Thermodynamics I Overview

3
1 EGN 3343 Thermodynamics I Prof. Ryan Toomey, PhD. Spring 2012 I. CATALOG DESCRIPTION: Axiomatic introduction to thermodynamic concepts of energy, entropy, work and heat. Properties of ideal and real substances. Applications: power production and refrigeration, phase equilibrium II. PREREQUISITES: Physics II, PHY 2049 III. TEXTBOOKS AND/OR OTHER REQUIRED MATERIAL: Thermodynamics, An Engineering Approach, 7 th Ed., McGrawHill, 2011. What is Thermodynamics (and Why am I taking this class)? Thermodynamics is the collection of laws that answer the question: What is possible in any physical (natural or engineered) process. Historically, thermodynamics developed out of a desire to increase the efficiency of early steam engines, particularly through the work of French physicist Nicolas Léonard Sadi Carnot (1824) who believed that the efficiency of heat engines was the key that could help France win the Napoleonic Wars. In the most simplistic terms, thermodynamics describes how systems change when they interact with one another or with their surroundings. This can be applied to a wide variety of topics in science and engineering, including engines, air conditioners, phase transitions, chemical reactions, transport phenomena, weather patterns, and extraterrestrial phenomena such as black holes. The results of thermodynamics are essential for many fields including (but not limited to) chemical engineering, mechanical engineering, biomedical engineering, materials science, civil engineering, and economics. Thermodynamics are enunciated in three laws. The first law specifies that energy can be exchanged between physical systems as heat and work. The second law concerns a quantity called entropy, which expresses limitations in how energy can be exchanged. The third law concerns temperature, which states that a system can never reach absolute zero. The implication of this law is that no heat engine can ever be perfectly efficient (ie, heat can never be transformed 100% into useful work). What will I learn and be expected to demonstrate on exams? 1. To know the primary dimensions of measurement (length, mass, temperature, time) and their relationship to force, pressure, energy, and power. You will know both SI and English units and be able to convert between different unit systems. 2. To know what is a thermometer and manometer and how they are used to used to measure temperature and pressure, respectively.

description

Topics covered in thermodynamics course for engineering

Transcript of Thermodynamics I Overview

  1  

EGN  3343  Thermodynamics  I  Prof.  Ryan  Toomey,  PhD.  

Spring  2012    

 I.  CATALOG  DESCRIPTION:    Axiomatic  introduction  to  thermodynamic  concepts  of  energy,  entropy,  work  and  heat.  Properties  of  ideal  and  real  substances.    Applications:    power  production  and  refrigeration,  phase  equilibrium      II.  PREREQUISITES:    Physics  II,  PHY  2049      III.  TEXTBOOKS  AND/OR  OTHER  REQUIRED  MATERIAL:    Thermodynamics,  An  Engineering  Approach,  7th    Ed.,  McGraw-­‐Hill,  2011.                

What  is  Thermodynamics  (and  Why  am  I  taking  this  class)?    Thermodynamics   is   the   collection   of   laws   that   answer   the   question:  What   is   possible   in   any   physical  (natural  or  engineered)  process.  Historically,  thermodynamics  developed  out  of  a  desire  to  increase  the  efficiency  of  early  steam  engines,  particularly  through  the  work  of  French  physicist  Nicolas  Léonard  Sadi  Carnot  (1824)  who  believed  that  the  efficiency  of  heat  engines  was  the  key  that  could  help  France  win  the  Napoleonic  Wars.      In   the  most   simplistic   terms,   thermodynamics  describes  how  systems  change  when   they   interact  with  one  another  or  with   their   surroundings.  This  can  be  applied   to  a  wide  variety  of   topics   in  science  and  engineering,   including   engines,   air   conditioners,   phase   transitions,   chemical   reactions,   transport  phenomena,   weather   patterns,   and   extraterrestrial   phenomena   such   as   black   holes.   The   results   of  thermodynamics   are   essential   for   many   fields   including   (but   not   limited   to)   chemical   engineering,  mechanical  engineering,  biomedical  engineering,  materials  science,  civil  engineering,  and  economics.    Thermodynamics   are   enunciated   in   three   laws.   The   first   law   specifies   that   energy   can   be   exchanged  between  physical  systems  as  heat  and  work.  The  second  law  concerns  a  quantity  called  entropy,  which  expresses   limitations   in   how   energy   can   be   exchanged.   The   third   law   concerns   temperature,   which  states  that  a  system  can  never  reach  absolute  zero.  The  implication  of  this  law  is  that  no  heat  engine  can  ever  be  perfectly  efficient  (ie,  heat  can  never  be  transformed  100%  into  useful  work).      

