THEPHYSICS$BEHIND$TAGOPTICS’$TECHNOLOGY ... Note 12-001 Physical...Application*Note*12/001*...

6
Application Note 12001 Physics Behind the TAG Technology Updated: 20130320 TAG Optics, Inc. P.O. Box 1572 Princeton NJ 08542 Tel. 6093562142 www.tagoptics.com [email protected] Page 1 of 6 THE PHYSICS BEHIND TAG OPTICS’ TECHNOLOGY AND THE MECHANISM OF ACTION OF USING SOUND TO SHAPE LIGHT APPLICATION NOTE 12001

Transcript of THEPHYSICS$BEHIND$TAGOPTICS’$TECHNOLOGY ... Note 12-001 Physical...Application*Note*12/001*...

Page 1: THEPHYSICS$BEHIND$TAGOPTICS’$TECHNOLOGY ... Note 12-001 Physical...Application*Note*12/001* Physics*BehindtheTAG*Technology* Updated:(2013-03-20(!!! !! TAG!Optics,!Inc.!!!!!P.O.!Box!1572!!!!!Princeton!!!!!NJ!!!!!08542!

Application  Note  12-­‐001  Physics  Behind  the  TAG  Technology  Updated:  2013-­‐03-­‐20  

 

 

     

TAG  Optics,  Inc.                                      P.O.  Box  1572                                      Princeton                                        NJ                                        08542  Tel.  609-­‐356-­‐2142                                    www.tagoptics.com                                    [email protected]  

  Page  1  of  6  

     

     

THE  PHYSICS  BEHIND  TAG  OPTICS’  TECHNOLOGY  

AND  THE  MECHANISM  OF  ACTION  OF  

USING  SOUND  TO  SHAPE  LIGHT  

     

APPLICAT

ION  NOTE  12-­‐00

1  

Page 2: THEPHYSICS$BEHIND$TAGOPTICS’$TECHNOLOGY ... Note 12-001 Physical...Application*Note*12/001* Physics*BehindtheTAG*Technology* Updated:(2013-03-20(!!! !! TAG!Optics,!Inc.!!!!!P.O.!Box!1572!!!!!Princeton!!!!!NJ!!!!!08542!

Application  Note  12-­‐001  Physics  Behind  the  TAG  Technology  Updated:  2013-­‐03-­‐20  

 

 

     

TAG  Optics,  Inc.                                      P.O.  Box  1572                                      Princeton                                        NJ                                        08542  Tel.  609-­‐356-­‐2142                                    www.tagoptics.com                                    [email protected]  

  Page  2  of  6  

Tutorial  on  How  the  TAG  Lens  Works  This  brief  tutorial  explains  the  science  behind  the  TAG  Lens  and  how  to  operate  it.    TAG  Optics’  TAG  Lens  is  the  only  device  on  the  market  that  uses  sound  to  shape  light.    This  novel  mechanism  of  action  requires  no   moving   parts   and   gives   it   the   unique   capabilities   of     focusing,   defocusing,   beam   shaping,   and  extending  depths  of  field  in  a  single  device.        How  Standard  Lenses  Work:    The   index  of   refraction   is   the  property  of   a  material   that  describes  how  much   light   is   slowed  when   it  passes   through   the   material.     A   simple   lens   is   made   from   a   single   material   with   uniform   index   of  refraction  and   is   shaped  with  a   curved   surface   resembling  a   sphere  or  parabola.    When  a   ray  of   light  reaches   the   curved   surface,   it  will   bend   according   to   an   equation   (Snell’s   law)  which   depends   on   the  index  of  refraction  of  the  lens  material  and  the  curvature  of  the  surface.        The  place  where  all  the  rays  of  light  meet  is  the  focal  point  of  the  lens.      

   

Another   way   to   think   about   this   situation   is   to   consider   the   wavefront   of   the   incident   light,   or   the  locations   where   the   incident   light   beam   exhibits   the   same   phase.     By   definition,   the   wavefront   will  always  be  perpendicular  to  the  direction  of  light  propagation.    For  example,  in  a  plane  wave,  this  would  be   a   series   of   parallel   lines   that   are   perpendicular   to   the   direction   of   propagation.     In   the   case   of   a  simple  lens,  the  curvature  of  the  surface  causes  the  wavefronts  to  curve  and  the  light  to  bend.      One  way  to  determine  the  location  of  the  wavefront  at  a  given  position  away  from  the  optical  axis,  r,  is  to  calculate  the  optical  path  length,  λ    

𝜆(𝑟) = 𝑛 ∙ 𝑑                                                                                                                            (1)  

 

Figure  1:   The  bending  of   incident   light   rays  and   the  wavefront  curvature  of  light  passing  through  a  simple  lens.  

