4: Thiet Ke Mixer

Một vấn đề phải xem xét đó là việc xuất hiện tần số ảnh trong cùng dải tần được đổi tần

xuống. Giả thiết một tín hiệu RF được đổi tần xuống với một tần số LO cho trước. Bên cạnh tín

hiệu mong muốn, chúng ta có một thành phần tần số đối xứng với thành phần RF qua tần số IF.

Thành phần RF được đổi tần như sau:

Tuy nhiên, thành phần tần số ảnh cũng được chuyển đổi như sau:

Do vậy, cả hai phổ tần đều bị dịch đến cùng một vị trí tần số. Để tránh hiện tượng này cần

có một bộ lọc loại tần số ảnh đặt trước mixer.

Hình 5 – Vấn đề tần số ảnh

Một số đặc tính quan trọng của Mixer

- Conversion loss: Tỉ số giữa mức tín hiệu đầu ra mong muốn so với mức tín hiệu đầu

vào (thường tính bằng dB) ứng với một mức công suất đầu vào LO.

- High-side injection: khi tần số LO cao hơn so với tần số RF.

- Low-side injection khi tần số LO thấp hơn so với tần số vào RF.

- Hệ số tạp âm (Noise Figure): Tỉ số cường độ tín hiệu trên nhiễu đầu vào chia đầu ra

đo tại 290K.

- Điểm nén 1dB: Đối với các mức tín hiệu đầu vào nhỏ, cường độ đầu ra tăng tuyến tính

theo cường độ tín hiệu đầu vào. Khi cường độ tín hiệu đầu vào tiếp tục tăng, conversion loss

của mixer sẽ bắt đầu tăng. Điểm nén 1dB là mức cường độ tín hiệu đầu vào mà ở đó

conversion loss được tăng lên 1dB. Mixer cần được dự trữ từ mức điểm nén 1dB này để bảo

đảm tránh nguy cơ xuất hiện thêm các thành phần đầu ra không mong muốn..

- Điểm chặn bậc 3 (Third Order Intercept Point). Đây là một tham số chất lượng để

đánh giá tính tuyến tính của mixer. Nó được đo bằng cách đưa hai thành phần thử (tone) gần

nhau tại các tần số F1 và F2 vào đầu vào mixer. Các sản phẩm xuyên nhiễu bậc 3 từ các tone này

Page 5: Thiet Ke Mixer

với thành phần tần số FLO tại các tần số (2F1F2)FLO và (2F2F1)FLO. Trong trường hợp

bộ đổi tần xuống, các sản phẩm xuyên nhiễu bậc ba đáng chú ý là (2F1-F2)- FLO và (2F2-F1)-

FLO do các thành phần này nằm gần với dải trung tần.

Hình 6 - Đo điểm chặn bậc 3

Bản chất của điểm chặn bậc 3 là một điểm tưởng tượng, tại đó các thành phần xuyên nhiễu bậc

3 trở nên đủ lớn so sánh với các sản phẩm đổi tần xuống mong muốn. Mức các thành phần bậc

3 tăng gấp 3 lần so với mức tăng của mức tín hiệu đầu vào và mức các thành phần cơ bản đầu

ra. Cường độ đầu ra tại điểm chặn bậc ba (TOIout) được tính toán như sau: (theo đơn vị dB)

- Tính tuyến tính: Tính tuyến tính của một mixer là khả năng kiểm soát mức tín hiệu của

nó. Một mixer có độ tuyến tính cao đồng nghĩa nó có TOI cao.

- Tần số ảnh: Với các mixer có FLO > FRF thành phần này là FLO + FIF, với các mixer

có FLO < FRF, thành phần này là FLO - FIF. Với các mixer đổi tần xuống, thành phần tần số

ảnh vào mixer sẽ được đổi tần xuống và trùng vào thành phần tần số IF. Với các mixer đổi tần

lên, thành phần này là một dải tần không mong muốn nếu không được lọc thích hợp thường ở

cùng mức năng lượng với tín hiệu mong muốn.

