Thèse Raval Keyur

download Thèse Raval Keyur

of 102

Transcript of Thèse Raval Keyur

  • 7/28/2019 Thse Raval Keyur

    1/102

    Characterization and Application ofLarge Disposable ShakingBioreactors

    VonderFakulttfrMaschinenwesender

    Rheinisch-WestflischenTechnischenHochschuleAachenzurErlangungdesakademischenGradeseinesDoktorsder

    IngenieurwissenschaftengenehmigteDissertation

    vorgelegtvon

    KeyurRavalaus

    Rajkot,Indien

    Berichter: UniversittsprofessorDr.-Ing.J.Bchs

    UniversittsprofessorDr.-Ing.U.Renz

    TagdermndlichenPrfung:14.April2008

    DieseDissertationistaufdenInternetseitenderHochschulbibliothekon-

    lineverfgbar.

  • 7/28/2019 Thse Raval Keyur

    2/102

    Acknowledgement

    IamhighlyindebtedtomyparentsandmyGuruShreeJayantikakaforshapingupmy

    lifefromchildhoodtodateandhelpingmetobuildupinternalstrength.

    IfeelgreatpleasureinexpressingmygratitudetomyguideProfessorDr.-Ing.Jochen

    Bchsforhisexpertguidanceandconstantencouragementthroughouttheperiodof

    theprojectwork.Iamextremelyindebtedforhismotivation,professionalacumenand

    precioustimethathedevotedforsuccessfulcompletionofmyprojectwork.Hewas

    andstillremainsafatherfigureinmylife.

    IexpressmyheartiestthankstomycolleaguesCyrilPeter,AndreasDaubandArnd

    Knollwhowere always therenot only for technical brainstormingbut also at vitalmomentsofmylife.

    Lastbutnotleast,Iamverythankfultomywife,Ritu;whoisalwaystheretoholdand

    supportmeduringthemostpainfulmomentsofmylife.

  • 7/28/2019 Thse Raval Keyur

    3/102

    Kurzfassung

    In dieser Forschungsarbeit wird die Anwendung eines geschttelten

    Bioreaktorsystems imPilotmastabdargestellt. Diese sehreinfache, vielfltige und

    allgemein verwendbare Technologie wurde mit zylinderfrmigen Einwegreaktoren

    kombiniert,umsiezueineridealenWahlfrdieKultivierungvonPflanzen-,Tier-und

    InsektenzellkulturenzurProduktionimPilotmastabzumachen.Diezylinderfrmigen

    Reaktoren der Gre 2L, 20L und 50L wurden in Bezug auf wichtige

    Betriebseigenschaften wieMischen, Leistungseintrag, Wrmebertragungsrate und

    Sauerstofftransferrate eingehend charakterisiert. Die vollstndige Vermischung der

    Flssigkeit wurde innerhalb weniger Sekunden bei einer Schttelfrequenz von 80

    U/min erreicht. Die Leistungsaufnahme von Flssigkeiten, deren physikalische

    Eigenschaften sichnicht drastischmit der Temperatur verndern, wurdedurchdie

    Temperaturmethodegemessen.DieMethodewurdemodifiziert,umdienderungen

    physikalischer Eigenschaften der Flssigkeiten mit der Temperatur zu

    bercksichtigen, wie z.B. die Viskositt und die Dichte. Betriebsbedingungen, in

    denen eine sehr schlechte Vermischung beobachtet werden konnte, wurden

    identifiziertundderLeistungseintragdesReaktorsystemsdimensionslosbeschrieben.

    Hohe Wrmeerzeugungsraten wurden in 20L- und 50L-Reaktoren, besonders frSchttelfrequenzenber230U/minbeobachtet.Experimentezeigteneinemaximale

    ZunahmederFlssigkeitstemperatur frWasser und fr ein80%-Glycerol-Wasser-

    Gemischvon16Kbzw.30Kbei300U/min.WhrendeinevollstndigeBelftungfr

    langsam wachsende Tier- und Insektenzellkulturen nicht zwingend erforlich ist, ist

    einevollstndigeBelftungmitUmgebungsluftjedochbesondersfrHochzelldichte-

    Kultivierungen schnell wachsender Pflanzenzellkultursysteme wie z.B. Nicotiana

    tabacum notwendig, um eine Temperaturbeanspruchung zu vermeiden. Die

    Sauerstofftransferrate wurde durch die gut erforschte Sulfitoxidationsmethode

    gemessen. Die maximalen Sauerstofftransferraten, die im 20L- und 50L-Reaktor

    gemessen wurden, waren 0.032 mol/L/h bzw. 0.028 mol/L/h. Der

    Stofftransferkoeffizient wurde mit der Energiedissipation korreliert. Die

    MastabsvergrerungeinesProduktionsprozesses freintherapeutischesProtein,

    basierend aufNicotiana tabacum Pflanzenzellsuspensionskultur, wurde erfolgreich

    vom 250mL-Schttelkolben zum 50L Einwegbioreaktor durchgefhrt. Die

    Mastabsvergrerungzum2L-EinwegbioreaktorfreinenProzesszurKultivierung

    tierischerZellen,basierendaufhybridoma-cmycZellen,warebenfallserfolgreich.

  • 7/28/2019 Thse Raval Keyur

    4/102

    Abstract Application of a shaking bioreactor system at pilot-scale level is presented in this

    researchwork.Thisverysimple,versatileandwidelyusedtechnologywascombined

    with the cylindricaldisposable reactors tomake itan ideal choice for cultivationof

    plant,animalandinsectcellculturesforpilot-scaleproduction.Cylindricalreactorsof

    size2L,20Land50Lwerethoroughlycharacterizedintermsofimportantengineering

    parameters such as mixing, power consumption, heat transfer rate and oxygen

    transferrate.Completemixingof fluidwasachievedwithin few secondsatshaking

    frequencies as low as 80 rpm. Power consumption for fluids whose physical

    propertiesdonotvarydrasticallyovertemperaturewasmeasuredbythetemperature

    method.Themethodwasextendedtoincorporatechangesinfluidphysicalpropertiessuch as viscosity, density etc. over temperature. Operating conditions where poor

    mixingmightbeobservedwereidentifiedandanon-dimensionaldescriptionofpower

    consumption is given for the reactor system. High rates of heat generation were

    observedin20Land50Lreactorsespeciallyforshakingfrequencieshigherthan230

    rpm.Experimentsrevealedmaximumof16Kand30Kincreaseinfluidtemperature

    for water and a 80% glycerol/water mixture at 300 rpm, respectively. Although

    thoroughventilationmay not bemandatory for slowgrowinganimal and insect cell

    culture,athoroughventilationofthesurroundingatmosphereismandatory,especially

    forhighcelldensitycultivationoffastgrowingplantcellculturesystemse.g.Nicotiana

    tabacum suspension culture toavoidany temperaturestress.Oxygen transfer rate

    wasmeasuredbyawellresearchedsulfiteoxidationmethod.Themaximumvalueof

    oxygentransferratemeasuredin20Land50Lreactorswere0.032mol/L/hand0.028

    mol/L/h,respectively.Masstransfercoefficientwascorrelatedwithrespecttoenergy

    dissipation.Atherapeuticproteinproductionprocessbasedonrelativelylesshydro-

    mechanical stress sensitive and one of the fastest growingN. tabacum plant cell

    suspensionculturewassuccessfullyscaled-upfroma250mLshakeflaskcultureto

    50Lcylindricaldisposableshakingbioreactor.Thecellgrowthandproteinproduction

    wascomparabletothatobservedinotherbioreactorsystems.Ananimalcellculture

    process based on hybridoma-cmyc cells was also scaled-up successfully to a 2L

    cylindricaldisposableshakingbioreactor.

  • 7/28/2019 Thse Raval Keyur

    5/102

    I

    Tableofcontents

    1. Introduction and objectives .....................................................................................1

    2. Literature review .......................................................................................................6

    2.1. Shakingbioreactors .............................................................................................6

    2.1.1. Mixingandpowerconsumption ....................................................................6

    2.1.2. Masstransfercharacteristicsofshakingbioreactors ....................................7

    2.1.3. Ventilationinshakingbioreactors .................................................................9

    2.2. Applicationofdisposableshakingbioreactors .....................................................9

    3. Theory ......................................................................................................................13

    3.1. Conventionaltemperaturemethod.....................................................................13

    3.2. Extendedtemperaturemethod...........................................................................13

    3.3. Oxygentransferratemeasurement ...................................................................15

    3.3.1. Thesulfitesystem.......................................................................................15

    3.3.2. Onlineoxygentransferratemeasurement..................................................16

    3.3.3. Calibrationoftheoxygensensor ................................................................17

    3.3.4. Materialbalanceonoxygenatsteady-state(intherinsingphase) .............18

    3.3.5. Materialbalanceinmeasuringphase .........................................................20

    3.4. Ventilationinshakeflasks..................................................................................23

    4. Materials and methods ...........................................................................................25

    4.1. Hydrophilicshakeflasks ....................................................................................25

    4.2. Hydrophobicshakeflasks ..................................................................................25

    4.3. Mixingperformance ...........................................................................................25

    4.4. Measurementofpowerconsumption .................................................................26

    4.4.1. Torquemethod ...........................................................................................26

    4.4.2. Conventionaltemperaturemethod..............................................................28

    4.4.3. Extendedtemperaturemethod ...................................................................304.5. Determinationofoverallheattransfercoefficient(UA).......................................30

    4.5.1. Characterizationwithoutlateralairflow ......................................................30

    4.5.2. Characterizationwithlateralairflow ...........................................................30

    4.5.3. Measurementofheattransferarea.............................................................32

    4.6. Determinationofoxygentransferrate(OTR) .....................................................32

    4.7. Determinationoftheventilationthroughaluminumfoilinshakeflasks ..............34

    4.8. Biologicalexperiments.......................................................................................35 4.8.1. Maintenanceofplantcellsuspensioncultureinshakeflask.......................35

  • 7/28/2019 Thse Raval Keyur

    6/102

    II

    4.8.2. CultivationofN.tabacumsuspensioncultureatlarge-scale ...................... 35

    4.8.3. Hybridomacellculturecultivation...............................................................36

    4.9. Analyticalmethods ............................................................................................ 38

    4.9.1. Determinationoffreshweightanddryweightofplantcellculture .............. 38

    4.9.2. Determinationofextracellularsugarconcentrationinplantcellculture......38 4.9.3. Determinationofphosphateconcentrationinplantcellculture .................. 38

    4.9.4. DeterminationofHumanSerumAlbumin(HSA)producedbyplantcell

    culturesofN.tabacum.............................................................................................. 38

    5. Results and discussion..........................................................................................40

    5.1. Effectofhydrophobicityonpowerconsumption ................................................ 40

    5.2. Mixingperformanceandcriticalshakingfrequency ........................................... 42

    5.3. Powerconsumptionindisposableshakingbioreactors ..................................... 435.3.1. Comparisonofthetemperaturemethodandthetorquemethod ................ 43

    5.3.2. Extendedtemperaturemethod ................................................................... 46

    5.4. Non-dimensionaldescriptionofpowerconsumption ......................................... 52

    5.5. Heattransfercharacteristics..............................................................................58

    5.5.1. Necessitytocharacterizethebioreactorsintermsofheattransfer ............ 58

    5.5.2. CharacterizationofUAwithoutlateralairflow ............................................ 59

    5.5.3. CharacterizationofUAwithlateralairflow................................................. 63

    5.5.4. Estimationofoutsideheattransfercoefficient ............................................ 66

    5.6. Masstransfercharacteristicsofdisposableshakingbioreactors ....................... 68

    5.6.1. Oxygentransferrate................................................................................... 68

    5.6.2. Correlationforvolumetricmasstransfercoefficient....................................70

    5.7. Application......................................................................................................... 74

    5.7.1. Scale-upofplantcellcultureprocess........................................................74

    5.7.1.1. Ventilationinshakeflasks...................................................................75

    5.7.1.2. CultivationofNtabacumcellcultureindifferentbioreactors...............78

    5.7.2. Scale-upofanimalandinsectcellculture ..................................................81

    6. Conclusion ..............................................................................................................83

    7. References ..............................................................................................................84

    Appendix A: Dimensionless numbers ......................................................................... 89

    Appendix B: Symbols .................................................................................................... 90

    Appendix C: Greek symbols ......................................................................................... 93

    Appendix D: Proposed level o f hydro-mechanical st ress generation....................... 94

  • 7/28/2019 Thse Raval Keyur

    7/102

    Introductionandobjectives

    1

    1. IntroductionandobjectivesIn todays biopharmaceutical industry, a good technology portfolio, a strong

    intellectual property position and access to capital do not guarantee success (1).