 What  will  I  learn  and  be  expected  to  demonstrate  on  exams?  

1.  To  know  the  primary  dimensions  of  measurement  (length,  mass,  temperature,  time)  and  their  relationship  to  force,  pressure,  energy,  and  power.  You  will  know  both  SI  and  English  units  and  be  able  to  convert  between  different  unit  systems.    

2.  To  know  what  is  a  thermometer  and  manometer  and  how  they  are  used  to  used  to  measure  temperature  and  pressure,  respectively.  

  2  

3.  To  know  the  meaning  of  thermodynamic  states  of  pure  substances  and  their  description  with  equations  of  state.  You  will  know  how  to  treat  phase  transitions  and  the  application  of  the  ideal  gas  law.    

4.  To  know  the  meaning  of  the  following  thermodynamic  properties:  temperature,  pressure,  density,  internal  energy,  enthalpy,  entropy,  and  heat  capacity  and  how  to  obtain  their  values  from  diagrams,  tables,  and  equations  of  state.    

5.  To  explain  the  meaning  and  differences  of  heat  and  work  and  their  relationship  to  energy.  

6.  To  know  how  to  apply  mass  and  energy  balances  (First  Law)  to  a  variety  of  simple  processes  and  circumstances.    

7.  To  define  the  meaning  of  efficiencies  in  turbines,  compressors,  and  pumps,  and  use  them  to  solve  problems.  

8.  To  calculate  efficiencies  of  simple  power  and  refrigeration  cycles.  

9.  To  understand  the  meaning  and  the  implication  of  the  following  terms:  adiabatic,  isenthalpic,  isentropic,  isolated,  steady-­‐state,  and  equilibrium.  

   

How  will  I  be  evaluated?    Throughout  the  semester  you  will  have  15  homework  assignments  (due  each  Monday),  3  midterm  exams,  and  1  cumulative  final.  The  homework  assignments  will  be  20%  of  your  grade,  each  midterm  exam  will  be  15%,  and  the  final  will  be  35%.  The  approximate  exam  dates  are  the  following:    

Midterm  Exam  I    (1  hour):  Wednesday,  February  8  Midterm  Exam  II  (1  hour):  Wednesday,  March  7  Midterm  Exam  III  (1  hour):    Wednesday,  April  11  Final  Exam  (2  hours,  35%):  As  determined  by  USF  Final  Exam  Matrix  

 If  you  receive  more  than  85%  of  points,  you  are  guaranteed  the  grade  of  “A”  If  you  receive  more  than  70%  of  points,  you  are  guaranteed  the  grade  of  “B”  If  you  receive  more  than  55%  of  points,  you  are  guaranteed  the  grade  of  “C”                        

  3  

Course  Outline    I.  Introductory  Concepts  and  Definitions    

a. Energy  is  conserved:  ΔEsystem = Ein−Eout  

b. Energy  is  always  transferred  down  a  temperature  gradient  in  the  form  of  heat.  Always.  And  never  the  other  way  around.  Never.    

c. Control  volumes,  system  boundaries,  properties,  units,  and  dimensions    II.    First  Law  of  Thermodynamics  

 a. Types  of  energy:  Kinetic,  Potential,  and  Internal  b. Energy  accounting  and  energy  transfer  mechanisms  c. Energy  balance  on  closed  systems  and  cycles  

 III.  Evaluating  Properties    

a. Dealing  with  a  septillion  molecules:  Equations  of  State  b. How  to  relate  energy  to  measurable  properties  c. Phase  transitions  and  states  of  matter:  solids,  liquids,  and  gases  

 IV.  Control  Volume  Analysis      

a. Conservation  of  mass  b. Enthalpy  c. Energy  balance  on  open  systems  

 V.  Second  law  of  thermodynamics      

a. Entropy:  The  mathematical  equivalent  of  the  statement  that  energy  must  be  transferred  down  a  temperature  gradient  and  never  the  reverse.    

b. Reversibility  and  Irreversibility  c. The  Carnot  cycle  

 VI.  Using  Entropy    

a. Entropy  is  a  state  variable,  much  the  same  as  internal  energy  and  enthalpy  b. Efficiencies  in  closed  and  open  systems  c. Isentropic  processes