Thermodynamics IIIIIIII · 2006. 10. 9. · In chapter 6,) lim ln φ J RT G ∴lim (i P→0 R i...

26
Thermodynamics II II II II Department of Chemical Engineering Prof. Kim, Jong Hak

Transcript of Thermodynamics IIIIIIII · 2006. 10. 9. · In chapter 6,) lim ln φ J RT G ∴lim (i P→0 R i...

  • Thermodynamics IIIIIIII

    Department of Chemical Engineering

    Prof. Kim, Jong Hak

  • 11.5 Fugacity & Fugacity Coefficient : Pure Species11.5 Fugacity & Fugacity Coefficient : Pure Species11.5 Fugacity & Fugacity Coefficient : Pure Species11.5 Fugacity & Fugacity Coefficient : Pure Species

    => · provides fundamental criterion for phase equilibrium

    · not easy to apply to solve problem

    PlnRT)T(ΓG iig

    i +=

    Egn (11.27) => valid only for pure species i in the ideal gas

    iii flnRT)T(Γ≡G +

    i

    iig

    ii φlnRTP

    flnRTG-G == ( : fugacity coefficient)

    Limitation of Egn (11.29) ( G = H - TS)

    P -> 0 or yi -> 0 => ∞-→µ i (which is not true for ideal gas)

    For real gas, fugacity is introduced instead of P

    i

    R

    i φlnRTG =∴∴∴∴ (11.33)

  • set J as zero,

    RT

    PB1-z

    ii

    i =

    RT

    PBdP

    RT

    BdP

    RT

    Bφln

    iiP

    0

    iiiiP

    0i ∫∫ ===

    RT

    PBφln∴ iii =

    => : obtained from PVT data or from compressibility factor

    1φ&0G,Pf iR

    i

    ig

    i ===

    ,J)RT

    G( 0P

    R

    i=

    =P

    dP1)-z(J≡

    RT

    Gi

    P

    0

    R

    i ∫+

    For an ideal gas,

    In chapter 6,

    Jφlnlim)RT

    G(lim∴ i

    0→P

    R

    i

    0→P==

    which means that0)P

    fln(limφlnlim

    i

    0→Pi

    0→P== 1

    P

    flimφlim

    i

    0→Pi

    0→P==

    From egn (6.49)P

    dP1)-z(φln,

    P

    dP1)-z(

    RT

    Gi

    P

    0ii

    P

    0

    R

    i ∫∫ ==

  • ■ Evaluation of fugacity coeff. from Cubic EOS

    iii Iq-)β-ln(Z-1-Zφln∴ =

    qI-)β-ln(Z-1-ZRT

    GR

    =

    RT

    Pbβ

    i

    i =

    i

    R

    i φlnRTG = (11.33)

    (6.66)

    (11.37)

    where RTb

    )T(aq

    i

    i

    i = )βεtZ

    βδtZln(

    ε-δ

    1I

    iii

    iii

    ii

    i =

    RTρ

    PZ

    i

    i =

    (3.50) (3.51) (6.65b)

    (11.37)

    If, εδ =

    iii

    i

    iii

    ii

    iβεZ

    β

    bβε1

    bρI

    +=

    +=

  • ■ Vapor-Liquid equilibrium for pure species

    v

    ii

    v

    i flnRT)T(ΓG +=

    l

    ii

    l

    i flnRT)T(ΓG +=

    For species i as a saturated vapor, using eqn(11.3)

    (11.38a)

    (11.38b)

    0f

    flnRTG-GdG l

    i

    v

    il

    i

    v

    i ===∴∴∴∴

    Consider vapor liquid equilibrium

    For species i as a saturated liquid

    at equilibrium

    sat

    i

    l

    i

    v

    i fff∴ ==sat

    if( : either saturated liquid or vapor)

    Alternative formulation

    sat

    i

    sat

    isat

    ip

    fφ = sat

    i

    l

    i

    v

    i φφφ ==∴∴∴∴

    => Criterion of VLE for pure species G, μ, f, Φ

  • ■ Fugacity of a pure liquid

    P

    dP1)-z(φln vi

    P

    0

    sat

    i

    sati

    ∫=

    sat

    l

    i

    v

    i ff =

    dPVG-G ip

    p

    sat

    ii sati∫=

    - Fugacity of pure species i as a compressed Liq.