    Flexibility,costeffectiveness,andtimetomarketarebecomingkeyissuesaswell(1-

    4).Biopharmaceuticalcompaniesareallinaracetogettheirproductstomarketas

    quicklyaspossiblesoastoattainthelargestpossiblemarketshare.Timelymarket

    penetrationcanmakethedifferencebetweenablockbusterdrugandonethatbarely

    makesaprofitablereturnonR&Dexpenditures(5).Thepotentiallossesinrevenue

    resultingfromdelaysinproductapprovalcanbeconsiderable;itisoftenreportedthat

    foramoderatelysuccessfuldrug(onewithannualsalesof$350million)eachdays

    delaytomarketincursalossof$1million(6).Itisalsoknownthatbiopharmaceutical

    productshavehigh failure rates(7).Therefore, decisionof future expansion ofany

    product development process becomes bottleneck as this decisionmust bemade

    quiteearlyduringproductdevelopmentstage.Suchdecisionsaredifficulttochange

    laterduetoregulatoryconstraints(2,8).Hence,toachieveanacceptablereturnon

    investment, biopharmaceutical companies focus on cutting down the cost of drug

    development and improving the overall time-to-market. Therefore, companies are

    moving rapidly towardsDisposableprocessingunits.Therewasatime inthenot-too-distantpastwhenall processing from laboratory scale toproduction scalewas

    dedicated to glass, hard plastic and stainless steel components. Supporting such

    equipmentsrequiredlabour,money,timeandeffort.Forexample,thebioprocessing

    unitmustbeassembled,sterilizedandcleaned,whichrequiressupplies,labourand

    downtime. Later, the equipments being used must be validated, maintained and

    stored. With rigid, reusable components such as glass and stainless steel, cross-

    contaminationbecomesanaddedrisk (9).Ontheotherhand,apart fromflexibility,

    disposableunitshavethefollowingadvantages

    Safety:Single-usebagsandcomponentseliminatetheriskofcross-contaminationEfficiency:Noneedofassembling,sterilizing,cleaningandvalidationSpace savings:EmptysystemscanbestoredinasmallspaceProductivity: With less down time and fewer time consuming duties the otherimportantissuessuchasresearching,developing,discoveringandproducingcanbemetquickly.Moreover,useofdisposableequipmentalsoallowsforquickchangeover

  • 7/28/2019 Thse Raval Keyur

    8/102

    Shakingbioreactors

    2

    between products, which is invaluable in the clinical phase of development, when

    oftenmultiple productsare evaluated simultaneously. A key factordetermining the

    speedtomarketofdisposables-basedprocessesisassociatedwiththedecisionof

    whentobuildthemanufacturingfacility(9).Thesimplerconstructionofdisposables-

    basedplantsimpliesthatshorterimplementationtimecanberealizedwhichallowsformoredetailedprocessoptimizationbeforemovingintoconstruction.Further,shorter

    constructiontimemayallowforearlierentrytomarketandatalowerriskduetothe

    smallerinvestmentinvolved(2,9).

    Muchefforthasbeenmadeforeconomicevaluationofdisposables-basedprocessing

    and compared with other traditional bioprocessing methods (9). Novais et al.

    compared several important parameters such as capital investment, running cost,

    utilities cost, net present value etc. for disposable option and conventional optionusingacasestudyoftherapeuticproteinproductionbyE.coli(9).Theinitialcapital

    investmentforadisposablesoptionwassubstantiallyreducedto60%ofthatfora

    conventional option. Utilities cost halved due to absence of operations like CIP

    (Cleaning-In-Place) and SIP (Sterilization-In-Place). However, disposables-based

    running costs increased by 70% of those of the conventional option. Despite the

    higher value, the net present valueof the disposableplantwas positiveandwithin

    25%ofthatfortheconventionalplant.Thenetpresentvaluewasidenticaltothatofa

    conventionalplantwhenaninemonths reduction intimetomarketarisingfromthe

    adoptionofadisposables-basedapproachwasincorporatedinthemodelofNovaiset

    al.(9).However,authorsassumedthatthetwocultivationoptionshadthesameyield

    of biomass and therapeutic protein production. The net present value was also

    calculated for the disposablesoption when therewas a25% reduction inbiomass

    yieldandproteinexpressionyieldencountered.Resultsrevealedthatwhilebiomass

    yieldwas25%less,therewasonlyaslightdropinthenetpresentvalueto91%of

    thatofthebasecasebuta25%lowerproteinexpressionlevelhadahighimpacton

    thenetpresentvalue,decreasingto83%ofthebasecase.

    Because of these tremendous advantages, the disposables-basedoption iswidely

    acceptedintodaysbiopharmaceuticalindustries.

    Althoughdisposablebioreactorswerestudiedmainlyinthelatenineties,itsveryfirst

    concept and use was reported decades ago by Falch et al. (10). They cultivated

    bacterialandfungalculturesin300mLshakingtetrahedronplasticbagswith50mLfillingvolume.Theauthorsreportedthat thecellgrowthwasnot limitedbecauseof

  • 7/28/2019 Thse Raval Keyur

    9/102

    Introductionandobjectives

    3

    hydrophobic nature of the bags and cells did not attached to the wall of plastic.

    Becauseofthelimitationsoftheshakingmachinesavailable,theexperimentswere

    carriedoutat130rpmshakingfrequencyand4.1cmshakingdiameter.However,it

    tookthreedecadestoidentifythepotentialofthedisposables-basedprocessconcept

    tilllatenineties.Thenumbersofdisposablebioreactorsavailablenowinthemarketare increasing in leaps and bounds. Some of the successful trade names are,

    CELLine,WaveBioreactors,CellMakerLite2,XDRbioreactors,CellPharm,miniPerm

    etc. However,most of the bioreactros have limited fluid handling capacity, except

    Wavebioreactors,CellMakerLite2andXDRbioreactors.XDRandWavebioreactors

    areavailable in thesize of 2L to 1000L, whereas thesize of theCellMaker Lite 2

    ranges from 1L to 50L. In spite of numerous bioreactors available, the Wave

    bioreactorsaremostsuccessfulinbiopharmaceuticalindustry.TheWavebioreactors

    weredevelopedbySinghetal.(11).Singhetal.reportedsuccessfulscale-upofa

    number ofprocesses baseduponplant,animal, insect cellcultureaswell as virus

    cultures up to 100L in Wave bioreactors. Although other disposable bioreactors

    exceptWavebioreactorswerealsoavailableinthemarketinlateninetiesbutallof

    themhadproblemsinscale-up,therefore,couldnotbeusedforpilot-scaleproduction.

    Table 1.1 compares costs associated for production of Secreted Associated

    Phosphatase(SEAP) invariousdisposablebioreactor systemsaswell asstandard

    stirredtankfermentors(12).Table1.1indicatesthattheproductioncostofSEAPis

    minimum for Wave bioreactors. There are numerous papers available about

    successfulcultivationofarangeofcelllinesinWavebioreactors.Inspiteoftheirease

    ofhandlingtheWavebioreactorspossessfollowingmajordisadvantages,

    Ill-defined operating conditions: Wave bioreactors are not defined in terms of veryimportant scale-up parameters such as mixing, power consumption and hydro-

    mechanicalstressgeneration.Thereisareportofmeasurementofoxygentransfer

    rateinWavebioreactorsbutitislimitedtoonlyafewoperatingconditionsandforonly

    afewreactorsizes.Inbio-pharmaceuticalindustriesthelargescaleproduction(>1m3)

    isstillperformed instandardstirred tankreactors.Therefore, itmaynot beeasyto

    scale-up the process from Wave bioreactors to standard stirred tank fermentors

    becauseoftheill-definedoperatingconditions.

    Thin Wave bags prone to wear and tear: The Wave bags are relatively thin ascomparedtostandardcarboys,whichmaketheman idealchoiceasit savesmuch

    space.Butthesebagsbecomemorepronetopunctures,whichmaycausesevere

    accidentsespecially,whenworkingwithviruscultures.

  • 7/28/2019 Thse Raval Keyur

    10/102

    Shakingbioreactors

    4

    Cultivationsystem

    CELLine1000

    miniPerm-classic kit

    Cell-Pharm-100(BR 130)

    WaveCellbase20 SPS(1L***)

    WaveCellbase20 SPS(2L***)

    Standardstirred tank

    (2L***)

    SEAPactivity(U) 1156 1102.5 495 5160 10320 4120

    Investmentcosts*

    (SFr)15,000 16270 4095 30,000 30,000 73,320

    Cultivationsystem

    CELLine1000

    miniPerm-classic kit

    Cell-Pharm-100(BR 130)

    WaveCellbase20 SPS(1L***)

    WaveCellbase20 SPS(2L***)

    Standardstirred tank

    (2L***)

    Costsperbatch

    (SFr)250 272 69 500 500 1222

    Runningcosts

    (SFr)750 478 305 526 1052 877

    Cultivationunit

    costs(SFr)540 130 1150 295 590 0

    Personalcosts

    (SFr)1160 1160 1200 1160 2320 2000

    Cost**per1000

    unitsSEAP(SFr)2336 1850 5503 481 432 995

    *Cultivationsystemandperipheralsystemse.g.CO2incubatoretc.**Calculationisbasedupon60experiments.Costsassociatedwithenergy,cellculturelaboratoryand

    analyticalsystemsnotincluded.***Workingvolume

    Table 1.1:ComparisonofproductioncostofSEAPinvariousdisposablebioreactorsystemsalongwithastandardstirredtankreactorsystem.CourtseyofEibletal.(12).

    Costs: The Wave bioreactors are expensive because of their monopoly in thedisposables-basedbioprocessmarket.

  • 7/28/2019 Thse Raval Keyur

    11/102

    Introductionandobjectives

    5

    Incontrasttosuchanexpensivebioreactor,largeshakingbioreactorspresentedin

    Figure1.1 giveapromising choice forcellculturesystems from laboratory scaleto

    pilotscale.

    Figure 1.1:A50L(totheleft)anda20L(totheright)largedisposableshakingbioreactormountedonacommerciallyavailableRC-6shakerfromKhnerAG,Switzerland.Theshakerhasafixedshakingdiameterof5cmandcanoperateatshakingfrequenciesfrom0to400rpm.

    Inthisresearchwork,atypeofdisposablebioreactorisintroduced,whichisbasedon

    theshakingtechnology(seeFigure1.1).Thesizesofthebioreactorsusedare2L,

    20Land50L.Themainobjectivesoftheresearchworkare:

    Characterization of mixing performance and identification of operating

    conditionswherepoormixingisobserved. Characterization of disposable shaking bioreactors in terms of power

    consumptionandheattransfer.

    Investigation of mass transfer characteristics of large disposable shaking

    bioreactors.

    Applicationofthelargedisposableshakingbioreactorstoavailablecellculture

    systems.

  • 7/28/2019 Thse Raval Keyur

    12/102

    Literaturereview

    6

    2. Literaturereview2.1. Shaking bioreactorsShakemixinghasbeenwidelyusedatsmallscalelevelinbiotechnologylaboratoriesandindustriesforthescreeningofvaluablemicro-organismsandinbasicbioprocess

    development experiments. Their simple operation, easy handlingand low cost are

    someofthemajoradvantages(13).