- Interport isolation (cách ly các cổng bên trong) là mức độ xuyên nhiễu giữa các cổng

LO, IF, RF của mixer. Giá trị này tính theo dB, là sự suy giảm tín hiệu của một cổng tại đầu vào

hoặc đầu ra cổng khác. Yếu tố quan trọng nhất của các cách ly này là sự suy giảm tín hiệu LO

tại các cổng IF và RF, xuyên nhiễu LO là khó khăn chính trong việc thiết kế bộ phát và thu của

hệ thống, và cách ly RF-LO ít được quan tâm bởi vì tín hiệu RF có các mức đầu vào thấp.

Thường thì cách ly LO-IF sẽ nằm trong dải từ 0 đến 50dB, phụ thuộc vào cấu trúc mạch và cơ

chế lọc ở các cổng.

Page 6: Thiet Ke Mixer

Thiết kế mixer một đầu ra (Single-ended Mixer)

Đây là loại mixer đơn giản nhất nhưng hiệu quả không cao. Một ví dụ được minh họa

trong hình 7

Hình 7-Hai loại mixer một đầu ra

Các nguồn tín hiệu RF và LO được đưa vào một diode được phân cực bằng một mạch cộng

hưởng được điều chỉnh đến tần số IF mong muốn.

Một số tham số quan trọng cần lưu ý trong quá trình thiết kế là:

- Tổn hao chuyển đổi (Conversion Loss) hoặc khuếch đại chuyển đổi giữa công

suất tín hiệu RF và IF.

- Hệ số tạp âm

- Cách li giữa các cổng LO và RF

- Tính phi tuyến

Do các tín hiệu LO và RF không được phân cách về điện, nên có khả năng tín hiệu LO có

thể gây nhiễu với sự thu nhận tín hiệu RF. Để đặc trưng cho điều này, người ta đưa ra khái niệm

Conversion loss (CL) của một mixer (được tính bằng dB) là tỉ số giữa công suất cung cấp đầu

vào chia cho công suất đầu ra IF nhận được:

Giá trị Conversion gain là nghịch đảo của giá trị CL.

Bên cạnh, hệ số tạp âm của một mixer thường được định nghĩa tổng quát như sau:

Pnout và Pn in là công suất tạp âm tại đầu ra do tín hiệu đầu vào RF (tại RF) và tổng công suất

tạp âm tại đầu ra (tại IF).

Page 7: Thiet Ke Mixer

Tính không tuyến tính thường được định lượng dựa vào sự nén chuyển đổi hoặc xuyên

nhiễu. Nén chuyển đổi liên quan đến công suất đầu ra IF chỉ tỉ lệ tuyến tính với công suất đầu

vào RF đến một điểm xác định nào đó rồi giảm dần. Điểm mà sự suy giảm đạt 1dB so với mức

tuyến tính là một tham số quan tâm của mixer. Xuyên nhiễu liên quan đến ảnh hưởng của thành

phần tần số thứ hai trong tín hiệu RF đầu vào. Để đánh giá ảnh hưởng này, hai tín hiệu thử

(tone) được sử dụng. Nếu fRF là tín hiệu mong muốn và f2 là thành phần tín hiệu thứ hai, quá

trình trộn tần tạo ra một thành phần tần số tại 2f2-fRF fLO trong đó dấu biểu diễn đổi tần lên

hoặc xuống. Ảnh hưởng của thành phần xuyên nhiễu này được biểu diễn trong cùng hình vẽ

biểu diễn nén chuyển đổi.

Hình 8 – Biểu diễn điểm nén 1dB và điểm chặn bậc 3

Điểm chặn (cắt) giữa đáp ứng đầu ra tuyến tính và đáp ứng thành phần xuyên nhiễu bậc 3

không mong muôn gọi là điểm chặn bậc ba là một tham số chất lượng chung, chỉ ra khả năng

của một mixer để triệt tiêu ảnh hưởng này.

Một số tham số khác cũng có thể được xem xét như sự cách li giữa các cửa RF và IF và dải

động (dải biên độ mà không có sự suy giảm về hiệu năng).

Việc thiết kế mixer theo cách này dựa trên sơ đồ tổng quát như hình 9. Các tín hiệu RF và

LO được cấp ở đầu vào của một transistor hoặc một diode được phân cực. Các kĩ thuật phối hợp

trở kháng ở đầu vào và đầu ra được thực hiện.