    => calculated from the product of easily evaluated ratio

    CBA

    P)P(f

    )P(f

    )P(f

    )P(f

    P

    )P(f)P(f satisat

    i

    l

    i

    l

    i

    sat

    i

    v

    i

    sat

    i

    l

    i

    sat

    i

    sat

    i

    v

    il

    i = at const T

    Ratio A => vapor phase fugacity coeff., at VLE

    Ratio B => 1 since at VLE

    Ratio C => the effect of pressure on the fugacity of pure liquid ;

    VdPdG = (6.10) at const T

  • sat

    i

    l

    i PCBA)P(f •••=

    l

    iV

    )RT

    )P-P(Vexp(pφf∴

    sat

    i

    l

    isat

    i

    sat

    i

    l

    i =

    )dPVRT

    1exp(pφf li

    P

    P

    sat

    i

    sat

    i

    l

    i sati∫∫∫∫=

    )dPVRT

    1exp(

    )P(f

    )P(f li

    P

    Psat

    i

    sat

    i

    l

    i

    sati∫∫∫∫=

    Ratio C,

    dPVf

    flnRT li

    p

    psat

    i

    sati∫=∴∴∴∴

    from (11-31) sat

    i

    isat

    iif

    flnRTG-G =∴∴∴∴iii flnRT)T(ΓG +=

    since

    Because is a very weak function of P => assumed constant

    sat

    iφl

    iVsat

    iP

    Poynting factor

    ,zvi: can be calculated from RTPB

    1-Zii

    i =

    : value for saturated liquid

    )RT

    PB(EXPφ∴

    sat

    iiisat

    i =

    : Antoine eqn.

  • 11.6 Fugacity & Fugacity Coefficient : Species in Solution11.6 Fugacity & Fugacity Coefficient : Species in Solution11.6 Fugacity & Fugacity Coefficient : Species in Solution11.6 Fugacity & Fugacity Coefficient : Species in Solution

    For species i in a mixture of real gas or in a solution of liquid

    iii f̂lnRT)T(Γ≡µ +

    if̂

    π

    i

    β

    i

    α

    i f̂f̂f̂ === …

    l

    i

    v

    i f̂f̂ =

    : Fugacity of species i in solution (replacing partial pressure)

    -> Multicomponent VLE,

    (11.46)

    at equilibrium, the fugacity of each component is the same in all phases

  • )Py

    f̂φ̂(φ̂lnRTG∴

    i

    i

    ii

    R

    i ==

    ig

    ii

    R

    i M-MM⇒ =

    ig

    ii

    R

    i G-GG =

    ■ Residual property igR M-MM =

    jjj n,T,P

    i

    ig

    n,T,P

    i

    n,T,P

    i

    R

    ]n∂

    )nM(∂[-]

    n∂

    )nM(∂[]

    n∂

    )nM(∂[ =

    R

    iig

    ii

    i

    iig

    ii Gµ-µ,Py

    f̂lnRTµ-µ ==

    Pyf̂⇒1φ̂&0G iig

    i

    ig

    i

    R

    i ===

    Multiply n and differentiate with respect to ni at constant T, P, nj

    From egn(11.29)

    (11.46)

    Written for G,

    ii G≡µ

    iii

    ii

    ig

    iig

    i

    f̂lnRT)T(Γµ

    )Pyln(RT)T(ΓGµ

    +=

    +==

    (since )

    iφ : fugacity coeff. of species in solution

    For ideal gas :

  • ■ The fundamental residual-property relation

    dTRT

    nG-)nG(d

    RT

    1≡)

    RT

    nG(d 2

    ∑i

    iidnµ(nS)dT-dP)nV()nG(d +=

    i

    i

    i

    2 dnRT

    GdT

    RT

    nH-dP

    RT

    nV)