ENAB

LING  PRINCIPA

LES  

Page 3: THEPHYSICS$BEHIND$TAGOPTICS’$TECHNOLOGY ... Note 12-001 Physical...Application*Note*12/001* Physics*BehindtheTAG*Technology* Updated:(2013-03-20(!!! !! TAG!Optics,!Inc.!!!!!P.O.!Box!1572!!!!!Princeton!!!!!NJ!!!!!08542!

Application  Note  12-­‐001  Physics  Behind  the  TAG  Technology  Updated:  2013-­‐03-­‐20  

 

 

     

TAG  Optics,  Inc.                                      P.O.  Box  1572                                      Princeton                                        NJ                                        08542  Tel.  609-­‐356-­‐2142                                    www.tagoptics.com                                    [email protected]  

  Page  3  of  6  

 Where   n   is   the   index   of   refraction   of   the   medium   and   d   is   the   distance   the   light   travels   in   passing  through  the  lens.    From  this  equation,  we  can  see  that  in  the  case  of  the  simple  lens,  n  is  independent  of  the  location  in  the  lens  and  d  is  a  function  of  the  distance  from  the  optical  axis.      But  equation  (1)  has  an  important  implication,  if  one  can  vary  n  as  a  function  of  r,  one  can  get  the  same  effect  as  a  simple  lens  with  a  fixed  d.    This  is  the  principle  behind  a  gradient  index  of  refraction  (GRIN)  lens.    In  a  standard  GRIN  lens,  the  index  of  refraction  profile  is  fixed  during  the  manufacturing  process.    Notice  in  figure  2  how  this  case  is  equivalent  to  the  standard  lens  in  figure  1.          

       

 

Figure   2:     The  bending  of   incident   light   rays   and   the  wavefront   curvature  of  light   passing   through   a   gradient   index   of   refraction   lens.     Notice   that   it   is  equivalent  to  a  standard  lens  even  though  the  surfaces  are  flat.  

ENAB

LING  PRINCIPA

LES  

Page 4: THEPHYSICS$BEHIND$TAGOPTICS’$TECHNOLOGY ... Note 12-001 Physical...Application*Note*12/001* Physics*BehindtheTAG*Technology* Updated:(2013-03-20(!!! !! TAG!Optics,!Inc.!!!!!P.O.!Box!1572!!!!!Princeton!!!!!NJ!!!!!08542!

Application  Note  12-­‐001  Physics  Behind  the  TAG  Technology  Updated:  2013-­‐03-­‐20  

 

 

     

TAG  Optics,  Inc.                                      P.O.  Box  1572                                      Princeton                                        NJ                                        08542  Tel.  609-­‐356-­‐2142                                    www.tagoptics.com                                    [email protected]  

  Page  4  of  6  

Using  Sound  to  Shape  Light:      The  TAG  Lens  is  a  type  of  tunable  GRIN  lens  that  uses  the  action  of  standing  sound  waves  to  establish  a  constantly  changing  gradient   index  of  refraction  within  the  body  of  the   lens.    The  sound  waves  send  a  vibration   through   the   lens   material   causing   the   atoms   and   molecules   to   alternatively   move   closer  together  and  further  apart  at  specified  locations.    In  general,  when  the  atoms  and  molecules  are  further  apart,   the  will   exhibit   a   slightly   lower   index  of   refraction  and  when   they  are   closer   together   they  will  increase   the   index   of   refraction.     By   controlling   the   shape   and   location   of   these   sound   waves,   it   is  possible  to  establish  an  index  of  refraction  profile  that  looks  like  a  simple  lens  in  the  center  of  the  lens.    

   One  of  the  key  advantages  of  this  type  of   index  profile   is  that  the  spherical  aberration  associated  with  the  lens  is  small.    Aberration  refers  to  the  fact  that  in  a  standard  spherical  lens,  not  all  of  the  rays  of  light  pass   exactly   through   the   same   focal   point   resulting   in   a   larger   focal   spot   or   a   fuzziness   in   an   image.    However,   it   has   been  proven   that   a   parabolic  wavefront   is  much   closer   to   an   ideal  wavefront   than   a  spherical  wavefront  and  therefore  results  in  sharper  focusing.        The  TAG  Lens  provides  the  user  with  two  parameters  that  can  be  controlled,  the  amplitude,  A,  and  the  frequency,   f.    The  amplitude  simply  changes  the  maximum  value  of  the   index  of  refraction  profile  and  the  frequency  will  change  the  distance  between  the  peaks  in  it.      These  parameters  will  affect  the  focal  length,  F,  which  can  be  accurately  calculated  from  the  profile.      Performing  these  calculations,  we  find  that  that  the  maximum  lens  power  (inverse  of  the  focal  length),  P  in  diopters  is  related  to  A  and  f  by:    

