These Energy-Rich Molecules pass on e- to an Electron Transport Chain Also termed, the Respiratory...

23
These Energy-Rich Molecules pass on e- to an Electron Transport Chain Also termed, the Respiratory Chain • The ETC is a series of proteins embedded in the inner mitochondrial membrane Text pg 125

Transcript of These Energy-Rich Molecules pass on e- to an Electron Transport Chain Also termed, the Respiratory...

Page 1: These Energy-Rich Molecules pass on e- to an Electron Transport Chain Also termed, the Respiratory Chain The ETC is a series of proteins embedded in the.

These Energy-Rich Molecules pass on e- to an

Electron Transport ChainAlso termed, the Respiratory Chain

• The ETC is a series of proteins embedded in the inner mitochondrial membrane

Text pg 125

Page 2: These Energy-Rich Molecules pass on e- to an Electron Transport Chain Also termed, the Respiratory Chain The ETC is a series of proteins embedded in the.

Electron Transport Chainor Respiratory Chain

Page 3: These Energy-Rich Molecules pass on e- to an Electron Transport Chain Also termed, the Respiratory Chain The ETC is a series of proteins embedded in the.

ETC

A. Includes 4 different protein units

• Labeled as Respiratory Complexes I-IV

B. High energy electrons are passed from NADH or FADH2 to each complex in order and finally to O2 to form H2O

C. As e- are passed on, the

complex proteins actively

pump H+ ions into the

intermembrane space.. Chemiosmosis

1 2 3

4

Page 4: These Energy-Rich Molecules pass on e- to an Electron Transport Chain Also termed, the Respiratory Chain The ETC is a series of proteins embedded in the.

The Electron Transport Chain

Very little energy has been produced during glycolysis and the Krebs Cycle. Most of the energy locked in the original glucose molecule will be released by an electron transport chain in a process known as oxidative phosphorylation.

The electron transport chain is a network of electron-carrying proteins located in the inner membrane of the mitochondrion. These proteins transfer electrons from one to another, down the chain, much in the way a bucket brigade passes buckets of water. The electrons will eventually be added, along with protons, to oxygen, which is the final electron acceptor and produces water.

The ATP is produced by a proton motive force. This force is a store of potential energy created by a gradient formed when hydrogens (protons) are moved across the inner membrane.

The electron transport chain merely produces a gradient through which ATP can be made (this is known as chemiosmosis).

Page 5: These Energy-Rich Molecules pass on e- to an Electron Transport Chain Also termed, the Respiratory Chain The ETC is a series of proteins embedded in the.

Electron Transport Chain(or: Respiratory Chain)

• series of electron carrier proteins which transfer electrons from NADH & FADH2 to oxygen...forming water

• end result is the production of ATP in a process known as...... Oxidative Phosphorylation

Text pg 125 & 127

Page 6: These Energy-Rich Molecules pass on e- to an Electron Transport Chain Also termed, the Respiratory Chain The ETC is a series of proteins embedded in the.

Four molecule types arranged into 4 protein

complexes:• Respiratory complex I- accepts electrons

from NADH, passes to: • Complex II- accepts electrons from I (and

from FADH2) and then passes to: • Complex III- accepts electrons from II,

passes to:• Complex IV- accepts electrons from III and

transfers them to oxygen

Page 7: These Energy-Rich Molecules pass on e- to an Electron Transport Chain Also termed, the Respiratory Chain The ETC is a series of proteins embedded in the.

ETC

NADH FADH2

QI

II III IV

O2

H2O

H+ H+H+

MATRIX

Intermembrane SpaceH+ H+

Page 8: These Energy-Rich Molecules pass on e- to an Electron Transport Chain Also termed, the Respiratory Chain The ETC is a series of proteins embedded in the.

Chemiosmosis Process

• ETC complexes pass electrons along and pumps H+ ions into intermembrane space.

• H+ ion concentration thus becomes high in intermembrane space and low in matrix.

• H+ can only get back into matrix by going through protein channels (the F1particles)

Page 9: These Energy-Rich Molecules pass on e- to an Electron Transport Chain Also termed, the Respiratory Chain The ETC is a series of proteins embedded in the.

Chemiosmotic theory

Proposed by Mitchell 1961 and proven by about 1977. Nobel Prize 1979.

ATP synthesis is coupled indirectly to electron transport via the Proton Motive Force (PMF). In the chemiosmotic model, each of the membrane protein sites is responsible for extruding protons, so creating a proton concentration gradient across the membrane.

The ATP synthase uses this PMF gradient to energize the synthesis of ATP.

Page 10: These Energy-Rich Molecules pass on e- to an Electron Transport Chain Also termed, the Respiratory Chain The ETC is a series of proteins embedded in the.

ATP synthase F1 Particles

• These are the lollipops referred to earlier…the ATP synthase proteins!

Page 11: These Energy-Rich Molecules pass on e- to an Electron Transport Chain Also termed, the Respiratory Chain The ETC is a series of proteins embedded in the.