    RT

    nG(d ∑+=

    Alternative form

    (11.54)

    Special case of 1 mol of a constant-composition

    SdT)-VdPdG

    TS-HG(

    =

    =

    →)RT

    nG(∴ Function of all of i canonical variable (T, P, nj)

    => Allow evaluation of all other thermodynamic properties

    compare (6.37) dTRT

    H-dP

    RT

    V)

    RT

    G(d

    o

    =

    => Since we cannot evaluate absolute value of thermodynamic propertyes

    => use residual property

  • For ideal gas

    ∑i

    i

    ig

    i

    2

    igigig

    dnRT

    G

    RT

    nH-dP

    RT

    nV)

    RT

    nG(d +=

    )φ̂lnRTG( iR

    i =

    ∑i

    ii2

    RRR

    dnφ̂lndTRT

    nH-dP

    RT

    nV)

    RT

    nG(d +=

    Subtracting this eqn from (11.54)

    ∑ iR

    i

    2

    RRR

    dnRT

    GdT

    RT

    nH-dP

    RT

    nV)

    RT

    nG(d +=

    => The fundamental residual-property relation

    by introducing fugacity coeff.

    x,P

    R

    x,T

    RR

    ]T∂

    )RT/(∂-T[

    RT

    H,]

    P∂

    )RT/G(∂[

    RT

    V⇒

    RG

    ==

    => Use eqn (6.46), (6.48), (6.49) for the calculation

    jn,T,P

    i

    R

    ]n∂

    )RT/nG(∂[φ̂ln = iφ̂ln⇒ RT/G

    R: partial property of

  • For n mol of constant – composition mixture

    P

    dPn)-nZ(

    RT

    nG P

    0

    R

    ∫∫∫∫=

    1n∂

    n∂,Z

    n∂

    )nZ(∂

    i

    i

    i

    ==

    Differentiation with respect to nj at constant T, P, nj

    P

    dP]

    n∂

    n)-nZ(∂[φ̂ln

    jn,T,P

    j

    P

    0i ∫=

    since,

    P

    dP1)-Z(φ̂ln∴ i

    P

    0i ∫= (11.60)

  • ■■■■ Fugacity coefficients from the Fugacity coefficients from the Fugacity coefficients from the Fugacity coefficients from the virialvirialvirialvirial equation of stateequation of stateequation of stateequation of state

    iφ̂

    RT

    BP1z +=

    ∑∑i j

    ijji ByyB =

    Evolution of value of from EOS

    Simplest form of virial eqn

    For binary mixture

    B = y1y1B11 + y1y2B12 + y2y1B21 + y2y2B22

    = y21B11 + 2y1y1B12 + y22B22

    (B11, B22) : virial coeff. of pure species

    (B12) : cross coeff (mixture property)

    (11.62)

    P

    dP1)-z(φln

    P

    0∫= (11.60)

    (3.38)

    where Bij : characterize bimolecular interaction

    b/w i and j (Bij = Bji)

    (11.61)

    where B=f(T) composition second virial coeff.

    For n mol of binary gas mixture eqn(3.38) becomes

    RT

    nBPnnZ +=

  • Differentiation with respect to n1

    From eqn (11.60)

    Second virial coeff. can be written

    22 n,T

    1

    n,T,P

    1

    1 ]n∂

    )nB(∂[

    RT

    P1]

    n∂

    )nz(∂[≡z +=

    22 n,T

    1

    n,T

    1

    P

    0i ]

    n∂

    )nB(∂[

    RT

    P⇒dP]

    n∂

    )nB(∂[

    RT

    1φ̂ln ∫=

    B = y1(1 - y2)B11 + 2y1y2B12 + y2(1 - y1)B22

    = y1B11 - y1y2B11 + 2y1y2B12 + y2B22 – y1y2B22

    = y1B11 + y2B22 + y1y2δ12, δ12 ≡ 2B12 – B11 – B22

    since yi = ni / n, multiplying by n 1221

    222111 δn

    nnBnBnnB ++=

    122

    2

    1

    11n,T

    1

    δn)n

    n-

    n

    1(B]

    n∂

    )nB(∂[

    2+=

    12

    2

    211122111 δyBδy)y-1(B +=+=

    by differentiation

    )δyB(RT

    Pφ̂ln∴ 12

    2

    2111 +=

    )δyB(RT

    Pφ̂ln 12

    2

    1222 +=by similar method

  • For multicomponent gas mixture, the general eqns.