𝑃 = 𝐶! ∙ 𝐴 ∙ 𝑓!        ,                                                                                                                                    (2)    

where  C1   is  a  constant   that  depends  on   the  Lens  design  parameters  which  can  be  customized  by  TAG  Optics  to  meet  a  user  demand.    Therefore,  for  fixed  a  frequency,  the  width  of  the  central  region  remains  fixed  and  the  maximum  lens  power  will  scale  linearly  with  the  driving  amplitude.    Unlike  a  traditional  optic,  the  TAG  Lens  does  not  have  a  sharp  aperture  within  the  region  of  focus.    This  is   beneficial   in   that   there   are   not   diffraction   effects.     However,   the   implication   is   that   the   effective  aperture  is  somewhat  difficult  to  quantify  and  depends  on  the  user  tolerance  for  aberration.    Thus  TAG  

 

Figure  3:    Solid  blue  line  shows  is  a  sketch  of  the  index  of  refraction  profile  as  a  function  of  the  radius  in  the  TAG  Lens.    The  center  of  this  picture  corresponds  to  the  center  of  the  TAG  Lens.  Dotted  red  line  shows  a  parabolic  index  of  refraction  function.    Solid  black  line  represents  the  aperture  over  which  the  TAG  lens  can  be  considered  a  simple  lens.  

MEC

HANISM  OF  AC

TION  

Page 5: THEPHYSICS$BEHIND$TAGOPTICS’$TECHNOLOGY ... Note 12-001 Physical...Application*Note*12/001* Physics*BehindtheTAG*Technology* Updated:(2013-03-20(!!! !! TAG!Optics,!Inc.!!!!!P.O.!Box!1572!!!!!Princeton!!!!!NJ!!!!!08542!

Application  Note  12-­‐001  Physics  Behind  the  TAG  Technology  Updated:  2013-­‐03-­‐20  

 

 

     

TAG  Optics,  Inc.                                      P.O.  Box  1572                                      Princeton                                        NJ                                        08542  Tel.  609-­‐356-­‐2142                                    www.tagoptics.com                                    [email protected]  

  Page  5  of  6  

Optics  defines  an  effective  aperture  for  the  TAG  Lens,  d,  which  is  independent  of  the  driving  amplitude  and  only  depends  on  the  driving  frequency  by,    

𝑑 = !!!          ,                                                                                                                                              (3)    

 where   once   again,  C2   is   a   constant   that   depends   on   the   Lens   design   and   can   be   customized   by   TAG  Optics.     Finally,   for  many   applications,   it   is   instructive   to   determine   the   numerical   aperture,  NA,   of   a  lens.     Traditionally,   this   is   related   to   the   ratio   between   the   open   aperture   of   the   lens   and   the   focal  length.    Thus  for  the  TAG  Lens,  one  finds  

𝑁𝐴 = 𝐶! ∙ 𝐴 ∙ 𝑓    .         (4)    In  general,  one  finds  that  the  TAG  Lens  may  be  considered  a  relatively   low  numerical  aperture  device.    However,  by  combining  the  TAG  Lens  with  other  optical  elements  such  as  high  NA  objectives  or  lenses  it  is   possible   to   achieve   high   resolution   in   the   plane  while  maintaining   the   benefits   of   the   TAG   Lens   to  electronically  change  the  focus  in  the  out-­‐of-­‐plane  direction.        Since  we  have  a  standing  sound  wave  inside  the  TAG  Lens,  the  index  of  refraction  profile   is  constantly  changing   it   time  as  the  molecules  oscillate.    These  oscillations  are  very  regular  and  cause  the   index  of  refraction   to   change   from  a   large   positive   curvature   to   an   equivalent   negative   curvature   as   shown   in  figure  4.    The  period  of  this  oscillation,  To  will  be  related  to  the  driving  frequency  by:    

𝑇! =!!    .                                                                                                                                            (5)    

 

   Therefore,  in  one  To  of  time,  the  TAG  Lens  will  sample  all  focal  lengths  within  the  range  of  the  maximum  and  minimum  focus.        Optically  speaking,  the  TAG  Lens  behaves  as  any  traditional   lens  meaning  that  it  can  be  combined  into  more   complicated,   multi-­‐element   optical   assemblies,   and   it   can   be  modeled   using   industry   standard  software.    In  modeling  the  TAG  Lens  for  optical  assemblies,  one  can  simply  treat  it  as  a  GRIN  lens  with  an  appropriate  index  profile  that  can  be  provided  by  TAG  Optics  upon  request.    

