Thermodynamic Processes & Isentropic Efficiency

8
Thermodynamic Processes & Isentropic Efficiency Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET) Dhaka-1000, Bangladesh http://zahurul.buet.ac.bd/ ME 6101: Classical Thermodynamics http://zahurul.buet.ac.bd/ME6101/ © Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME6101 (2021) 1 / 29 Overview 1 Steady-State, Steady Flow (SSSF) Processes 2 Isentropic (First Law) Efficiency Nozzle Diffuser Turbine Compressor & Pump SSSF Process © Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME6101 (2021) 2 / 29 Steady-State, Steady Flow (SSSF) Processes Steady-State, Steady Flow (SSSF) Processes Assumptions: Control volume does not move relative to the coordinate frame. State of the mass at each point in the control volume does not vary with time. As for the mass that flows across the control surface, the mass flux and the state of this mass at each discrete area of flow on the control surface do not vary with time. The rates at which heat and work cross the control surface remain constant. Example: centrifugal compressor and turbines etc. at steady state. © Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME6101 (2021) 3 / 29 Steady-State, Steady Flow (SSSF) Processes Nozzles & Diffusers T159 A nozzle is a flow passage of varying cross-sectional area in which the velocity of a gas or liquid increases in the direction of flow. A diffuser uses a reduction in the velocity of a fluid to cause an increase in its pressure in the direction of flow. For a nozzle or diffuser, the only work is flow work at locations where mass enters and exits the CV, so the term W cv drops out. ΔPE 0 © Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME6101 (2021) 4 / 29

Transcript of Thermodynamic Processes & Isentropic Efficiency

Page 1: Thermodynamic Processes & Isentropic Efficiency

Thermodynamic Processes & Isentropic Efficiency

Dr. Md. Zahurul Haq

Professor

Department of Mechanical EngineeringBangladesh University of Engineering & Technology (BUET)

Dhaka-1000, Bangladesh

http://zahurul.buet.ac.bd/

ME 6101: Classical Thermodynamics

http://zahurul.buet.ac.bd/ME6101/

© Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME6101 (2021) 1 / 29

Overview

1 Steady-State, Steady Flow (SSSF) Processes

2 Isentropic (First Law) Efficiency

Nozzle

Diffuser

Turbine

Compressor & Pump

SSSF Process

© Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME6101 (2021) 2 / 29

Steady-State, Steady Flow (SSSF) Processes

Steady-State, Steady Flow (SSSF) Processes

Assumptions:

• Control volume does not move relative to the coordinate frame.

• State of the mass at each point in the control volume does not vary

with time.

• As for the mass that flows across the control surface, the mass flux

and the state of this mass at each discrete area of flow on the control

surface do not vary with time. The rates at which heat and work cross

the control surface remain constant.

⊲ Example: centrifugal compressor and turbines etc. at steady state.

© Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME6101 (2021) 3 / 29

Steady-State, Steady Flow (SSSF) Processes

Nozzles & Diffusers

T159

• A nozzle is a flow passage of varying cross-sectional area in which the

velocity of a gas or liquid increases in the direction of flow.

• A diffuser uses a reduction in the velocity of a fluid to cause an

increase in its pressure in the direction of flow.

• For a nozzle or diffuser, the only work is flow work at locations where

mass enters and exits the CV, so the term Wcv drops out.

• ∆PE ≈ 0© Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME6101 (2021) 4 / 29

Page 2: Thermodynamic Processes & Isentropic Efficiency

Steady-State, Steady Flow (SSSF) Processes

Moran Ex. 4.3: ⊲ Converging-diverging Steam Nozzle: Estimate A2.

T145

⇒ Steady state ⇒ dEcv/dt = 0

⇒ Z2 = Z1

⇒ Wcv = 0, Q = 0

⇒ mi = me = 2 kg/s

dEcv

dt= Q − Wcv +

i

mi

(

hi +V

2

i

2+ gzi

)

−∑

e

me

(

he +V

2e

2+ gze

)

0 = (h1 − h2) +1

2(V2

1− V

2

2)

⇒ h2 = h1 +1

2(V2

1− V

2

2)

⇒ ρ2 = ρ(Steam,P = P2, h = h2) = 6.143 kg/m3

⇒ m2 = ρ2A2V2⇒ A2 = 4.896 × 10−4 m2 ⊳

© Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME6101 (2021) 5 / 29

Steady-State, Steady Flow (SSSF) Processes

Throttling Devices

A significant reduction in pressure can be achieved simply by introducing a

restriction into a line through which a gas or liquid flows.