    ])δ-δ2(yy2

    1B[

    RT

    Pφ̂ln ∑∑

    I J

    ijikjikkk +=

    0δB-B-B2≡δ

    δδ0δB-B-B2≡δ

    kkjjiiijij

    ikkiiikkiiikik

    =

    ==

  • 11.7 Generalized Correlations for the Fugacity Coefficient11.7 Generalized Correlations for the Fugacity Coefficient11.7 Generalized Correlations for the Fugacity Coefficient11.7 Generalized Correlations for the Fugacity Coefficient

    To calculateΦ, use Generalized methods for compressibility factor Z

    rcrc dPPdP,PPP ==

    P

    dP1)-z(φln

    P

    0i ∫=

    10zωzz +=

    r

    r1P

    0r

    r0Pr

    0 P

    dPzω

    P

    dP1)-z(φln

    r

    ∫∫ +=

    Correlation for (3.57)

    where 7.0Tr

    sat

    r )log(P-1.0-≡ω =

    Eqn (11.35)

    r

    r

    i

    P

    0i

    P

    dP1)-z(Φln⇒

    r

    ∫=∴∴∴∴

    (const T) transformed into generalize form

    using (11.65)

    Using eqn (3.57)

    ⇒φlnωφlnφln⇒ 10 += Three parameter generalized correlation for Φ

    ⇒⇒⇒⇒=∴∴∴∴ ω10 )φ)(φ(φ use table E13 ~ E14

  • 10 BωBB̂ +=

    )BωB(T

    P1-Z 10

    r

    r+=∴∴∴∴

    )]BωB(T

    Pexp[φ⇒)BωB(

    T

    Pφln 10

    r

    r10

    r

    r+=+=

    r

    r

    T

    PB̂1Z +=

    Using Pitzer correlations for the second virial coeff.

    => Insert into eqn(11.15) and integrate

    ,T

    0.422-083.0B 1.6

    r

    0= 4.2

    r

    1

    T

    0.172-139.0B =

    (3.61) (3.63)

    where

    ■ Generalized correlations for fugacity coefficient in gas mixture

    ])δ-δ2(2

    1B[

    RT

    Pφ̂ln

    i j

    ijikkkk ∑∑∑∑∑∑∑∑+=

    More general form for coeff.1

    ij

    0

    ij BωBB̂ +==> B0, B1 -> function of Trij

    Cijrij T/TT =

    Cij

    Cijij

    ijRT

    PB≡B (11.69) =>use Prausnitz’s combining rule for the

    calculation of Cij,Cijij RT,ω

  • )k-1()TT(T ij2/1

    cjcicij =

    cij

    cijcij

    cijV

    RTzP =

    iφ̂

    2

    ωωω

    ji

    ij

    +=

    2

    zzz

    cjci

    cij

    +=

    (11.70) (11.71)

    (11.72) (11.73)

    Where kij = empirical interaction parameter

    if i=j and for chemically similar species kij=0 -> all eqns reduce

    to value for pure species

    Procedure to obtain

    ① Find value of Bij from (11.69)

    ② insert Bij into eqn(11.61)

    ③ using eqn(11.14)

    obtain value of

    value of the pure-species virial coeff. Bkk, Bii for eqn

    ∑∑i j

    ijji ByyB =

    ])δ-δ2(yy2

    1B[

    RT

    Pφ̂ln ∑∑

    i j

    ijikjikkk +=

    φiφ̂ln

    10

    C

    CBωB

    RT

    BPB̂ +==

    =>find B

  • 10101010----8. The ideal solution model8. The ideal solution model8. The ideal solution model8. The ideal solution model