    2.1.1. Mixing and power consumptionThemixingcharacteristicsofconicalshakeflaskswerepioneeredbySuminoetal.

    (14, 15). They used a temperature method for the determination of powerconsumptioninsmallshakeflasksofsize250mL.Shakemixinginconicalshaking

    flasksofsizeupto5LisextensivelystudiedbyBchsetal.(16-19).Bchsetal.used

    differentshakingdiameters(1.25to7cm)anddifferentshakingfrequencies(100to

    400rpm)withvaryingliquidviscositiesupto200mPas.Theauthorsalsousedfilling

    volumes in the rangeof 5% to 20%of the total flaskvolume.Bchset al. derived

    following dimensionless equation between modified Newton number (Ne) and

    Reynoldsnumber(Re),

    ' -1 -0.6 -0.2Ne 70 Re + 25 Re +1.5 Re= 2.1

    wherefollowingconditionofaxialFroudenumber(Fra)mustbesatisfied,

    aFr 0.4> 2.2

    where,3 4 1/3

    'L

    PNe

    n d V=

    ,

    2n dRe

    = and

    ( )2

    02

    2a

    n dFr

    g

    =

    ,

    where,

    Ne ModifiedNewtonnumber(-)

    Re Reynoldsnumber(-)

    Fra AxialFroudenumber(-)

    P Powerconsumption(W)

    Densityoffluid(kg/m3)

  • 7/28/2019 Thse Raval Keyur

    13/102

    Literaturereview

    7

    n Shakingfrequency(1/s)

    d MaximumInsidediameterofthevessel(m)

    VL Fillingvolume(m3)

    Dynamicviscosityoffluid(Pas)

    d0 Shakingdiameter(m)

    However,differentgeometriesofconicalshakeflasksandcylindricalshakingvessels

    may make it difficult to extrapolate the experimental results to large shaking

    bioreactors. On the other hand, Kato et al. (20) reported mixing performance of

    cylindricalshakingvesselsofsizefrom0.5Lupto12L,whereliquidheighttovessel

    diameterratiowaskeptconstant.However,theoperatingconditionswerelimitedfor

    all the characterizationexperiments.ThemeasurementsofKatoetal.werecarried

    outincylindricalvesselsforshakingfrequenciesof100-200rpm,whiletheshaking

    diameter was kept in the range of 1 to 4 cm. Kato et al. derived following

    dimensionlessequationforpowerconsumptionincylindricalshakingvessels,

    0

    313

    2-42

    dNe 934 Fr Re

    d

    =

    2.3

    3 5

    P Ne n d=

    2.4

    2

    r

    n dFr

    g

    = and

    20n dRe

    =

    wherefollowingequationmustbesatisfied,

    0.166 -0.176 0.135 Re Fr 0.135 Re' < < 2.5

    where,

    Ne Newtonnumber(-)

    g Gravitationalacceleration(m2/s)

    2.1.2. Mass transfer characteristics of shaking bioreactorsMass transfer characteristics of conical shaking bioreactors are studiedby various

    authors. It is thoroughly investigated over awide rangeof operating conditionsby

    Maieretal.(21).Followingtabledescribestheoperatingconditionsusedbyvarious

    authors.

  • 7/28/2019 Thse Raval Keyur

    14/102

    Shakingbioreactors

    8

    Authors Flask size(ml)

    Filling volume(% of flask vol.)

    Shaking speed(rpm)

    Shaking diameter(mm)

    Haarde&Zehner(22) S/SB(250,1000) 5%-20% 50-330 Notmentioned

    Henzler&Schedel(23) S(1000) 5%-20% 150-400 25,50

    VanSuijdametal.(24) S/SB(500) 8%-40% 230,320 25

    Veglioetal.(25) S(300) 33%-50% 150-250 32

    Veljkovicetal.(26) S(300,500,1000) 5%-20% 0-400 20

    Maieretal.(21) S(50-1000) 4%-16% 50-500 12.5-100

    Table 2.1:Investigationofmasstransfercharacteristicinshakeflasksbyvariousauthors. S denotesconicalshakeflaskandSB denotesconicalshakeflaskwithbaffles.Maieretal.usedasulfiteoxidationmethodformeasurementofoxygentransferrate

    in shaking bioreactors of a size up to 1L at different filling volumes and shaking

    diameters.Theydevelopedatwosub-reactormodelforthegas-liquidmasstransfer

    inshakingbioreactors.Accordingtothismodel,themasstransfercharacteristicsinshaking flasks can be divided into a film reactor and a stirred tank reactor. The

    experimentallyfoundvolumetricmasstransfercoefficientwasthencomparedwiththe

    modelandcanbedescribedasfollows,

    0~-0.83 1.16 0.38 1.92

    L Lk a V n d d 2.6

    where,

    kLa Volumetricmasstransfercoefficient(1/s)

    VL Fillingvolume(mL)

    n Shakingfrequency(1/min)

    d0 Shakingdiameter(cm)

    d Maximuminsidediameteroftheflask(cm)

    Katoetal.investigatedtheoxygentransferratebyadynamicgassing-inmethodin

    cylindrical shaking vessels of diameter 12 cm and 15 cm with a liquid height to

    diameterratioof0.5,1,and1.5(27).Theshakingfrequenciesusedwereintherange

  • 7/28/2019 Thse Raval Keyur

    15/102

    Literaturereview

    9

    of100to200rpmandtheshakingdiameterwaskeptintherangeof1to4cm.Mass

    transfer occurred mainly on the surface of the bulk liquid and, hence, it was

    characterizedintermsofpowerconsumptionasfollows,

    ~ 0.4 -0.6 -0.25L Vk a P H d 2.7

    where,

    kLa Volumetricmasstransfercoefficient(1/s)

    PV Powerconsumptionperunitvolume(W/m3)

    H Heightofthefluidinsidethevessel(m)

    d Maximuminsidediameterofthevessel(m)

    2.1.3. Ventilation in shaking bioreactorsHenzler&Schedel(23)measuredthemasstransferresistanceofsterileshakeflask

    closures. Based on their basic model, Mrotzek et al. (28) developed an extended

    model for determinationofresistanceofsterile closures inshakeflasks ofdifferent

    sizes. Mrotzek etal. used sterile plugsmade of cotton, paper, urethane foamand

    fibreglassalongwithcapsmadeofaluminiumandsilicon.Theauthorsfoundthatthe

    masstransferresistancewasmainlydependentonneckgeometry,flaskclosureand

    itspackingdensity.

    2.2. Application of disposable shaking bioreactorsInfact,Millardetal.(29)investigatedrecombinantproteinexpressionbasedon E.coli

    culturesin2Lpolyethylenebeveragebottles.Thenotchesatthebottomofthebottle

    servedasbaffles.Atlowfillingvolumes(0.25L)thecellgrowthandproteinexpression

    wasalmostdoubleascomparedtothatfoundin2Lbaffledshakeflasks.Athighfillingvolumes(1L) thecellgrowthandproteinexpressionwassimilar tothat foundin2L

    baffledshakeflasks.Millardetal.(29)currentlyemploythese2Lbeveragebottlesfor

    proteinexpressionbecauseoftheireaseofhandlingandreductioninlabourandtime.

    Mller et al. (30) also cultivated HEK-293 EBNA and CHO-DG44 cell lines in 1L

    borosilicatesquareshakingbottles.Theyemployeddifferentfillingvolumesat2.5cm

    shakingdiameter.Thelivecellcountwas2to3timeshigherthanthatobtainedin

    normal2Lspinnerflasks.Mlleretal.(30)observedoptimalcellgrowthandviabilityat30-40%fillingvolume,130rpmand2.5cmshakingdiameter.Useofthesesimple

    thoughhighlyefficientshakingbioreactorsisnotlimitedto2Lscaleonly.Liuetal.(31,

  • 7/28/2019 Thse Raval Keyur

    16/102

    Applicationofdisposableshakingbioreactors

    10

    32) already showed the potential of large cylindrical shaking bioreactors for the

    cultivationofanimalandinsectcellculturesatpilotscale.

    Liuetal.(31)werethefirsttoscale-upproductionprocessesbasedontheanimaland

    insectcelllinesindisposablelargeshakingbioreactors.Theysuccessfullycultivated

    hybridoma cells, CHO cells and insect cell linesSf-9 andH-5. Normal batch, fed-

    batch,semi-continuousandcontinuousoperationmodeswereused.Liuetal.used

    differentsizesofcylindricaldisposableshakingbioreactorsrangingfrom3Lto50L.In

    all the cases the cell growth was better than that obtained by spinner flasks or

    standard fermentors. Sf-9 and H-5 cells have a higher oxygen demand than

    mammaliancells.Amaximumviablecelldensityof14x106cells/mLwasachievedin

    20Lbioreactorwith4LfillingvolumeduringcultivationofSf-9cells(Figure2.1).Singh

    etal.reportedamaximumcelldensityof4.75x106

    cells/mLduringafad-bathprocessbased on baculovirus/Sf-9 cells in a 20L Wave bioreactor system with 1L Bio-

    Whittaker X-press insect cell medium. Similarly an expression system containing

    Baculovirus/H-5 was scaled-up successfully in 20L shaking bioreactor with a

    maximumviablecelldensityof7x106cells/mL.Themaximumcelldensityofthesame

    baculovirus/H-5systemattainedinspinnerflaskandstandard3Ljarfermentorwas

    3x106cells/mLand2.5x106cells/mL,respectively.

    Figure 2.1:Insectcells(Sf-9)culturedin20Lpolypropylenebioreactors.Culturevolume:7L.Shakingdiameter5cm.ThisphotoisacourtesyofDr.Liu(personalgift).

  • 7/28/2019 Thse Raval Keyur

    17/102

    Literaturereview

    11

    Figure 2.2:Hybridomacellsculturedina50Lpolypropylenebioreactor:culturevolume36L.Shakingdiameter5cm.ThisphotoisacourtesyofDr.Liu(personalgift).

    Liu et al. (31) also evaluated the IgG production usinghybridoma cells in shaking

    bioreactorsrangingfrom3Lto50Lsizeusingasemi-continuousmode(Figure2.2).

    Theexperimentswereconductedwithan11%exchangeoftheculturebrothperday

    withfreshmedium.IgGproductionreached150mg/Lperdaywhilemaintaining2 x106

    viablecells/mL.Amaximumof250mg/Lof IgGwasproducedinthesameprocess

    afterterminationofthedailyexchangeofbrothwiththefreshmedium.Acontinuous

    process for the IgG production was maintained for 70 days in a 50L shaking

    disposablebioreactorwith14.5Lfillingvolume.

    A cultivation of CHO cells in a 20L disposable bioreactor with 5L filling volume isshowninFigure2.3.CHOcellswerealsogrowninafed-batchmodeina50Lshaking

    bioreactorwithamaximumviablecellcountof6 x106cells/mL.Themaximumviable

    CHOcellcountobtainedinafed-batchprocessina20LWavebioreactorwas4.5x106

    cells/mLat6Lfillingvolume(11).Shakingbioreactorsof20Land50Lscalewitha

    workingvolumeof5-10Land30-35L,respectivelyareroutinelyemployedbyLiuetal.

    (31)(atRocheDiscoveryTechnologiesDepartmentinNJ,USA)togrowsuspension

    adaptedmammalian (e.g., CHO, HEK293), insect cells andHel A and B cells for

    recombinantproteinexpressionandlivecellproductiontosupporthighthroughput

    drugscreeningprogramsatpilot-scalelevel.

  • 7/28/2019 Thse Raval Keyur

    18/102

    Applicationofdisposableshakingbioreactors

    12

    Figure 2.3:CHOcellsculturedin20Lpolycarbonatebioreactors.Culturevolume5L.Shakingdiameter5cm.ThisphotoisacourtesyofDr.Liu(personalgift).