T160

• For a control volume enclosing a throttling device, the only work is

flow work at locations where mass enters and exits the control volume,

so the term Wcv drops out.

• Q ≈ 0, and ∆PE ≈ 0.© Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME6101 (2021) 6 / 29

Steady-State, Steady Flow (SSSF) Processes

Cengel Ex. 5.8: ⊲ R-134a enters the capillary tube as saturated liquid at

0.8 MPa and is throttled to 0.12 MPa. Determine x2 and ∆T .

T148

⇒ Steady state ⇒ dEcv/dt = 0

⇒ Z2 = Z1 & V2 ≃ V1

⇒ Q ≃ 0 & Wcv = 0

h2∼= h1

⇒ h1 = enthalpy(R134a,P1 = 0.8 MPa, x1 = 0.0)

⇒ h1 = h2 = hf , 0.12MPa + x2hfg , 0.12MPa⇒ x2 = 0.32 ⊳

⇒ T1 = T (R134a,P1 = 0.8 MPa, x1 = 0.0)⇒ T1 = 31.3oC

⇒ T2 = T (R134a,P2 = 0.12 MPa, sat.)⇒ T2 = −18.8oC

⇒ ∆T = −53.64oC ⊳

© Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME6101 (2021) 7 / 29

Steady-State, Steady Flow (SSSF) Processes

Turbines

A turbine is a device in which power is developed as a result of a gas or

liquid passing through a set of blades attached to a shaft free to rotate.

T161

Axial-flow steam or gas turbine.

T162

Hydraulic turbine installed in a dam.

© Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME6101 (2021) 8 / 29

Page 3: Thermodynamic Processes & Isentropic Efficiency

Steady-State, Steady Flow (SSSF) Processes

Moran Ex 4.4: ⊲ Heat Transfer from Steam Turbine: Determine heat loss.

T146

⇒ Steady state ⇒ dEcv/dt = 0

⇒ Z2 = Z1

⇒ mi = me = (4600/3600) kg/s

dEcv

dt= Q − Wcv +

i

mi

(

hi +V

2

i

2+ gzi

)

−∑

e

me

(

he +V

2e

2+ gze

)

0 = Q − Wcv + m[

(h1 − h2) +(

V2

1−V

2

2

2

)]

⇒ h1 = enthalpy(Steam,P = P1,T = T1)

⇒ h2 = enthalpy(Steam,P = P2, x = x2)

⇒ Qcv = −63.61 kW (heat loss) ⊳

© Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME6101 (2021) 9 / 29

Steady-State, Steady Flow (SSSF) Processes

Compressors & Pumps

Compressors and pumps are devices in which work is done on the substance

flowing through them in order to increase the pressure and/or elevation.

Compressor is used to compress a gas (vapour) and the term pump is

used when the substance is a liquid.

T163 T164

© Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME6101 (2021) 10 / 29

Steady-State, Steady Flow (SSSF) Processes

[Moran Ex. 4.5: ⊲ Air Compressor Power: Determine power required, Wcv .

T147

⇒ Steady state ⇒ dEcv/dt = 0

⇒ Z2 = Z1

⇒ Qcv = −180kJ/min = −3.0 kW

• m = ρAV

• ρ = P/RT

dEcv

dt= Q − Wcv +

i

mi

(

hi +V

2

i

2+ gzi

)

−∑

e

me

(

he +V

2e

2+ gze

)

Wcv = Q + m[

(h1 − h2) +(

V2

1−V

2

2

2

)]

⇒ h1 − h2 = Cp(T1 − T2) = −160.8 kJ/kg

⇒ ρ1 = P1/RT1 = 1.20 m3/kg

⇒ m = ρ1A1V1 = 0.721 kg/s

⇒ Wcv = −119.4 kW (work input required) ⊳

© Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME6101 (2021) 11 / 29

Steady-State, Steady Flow (SSSF) Processes

Borgnakke Ex. 4.6: ⊲ A water pump is located 15 m down in a well, taking

water in at 10oC, 90 kPa at a rate of 1.5 kg/s. The exit line is a pipe of diameter

0.04 m that goes up to a receiver tank maintaining a gauge pressure of 400 kPa.