Page 8: Thiet Ke Mixer

Hình 9– Sơ đồ tổng quát thiết kế một mixer một đầu ra

Page 9: Thiet Ke Mixer

THIẾT KẾ BJT MIXER MỘT ĐẦU RA VỚI TẦN SỐ RF 1575.42 MHz:

Mô hình sử dụng là BJT Motorola MMBR941. Đây là BJT có hệ số tạp âm thấp, được sử

dụng ở dải tần rộng và tần số cao: có thể lên tới 3GHz.

Tính toán phân cực cho transistor:

VC và IC đã được xác định, chỉ cần tính toán dòng IB.

VCC = 1V, ICE = 500uA và IBB thay đổi từ 1uA đến 10uA.

VBE

VCE

¥

I_ProbeICC

I_DCbase_currentIdc=IBB

TermTerm2

Z=50 OhmNum=2

TermTerm1

Z=50 OhmNum=1

V_DCVCCVdc=1.0 V

DC_BlockDC_Block1

pb_mot_MMBR941_19961020Q1

DC_FeedDC_Feed2

DC_BlockDC_Block2

DC_FeedDC_Feed1

SIMULATIONS VARIABLES

VARVAR1IBB=0

EqnVar

DCDC1

Step=0.5 uAStop=10 uAStart=1 uASweepVar="IBB"

DC

Page 10: Thiet Ke Mixer

ICE , VBE-IBB, VCC=1V

IBB

1.000E-61.500E-62.000E-62.500E-63.000E-63.500E-64.000E-64.500E-65.000E-65.500E-66.000E-66.500E-67.000E-67.500E-68.000E-68.500E-69.000E-69.500E-61.000E-5

BiasPoint..ICC.i

102.7 uA154.5 uA206.3 uA257.9 uA309.4 uA360.8 uA412.2 uA463.4 uA514.6 uA565.7 uA616.8 uA667.8 uA718.8 uA769.6 uA820.5 uA871.3 uA922.0 uA972.7 uA1.023 mA

BiasPoint..VBE

665.5 mV676.2 mV683.8 mV689.6 mV694.4 mV698.5 mV702.0 mV705.1 mV707.9 mV710.4 mV712.7 mV714.8 mV716.7 mV718.6 mV720.3 mV721.9 mV723.4 mV724.8 mV726.2 mV

Rb

84529.63549209.42933115.91624143.23318520.55214716.28511998.5839976.6778424.2967202.0326219.6805416.5014750.2224190.5983715.4663308.2502956.3282649.9382381.418

Rc

2410.6381602.2221200.472960.191800.304686.232600.741534.280481.125437.642401.408370.749344.468321.690301.756284.165268.526254.531241.933

Eqn Rb= (0.75-VBE)/IBB

Eqn Rc=(0.25)/(ICC.i+IBB)

Kết quả: IBB = 5uA, ICC = 500 uA và Rb = 8424.296 Ohm, Rc = 481.125 Ohm chọn giá trị

gần nhất thì Rb = 8.4kOhm, Rc = 480 Ohm.

Kết quả ứng với các giá trị điện trở trên:

freq

0.0000 Hz

ICC.i

518.7 uA

VBE

708.3 mV

VCE

751.0 mV

Khảo sát đặc tính làm việc của transistor ở chế độ tín hiệu lớn

Vout

VCE

VCCVolts

P_1TonePORT1

Freq=1575.42 MHzP=dbmtow(PwrIn)Z=50 OhmNum=1

TermTerm2

Z=50 OhmNum=2

RRbR=8200 Ohm

RRcR=470 Ohm

V_DCVCCVdc=1.0 V

DC_BlockDC_Block2

DC_BlockDC_Block1

DC_FeedDC_Feed1

pb_mot_MMBR941_19961020Q1

Page 11: Thiet Ke Mixer

Có hai cách để khảo sát đặc tính phi tuyến của transistor

Cách thứ nhất sử dụng Harmonic Balance thực hiện tăng công suất tín hiệu đầu vào

(dBm) từ thấp (chế độ tín hiệu nhỏ) cho đến khi đạt đến trạng thái bão hòa để xác định