 

Figure   4:     Schematic   of   the   index   of   refraction   profile   at   different   times.     The   profile  changes  from  the  top  to  the  bottom  and  returns  to  the  top  every  period  of  oscillation.  

MEC

HANISM  OF  AC

TION  

Page 6: THEPHYSICS$BEHIND$TAGOPTICS’$TECHNOLOGY ... Note 12-001 Physical...Application*Note*12/001* Physics*BehindtheTAG*Technology* Updated:(2013-03-20(!!! !! TAG!Optics,!Inc.!!!!!P.O.!Box!1572!!!!!Princeton!!!!!NJ!!!!!08542!

Application  Note  12-­‐001  Physics  Behind  the  TAG  Technology  Updated:  2013-­‐03-­‐20  

 

 

     

TAG  Optics,  Inc.                                      P.O.  Box  1572                                      Princeton                                        NJ                                        08542  Tel.  609-­‐356-­‐2142                                    www.tagoptics.com                                    [email protected]  

  Page  6  of  6  

Pulsed  vs  CW  operation:      Since  the  TAG  Lens   is   in  a  continuous  state  of  change,   there  are  differences  when  using  the  TAG  Lens  with  a  CW  source  or  detector  as  compared  to  using  a  pulse  of  light  or  a  pulsed  detector.        When  using  CW  light,  the  TAG  Lens  will  sample  all  focal  lengths  within  the  range  of  operation  as  given  by  +/-­‐  P  (the  maximum  and  minimum  lens  power)  from  Equation  2.    Although  for  a  standard  TAG  Lens  this  value  will   range   from  positive   to   negative,   it   is   possible   for   TAG  Optics   to   customize   a   lens   so   that   it  remains  entirely  positive  or  negative  depending  on  the  user’s  needs.    Therefore,  a  line  focus  (or  defocus)  will  be  obtained  with  changes  in  the  amplitude  or  frequency  of  operation  affecting  its  length.    This  line  focus  is  fundamentally  different  than  that  of  a  Bessel  Beam  in  that  there  are  no  rings  around  the  central  line.   Therefore,   all   the   optical   power   is   concentrated  within   the   line   focus  which   can   have   particular  benefits  in  materials  processing  applications.    Alternatively,  one  can  think  of  this  as  a  user  defined  depth  of  field  with  important  benefits  in  imaging  applications.      For  those  applications  requiring  a  more  traditional  Bessel  Beam,  it  is  possible  to  drive  the  TAG  Lens  in  an  appropriate   regime  which   can   result   in   the   desired   Bessel   Beam.     In   this   case,   the   TAG   Lens   can   be  considered  equivalent  to  a  tunable  axicon  lens  whereby  changes  in  the  amplitude  have  the  same  effects  as  changing  the  cone  angle.          When  using  Pulsed  light,  the  TAG  Lens  will  behave  as  a  standard  lens  with  a  single  focal  length  for  each  pulse.    If  the  light  source  is  synchronized  with  the  TAG  Lens,  the  result  will  be  the  same  focal  length  for  each  pulse.  If  it  is  not  synchronized,  each  pulse  will  exhibit  a  different  focal  length  which  depends  on  the  relative  phase  difference  between  the  light  source  and  TAG  Lens.    Therefore,  it  is  possible  for  the  user  to  easily   and   quickly   select   any   focal   length   by   simply   controlling   the   time   delay.     This   effect   has   clear  advantages  in  both  imaging  and  materials  processing  applications  where  the  ability  to  rapidly  adjust  the  focal   length   can   accommodate   rapidly   changing   surfaces   and   opens   the   door   to   novel   imaging   and  processing  modalities.     Since   the   TAG   Lens   is   continuously   changing   in   time,   such   changes   can   occur  faster  than  the  period  of  oscillation,  down  to  the  sub-­‐microsecond  time  scale  and  much  faster  than  any  other  adjustable  focus  element  on  the  market.        

 

 

TAG  LENS  2.0  –  Using  Sound  to  Shape  Light  The  TAG  Lens   is  an  ultra-­‐high   speed  device   capable  of   increasing   the   depth   of   field   of   conventional  optics  or  providing  a  user-­‐specified  changeable  focal  length   with   sub-­‐microsecond   temporal   resolution.    Controlled   from   the  USB  output   of   a   computer   it   is  ideal   for   applications   such   as   imaging,   laser  micro-­‐processing,  or  metrology.  

     No  representation  or  warranty,  either  expressed  or  implied,  is  made  as  to  the  reliability,  completeness  or  accuracy  of  this  paper    

©  COPYRIGHT  2012  TAG  OPTICS  INC.  

 

MODE

S  OF  OPE

RATION  AND  AP

PLICAT

IONS