Matrix

Cristae

CristaeH+H+

H+H+

H+

F1

ADP ATP

III

III IV

H+

H+H+

H+

Page 12: These Energy-Rich Molecules pass on e- to an Electron Transport Chain Also termed, the Respiratory Chain The ETC is a series of proteins embedded in the.

F1 Particles = ATP Synthase

• Protein particles which embed in inner mitochondrial membrane and face matrix

• Actual site of ATP production in mitochondria

F0

F1

Page 13: These Energy-Rich Molecules pass on e- to an Electron Transport Chain Also termed, the Respiratory Chain The ETC is a series of proteins embedded in the.

The ATP synthase

• In eubacteria, chloroplasts and mitochondria, the synthesis of ATP is carried out by a molecular machine known as ATP synthase. It sits in the inner membranes where it uses the transmembrane proton motive force (pmf) generated by the oxidation of nutrients.

• The enzyme has two major structural parts known as F1 and Fo. In the enzyme from mitochondria, the F1 catalytic domain is a globular assembly of five different proteins a, b, g, d and e.

http://www.mrc-dunn.cam.ac.uk/research/atpase.html

Page 14: These Energy-Rich Molecules pass on e- to an Electron Transport Chain Also termed, the Respiratory Chain The ETC is a series of proteins embedded in the.

ATP Synthase: How it works

ATP synthase molecules located within mitochondria stick out of the inner membrane in mushroom-like clusters.

The ATP synthase molecule has two parts. Recently, it was discovered that one part, the "mushroom stem," apparently rotates within the "mushroom cap.“ A Nobel prize was awarded to the researcher who suggested that forming ATP was tied to this rotation.

As the "stem" rotates, it creates a powerful internal shifting in each of the coiled sections within the cap. This shifting provides the energy to cause chemical changes. At one site, the "ingredients" for ATP come together. At another site, they assemble as ATP, and at the third site, the rotation readies the fully formed ATP to pop off the synthase molecule, for use throughout the cell.

Page 15: These Energy-Rich Molecules pass on e- to an Electron Transport Chain Also termed, the Respiratory Chain The ETC is a series of proteins embedded in the.

Rotation of the Stem

The central stem rotates at about 50-100 times per second. The rotation is fuelled by the pmf.

The rotation of the central stem in the bacterial enzyme has been observed directly by microscopy

Page 16: These Energy-Rich Molecules pass on e- to an Electron Transport Chain Also termed, the Respiratory Chain The ETC is a series of proteins embedded in the.

ATP Yield from ETC

Within Mitochondria:

• Each NADH in ETC yields 3 ATPs

• Each FADH2 yields 2 ATPs

From Cytoplasm:

• Each NADH in ETC yields 2 ATPs

Page 17: These Energy-Rich Molecules pass on e- to an Electron Transport Chain Also termed, the Respiratory Chain The ETC is a series of proteins embedded in the.

ETC

NADH FADH2

QI

II III IV

O2

H2O

H+ H+H+

MATRIX

Intermembrane Space

Page 18: These Energy-Rich Molecules pass on e- to an Electron Transport Chain Also termed, the Respiratory Chain The ETC is a series of proteins embedded in the.

H+ Gradient produces force for ATP Synthesis

ATP is made indirectly using the PMF as a source of energy. Each pair of protons yields one ATP.

H+H+H+

H+

H+

F1

ADP ATP

III

III IV

H+

H+

H+ H+

Page 19: These Energy-Rich Molecules pass on e- to an Electron Transport Chain Also termed, the Respiratory Chain The ETC is a series of proteins embedded in the.

Review: Cellular Respiration

Page 20: These Energy-Rich Molecules pass on e- to an Electron Transport Chain Also termed, the Respiratory Chain The ETC is a series of proteins embedded in the.

Total ATP Theoretical Yield

Page 21: These Energy-Rich Molecules pass on e- to an Electron Transport Chain Also termed, the Respiratory Chain The ETC is a series of proteins embedded in the.

Finally: The Total ATP Sum

from 1 Glucose

36 ATPs !!!

vs. 2 ATPs for glycolysis

Do the efficiency math...

~50%

Page 22: These Energy-Rich Molecules pass on e- to an Electron Transport Chain Also termed, the Respiratory Chain The ETC is a series of proteins embedded in the.

Next:Photosynthesis

Page 23: These Energy-Rich Molecules pass on e- to an Electron Transport Chain Also termed, the Respiratory Chain The ETC is a series of proteins embedded in the.

Respiration vs. Photosynthesis

Photosynthesis and respiration as complementary processes in the living world. Photosynthesis uses the energy of sunlight to produce sugars and other organic molecules. These molecules in turn serve as food. Respiration is a process that uses O2 and forms CO2 from the same carbon atoms that had been taken up as CO2 and converted into sugars by photosynthesis. In respiration, organisms obtain the energy that they need to survive. Photosynthesis preceded respiration on the earth for probably billions of years before enough O2 was released to create an atmosphere rich in oxygen. (The earth's atmosphere presently contains 20% O2.)