    Definition : · all molecules are of the same size

    · all forces b/w molecules (like and unlike) are equal

    ii

    id

    i

    id

    i xlnRT)P,T(GG≡µ +=

    The chemical potential from ideal-gas mixture model

    i

    ig

    i

    ig

    iig

    i ylnRT)P,T(GG≡µ += (11.24)

    => Only applicable for ideal gas

    replace )P,T(G⇒)P,T(G iig

    i(Gibbs energy of pure i in its real physical state

    of gas liquid, solid)

    ■ chemical potential of an ideal solution

    (11.75)

    => applicable gas, liquid, solid

    From eqn(11.18)

    iT

    i

    x,T

    id

    iid

    i V)P∂

    G∂()

    P∂

    G∂(V ===

    ix,T

    id

    iV)

    P∂

    G∂( =

    i

    id

    i VV∴ = (11.76)

  • ,Hid

    i

    iiip

    i

    x,P

    id

    iid

    i Rlnx-SRlnx-)T∂

    G∂-()

    T∂

    G∂-(S ===

    ∑∑

    ∑∑

    i

    ii

    id

    i

    ii

    id

    i

    ii

    i

    ii

    id

    i

    ii

    i

    ii

    id

    VxV

    VxV

    xlnxR-SxS

    xlnxRTGxG

    =

    =

    =

    +=

    id

    i

    id

    i

    id

    i TSGH +=

    iiii

    id

    i RTlnx-TSxlnRTGH ++=

    iii HTSG =+=

    From eqn(11.19) ix,Pi

    S-)T∂

    G∂( =

    (11.77)

    For , using (11.75) (11.77)

    by summability relation, ∑i

    ii MxM =

    ∑i

    ii

    id HxH, =

  • ■■■■ The Lewis / Randall RuleThe Lewis / Randall RuleThe Lewis / Randall RuleThe Lewis / Randall Rule

    From eqn (11.46)

    Alternative form of Lewis/Randall Rule :

    (divide 11.83 with Pxi)

    ii

    id

    i fxf̂ =

    i

    id

    i φφ̂∴ =

    Lewis/Randall Rule : fugacity of each species ∝ mole fraction

    proportional constant = fugacity of pure species i

    (11-81)

    iii flnRT)T(Γ≡G +iii f̂lnRT)T(Γ≡µ + (11.31)

    (11.46-11.31) =>

    )f

    f̂ln(RTGµ

    i

    i

    ii +=

    )f

    f̂ln(RTGGµ

    i

    id

    i

    i

    id

    iid

    i +==

    For the special case of an ideal solution

    If compared with eqn(11.75) iiid

    i xlnRTGµ +=

    (11.83) => Show the composition dependence of the

    fugacity in an ideal solution (Lewis/Randall rule)

    Fugacity coeff. of species i in an ideal solution

    = fugacity coeff. of pure species i

  • 11.9. Excess Properties11.9. Excess Properties11.9. Excess Properties11.9. Excess Properties

    Mathematical formulationidE M-M≡M

    ,G-GG idE =

    )M--(MM-M igidRE =

    ∑ ∑i i

    ii

    ig

    ii

    igxlnxRTGxG +=

    -> obtain thermodynamic property using Residual properties

    In the case of liquid, measure the departure from ideality not from ideal gas, but

    from ideal solution => excess property

    (ideal gas mixture => ideal solution of ideal gas)

    ,H-HH idE = ,S-SSidE

    =EEE TS-HG =

    igR M-MM = 0ME

    =

    Recall the relation b/w ii

    R φ̂,φ,G and PVT data

    P

    dP1)-z(

    RT

    Gi

    P

    0

    R

    i ∫=

    P

    dP1)-z(φln i

    P

    0i ∫=

    P

    dP1)-z(φ̂ln i

    P

    0i ∫= (11.60)(11.35)

    (6.49)

    (Difference b/w actual property and ideal solution)