điểm nén 1dB. Công suất tín hiệu đầu ra được tính toán như sau: PwrOut =

dBm(HB.Vout[1]) với HB.Vout[1] là thành phần tần số cơ bản (1575.42 MHz). Độ

khuếch đại đầu ra được tính như sau: Gain=Compression.HB2.HB.PwrOut-

Compression.HB2.HB2.HB.PwrIn.

m1PwrIn=Gain=0.794

-45.000

m2PwrIn=Gain=-0.306

-20.000

-40 -35 -30 -25 -20-45 -15

-1.5

-1.0

-0.5

0.0

0.5

-2.0

1.0

PwrIn

Gain

Readout

m1

-20.000-0.306

m2

m1PwrIn=Gain=0.794

-45.000

m2PwrIn=Gain=-0.306

-20.000

m3PwrIn=linear=-19.209

-20.000

m4PwrIn=Compression..HB.PwrOut=-20.306

-20.000

-40 -35 -30 -25 -20-45 -15

-40

-35

-30

-25

-20

-15

-45

-10

PwrIn

linear

Readout

m3

Com

pre

ssio

n..H

B.P

wrO

ut

Readout

m4

PwrOut v.s PwrIn

m3PwrIn=linear=-19.209

-20.000

m4PwrIn=Compression..HB.PwrOut=-20.306

-20.000

Cách thứ 2 sử dụng khối mô phỏng Gain Compression trong ADS tính trực tiếp công

suất ra và công suất vào tương ứng (dBm) tại điểm nén 1dB.

Compression..inpwr[1]

-20.475

Compression..outpwr[1]

-20.678

Thực hiện phối hợp trở kháng:

Mục tiêu là mạng đầu vào sẽ được phối hợp với thiết bị có trở kháng 50 tại tần số RF và

biểu diễn ngắn mạch đối với tần số IF (để ngăn tạp âm từ đầu vào được khuếch đại và ảnh

hưởng đến tín hiệu IF ở đầu ra). Tương tự như vậy, mạng đầu ra phối hợp với trở kháng tải 50

tại tần số IF và biểu diễn ngăn mạch tại tần số RF. Sơ đồ được mô tả như trong hình sau:

Page 12: Thiet Ke Mixer

Để thực hiện phối hợp trở kháng trước hết tính toán các tham số S11 và S22 của mạch

mixer thô (chưa thực hiện phối hợp trở kháng).

Bước đầu tiên là tính toán trở kháng vào tại phía RF khi đầu ra được kết cuối ngắn mạch;

đồng thời cũng cần tính toán trở kháng ra tại phía IF khi đầu vào được kết cuối ngắn mạch. Ở

đây, sử dụng các phần tử của ADS ZIP_Eqn để thực hiện điều này. Tại đầu vào, ZIN được thiết

kế trở thành ngắn mạch tại tần số IF và hở mạch tại tần số RF. Điều này bảo đảm kết cuối ngắn

mạch đầu vào khi tính S22 và bảo đảm S11 không bị ảnh hưởng tại tần số RF. Tại đầu ra,

ZOUT được thiết kế trở thành ngắn mạch tại tần số RF và hở mạch tại tần số IF để tính toán

S11.

Ở đây, với thiết kế Single End BJT Mixer, tín hiệu RF và LO cùng được đưa vào cực B

của transistor; mặt khác tần số LO và tần số RF gần nhau nên để cách li tín hiệu LO khỏi thành

phần RF, ta sử dụng một tụ CLO có trị số nhỏ. (CLO= 0.2pF).

Tổn hao ngược tại tần số RF lúc này là : //tính lại ở tần số 1.575

Trong đó, với .

Tổn hao chèn khi có thêm tụ CLO là:

Điều này có nghĩa là nếu nguồn tại LO có công suất là -20dBm thì công suất thực đưa vào

transistor chỉ là -34.5dBm; lượng công suất tương đối lớn này ở LO dẫn đến việc phải điều

chỉnh công suất cung cấp bởi bộ tạo dao động nội.