    Inspiteofsuccessfulcultivationofdifferentcellcultures,Liuetal.(31)stressedthe

    needoffurthercharacterizationofthesesimplethoughefficientshakingbioreactors.

  • 7/28/2019 Thse Raval Keyur

    19/102

    Theory

    13

    3. Theory3.1. Conventional temperature methodTheconventionaltemperaturemethodwasdevelopedbySuminoetal.(14).Theheatbalanceforagivenshakingvesselcanbedefinedbythefollowingequation,

    PTTUAdt

    dTCm of

    f

    p = )( 3.1

    where,

    m Massofthefluid(kg)

    cp Specificheatcapacity(J/kg/K)

    Tf Fluidtemperature(K)

    t Time(s)

    UA Overallheattransfercoefficient(W/K)

    A Heattransferarea(m2)

    To Temperatureofthesurroundingatmosphere(K)

    where,-mCp(dTf/dt),UA(Tf-To)andPdenotethecoolingrateoftheliquid,the

    heatlosstothesurroundingsandtheheatgenerationratebecauseofdissipationof

    power.Accordingtotheexistingtheorythepowerconsumptionaswellastheoverall

    heat transfer coefficient remains constant over time at given operating conditions.

    Therefore, these two parameters can beestimated from the data of the liquid and

    roomtemperatureprofileovertime,asdescribedbySuminoetal.(14,15).

    3.2. Extended temperature methodIntheextendedtemperaturemethodthepowerconsumptionorheatgenerationrate

    isnottakenasaconstantvaluebuttreatedasavariablevalue,whichchangeswith

    respecttothetemperature.Thedynamicbehaviourofthepowerconsumptioncanbe

    incorporatedintheextendedmethodasfollows:

    AccordingtoBchsetal.(17)powerconsumptionofshakeflaskscanbedefinedin

    termsofthedimensionlessmodifiedNewtonnumber(Ne'),

  • 7/28/2019 Thse Raval Keyur

    20/102

    Extendedtemperaturemethod

    14

    3 4 1/3'

    L

    PNe

    n d V=

    3.2

    Ne'canbecalculatedasafunctionoftheReynoldsnumber(Re)asfollows,

    0.20.61

    ReReReNe

    ++= 5.12570' 3.3

    where,

    2n dRe

    = 3.4

    Equation3.2 and 3.4 show that ata given operating condition,witha fixedvessel

    diameter,Reisafunctionoftheliquidphysicalproperties,i.e.viscosityanddensity.

    However,inthetemperaturerangesencounteredinthetemperaturemethodforthe

    measurementofthepowerconsumptionotherphysicalpropertiesexceptviscositydo

    notvarytoagreatextent(variation

  • 7/28/2019 Thse Raval Keyur

    21/102

    Theory

    15

    onlythesecondandthirdtermofequation3.3istakenintoaccount,hence,Ne'can

    becorrelatedwithReas,

    ' -0.6 -0.2fit1 fit2Ne C Re +C Re= 3.8

    Hence,foreachtemperatureprofileobtainedforagivenoperatingcondition,therearethreeparameterstobefittedasdescribedinequation3.1and3.8,namely, UA,Cfit1

    andCfit2.Itshouldbenotedherethatintheconventionaltemperaturemethod,power

    consumptionwasthefittingparameter,butnowtheyaretheparametersCfit1andCfit2,

    which describes the hydrodynamic behaviour of the system. Henceforth, power

    consumption will vary according to the relationship given in equation 3.5 with

    temperature. However, the power consumption measured with the extended

    temperature method can only be specified with respect to a given standardtemperature.Thistemperaturewaschosentobe30Cinthisthesis.

    3.3. Oxygen transfer rate measurement3.3.1. The sulfite systemMass transfer characteristics of solutions having water-like viscosity are readily

    measured by an aqueous chemical model system developed and well studied by

    LinekandVacek(35).Thismodelsystemcomprisesofasodiumsulfitesolutioninaspecificbuffer.ThesulfiteionsareoxidizedintosulfateionsinpresenceofCo+2,Cu+2,

    Fe+2orMg+2,actingascatalysts.Theoxygentransferredfromtheairtotheaqueous

    solution characterizes the mass transfer capacity of a given reactor at a given

    operatingcondition.Theirreversibleoxidationreactioncanbewrittenas,

    22 23 2 4

    1

    2

    CoSO O SO+ + 3.9

    Themasstransferrate(transferofoxygenfromairtosolution)aswellasthereaction

    rate defines the oxidation reaction regime. The reaction regime can bedefined as

    dimensionlessHattanumber(Ha),

    reaction rate=

    mass transfer rateHa

    Depending upon the valueofHa, the reaction regimes can bedefinedasdelayed

    reaction regime (Ha

  • 7/28/2019 Thse Raval Keyur

    22/102

    Oxygentransferratemeasurement

    16

    oxidation reaction must take place in the non-accelerated reaction regime to

    determinethemaximumoxygentransferrate(36).

    ThecompletionoftheoxidationreactioncanbeeasilymeasuredusingapHindicator

    sincesulfateionsaremoreacidicthansulfiteions.Thereareanumberofparameters

    which influence the oxidation mechanism of above mentioned reaction, such as,

    concentration of buffer solution, pH of the solution, ionic strength, catalyst

    concentration etc. All these parameters were very well studied and optimized for

    shakingbioreactorsbyMaieretal.(21)andHermannetal.(36).Maieretal.studied

    themasstransfercharacteristicsinconicalshakingbioreactorsatdifferentoperating

    conditions using above mentioned optical sulfite oxidation method in the non

    acceleratedreactionregime.Theauthorsalsomeasuredandcomparedtheprogress

    of the oxidation reaction online using the Respiration Activity Monitoring System(RAMOS)developedbyAnderleiandBchs(37).

    3.3.2. Online oxygen transfer rate measurement

    time

    Sensorsignal

    21 21

    1: rinsing phase

    2: measuring phase

    Um

    m

    U

    time

    Sensorsignal

    21 21

    1: rinsing phase

    2: measuring phase

    Um

    m

    U

    Figure 3.1:Sensorsignalprofileobservedduringthemeasurementofonlineoxygentransferrate.Um=sensorsignalatmidpoint,m=slope,U=sensorsignalatsteady-state.

    TheRAMOStechnologyisbasedontheprincipleoftherateofchangeoftheoxygen

    partial pressure in a closed head space of a shake flask. An oxygen sensor is

    mounted on the top of the shake flask whichmeasures the change in the partial

    pressureofoxygen.Theshakeflask isaeratedforaspecificperiodoftime(rinsing

  • 7/28/2019 Thse Raval Keyur

    23/102

    Theory

    17

    phase)andthenaerationisstoppedforaspecificperiodoftime(measuringphase).

    Therateofchangeoftheoxygenpartialpressureismeasuredduringthemeasuring

    phaseusingtheoxygensensor.Theoxygentransferrateisthendeterminedusinga

    material balance on oxygen in the head space. Diagrammatically the process is

    showninFigure3.1.AsshowninFigure3.1,duringtherinsingphase,theoxygenpartial pressure reaches a steady-state value which is followed by themeasuring

    phase. The oxygen sensor measures the rate of decrease of the oxygen partial

    pressurefromwhichtheoxygentransferrateiscalculated.Afteradefiniteperiodof

    time the rinsingphasestarts again. The oxygen transfer rate calculationstepsare

    explainedbelow.

    3.3.3. Calibration of the oxygen sensorThereisa linearrelationshipbetweentheoxygenpartialpressureandthevoltageof

    thesensor.Thisrelationshipcanbewrittenas,

    2op a U b= + 3.10

    where,

    a Slopeofthecalibrationcurve(bar/V)

    b Interceptonthey-axis(bar)

    Atwopointcalibrationisperformedtoavoidanysensordrifts.Voltageofthesensoris

    measured at 0% partial pressure of oxygen and the value is taken as the first

    calibrationpoint.Airisthenpassedthroughthesystemandvoltageofthesensoris

    measured till steady-state condition is reached.This value is takenas the second

    pointofthecalibrationcurve.

    Mathematically,

    letU0andPo20bethevoltageandoxygenpartialpressureat0%oxygen,

    letUandPo2bethevoltageandoxygenpartialpressureatsteady-state.

    Then,fromequation3.10itcanbeconcludedthat

    2 2

    0

    o odp p dU

    dt U U dt

    =

    3.11

  • 7/28/2019 Thse Raval Keyur

    24/102

    Oxygentransferratemeasurement

    18

    3.3.4. Material balance on oxygen at steady-state (in the rinsing phase)

    VL

    2

    in

    oy

    inn&

    2oy

    outn&

    VG2 2

    out

    o oy y=

    2o

    n

    &

    VL

    2

    in

    oy

    inn&

    2oy

    outn&

    VG2 2

    out

    o oy y=

    2o

    n

    &

    Figure 3.2:Molarflowofoxygeninandoutofthesystemintherinsingphase.Here,VLrepresentsfillingvolumeandVGrepresentsheadspacevolumeintheshakeflask.

    Since,thegasphaseiswellmixed,

    2 2

    out

    o oy y= ,therefore,

    molaroxygenbalanceatsteady-statecanbewrittenas,

    2 2 2

    in in out out

    o o oy n y n n = +& & & 3.12

    where,

    2

    in

    oy Molefractionofoxygeninthegasphaseenteringthesystem(-)

    inn& Molarflowrateofairenteringthesystem(mol/s)

    2 2

    out

    o oy y= Molefractionofoxygeninthegasattheendoftherinsingphase(-)

    outn& Molarflowrategoingoutofthesystem(mol/s)

    2on& Molarflowrateofoxygentransferredfromthegastotheliquidphase(mol/s).

    Materialbalancebasedonthetotalmolarflowratescanbewrittenas,

    2

    in out

    on n n= & & & 3.13

    Fromequation3.12and3.13itcanbewrittenas,

    2 2

    2

    in in

    o o

    o in

    o

    n ny

    n n

    =

    & &

    & & 3.14

    Molarvolumeofagascanbewrittenas,

    wellmixedgasphase

  • 7/28/2019 Thse Raval Keyur

    25/102

    Theory

    19

    N

    m N

    R TV

    p

    = 3.15

    where,

    mV Molarvolumeofgasatnormaltemperatureandpressure(L/mol)

    R Idealgasconstant(8.31410-2barL/mol/K)

    NT Normaltemperature(273.15K)

    Np Normalpressure(1.013bar)

    Oxygentransferratecanbedefinedas,

    2o Ln OTR V

    = & 3.16

    where,

    OTR Steady-stateoxygentransferrateattheendofrinsingphase(mol/L/s)

    Accordingtoidealgaslaw,

    pn V

    R T

    =

    && 3.17

    where,

    n& Molarflowrate(mol/s)

    V& Flowrateofagas(L/s)

    p Pressure(bar)

    T Temperature(K)

    Since,yi=pi/p,equation3.14canberearrangedas

    2

    2

    in ino

    m

    Lo in

    m

    L

    p VV OTR

    p Vp p

    VV OTR

    V

    =

    &

    & 3.18

    where,

    yi Molefractionofcomponenti(-)

  • 7/28/2019 Thse Raval Keyur

    26/102

    Oxygentransferratemeasurement

    20

    pi Partialpressureofcomponenti(bar)

    inV& Totalvolumetricflowrateenteringthesystem(L/s)

    The unknown parameterOTR in equation 3.18 can be calculated from themass

    balanceofoxygeninthemeasuringphase.

    3.3.5. Material balance in measuring phase

    VL

    VG

    2on&

    2odn

    dtA

    VL

    VG

    2on&

    2odn

    dtA

    Figure 3.3:Molarflowofoxygenduringmeasuringphase.Here,VLrepresentsfillingvolumeandVGrepresentsheadspacevolumeintheshakeflask.