Assume that the process is adiabatic, with the same inlet and exit velocities, and

the water stays at 10oC. Find the required pump work.

T442

⇒ Steady state ⇒ dEcv/dt = 0

⇒ Q = 0, Vi = Ve , Ti = Te

⇒ Pi = 90 kPa, Pe = 501.325 kPa.

⇒ ze − zi = 15.0 m

⇒ m = 1.5 kg/s

dEcv

dt= Q − Wcv +

i

mi

(

hi +V

2

i

2+ gzi

)

−∑

e

me

(

he +V

2e

2+ gze

)

Wcv = m[

(h1 − h2) +(

V2

1−V

2

2

2

)

+ g(z1 − z2)]

Wcv = −0.822 kW (work input required) ⊳ : 〈h1 − h2 =P1−P2

ρ, if ρ & T are constant. 〉

© Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME6101 (2021) 12 / 29

Page 4: Thermodynamic Processes & Isentropic Efficiency

Steady-State, Steady Flow (SSSF) Processes

Heat Exchangers

T166

Common heat exchanger types. (a) Direct contact heat exchanger. (b)

Tube-within a-tube counterflow heat exchanger. (c) Tube-within-a-tube parallel

flow heat exchanger. (d) Cross-flow heat exchanger.

© Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME6101 (2021) 13 / 29

Steady-State, Steady Flow (SSSF) Processes

Cengel P5-85: ⊲ Condenser Cooling Water: Determine mwater .

T149

⇒ W = 0, Q = 0, ∆(KE ) = 0, ∆(PE ) = 0

⇒ m3 = (20000/3600) kg/s

⇒ m1 = m2 & m3 = m4

⇒ h1 = h(H2O, P = 100 kPa, T = 20)

⇒ h2 = h(H2O, P = 100 kPa, T = 30)

⇒ h3 = h(H2O, P = 20 kPa, x = 0.95)

⇒ h4 = h(H2O, P = 20 kPa, x = 0)

0 =∑

(mh)i −∑

(mh)e

⇒ (m3h3 + m1h1) = (m4h4 + m2h2)

⇒ mwater = m1 = 297.4 kg/s ⊳

© Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME6101 (2021) 14 / 29

Isentropic (First Law) Efficiency Nozzle

Isentropic Nozzle Efficiency

T181

• For nozzle: W = 0, ∆(PE ) = 0, V1 ∼ 0 ⇒ h1 = h2 +V 2

22

⇒ ηn ≡ Actual KE at nozzle exitIsentropic KE at nozzle exit

≡ V 22

V 22s

≈h1−h2h1−h2s

© Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME6101 (2021) 15 / 29

Isentropic (First Law) Efficiency Nozzle

Borgnakke Ex. 7.2: ⊲ Isentropic steam flow through nozzle, Ve = ?

T185

• Continuity equation: mi = me = m

• First law: 0 = 0 − 0 + (hi − he) +V 2

i −V 2

e

2+ 0

• Second law: si = se .

⇒ hi = h(steam, Pi = 1 MPa, Ti = 300oC ) = X

⇒ si = s(steam, Pi = 1 MPa, Ti = 300oC ) = X

⇒ se = si & Pe = 0.3 MPa: state ‘e’ defined.

⇒ he = h(Pe = 0.3 MPa, se = X) = X

⇒ V 2

e

2= (hi − he) +

V 2

i

2⇒ Ve = 736.7 m/s⊳

© Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME6101 (2021) 16 / 29

Page 5: Thermodynamic Processes & Isentropic Efficiency

Isentropic (First Law) Efficiency Nozzle

Moran Ex. 6.13: ⊲ Estimate nozzle efficiency.

T1083

• Continuity equation: mi = me = m

• First law: 0 = 0 − 0 + (hi − he) +V 2

i −V 2

e

2+ 0, valid for isentropic and

actual cases.