    For example,

    considering Pure species

  • ∑ ∑ ∑i i i

    R

    ii

    ig

    iiii

    igid MxMx-MxM-M∴ ==

    ∑i

    R

    ii

    RE Mx-MM∴ =

    i

    i

    E

    i

    2

    EEE

    dnRT

    GdT

    RT

    nH-dP

    RT

    nV)

    RT

    nG(d ∑+=

    Compare and

    ※ Fundamental excess-property relation

    ※ Excess Property : applied to only mixture

    Residual property : applied to both pure species & mixture

    For partial excess property :

    => Similar to fundamental residual-property relation

    id

    i

    E

    i

    E

    i M-MM =

    igM idM

    ∑ igiiig HyH = ∑ iiid HxH =

    ∑∑ iiigiiig ylnyR-SyS = ∑∑ iiiiid xlnxR-SxS =

    ∑∑ iiigiiig ylnyRT-GyG = ∑∑ iiiiid xlnxRT-GxG =

    ERigid M-MM-M =>

  • ■■■■ The Excess Gibbs Energy and the Activity CoefficientThe Excess Gibbs Energy and the Activity CoefficientThe Excess Gibbs Energy and the Activity CoefficientThe Excess Gibbs Energy and the Activity Coefficient

    iii f̂lnRT)T(ΓG +=

    iii

    id

    ii

    id

    i fxlnRT)T(Γf̂lnRT)T(ΓG +=+=

    ii

    iE

    i

    id

    iifx

    f̂lnRTGG-G ==

    ii

    i

    ifx

    f̂≡)γ(

    From Lewis/Randall rule, for an ideal solution

    Difference

    activity coefficient (11.90)

    From eqn (11.46) iii

    f̂lnRT)T(Γµ +=

    i

    E

    i γRTln≡G∴ (11.91)

    i

    R

    i φ̂lnRTG = 1γ,0G iE

    i ==, for ideal solution

    To device chemical potential of mixture

    ,γlnRTG-G iid

    ii = ii

    id

    i xlnRTGG += (11.75) iiii xγlnRTGG += (11.92)

    Comparison of three equations defining chemical potential

    ii

    i

    i

    i

    id

    i

    i

    igig

    i

    xγlnRTGµ

    xlnRTGµ

    ylnRTGµ

    i

    i

    i

    +=

    +=

    += (11.24)

    (11.75)

    (11.92)

    1st Eqn : ideal gas mixture model2nd Eqn : ideal solution model

  • ■ Excess-property Relation

    i

    i

    E

    i

    2

    EEE

    dnRT

    GdT

    RT

    nH-dP

    RT

    nV)

    RT

    nG(d ∑+=

    x,T

    EE

    ]P∂

    )RT/G(∂[

    RT

    V∴ =

    x,P

    EE

    ]T∂

    )RT/G(∂[-T

    RT

    H=

    jn,T,P

    i

    E

    i ]n∂

    )RT/nG(∂[γln =

    In fundamental excess property relation

    (11.91)(11.90),

    (11.96)

    )γlnRTG(dnγlndTRT

    nH-dP

    RT

    nVi

    E

    i

    ii2

    EE

    ∑ =+=

    => Effect of T, P on the EG

    => : partial properties of iγln

    i

    R

    n

    G

    => Similar to eqn for Residual property

    ※ Difference : in the case of relation to GR -> we can use experimental PVT

    data ~ EOS to calculate Residual property

    i

    EE γ,H,V => Can be obtained by experiment

    EE H,V

    : from VLE data

    : from mixing experiment

  • x,T

    i

    E

    i)

    P∂

    γln∂(

    RT

    V∴ =

    x,P

    i

    2

    E

    i)

    T∂

    γln∂(

    RT

    H- =

    ∑ 0Mdx ii =

    ∑ ii MxM =

    ∑i

    ii

    E

    γlnxRT

    G=

    ∑i

    ii 0γlndx =

    => Effect of T, D on the

    (11.98)(11.97),

    iγln ,RT

    GE

    RT

    Gγln

    E

    i =∴∴∴∴: partial property of

    From the summability eqn

    From Gibbs/Duhem eqn (at const T, P)

    (11.99)