    Oxygen in the head space is transferred into liquid during the measuring phase,

    therefore,

    2

    2

    o

    odn n

    dt= & 3.19

    Theoxygentransferrate(OTR)canbedefinedas,

    2 21o o

    L L

    n dnOTR OTR

    V V dt = =

    &

    3.20

    Usingtheidealgaslawrelationship,aboveequationcanbewrittenas,

    21 oG

    L

    dpVOTR

    V R T dt =

    3.21

    where,

    GV Volumeofgasintheheadspace(L)

    Combiningequation3.11and3.21resultsin

    21 oG

    L

    pV dUOTR

    V R T U U dt

    =

    o 3.22

  • 7/28/2019 Thse Raval Keyur

    27/102

    Theory

    21

    Inthemeasuringphaseoxygenpartialpressuredecreasesandhenceoxygentransfer

    rate also decreases which may result in non-liner decrease in the voltage of the

    sensor. However, the duration of the measuring phase is always very short and

    hence, during this short duration, the decrease in oxygen partial pressure can be

    takenasnegligible.Therefore, the decrease in the sensor signal can be takenaslinear.Hence,

    dUm constant

    dt= = 3.23

    where,

    m Slopeofthedecreasingvoltagesignaloftheoxygensensor(V/s)

    Therefore,theoxygentransferrateusingtheslopemcanbecalculatedas,

    21 oG

    m

    L

    pVOTR m

    V R T U U

    =

    o 3.24

    where,

    OTRmOxygentransferratecorrespondingtoslopem(mol/L/s)

    However,thisoxygentransferratecorrespondstothemidpointofthesensorsignalUmandnotU.Theactualoxygentransferratecanbecalculatedasfollows.

    Oxygentransferratecanbedefinedas,

    ( )2 2L o o

    OTR k a c c= 3.25

    where,

    c

    *

    O2 Oxygenconcentrationatthegas-liquidinterface(mol/L)cO2 Oxygenconcentrationinthebulkliquid(mol/L)

    The reaction regime of the sulphite system being used is in the non-accelerated

    reactionregime,where0.03

  • 7/28/2019 Thse Raval Keyur

    28/102

    Oxygentransferratemeasurement

    22

    where,

    k1 First order reaction constant of sulfite oxidation (0.6625 1/s,accoding to

    Hermannetal.(36))

    Theoxygensolubilityintheliquidphaseisverylow,therefore,accordingtoHenrys

    law,

    2 2o oHe c p = 3.27

    where,

    He Henryslawconstantforoxygeninsulphitesystem(barL/mol)

    Fromequation3.10,3.26and3.27,itcanbewrittenas,

    ( ) ( ) ( )2 2o o

    OTR c p U 3.28

    Hence,fromequation3.18,3.24and3.28,theoxygentransferratecanbecalculated

    as

    ( )( )

    2 4

    2

    in

    G m

    m

    m L

    A A m p V V V U U T ROTR

    V V U U T R

    =

    o

    o

    &

    3.29

    Where,

    ( )in m GA V U U T R V V m p= + o& 3.30

    Since 0U U

  • 7/28/2019 Thse Raval Keyur

    29/102

    Theory

    23

    where,

    OTRmax Maximumoxygentransferrate(mol/L/s)

    3.4. Ventilation in shake flasksTheshakeflasksareclosedwithsterileclosuresinbiotechnologylaboratories.The

    ventilationofair from the surroundingatmosphere into the headspace of the flask

    dependsonthegeometryoftheneckoftheflaskandtypeofsterileclosure(28,38).

    AccordingtoMrotzeketal.(28),theoxygentransferratebecauseoftheventilation

    throughthesterileclosurecanbedefinedas,

    ( )2 2

    1plug plug O out O

    L abs

    OTR k p p

    V p

    =

    3.34

    where,

    OTRplug Oxygentransferratethroughtheflaskclosure(mol/L/s)

    Kplug Gastransfercoefficient(mol/s)

    VL Flaskfillingvolume(L)

    pabs Absolutepressure(bar)po2out Partialpressureofoxygeninthesurroundingatmosphere(bar)

    po2 Partialpressureofoxygenintheheadspaceoftheshakeflask(bar)

    Theoxygentransferredthroughtheaerationofshakeflaskcanbegivenas,

    ( )2 2

    inflow O out O

    abs m

    qOTR p p

    p V=

    3.35

    where,

    OTRflow Oxygentransferratebecauseofaerationofflask(mol/L/s)

    Vm Molarvolumeofair(L/mol)

    qin Specificaerationrateintheflask(L/L/s)

    Equatingequation3.34and3.35,resultsinaaerationvaluewhichisequivalenttothe

    ventilationthroughthesterileclosure,mathematically,

  • 7/28/2019 Thse Raval Keyur

    30/102

    Ventilationinshakeflasks

    24

    min plug

    L

    Vq k

    V= 3.36

    Thegastransfercoefficientcanbeobtainedbytheneckgeometryoftheflaskandthe

    diffusioncoefficientofoxygenthroughtheflaskclosure(28).Thevalueofgastransfer

    coefficientand oxygen transfer rate through flaskclosure can becalculatedby the

    combinationofthemodeldevelopedbyHenzlerandSchedel(23),Mrotzeketal.(28)

    and unsteady-state model developed by Amoabediny et al. (39). From the gas

    transfercoefficient,theaerationvaluescanbecalculatedbythemodeldevelopedby

    Amoabedinyetal.(40).Detaileddescriptionofthesemodelsisbeyondthescopeof

    thisthesis.Therefore,readersarerequestedtoreadthecitedreferencesforthorough

    understandingoftheventilationinshakeflasks.

  • 7/28/2019 Thse Raval Keyur

    31/102

    Materialsandmethods

    25

    4. MaterialsandmethodsForalltheexperiments2Lpolycarbonate(PC)bottlesand20Land50Lpolypropylene

    (PP) bottles (Nalgene, USA) were used. A table-top shaker (LS-W, Kuehner AG,

    Switzerland)wasusedtoimpartshakemixingin2Lbioreactorsandacommercially

    available pilot scale shaker RC-6 (Kuehner AG, Switzerland) was used to impart

    shakemixingin20Land50Lbioreactors.Alltheexperimentswereperformedat5cm

    shaking diameter. All the chemicals were obtained from ROTH, Germany, unless

    otherwisestated.

    4.1. Hydrophilic shake flasksShakeflasksofsize5Lwerewashedwithdeionizedwater.Laterca.1Lofa65%(v/v)

    nitricacidsolutionwaspouredintotheshakeflasks.Followingthis,theshakeflasks

    wereheatedonaheatingplateinanexhaustchamberandthesolutionwasbrought

    toboil.Theywerekeptunderthisconditionfor5min.Then,theshakeflaskswere

    removedfromtheheatingplateandcooleddowntoroomtemperature.Subsequently

    theseflaskswerethoroughlywashedwithdeionizedwateranddriedinadryingoven

    at50Cfor24h.

    4.2. Hydrophobic shake flasksTheinnersurfaceofthe5Lshakeflasksweremadehydrophilicasdescribedabove.

    Thentheinnersurfaceoftheshakeflaskwasmadehydrophobicbysilanisation.A5%

    (w/v) Dichlorodimethylsilan (Sigma) solution was prepared in toluene (Sigma) and

    about1Lof itwaspoured intoeach flask.Subsequently, the flaskswerevigorously

    shakenunderthehoodfor15mininsuchawaythattheliquidmadeauniformfilmall

    overtheinnersurface.Theremainingsolutionwasdiscardedfromtheshakeflasks.The flasks were kept in an exhaust chamber at room temperature for 24 h to

    evaporateremainingDichlorodimethylsilansolution.

    4.3. Mixing performanceMixingperformanceofthedisposableshakingreactorswasmeasuredbyanelectrical

    conductivity method (20). The vessel was filled with deionized water. At given

    operating condition, the tracer, 0.5 mL of 1M sodium chloride, was addedinstantaneouslyintothevesselatsteadystate.AsshowninFigure4.1,theelectrical

  • 7/28/2019 Thse Raval Keyur

    32/102

    Measurementofpowerconsumption

    26

    conductivityoftheliquidwasmeasuredbyaconductivitymeterafteradditionofthe

    tracer.Themixingtimeisdefinedasthetimerequiredfor99%ofthetotalchangein

    concentrationresultingfromtheadditionofthetracer.

    3

    M5

    4

    1

    2

    3

    MM5

    4

    1

    2

    Figure 4.1:Experimentalsetupforelectricalconductivitymeasurementin20Land50Lvessel.1)Cylindricalvessel,2)Electrode,3)Electricalconductivitymeter,4)Shakingmachinemotor,5)Mechanicalsupport.

    4.4. Measurement of power consumption4.4.1. Torque methodPowerconsumption in2Land 20L disposable reactorsmountedona shaker table

    wasmeasuredbythemethoddevelopedbyBchsetal.(41).Themethodisbasedon

    themeasurementofthetorquedevelopedbytheliquidwhichrotatesaroundtheaxis

    ofthevessel.The torque isgeneratedontheaxisofthemotor.Mechanical friction

    lossesandwindresistanceofthevesselarecompensatedbymeasuringthetorque

  • 7/28/2019 Thse Raval Keyur

    33/102

    Materialsandmethods

    27

    generatedbyadeadweightwhichshouldbe thesameas thatoftherotatingliquid

    andthevessel.

    B

    1

    2

    A

    3

    B

    1

    2

    A

    3

    Figure 4.2:ExperimentalsetupforthedeterminationofthepowerconsumptionbythetorquemethodinA)2LcylindricalvesselsandB)20Lvessel.1)Shakertable,2)Torquesensor,3)Shakermotor.

    Thepowerconsumptioncanbecalculatedbyfollowingequation,

    ( )

    LK

    21

    L V

    n2MM

    V

    P

    = 4.1

    where,

    M1 Torquedevelopedbyrotatingliquid(Nm)

    M2 Torquedevelopedbythedeadweight(Nm)ZK Numberofshakeflasksmountedontheshakertable(-)

    Figure4.2AandBshowthearrangementsusedfortorquemeasurementfor2Land

    20Lvessels,respectively.AsshowninFigure4.2A,four2LPCbottlesinsteadofone

    were mounted on the shaker table to maximise the accuracy in the torque

    measurements. The shaker was rotated by the external motor which had an

    integrated torque sensor (ViskoPakt, HiTech-Zang, Germany). The control of this

    motorwasautomatedbyaLabViewsoftware(NationalInstruments,Germany)which

    also recorded the data from the torque sensor. Figure 4.2B shows the same

  • 7/28/2019 Thse Raval Keyur

    34/102

    Measurementofpowerconsumption

    28

    arrangementfora20LPPvessel.Tokeepthetorqueproducedwithinthelimitsofthe

    torque sensor (0 to 1 Nm), only one 20L vessel was used. Measurements were

    performedatdifferentshakingfrequenciesaswellasdifferentfillingvolumes.

    4.4.2. Conventional temperature methodPower consumption in disposable bioreactors was measured by the method

    developedbySuminoetal.(14).Themethodisdescribedinsection3.1.Figure4.3A

    andBshowsthearrangementsusedtomeasurepowerconsumptionfor2L,20Land

    50Lvessels,respectively.Aninsulated2Lvesselwasused.Polyurethanefoamwas

    used to make insulated vessel from anon-insulated vessel of the same size. The

    insulation was done by Mr. H. Ptz at Institute frWerkstoffe der Elktrotechnik,

    RWTHAachen.Thediameterandheightofthe2Lvesselwas12.5cmand20cmrespectively.Thicknessofthepolyurethanefoaminsulationwas3cm.Itwasproved

    inpreliminaryexperiments that the insulationwas necessary toprevent rapid heat

    losses tothe surrounding.Temperatureof the liquid inside the20Land50L vessel

    wasmeasuredasshowninFigure4.3.