⇒ V 2

e

2= (hi − he) +

V 2

i

2⇒ Ve =

• For isentropic case, Ve,s =√

⇒ ηN =√

© Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME6101 (2021) 17 / 29

Isentropic (First Law) Efficiency Diffuser

Diffuser Isentropic Efficiency

T1084

• Diffuser isentropic efficiency, ηd ≡ Pout−Pin

Ps,out−Pin

• Coefficient of pressure recovery, Kp ≡ Pout−Pin(

ρinV2in

2

)

© Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME6101 (2021) 18 / 29

Isentropic (First Law) Efficiency Diffuser

T1085

1 P2 = ?

2 σcv = ?

3 Area ratio, A2/A1 = ?

4 Kp = ?

• SSSF, Q = 0, Wcv = 0, ss,2 = s1 : reversible diffuser

• 0 = 0 − 0 + (hi − he) +V 2i −V 2

e

2 + 0 → hs,2 = h1 +V 2

1 −V 22

2 : s = case

• State [s, 2] defined: → P2 = P1 + ηd(Ps,2 − P1) =√

(89.9 kPa)

• First law (actual case: h2 = h1 +V 2

1 −V 22

2 ⇒ state [2] defined.

• σcv = s2 − s1 =√

(10.3 J/kgK)

• m = V1A1v1

= V2A2v2

• AR = A2A1

= v2V1v1V2

=√

• Kp ≡ Pout−Pin(

ρinV2in

2

) =√

(0.496).

© Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME6101 (2021) 19 / 29

Isentropic (First Law) Efficiency Turbine

Isentropic Turbine Efficiency

T176

• wt = h1 − h2: for steady-state, adiabatic expansion.

• σcv

m= s2 − s1 ≧ 0: states with s2 < s1 is not attainable with adiabatic

expansion.

• wt |s = h1 − h2s : state ‘2s’ is for internally reversible expansion.

⇒ Isentropic turbine efficiency, ηt ≡ wt

wt |s= h1−h2

h1−h2s

© Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME6101 (2021) 20 / 29

Page 6: Thermodynamic Processes & Isentropic Efficiency

Isentropic (First Law) Efficiency Turbine

Moran Ex. 6.6: ⊲ Entropy production in a steam turbine

T178

• Continuity equation: mi = me = m

• First law: 0 = q − w + (hi − he) +V 2

i −V 2

e

2+ 0

• Second law: (se − si ) =q

Tb+ σcv

m.

⇒ P1 = 30 bar, T1 = 400oC :⇒ h1 = X, s1 = X

⇒ T2 = 100oC , x2 = 1.0 :⇒ h2 = X, s2 = X

⇒ q = −23.92 kJ/kg⇒ σcv

m= 0.499 kJ/kg.K ⊳.

© Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME6101 (2021) 21 / 29

Isentropic (First Law) Efficiency Turbine

Cengel Ex.7.14: ⊲ Isentropic Efficiency of a Steam Turbine

T179

• (P1 = 3 MPa,T1 = 400oC ) :⇒ h1 = X, s1 = X

• (P2 = 50 kPa,T2 = 100oC ) :⇒ h2 = X

• (P2s = 50 kPa, s2s = s1) :⇒ h2s = X

⇒ ηt =h1−h2

h1−h2s= 66.7% ⊳

⇒ m = Powerh1−h2s

= 3.64 kg/s ⊳

© Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME6101 (2021) 22 / 29

Isentropic (First Law) Efficiency Compressor & Pump

Isentropic Compressor and Pump Efficiencies

T177

• −wc = (h2 − h1): for steady-state, adiabatic compression.

• σcv

m= s2 − s1 ≧ 0: states with s2 < s1 is not attainable with adiabatic

compression.

• −wc |s = (h2s − h1)

⇒ Isentropic compressor/pump efficiency, ηc ≡ −wc |s−wc

= h2s−h1h2−h1

© Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME6101 (2021) 23 / 29

Isentropic (First Law) Efficiency Compressor & Pump

Cengel Ex. 7.15: ⊲ Effect of efficiency on compressor power, if ηc = 80%

T180

• T2s = T1(P2/P1)(k−1)/k = 516.5 K

• ηc = h2s−h1

h2−h1

=cP(T2s−T1)

cP(T2−T1)⇒ T2 = 574.8 K

⇒ −Wc |s = m(h2s − h1) = mcP(T2s − T1) = 46.5 kW ⊳

⇒ Wc = −m(h2 − h1) = −mcP(T2 − T1) = −58.1 kW ⊳

© Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME6101 (2021) 24 / 29

Page 7: Thermodynamic Processes & Isentropic Efficiency

Isentropic (First Law) Efficiency SSSF Process

Steady-state Flow Process

• First Law for SSSF: CV system & reversible process:

⇒ 0 = q12 − w12 + (h1 − h2) − ∆(ke) − ∆(pe)

• 2ndTds Equation: Tds = dh − vdP

• q12 =∫2

1 Tds = (h2 − h1) −∫2

1 vdP

• w12 = (h2 − h1) −∫2

1 vdP + (h1 − h2) − ∆(ke) − ∆(pe)

⇒ w12 = −∫2

1 vdP − ∆(ke) − ∆(pe) ≈ −∫2

1 vdP

wsf = w12 =∫2

1 vdP

T182 T183

© Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME6101 (2021) 25 / 29

Isentropic (First Law) Efficiency SSSF Process

Pvn = constant, wsf = w12 = −∫2

1 vdP

T182

w12 :

{= − n

n−1(P2v2 − P1v1) = −nR(T2−T1)

n−1 : n 6= 1

= −RT ln(

v1v2

)

= −RT ln(

P2P1

)

: n = 1

q12 = h2 − h1 + w12

Example: ⊲ A compressor operates at steady state with nitrogen entering at

100 kPa and 20oC and leaving at 500 kPa. During this compression process, the

relation between pressure and volume is Pv1.3 =constant.

• R = (8.314/28) = 0.2969 kJ/kg.K, cP = 1.0 kJ/kg.K

⇒ T2/T1 = (P2/P1)(n−1)/n⇒ T2 = 425 K.

⇒ w12 = −nR(T2−T1)

n−1= −169.5 kJ/kg ⊳

⇒ q12 = cP(T2 − T1) + w12 = −37.5 kJ/kg ⊳

© Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME6101 (2021) 26 / 29

Isentropic (First Law) Efficiency SSSF Process

Pvn = constant, wb = w12 =∫2

1 Pdv

T192

w12 :

{= −P2v2−P1v1

n−1 = −R(T2−T1)

n−1 : n 6= 1

= −RT ln(

v1v2

)

= −RT ln(

P2P1

)

: n = 1

q12 = u2 − u1 + w12

Example: ⊲ In a reversible process, nitrogen is compressed in a cylinder from

100 kPa and 20oC to 500 kPa. During this compression process, the relation

between pressure and volume is Pv1.3 =constant.

• R = (8.314/28) = 0.2969 kJ/kg.K, cv = R/(1.4 − 1) = 0.742 kJ/kg.K

⇒ T2/T1 = (P2/P1)(n−1)/n⇒ T2 = 425 K.

⇒ w12 = −R(T2−T1)

n−1= −130.4 kJ/kg ⊳

⇒ q12 = cV (T2 − T1) + w12 = −32.2 kJ/kg ⊳

© Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME6101 (2021) 27 / 29

Isentropic (First Law) Efficiency SSSF Process

Cengel Ex.7.12: ⊲ Compression & Pumping Works�

�����

��������

����������

�����������

����������

�����������

�����������������������

��������������������������

����������

����

T191

⇒ wP = −∫

2

1vdP ⋍ −vf (P2 − P1) =

−0.939 kJ/kg ⊳ as vf ≃ constant

⇒ wC = −(h2 − h1) = −518.6 kJ/kg ⊳

⇒ |wc | >> |wp |

© Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME6101 (2021) 28 / 29

Page 8: Thermodynamic Processes & Isentropic Efficiency

Isentropic (First Law) Efficiency SSSF Process

Isentropic Efficiencies of Some Devices

Device First-Law Efficiency Typical Range

Turbine ηt ≡ wa

ws= wa

ws= h1−h2

h1−h2s80 to 90%

Compressor ηc ≡ ws

wa= ws

wa= h2s−h1

h2−h170 to 85%

Pump ηp ≡ ws

wa= ws

wa= h2s−h1

h2−h150 to 90%

Nozzle ηn ≡ ∆(ke)a∆(ke)s

= h1−h2h1−h2s

≃ V22

V22s

90%

© Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME6101 (2021) 29 / 29