Page 13: Thiet Ke Mixer

Mạch tính toán trở kháng đầu vào và đầu ra (chưa phối hợp)

Vce Vce

Vce

VceVce

Vout

Vbe

VARIABLES

SIMULATIONS

S_ParamSP1

Step=1527.68 MHzStop=1575.42 MHzStart=47.74 MHz

S-PARAMETERS

RRLR=4700 Ohm

DC_BlockBlkL1

DC_FeedFdIbe

DC_BlockDC_Block1

DC_BlockBlkL

TermTerm1

Z=50 OhmNum=1

Z1P_EqnZOUTZ[1,1]=ZrfZ1P_Eqn

ZINZ[1,1]=Zif

RLOsrcR=50 Ohm

CC_LOC=0.5 pF

TermTerm2

Z=50 OhmNum=2

V_DCVCCVdc=1.0 V

DC_FeedFdIce

RRcR=470 Ohm

RRbR=8.2 kOhm

pb_mot_MMBR941_19961020Q1

VARVAR8Zif=if freq<100MHz then 0.001 else 1e99 endifZrf=if freq>100MHz then 0.001 else 1e99 endif

EqnVar

Normalized input impedance to match at RF. Normalized output impedance to match at IF.

m1freq=RFIFmatch1..S(1,1)=0.662 / -131.438impedance = Z0 * (0.243 - j0.429)

1.575GHz

freq (47.74MHz to 1.575GHz)

RFIF

mat

ch1.

.S(1

,1)

Readout

m1

m1freq=RFIFmatch1..S(1,1)=0.662 / -131.438impedance = Z0 * (0.243 - j0.429)

1.575GHzm2freq=RFIFmatch1..S(2,2)=0.975 / -1.472impedance = Z0 * (38.912 - j40.208)

47.74MHz

freq (47.74MHz to 1.575GHz)

RFIF

mat

ch1.

.S(2

,2)

Readout

m2

m2freq=RFIFmatch1..S(2,2)=0.975 / -1.472impedance = Z0 * (38.912 - j40.208)

47.74MHz

Kết quả trở kháng đầu vào RF là (12.15-j21.45) và trở kháng đầu ra IF là (1945.6-

j2010.4)

- Phối hợp trở kháng ở đầu vào RF:

Crf=105 pF.

Lrf=2.83 nH.

Page 14: Thiet Ke Mixer

- Phối hợp trở kháng ở đầu ra IF:

Thực hiện tương tự như trên ta được:

CIF = 7.48pF

LIF = 1.35 uH= 1350 nH.

Page 15: Thiet Ke Mixer

Thay thế L song song bằng một mạch LC song song tương đương. Giá trị của tụ điện đủ

lớn để bảo đảm ngắn mạch với tín hiệu RF. Chọn L = 200 nH và C = 47 pF. Khi đó, trở kháng

tương đương của mạch LC bằng với trở kháng của LIF. Cuối cùng ta được sơ đồ như sau:

Vout

CCsIFC=7.84 pF

CCpIFC=47 pF

LLif

R=L=200 nH

LLrf

R=L=2.83 nH

CCrfC=105 pF

DC_BlockBlkL1

V_DCVCCVdc=1.0 V

RRcR=470 Ohm

P_1TonePORT1

Freq=Flo MHzP=dbmtow(LOPwr)Z=50 OhmNum=1

CC_LOC=0.5 pF

P_1TonePORT2

Freq=Frf MHzP=dbmtow(-50)Z=50 OhmNum=2

DC_BlockBlkL2

RRbR=8.2 kOhm

I_ProbeICC

RRLR=4700 Ohm

pb_mot_MMBR941_19961020Q1

TermTerm3

Z=50 OhmNum=3

Sơ đồ Mixer đã phối hợp trở kháng

CÁC KẾT QUẢ MÔ PHỎNG:

Phổ tần tín hiệu đầu ra của mixer:

Page 16: Thiet Ke Mixer

2 4 6 8 100 12

-150

-100

-50

-200

0

freq, GHz

IF_s

pect

rum

Readout

m1 m1freq=IF_spectrum=-38.817

47.74MHz

Conversion Gain:

Khi giữ cố định PRF = -50 dBm, với PLO=-10dBm, ta thu được G=11.104 dB.