    2

    2

    3

    4

    5

    B

    1

    A5

    2

    2

    3

    4

    5

    B

    1

    A5

    Figure 4.3:Measurementofpowerconsumptionusingthetemperaturemethodin(A)insulated2Lcylindricalshakingvessel,(B)insulated20Landnon-insulated20Land50Lcylindricalshakingvessel.1)Shakingtable,2)temperaturesensor,3)shakingmachinemotor,4)heatinsulation,5)digitalmultimeter

  • 7/28/2019 Thse Raval Keyur

    35/102

    Materialsandmethods

    29

    Sincepowerconsumptionina20Land50Lvesselishigherthanthatobtainedin2L

    vessel,insulationofthe20Land50Lvesselwasnotrequired.Theheight,diameter

    andwallthicknessof20Lvesselwere40cm,27cmand4mm,respectively.The

    height, diameter and thickness of 50L vessel were 50 cm, 38 cm, and 15 mm,

    respectively.Theentiresurfaceofthe20Lcylindricalvesselexceptitsopeningwascoveredwith5cmthickpolyurethanefoamtomakeinsulatedvessel.Theinsulation

    was done by Mr. H. Ptz at Institute fr Werkstoffe der Elktrotechnik, RWTH

    Aachen.APT100(Conrad,Germany)temperaturesensorwasmountedatthecentre

    ofthevesselusingathinstainlesssteelrodtomeasuretheliquidtemperature.The

    roddidnotresultinsignificantadditionaldisturbanceoftheshakemixingbecauseof

    itscentrallocation(42).Thetemperatureofthesurroundingairwassimultaneously

    measured by another PT100 sensor. Both sensors were connected to digital

    multimeters(GMC-instruments,Germany)torecordthetemperatureovertime.The

    fluid filling volumes in the range of 20% to 75% were employed. The shaking

    frequencywasvariedfrom100to300rpm.Thefluidatroomtemperaturewaspoured

    intothenoninsulated20Land50Lvesselsandthenheatedtoca.5Chigherthanthe

    desired initial temperatureby immersion heater (KarlRothGmbH,Germany). This

    differencewasaccountedforinitialadjustmentssuchasclosingthevessellid,setting

    updesiredshakingfrequencyetc.Whenusing2Linsulatedvessel,previouslyheated

    fluidtoabout50Cwaspoured.However,for20Linsulatedvessel,fluidwaspoured

    atroomtemperature.Thevesselwasclosedair-tightatthetopandoperatedatgiven

    operatingconditions.Due tothepowerconsumption inducedbyshaking, the given

    fluidwasheatedupin the20L insulatedvessel,whereasitwascooleddownin the

    20L and 50L non-insulated vessels and 2L insulated vessel until a steady state

    temperature difference between the fluid and surrounding air was reached. The

    temperatureprofileofthefluidinnon-insulatedandinsulatedvesselsweremonitored

    over time using above mentioned Pt100 temperature sensors. This data oftemperatureprofileoffluidbeingheateduporcoolingdownwasusedtodetermine

    theparametersPandUAinequation3.1.Forthispurpose,amathematicalmodel

    was developed in the differential equation solver software ModelMaker (Cherwell

    Scientific, UK), fitting the simulation to the measured data by optimising the

    parametersPandUA.

  • 7/28/2019 Thse Raval Keyur

    36/102

    Determinationofoverallheattransfercoefficient(UA)

    30

    4.4.3. Extended temperature methodTheexperimentalsetupfortheextendedtemperaturemethodremainedthesameas

    inthecaseoftheconventionalmethod.Theliquidandroomtemperatureprofileswere

    measured in a similar way as described in the conventional temperaturemethod.

    However,theanalysisof theexperimentaldatadifferedfromthatoftheconventional

    method. A model was developed as described in section 3.2 in the differential

    equationsolversoftwareModelMaker(CherwellScientific,UK),fittingthesimulation

    tothemeasureddataforeachoperatingconditionbyoptimisingtheparametersUA,

    Cfit1andCfit2.Consistencyofthemodelparameterswasvalidatedbyimplementingthe

    samemodel in the gPROMS (PSELtd,UK) process simulationsoftware. Dynamic

    parameter estimation was performed using all the experimental data sets

    simultaneously.

    4.5. Determination of overall heat transfer coefficient (UA)4.5.1. Characterization without lateral air flowAn 80% (w/w) glycerol-water mixture and water were used as fluids. Figure 4.3B

    represents the experimental set up used for measurement of liquid and room

    temperatureprofile. The procedure for determination ofUA remained the same as

    describedinsection4.4.3.

    4.5.2. Characterization with lateral air flowThe experimental set up used for determination of UA with lateral air flow is

    representedinFigure4.4.Waterwasusedasafluidin20Land50Lnoninsulated

    vesselwith50%and40%fillingvolumes,respectively.Theshakingfrequenciesfrom

    150 to250 rpmwereemployed.Theexperimental procedure todetermine the fluid

    temperature profile remained the same as described in section 4.4.2. However,producing andmeasuring the lateralair flowwas different. The lateralair flowwas

    producedbytworevolvingfans(HV-181E,Honeywell,Germany)placedoppositeto

    eachotheroneithersideoftheshaker.Thefanswereplacedinsuchawaythatthe

    aircurrentproducedbythemwouldbreaktheswirloftheairproducedbecauseofthe

    shakingmotionofthevesselandthusenhanceturbulenceinaircurrentaroundthe

    vessel.Thedistanceofthefanwithrespecttotheaxisoftheshakingvesselisgiven

    inFigure4.4B.Thedistanceof80cmwasthenearestfromtheshakingmachine.The

  • 7/28/2019 Thse Raval Keyur

    37/102

    Materialsandmethods

    31

    farthestdistanceofthefansfromthecentreofthevesselwasca.100cmbecauseof

    thelackofthespaceintheshakingmachineroom.

    Figure 4.4:Experimentalsetupfordeterminationofoverallheattransfercoefficientwithlateralairflow.1)shakertable,2)temperaturesensor,3)motor,4)digitalmultimeter,5)fan,6)anemometer

    The air flow was controlled by a 4-stage fan speed regulator. The fans produced

    maximumlocalairvelocityof9m/s.However,theairvelocitiesshowninthisthesis

    areaverageairvelocities.Theaverageairvelocitywasmeasuredbyananemometer(Windmaster 2, Conrad, Germany) over the entire surface of the vessel. The

  • 7/28/2019 Thse Raval Keyur

    38/102

    Determinationofoxygentransferrate(OTR)

    32

    anemometercalculatedandshowedtheaverageairvelocityalongwiththemaximum

    and minimum local air velocity. The fan position was tilted manually about the

    horizontalaxiswheneverrequiredtominimizethedifferencebetweenthemaximum

    andminimumlocalairvelocitiesandthusminimizecavitiesalongthesurfaceofthe

    vessel.Themaximumaverageairvelocityof6.5m/swasencounteredusingtwofans.Thedeviationof0.2 to 0.5m/swasencounteredforaverageairvelocitiesupto4.5

    m/s.Thisdeviationincreasedfrom0.8to1.5m/sforaverageairvelocitiesfrom4.5

    to6.5m/s.ThemathematicalprocedureremainedthesamefordeterminationofUA

    withoutlateralairflowanditsvaluewascalculatedasdescribedinsection4.4.3.

    4.5.3. Measurement of heat transfer area

    Forsimplicity,itwasassumedthattheshakingvesselisaperfectcylinder.Waterwasusedasafluid.BromothymolBluewasaddedtogivebluecolortowaterandenhance

    visibilityofthesiquelformedinsidethevessel.Thedisposablebioreactorwasfilled

    with different fillingvolumes in the rangeof25% to75%. The shaking frequencies

    usedwereintherangeof100rpmto300rpm.Ameasuringscalewasmarkedfrom

    thebottomtothetopofthebioreactorwithincrementsof1cm.Thebioreactorwas

    operatedatagivenoperating condition.The liquid heightwasmeasuredby taking

    photographofthebioreactorandcomparingtheliquidheighttothescalemarkedon

    thebioreactor.Theheattransferareacomprisedofthesurfaceareatouchedbythe

    rotatingfluidi.e.surfaceareaofthevesselbottomandthecylindricalsurfaceoverthe

    vesselwall.Therefore,theheattransferareawascalculatedasthesummationofthe

    surface area of a cylinder with height equivalent to liquid height and diameter

    equivalent tovessel diameterand the surfaceareaofacirclewhosediameterwas

    equivalenttovesseldiameter.

    4.6. Determination of oxygen transfer rate (OTR )The oxygen transfer rate was measuredby sulfite oxidation method (36). Shaking

    bioreactorsofsize20Land50Lwereemployedwithfillingvolumesintherangeof

    25%to75%.Sincelargefillingvolumeswereemployed,the OTRwasdeterminedby

    themethod based on theRAMOS technology (37) to save experimental time and

    chemicals. Sodium sulfite (98% purity, Roth, Karlsruhe, Germany), cobalt sulfate

    (Fluka, Neu-Ulm, Germany) and sodium phosphate buffer (Merck, Darmstadt,

    Germany)wereusedwithoutfurtherpurification.Allexperimentswerecarriedoutwitha 0.5M sulfite solution including 10-7 M CoSO4, 0.012M phosphate buffer and a

  • 7/28/2019 Thse Raval Keyur

    39/102

    Materialsandmethods

    33

    2.410-5Mbromothymolblue(Merck,Darmstadt,Germany)atpH8(36).Beforeand

    duringthepreparationofthesodiumsulfitesolution,thedeionizedwaterwasgassed

    withnitrogentoavoidaprioroxidationofsulfite.Thesulfitesolutionwaspouredinto

    thevessel.Figure4.5showstheexperimentalsetupforOTRmeasurement.

    Figure 4.5:Experimentalsetupfordeterminationofonlineoxygentransferratemeasurementin20Land50Lvessels.1)vessel,2)airinlet,3)airoutlet,4)oxygensensor,5)digitalmultimeter,6)mechanicalsupport,7)motor.

    The vessel was closed air tight and air waspassed in thehead space during the

    rinsingphase.Afteradefiniteperiodoftime,themeasuringphasestarted.Theair

    inletwasclosedfirstandthentheoutletvalvewasclosedtoavoidincreaseinthe

    headspacepressure.Thedecreaseintheoxygenpartialpressureintheheadspace

    wasmonitoredbyanoxygensensormountedontopofvesselasshownintheFigure

    4.5.Afterthemeasuringphase,theairinletandoutletvalveswereopenedagainand

    therinsingphasestarted.Theoperatingconditionwaschangedeitherbychanging

    shaking frequency or by changing filling volume and the same rinsing phase and

    measuringphaserepeatedagaintomeasuretheOTRatthisnewoperatingcondition.

    Thesurroundingatmospherewasventilatedtoavoidanytemperatureincreaseoffluid

  • 7/28/2019 Thse Raval Keyur

    40/102

    Determinationoftheventilationthroughaluminumfoilinshakeflasks

    34

    inthevesselduetomixing;especiallyatshakingfrequenciesmorethan200rpm.The

    changeinthepHofthesulfitesolutionwasobservedbyapHindicator,bromothymol

    blue.TheoptimalpHforsulfiteoxidationmethodinnon-acceleratedreactionregime

    is8.ThispHdecreasesto6.2attheendoftheoxidationreactionwhenallthesulfite

    isconverted intomore acidic sulfate.The bromothymol bluesolutionchanges fromdarkblueatpH8toyellowatpH6.2.However,thereisatransitionphasewhenthe

    sulfitesolutionhaspHofca.7andatthispHthesolutioncontainingbromothymol

    blue isgreencolored.This conditionmay lead to non-accelerated reaction regime

    because of high absorption rate of oxygen in the solution (36). Since, large filling

    volumes inthe rangeof 25% to75%wereemployed, thisnon-accelerated reaction

    regimemayprevailforlongertimeandgivehigherOTRvaluesascomparedtothat

    measuredinnon-acceleratedreactionregime.Toavoidsuchconditions,whenever,

    the sulfite solution in the disposable bioreactor changed to green color, it was

    replacedbyafreshlymadesolution.

    4.7. Determination of the ventilation through aluminum foil in shake flasksThepurposeofthedeterminationofventilation insmallshakeflaskswas tofindan

    equivalentvalueofaerationforlargedisposableshakingbioreactors.Dr.Amoabediny

    developedascale-upstrategyfromlaboratoryshakeflaskstostandardstirredtank

    fermentorsbasedonaeration(40).Inthisstrategy,anequivalentvalueofaerationfor

    standardstirredtankfermentorisobtainedfromtheventilationthroughtheshakeflask

    closure.

    ItisusualinInstituteofMolecularBiotechnologytousealuminumfoilasshakeflask

    closures.Theplantcellculturesarecoveredwithaluminumfoilin250mLwideneck

    shake flasks with 20% filling volume. Therefore, it was necessary to measure the

    mass transfer resistance of aluminum foil for ventilation of shake flask. Dr.

    Amoabediny developed a scale-up strategy to calculate the aeration for standard

    stirred tank fermentorsusingthemass transferresistanceof the flaskclosure(40).

    Thisaerationvalueisequivalenttotheventilationfoundinanormalventilatedshake

    flaskcoveredwithaclosure.Themasstransferresistanceofaluminumfoilasaflask

    closurewas determinedby two flaskmethodmentioned byMrotzeketal (28) and

    Anderleietal (38).Waterwasusedasafluid inoneflaskandotherflaskwasfilled

    withasaturated,aqueoussodiumchloridesaltsolution.Since,tightnessofaluminium

    foilcoveredonflaskcanvaryfrompersontoperson,fourpersonswerechosenforthe

    experiment.Eachpersoncoveredaluminumfoilonfourwideneckflasks(threeflasks

  • 7/28/2019 Thse Raval Keyur

    41/102

    Materialsandmethods

    35

    filledwithwaterandfourthflaskfilledwithsaturatedsodiumchloridesolution)ofsame

    size (250mL)with same filling volume (60%) and incubatedat 25C.The shaking

    frequencyandshakingdiameterwere180rpmand5cm,respectively.Weightofeach

    flaskwasmeasuredatthestartofincubationandagainafter8daysattheendofthe

    experiment. Decrease in flask weight indicated water loss at given operatingcondition.Thewaterevaporationratewascalculatedfromthewaterloss.Thiswater

    evaporationratewasincorporatedinmathematicalmodeldevelopedbyAnderleietal.

    to calculate the oxygen transfer coefficientmentioned in section 3.4 through flask

    closure(38),whichwasfurtherusedinamodeldevelopedbyAmoabedinyetal.(39,

    40)toobtainaerationvaluesequivalenttotheventilationinshakeflasksasdescribed

    insection3.4.

    4.8. Biological experiments4.8.1. Maintenance of plant cell suspension culture in shake flaskThesuspensionculturewassubculturedeverysevendaysinto250mLshakeflasks

    with 20% filling volume of freshnutrientmedium containingMurashige and Skoog

    (MS)medium(43)+Kinetin(Kn)(0.2mg/L)+2,4,dichlorophenoxyaceticacid(2,4

    D) (0.2 mg/L). For sub culturing, 10% inoculum was used. The cultures were

    incubatedonorbitalshaker(KhnerAG,Switzerland)at180rpmand5cmshakingdiameterat25C.ThepHofthemediawasadjustedto5.8beforeautoclaving.

    4.8.2. Cultivation of N. tabacum suspension culture at large-scaleThecellsuspensioncultureof N.tabacumwasscaled-upina10L(7Lfillingvolume)

    standardstirredtankfermentorandindisposableshakingbioreactorsofsize2L(1L

    fillingvolume),20L(10Lfillingvolume)and50L(35Lfillingvolume).Theaerationwas

    keptat0.1vvm.Preliminaryexperimentsat theInstituteofMolecularBiotechnology,

    RWTHAachenrevealedthattheGamborgsB5mediumwasoptimalforcellgrowth

    and human serum albumin production. Therefore, the cells were cultured in

    GamborgsB5medium(44)+Kn(0.2mg/L)+2,4-D(0.2mg/L).ThepHandpO2of

    the suspension culture was measured by the fiber-optic sensor spots whose

    luminescence was measured by Fibox (PreSens GmBH, Regensburg, Germany).

    Following is the diagram which shows experimental set up for plant cell culture

    cultivation.

  • 7/28/2019 Thse Raval Keyur

    42/102

    Biologicalexperiments

    36

    Figure 4.6:Experimentalsetupforplantcellcultivationin20Land50Lbioreactor,5cmshakingdiameter.Thezoomedfigureshowstheoxygensensorgluedtoatransparentpolycarbonatedisk.Thediskisfittedintoapipe.Alightsourceisinsertedintothepipe.

    Thesensorspotsweremountedonthetransparentpolycarbonatedisk.Thediskwas

    fixedontoathinstainlessstillpipe.AlightsourcecomingfromFiboxwasinsertedinto

    thepipeuptothepointwheresensorwasmountedondisk.

    4.8.3. Hybridoma cell culture cultivation

    Figure 4.7:Experimentalsetupforhybridomacellculturein2Lpolycarbonatebioreactorwith1Lfillingvolume,95rpmand5cmshakingdiameter.

  • 7/28/2019 Thse Raval Keyur

    43/102

    Materialsandmethods

    37

    Theexperimentalsetupforthecmyc-hybridomacellcultivationisshowninFigure4.7.

    Thesensorwasgluedonthetransparentvesselwall.ThepHandpO2oftheculture

    mediumwasmeasuredbyFibox(PreSensGmBH,Regensburg,Germany).Thecells

    werecultivated ina 2LPCdisposableshakingbioreactorwith50% filingvolume.A

    shakingdiameterof5cmandashakingfrequencyof95rpmwereemployed.Thecellculture was aerated with sterile air enriched with 5% CO2 when the pO2 level

    decreasedbelow19%saturationorthepHdecreasedbelow7.Thecellcultureand

    medium compositionwere taken from the institute of molecular biotechnology. All

    media components were obtained from Sigma-Aldrich, USA. Typical medium

    formulationwas,

    RoswellParkMemorialInstitute(RPMI)mediumcontainingglutamine(0.3g/L)(45)

    5%FetalCalfSerum(FCS)

    -mercaptoethanol(1ml/L)

    penicilin/steptomycine(100ug/ml)

    Glucose(2g/L)

    Cell-culturetestedglutaminesolution200mM(0.2g/L)

    The above medium was inoculated with 1105

    cells/mL at 37

    C. The cells werecountedusingthehaemocytometer.Thehaemocytometerconsistedoftwochambers

    eachofwhichwasdividedintonine1mm2.Acoverglasswassupported0.1mmover

    thesesquares, thus total volume over eachcellwas 0.1mm3.A0.4%trypanblue

    solution(SigmaAldrich,USA)wasusedasacolorindicatortodifferentiatebetween

    liveanddeadcells.A0.2mLof0.4%trypanbluesolutionwasaddedin0.8mLof

    balancedsalt solution (Sigma Aldrich,USA). This diluted trypan blue solutionwas

    added(0.1mL)toawellmixed0.5mLsamplesolution.After5minutes,thesamplesolutionwasplacedonthetopofhaemocytometerwiththehelpofamicropipette.The

    cellswerecountedunderamicroscope.Thedeadcellstookthetrypanbluestainand

    wereblueincolorwhichdifferentiatedthemfromthelivecells.ThecellspermLwere

    countedasfollows,

    Cells/mL=averagecountpersquare104

    The countwas repeated thrice tocheck reproducibility. The error should be in the

    rangeof15%.

  • 7/28/2019 Thse Raval Keyur

    44/102

    Analyticalmethods

    38

    4.9. Analytical methods4.9.1. Determination of fresh weight and dry weight of plant cell cultureTheplantcellsuspensionwascentrifugedat3000rpmfor20min.Cellpelletswere

    collected in pre-weighed aluminum trays. The difference in weight indicated fresh

    weight(FW)ofthecells.Thefreshcellswerethendriedinanovenat60Cuntilfinal

    weightbecameconstant.Thefinalweightwastakenasthedryweight(DW)ofcells.

    4.9.2. Determination of extracellular sugar concentration in plant cell cultureTheplantcellsuspensionwascentrifugedat3000rpmfor20min.Residualsucrose,

    glucose and fructose concentrations in the supernatantwere determined using an

    HPLC system (Dionex with Chromeleon Software, 232 XL Sampling Injector

    (Abimed/Gilson),UVD 170S (Dionex, Idstein,Germany), Shodex RI71 (Dionex), P

    580Pump(Dionex),1mMsulphuricacid,flow0.6ml/min,organicacidresincolumn

    (RP8,CC125/4sperisorb50-5C8,CS-Chromatographie,Langerwehe,Germany).

    4.9.3. Determination of phosphate concentration in plant cell culturePhosphateconcentrationinthesupernatantwasestimatedusingacolorimetricassay

    based on the formation of a blue colour complex with molybdate ions. Molybdate

    reagent was prepared by mixing 2.6 g Ammonium Molybdate tetrahydrate

    [(NH4)Mo7O24 4H2O)], 20 mL deionized water, 0.07 g potassium antimony oxide

    tartrate hemi hydrate [K(SbO)C4H4O60.5H2O], 60 ml sulphuric acid and 100 mL

    deionized water. 100 L of sample was taken in a 10 mL vial. To this 9 mL of

    deionizedwaterwasadded,followedby200Lofascorbicacidsolution(0.1g/mL)

    and400Lofthemolybdatereagent.Thevolumewasmadeupwithdeionizedwater

    to 10mL.Theabsorbance wasmeasured at 680nm, 15minafter addition of the

    molybdate reagent. Toobtain the standard curveof concentration vs. absorbance,differentconcentrationsofKH2PO4intherangeof0.061mg/Lto2.45mg/Lwereused

    insteadofunknownsample.

    4.9.4. Determination of Human Serum Albumin (HSA) produced by plant cell culturesof N. tabacum HSAwasdeterminedbyenzymelinkedimmunosorbentassay(ELISA).Theprotocol

    wasdevelopedandstandardisedattheinstituteofmolecularbiotechnology,RWTH

    Aachen. Goat-anti HSA antibody (stock solution 1mg/ml) (Bachem) was diluted

    1:1000 in TBSbuffer (pH8, Tris-HCl, pH 8: 0.05M;NaCl: 0.138M; KCl: 2.7mM).

  • 7/28/2019 Thse Raval Keyur

    45/102

    Materialsandmethods

    39

    Eachwell ofa 96-wellmicrotiterplatewas coated with200 Lofabovementioned

    goat-antiHSAsolution.Thesampleapplicationschemeisshownbelow

    Figure 4.8:Afigureofthesampleapplicationona96wellmicrotiterplate.Here,Srepresentssample.Theplatewascoveredwithparafilmandkeptovernightat4 C.Afterincubationwith

    antibody,theplatewasbroughttoroomtemperatureandwashedthricewithwashing

    buffer(pH8;TBSBuffer;Tween-20:0.05%).Thiswasfollowedbyblockingwith200

    Lofblockingbuffer(pH8;TBSBuffer;5%skimmedmilksolutionindoubledistilled

    water) for 30min at room temperature. After blocking, microtiterplatewas washed

    thricewithwashingbuffer(pH:8,TBSBuffer,Tween-20:0.05%).Thiswasfollowed

    by the addition of HSA standard solution in the range of 5 to 100 ng/mL and the

    dilutedsamples(incaseofsupernantant,inrangeofthe1:10,1:20and1:50;incase

    ofcellextractinrangeof1:50,1:100:1:200)totheELISAplateaccordingtosample

    applicationschemeshownintheFigure4.8.Theplatewasincubatedfor24hat4C.