Eqn ConvGain=P_IF+50

m1LOPwr=ConvGain=11.104

-10.000

-18 -16 -14 -12 -10 -8 -6-20 -4

4

6

8

10

12

2

14

LOPwr

Con

vGai

n

Readout

m1

m1LOPwr=ConvGain=11.104

-10.000

Điểm nén 1dB:

Page 17: Thiet Ke Mixer

Giữ cố định PLO = -10dBm, thay đổi giá trị PRF và tìm giá trị cường độ tín hiệu đầu vào mà

độ khuếch đại giảm 1dB. Ta được tại điểm nén 1dB, giá trị cường độ tín hiệu đầu vào khoảng

PRF -24 dBm.

Eqn Gain=HB.P_IF-HB1.HB1.HB.RFPwr

inpwr[1]

-24.632

outpwr[1]

-14.525

Eqn Line1=MixCompr.HB1.HB1.HB.RFPwr+Gain[1]

-45 -40 -35 -30 -25 -20 -15 -10 -5-50 0

-10

-5

0

5

10

-15

15

RFPwr

Gai

n

Readout

m1

-26.00010.395

m2

m1RFPwr=Gain=11.104

-50.000 m2RFPwr=Gain=9.922

-24.000

-45 -40 -35 -30 -25-50 -20

-30

-20

-10

0

-40

10

RFPwr

HB

.P_I

F

Readout

m1

Line

1

Readout

m2

m1RFPwr=HB.P_IF=-14.078

-24.000

m2RFPwr=Line1=-12.897

-24.000

Điểm chặn bậc 3 (Third order Intercept point)

Để xác định IIP3 và OIP3, ta thiết lập sơ đồ mô phỏng sau:

Page 18: Thiet Ke Mixer

Vin

Vout

Vbe

Vce Vce

Vce

P_nTonePORT3

P[2]=dbmtow(RFPwr)P[1]=dbmtow(RFPwr)Freq[2]=Frf-fspacing/2Freq[1]=Frf+fspacing/2Z=50 OhmNum=1

IP3outipo1

IP3input=IP3output-ConvGainConvGain=PifTone-RFPwrPifTone=dBm(mix(Vout,{-1,1,0}))IP3output=ip3_out(Vout,{-1,1,0},{-1,2,-1},50)

P0

Pin

IP3out

HarmonicBalanceHB1

UseKrylov=yesOrder[3]=3Order[2]=3Order[1]=7Freq[3]=Frf-fspacing/2Freq[2]=Frf+fspacing/2Freq[1]=FloMaxOrder=4

HARMONIC BALANCE

VARfspacing

Fif=Frf-FloFlo=1527.68 MHzFrf=1575.42 MHzRFPwr=-50fspacing=0.1 MHzLOPwr=-10

EqnVar

P_1TonePORT1

Freq=FloP=dbmtow(LOPwr)Z=50 OhmNum=2

TermTerm3

Z=50 OhmNum=3

CCsIFC=7.84 pF

DC_BlockBlkL2

RRbR=8.2 kOhm

CC_LOC=0.5 pF

I_ProbeICC

DC_BlockBlkL1

V_DCVCCVdc=1.0 V

RRcR=470 Ohm

pb_mot_MMBR941_19961020Q1

CCrfC=105 pF

LL1

R=L=2.83 nH

RRLR=4700 Ohm

LLif

R=L=200 nH

CCpIFC=47 pF

Trong đó, sử dụng hai tín hiệu (tones) ở đầu vào với các tần số lần lượt là f1=f RF + fspacing và

f2 = fRF – fspacing, với fspacing = 100 kHz.

Kết quả phổ thu được ở đầu ra:

1 2 3 4 5 6 7 8 9 100 11

-250

-200

-150

-100

-50

-300

0

freq, GHz

Spe

ctru

m

Readout

m1

m1freq=Spectrum=-38.927

47.79MHz

Có hai cách để xác định IIP3 và OIP3:

- Cách 1: Sử dụng trực tiếp khối có sẵn IP3out trong ADS, ta thu được kết quả như sau