    After incubation, the plate was washed thrice with washing buffer. A 100 L of

    1:20,000 diluted rabbit anti-HSA antibody conjugated with peroxidises (Rockland,

    USA) wasplaced into each well and incubated for 1 h at room temperature. Afterincubation,theplatewaswashedwithwashingbufferasdescribedbefore.Thebound

    anti-HSAantibodywasdetectedusing2-2-azinobis(3-ethylbenzothiazoline-6-sulfonic

    acid (ABTS) substrate tablets dissolved in ABTS buffer (Boehringer Mannheim,

    Germany).A100Lofthisbufferwasplacedineachplateandincubatedfor2h.The

    microtiterplate was then placed in multichannel photometer and absorbance was

    measuredat690nm.

  • 7/28/2019 Thse Raval Keyur

    46/102

    Resultsanddiscussion

    40

    5. Resultsanddiscussion5.1. Effect of hydrophobicity on power consumptionThedisposablecylindricalshakingbioreactorsaremadeofeitherPPorPCmaterialwhich is hydrophobic. In a previous study,Maier et al. concluded that theOTRis

    reduced substantially in hydrophobic shake flasks (21). Therefore, the effect of

    hydrophobicityonpowerconsumptionwasexamined.Thetorquemethodwasusedto

    measurepowerconsumptionin5Lshakeflaskswith300mLfillingvolumeat2.5cm

    shaking diameter. A very interesting phenomenon called as out-of-phase was

    observedinshakeflasks(16,46).Inthiscondition,thefluidinsidetheshakeflaskwas

    eithernotmixinguniformlyorjustrotatingalongthesurfaceoftheflaskwall.During

    in-phase operating conditions, power consumption increased with increase in

    shaking frequency. But in out-of-phase operating conditions, power consumption

    suddenly decreased to a very low value with increase in shaking frequency.

    Hydrophobicnature of the reactor surfacemay havechanged the onsetof out-of-

    phase condition. Since, this phenomenon was distinguishable and can be readily

    measuredbythetorquemethod;itwasusedascriteriontostudytheeffectoftheflask

    surfaceonpowerconsumption.Water,Water+surfactant (TX-100)and a30mPas

    PVPsolutionwasusedasa fluidforthispurpose.Theresultsofpowerconsumption

    areshowninFigure5.1forA)water,B)water+surfactantandC)a30mPasviscous

    solution.Powerconsumptionincreasedwithincreasingshakingfrequency.However,

    atoneoperatingcondition,thepowerconsumptionstartedtodecreasewithincrease

    in shaking frequency and out-of-phase operating condition was started. Some

    shakingmachinesacceleratequicklytocometothedesiredshakingfrequencyand

    thendeceleratetillsetpointisreached.Toincorporatethiseffect,thisexperimentwas

    carriedoutwithincreasinganddecreasingshakingfrequencies.

    ThedashedcurvesinFigure5.1representmeasurementofpowerconsumptionwith

    increasing shaking frequency. The dotted lines represent measurement of power

    consumptionwithdecreasingshakingfrequency.Whenwaterwasusedasafluid,the

    out-of-phase condition started at ca. 101 rpm with increasing shaking frequency,

    whilewithdecreasingshaking frequency, the in-phase condition startedatca. 90

    rpm.Thesamedifferenceofca.10rpmwasalsoobservedforwater+TX-100solution.

    Thishysteresisbetweenin-phaseandout-of-phasewasalsoobserved inrotatingcylindersandshakeflasks(16,47).

  • 7/28/2019 Thse Raval Keyur

    47/102

    Resultsanddiscussion

    41

    Figure 5.1:Powerconsumptionvsshakingfrequencyfor(A)water,(B)water+TX-100,(C)30mPasviscoussolution.()&()hydrophobicshakeflask,()&()hydrophilicshakeflask.Dashedlineswithfilledsymbolsindicateincreasingshakingfrequencyanddottedlineswithopensymbolsindicatedecreaseinshakingfrequency.Theshakeflasksize,fillingvolumeandshakingdiameterwere,5L,300mLand5cm,respectively.

    However,suchahysteresiswasnotobservedfortheinvestigatedviscoussolution.Moreover,thevalueofpowerconsumptionobservedwasalsosimilarforallsolutions

  • 7/28/2019 Thse Raval Keyur

    48/102

    Mixingperformanceandcriticalshakingfrequency

    42

    exceptwater.Whenshakingfrequencyincreased,amaximumdifferenceof50%in

    thevalueofpowerconsumptionwasobservedinhydrophilicandhydrophobicshake

    flask (water as fluid), however such a huge difference was not observed while

    measuring power consumption with decreasing shaking frequency. This could be

    because of the measuring error encountered at such a low value of powerconsumption.Thesefindingsindicatethatthehydrophobicitydoesinfluenceonsetof

    out-of-phaseconditionsdependinguponthefluidphysicalproperty.However,more

    investigationsarerequiredtoreachanyfinalconclusionandhence,forthepresent

    work,itseffectisnottakenintoaccount.

    5.2. Mixing performance and critical shaking frequency

    Cell culture systemsare sensitive toconcentration,pHand temperaturegradients.These gradients may appear because of non-homogeneous or poor mixing.

    Therefore, bioreactors used for animal/plant cell culturemust possessgoodmixing

    characteristics and at the same time should not generate large hydro-mechanical

    stress(11,31).Mixingperformanceofdisposableshakingreactorswasmeasuredby

    electrical conductivity method as described in section 4.3. The mixing time was

    definedasthetimerequiredfor99%ofthetotalchangeinconcentrationafteraddition

    ofthetracer.

    Figure 5.2:Mixingtimein20Land50Lvesselwith15Land35Lfillingvolumerespectivelyat5cmshakingdiameter.

    AsFigure 5.2 depicts,for shaking frequencies larger than80rpm,mixingoccurred

    withinafewsecondsafteradditionofthetracer.Theelectricalconductivitymeterhad

    aminimum time interval of 5 seconds. Therefore, it was not possible to measure

  • 7/28/2019 Thse Raval Keyur

    49/102

    Resultsanddiscussion

    43

    mixingtimeslessthan5seconds.Althoughmixingoccurredatfrequencieslowerthan

    80 rpm, it is not recommended to operate under these conditions as there is no

    regularliquidflowpatternobserved.Katoetal.(20)investigatedcylindricalshaking

    vessels of different sizes for the determination of critical shaking frequency. They

    definedthecriticalshakingfrequencyas theminimumshakingfrequencyrequiredtoachievecompletemixing.Katoetal.derivedfollowingempiricalcorrelationforcritical

    shakingfrequency,

    0

    -0.46 -0.16 0.08

    cn 1.137 d d = 5.1

    Where,

    nc criticalshakingfrequency(1/s)

    d vesseldiameter(m)

    d0 shakingdiameter(m)

    fluidviscosity(Pas)

    Basedontheaboveequation, the calculatedvalueofcriticalshaking frequency for

    20Land50Lvessel,at5cmshakingdiameteris116rpmand102rpmrespectively.

    However, the experimental findings indicate that the mixing occurs at shaking

    frequenciesaslowas60rpm.Itshouldbenotedthat,Katoetal.investigatedshaking

    vesselsofsizerangingfrom8.5to20.6cm,shakingdiameterintherangeof1cmto

    4cmandshakingfrequenciesintherangeof75rpmto200rpm.Exceptforshaking

    frequency,all theotherexperimental conditionsapplied inthisthesisareout ofthe

    rangeoftheoperatingconditionsinvestigatedbyKatoetal.Thiscouldbethereason

    for the deviation of the experimental values and predicted values of the critical

    shakingfrequency.

    5.3. Power consumption in disposable shaking bioreactors5.3.1. Comparison of the temperature method and the torque methodTodateitwasassumedthatthetemperaturemethodcanbeusedtomeasurepower

    consumptionfor fluidshavingwater-likeviscositiesbut the accuracyof thismethod

    wasunknownincomparisontoothervalidatedmethodslikethetorquemethod(18).

    Therefore,bothtorqueandtemperaturemethodswereusedforthedeterminationof

    powerconsumptionin2Land20Ldisposableshakingbioreactorstocheckthevalidity

    of the temperature method. Figure 5.3 shows the values of specific power

  • 7/28/2019 Thse Raval Keyur

    50/102

    Powerconsumptionindisposableshakingbioreactors

    44

    consumptionobtainedusingthetorqueandthetemperaturemethodin2Ldisposable

    shakingvessels.

    Figure 5.3:Specificpowerconsumptionmeasurementin2Lcylindricalvesselatdifferentshakingfrequencies(A)usingthetemperaturemethodand(B)thetorquemethodwith()0.25L,({)0.5L,(U)0.75L,(V)1L,()1.5Lfillingvolumes.Shakingdiameter5cm.

    As shown in Figure 5.3, the tendency and magnitude of the specific power

    consumption was almost identical with both methods. The power consumption

    increasedwithincreasingshakingfrequency.Thisgeneraltendencywasalsofoundin

    other cylindrical shaking vessels where power consumption was measured by an

    electricalmethod(20).Katoetal.useddifferentvesselsizesbutkeptaconstantratio

  • 7/28/2019 Thse Raval Keyur

    51/102

    Resultsanddiscussion

    45

    ofliquidheighttovesseldiameter.Moreover,theshakingfrequenciesusedwerein

    therangeof100to200rpmandshakingdiameterwaskeptintherangeof1cmto4

    cm. In this work wide ranges of shaking frequency were used (100 to 350 rpm).

    However,theshakingdiameterwaskeptconstantat5cm.IntheworkofBchsetal.

    on shake flasks the same tendency and same order of magnitude of powerconsumption was found (18). As the filling volume increased, the specific power

    consumptiondecreased due toa decrease of the surface (friction) area to volume

    ratio.Herefillingvolumeswerechangedfrom12.5to75%ofthetotalvesselvolume.

    Bchsetal.observedsimilartendencyinconicalshakeflasksbychangingthefilling

    volumesfrom4to20%ofthetotalflaskvolume(18).

    The specificpowerconsumptionin 20L shakingvesselswasalsomeasuredby the

    temperaturemethod over awide range of filling volumes (5L to 15L) and shakingfrequencies(100to300rpm)(48).Sincetheappliedintegratedtorquesensorhasa

    maximumlimitof1Nm,itwasnotpossibletomeasurethepowerconsumptionby

    torquemethodforalltheoperatingconditions.Therefore,afillingvolumeof5Lwas

    chosen.Powerconsumptionwasmeasuredforshakingfrequenciesfrom110rpmto

    160rpm.Itwasnotpossibletomeasurethepowerconsumptionbeyond160rpm.

    Figure 5.4:Aparityplotofvaluesofspecificpowerconsumptionmeasuredbythetorquemethodandthetemperaturemethodin2Land20Lcylindricalshakingbioreactorsatdifferentoperatingconditions.Waterwasusedasafluid,5cmshakingdiameter.Thefillingvolumesinthe2Lvesselwere()0.25L,({)0.5L,(U)0.75L,(V)1L,()1.5Landinthe20Lvessel(X)10L.

  • 7/28/2019 Thse Raval Keyur

    52/102

    Powerconsumptionindisposableshakingbioreactors

    46

    Theavailabledataofspecificpowerconsumptionfor2Land20Lvesselsareplotted

    in a logarithmic parity plot in Figure 5.4. Almost all the data points lie within the

    tolerance of 30%. This proves that the temperaturemethod is also a reasonably

    accuratemethod.

    5.3.2. Extended temperature methodTo date, the conventional temperature method was used to determine the power

    consumption indisposableshakingbioreactors(48).Katoetal. used insulated and

    non-insulated20Lshakingvessels.Inmostoftheexperimentsconductedwithnon-

    insulatedvessel,theyusedinitialfluidtemperaturesofca.40C(48).

    Figure 5.5:Comparisonofvaluesofpowerconsumptionduringheatingu