(đơn vị dBm)

freq

<invalid>Hz

IP3output

-1.378

IP3input

-12.451

Page 19: Thiet Ke Mixer

- Cách 2: Dựa trên phổ đầu ra, ta xác định hai thành phần gần với tần số trung tần và áp

dụng công thức tinh OIP3, ta thu được kết quả như sau:

m1freq=Spectrum=-38.927

47.79MHzm2freq=Spectrum=-114.025

47.89MHz

47.1

47.2

47.3

47.4

47.5

47.6

47.7

47.8

47.9

48.0

48.1

48.2

48.3

48.4

48.5

48.6

48.7

48.8

48.9

49.0

49.1

49.2

49.3

49.4

49.5

49.6

49.7

49.8

49.9

47.0

50.0

-250

-200

-150

-100

-50

-300

0

freq, MHz

Spect

rum

Readout

m1

Readout

m2

m1freq=Spectrum=-38.927

47.79MHzm2freq=Spectrum=-114.025

47.89MHz

EqnTOI=1.5*m1-0.5*m2

freq

<invalid>Hz

TOI

-1.378

Như vậy, ta thấy kết quả thu được theo hai cách là như nhau.

Hệ số tạp âm (Noise figure-NF)

Để tính toán NF, ta sử dụng khối mô phỏng Harmonic Balance Simulation trong ADS,

thực hiện phân tích tạp âm không tuyến tính, thiết lập nhiệt độ dựa trên khối điều khiển

Options, nhiệt độ được thiết lập là 16.850C 2900K-nhiệt độ chuẩn cho đo đạc hệ số tạp âm

được định nghĩa bởi IEEE. Những thông số thiết lập ở Noise [1] tab là:

- Sweep Type : Point. Phân tích spot noise.

- Input frequency = RF frequency.

- Frequency: Đây là tần số mà nhiễu được tính toán (tần số IF ở port 2: IF frequency =

(RF frequency) – (LO frequency)).

Phần mềm sẽ tính toán hệ số tạp âm và nhiệt độ tạp âm tương đương tại đầu ra (tần số IF)

của mạch.

Page 20: Thiet Ke Mixer

Vout

Vbe

Vce Vce

Vce

VARIABLES

SIMULATIONS

TermTerm3

Z=50 OhmNum=2

P_1TonePORT1

Freq=Flo MHzP=dbmtow(LOPwr)Z=50 OhmNum=3

P_1TonePORT2

Freq=Frf MHzP=dbmtow(RFPwr)Z=50 OhmNum=1

HarmonicBalanceHB1

Other=OutVar="RFPwr"Step=Stop=Start=SweepVar=UseKrylov=yesNoiseOutputPort=2NoiseInputPort=1FreqForNoise=Fif MHzNLNoiseMode=yesOrder[2]=3Order[1]=7Freq[2]=Frf MHzFreq[1]=Flo MHzMaxOrder=4

HARMONIC BALANCE

OptionsOptions1

MaxWarnings=10GiveAllWarnings=yesI_AbsTol=I_RelTol=1e-6V_AbsTol=V_RelTol=1e-6TopologyCheck=yesTemp=16.85

OPTIONSRRLR=1500 Ohm

VARVAR1

Fif=Frf-FloFlo=1527.68Frf=1575.42RFPwr=-50LOPwr=-10

EqnVar

DC_BlockBlkL2

RRbR=8.2 kOhm

CC_LOC=0.5 pF

I_ProbeICC

DC_BlockBlkL1

V_DCVCCVdc=1.0 V

RRcR=470 Ohm

pb_mot_MMBR941_19961020Q1

CCrfC=105 pF

LL1

R=L=2.83 nH

LLif

R=L=200 nH

CCpIFC=47 pF

CCsIFC=7.84 pF

HarmonicBalanceHB1

Other=OutVar="RFPwr"Step=Stop=Start=SweepVar=UseKrylov=yesNoiseOutputPort=2NoiseInputPort=1FreqForNoise=Fif MHzNLNoiseMode=yesOrder[2]=3Order[1]=7Freq[2]=Frf MHzFreq[1]=Flo MHzMaxOrder=4

HARMONIC BALANCE

OptionsOptions1

MaxWarnings=10GiveAllWarnings=yesI_AbsTol=I_RelTol=1e-6V_AbsTol=V_RelTol=1e-6TopologyCheck=yesTemp=16.85

OPTIONS

Kết quả ta thu được hệ số tạp âm là NF= 8.161 dB.

noisefreq

47.74 MHz

nf(2)

8.161

te(2)

1608.768