The warm absorber in NGC 5548

45
The warm absorber in NGC 5548 Jelle Kaastra / Elisa Costantini SRON Katrien Steenbrugge CfA

description

The warm absorber in NGC 5548. Jelle Kaastra / Elisa Costantini SRON Katrien Steenbrugge CfA. Overview of the talk. Introduction to NGC 5548 Short description of WA modeling Velocity structure of the outflow How many absorption components? Emission features Time variability - PowerPoint PPT Presentation

Transcript of The warm absorber in NGC 5548

Page 1: The warm absorber in  NGC 5548

The warm absorber in NGC 5548

Jelle Kaastra / Elisa CostantiniSRON

Katrien SteenbruggeCfA

Page 2: The warm absorber in  NGC 5548

Overview of the talk

1. Introduction to NGC 5548

2. Short description of WA modeling

3. Velocity structure of the outflow

4. How many absorption components?

5. Emission features

6. Time variability

7. Preliminary results of the 2005 observation

8. Conclusions

Page 3: The warm absorber in  NGC 5548

1. Introduction to NGC 5548

• One of the brightest S1 in UV and X-ray Well studied in UV and X-rays

• Low galactic absorption ideal for spectroscopy

• Moderately deep warm absorber blending not too large, but still strong WA signature

Page 4: The warm absorber in  NGC 5548

History 1: the low-resolution era

• ASCA data (Reynolds 1997)

• Spectrum: power law• Additional Fe-line• Warm absorber

(modeled with continuum edges)

Fe-K emission

Warm absorber

Page 5: The warm absorber in  NGC 5548

History 2: high spectral resolution: lines!

• NGC 5548 first Seyfert ever observed at high spectral resolution (dec 1999, Chandra LETGS)

• Lots of absorption lines from different ions

• Shows importance of high resolution

Kaastra et al. 2000

Page 6: The warm absorber in  NGC 5548

2. Overview of available data

Page 7: The warm absorber in  NGC 5548

High-resolution X-ray and UV observations of NGC 5548

• This presentation is based on three groups of spectra:

• 1. LETGS/HETGS/RGS single observations in 1999/2000 (see next slide)

• 2. Large X-ray/UV campaign in 2002 (see later this talk)

• 3. 150 ks LETGS observation in 2005 (end of the talk, preliminary results)

Page 8: The warm absorber in  NGC 5548

NGC 5548 - need for campaign

• Chandra LETGS: Dec 1999 - 86 ks• Chandra HETGS: Feb 2000 – 83 ks• XMM-Newton : Dec 2000 – 28 ks• XMM-Newton : Jul 2001 – 137 ks• None with simultaneous UV• HST/GHRS : Feb/Aug 1996 – 18.2 ks• HST/STIS : Mar 1998 – 8.9 ks• FUSE : Jun 2000 – 25 ks• None with simultaneous X-ray

Page 9: The warm absorber in  NGC 5548

Multi-λ campaign in 2002

• Approved Chandra/HST/FUSE campaign Observed Jan 2002 (without FUSE,

due to technical problems)

• HST/STIS: 21 ks – Crenshaw et al. 2003

• Chandra LETGS+HETGS: 510 ks

• Kaastra et al. 2004 - Time variability

• Steenbrugge et al. 2005 - Spectra

Page 10: The warm absorber in  NGC 5548

3. Short description of WA modeling

Page 11: The warm absorber in  NGC 5548

X-ray analysis

• Fit spectra using a power law + modified blackbody continuum

• Where needed, add emission lines: relativistic, BLR or NLR X-ray lines

• Fit warm absorber using a model (see next slide) ionic or total column densities

• Using photo-ionisation model, derive NH and ξ distribution

• Spectral fits done with SPEX, global fits

Page 12: The warm absorber in  NGC 5548

Photoionisation models

• Models for transmission of a thin slab

• Continuum & line absorption calculated

• slab model: ion columns independent

• xabs model: ion columns coupled through xstar/cloudy runs

• warm model: continuous distribution of NH(ξ)

Page 13: The warm absorber in  NGC 5548

What is in the photo-ionisation models?

• Continuum opacities from Verner et al. 95• Line absorption from many different

sources: Ferland & Verner, HULLAC (Fe-L & Fe-M, O-K inner shell) etc.

• Take account of line profile (Voigt)• Allow for turbulent motion and systematic

outflow velocities• Self-consistent photo-ionisation model is

under development

Page 14: The warm absorber in  NGC 5548

More info about SPEX

• See the web page:

www.sron.nl/divisions/hea/spex/index.html

Page 15: The warm absorber in  NGC 5548

4. Velocity structure of the outflow

Page 16: The warm absorber in  NGC 5548

X-ray line profiles: 1999 spectrum

• Lines are broadened: 270±100 km/s

• Lines are blueshifted: 280±100 km/s

• Lines have tendency for extended blue wing

• Some lines (O VII res, O VIII Lyα) have P Cygni -like profile

outflowing, photoionised wind model

Page 17: The warm absorber in  NGC 5548

A comparison with UV lines

• High spectral resolution in UV• Only few UV lines (H I, C IV, N V and O VI)• At least 5 components seen in absorption,

superimposed on broad emission lines• UV lines narrow and resolved: σv= 20-80 km/s• R.M.S. width of ensemble: 160-260 km/s,

consistent with LETGS• UV lines are blueshifted, range 160-1060 km/s UV & X-ray lines two manifestations of same

phenomenon

Page 18: The warm absorber in  NGC 5548

Velocity structure in UV lines

• STIS spectra (Crenshaw & Kraemer 1999) show 5 velocity components:

• Nr 1 high -1040 km/s• Nr 2 med -667 km/s• Nr 3 med -530 km/s• Nr 4 med -336 km/s• Nr 5 low -160 km/s

Radial velocity (km/s)

Page 19: The warm absorber in  NGC 5548

X-ray line profiles

• At long λ, LETGS has higher resolution: C VI profile not fully resolved but consistent with UV structure

Page 20: The warm absorber in  NGC 5548

Outflow velocity versus ξ

• UV shows 5 velocity components

• X-ray resolution insufficient to resolve them

• But high average v at high ξ

Page 21: The warm absorber in  NGC 5548

Velocity structure

• Strongest lines fit in three components with fixed v: high, med and low v

• High v column density increases more rapidly with ξ than med or low:

UV/HSTSimultaneous UV/FUSE

Non-simultaneous.

Page 22: The warm absorber in  NGC 5548

5. How many absorption components?

• First glance at 1999 LETGS spectrum: strong lines of O VII, O VIII and others from photoionized plasma (Kaastra et al. 2000)

• Is there more than 1 component?

Page 23: The warm absorber in  NGC 5548

Why we can constrain the warm absorber in NGC 5548 so well

• High flux & low NH bright in soft X-ray band

also detection of WA at long λ from L-shell transitions Mg, Si, S etc.

redundancy in determining WA structure

K-shell region

L-shell region

Sample of 1.5-100 Å spectra

(here the 2002 spectrum)

Page 24: The warm absorber in  NGC 5548

The oxygen region: why important?

• Good diagnostic region because:

• For almost any ξ there is a diagnostic ion

• Oxygen is the most abundant metal

Page 25: The warm absorber in  NGC 5548

Long wavelength transitions

• Our photoionisation model at long λ quite succesfull

• See 2002 LETGS spectrum

• Only global fitting works here: low S/N

• Atomic data need update in this region

Page 26: The warm absorber in  NGC 5548

A more detailed look to 1999 data: three ionization components

• Ionization structure is not a simple 1-phase medium

• fits to LETGS data require at least 3 ionization components:

• log ξ = 0.5• log ξ = 1.9• log ξ = 2.9

Kaastra et al.2002

Page 27: The warm absorber in  NGC 5548

Decomposition into separate ξ: evidence for 5 components

• Use column densities Fe ions from RGS data

• Measured Nion as sum of separate ξ components

• LETGS results similar• Need at least 5

components

Page 28: The warm absorber in  NGC 5548

Separate components in pressure equilibrium?

• Not all components in pressure equilibrium (same Ξ~ξ/T~F/p)

• Division into ξ comps often poorly defined

Continuous NH(ξ) distribution: see next slide

Page 29: The warm absorber in  NGC 5548

Column density versus ξ

Page 30: The warm absorber in  NGC 5548

Column density versus ξ

Fe at low T: DR rates?

Page 31: The warm absorber in  NGC 5548

Continuous ionization distribution

• Continuous distribution over at least 3.5 orders in ξ

• dNH/dlnξ~ξα, with α=0.40±0.05

• Adopt streamer-like geometry

• Take dNH=n(s)ds with s distance from axis

• ξ=L/n(s)r², r and L constantn(s)~1/(1+s/s0)β, β=1/(1+α)

• s»s0: n(s)~1/s0.71

Page 32: The warm absorber in  NGC 5548

Mass loss through the wind

2cML acc

vLvnr )/(2

accloss MM

vnrmM ploss2

2

)/(

cm

v

p

v (km/s) -166 -1040

ξ=1 0.0007 0.0001

ξ=1000 0.7 0.1

Page 33: The warm absorber in  NGC 5548

6. Emission features

Page 34: The warm absorber in  NGC 5548

Relativistic lines in NGC 5548

• Evidence for relativistic lines of O VIII and N VII in 1999 spectrum

• Lines weak: EW 0.6 and 1.1 Å

• Significant at 3σ• Inclination 46º consistent

with Fe-K (Yaqoob et al.)• Inner radius <2.6GM/c²

Kerr hole?• Also seen by BeppoSAX

before? (Nicastro et al.)

Page 35: The warm absorber in  NGC 5548

Broad emission lines

• NGC 5548: C VI Lyα• FWHM 10000 km/s

(Kaastra et al. 2002)• Also seen in O VII

triplet in NGC 5548 (Steenbrugge et al. 2005) and Mrk 279 Costantini et al. 2005)

Page 36: The warm absorber in  NGC 5548

Narrow emission lines

• O VII forbidden line strongest narrow line

• No significant red/blueshift

• Low σv < 300 km/s from distant region

• Not variable between 1999 and 2002 (LETGS, RGS)

Page 37: The warm absorber in  NGC 5548

7. Time variability

Page 38: The warm absorber in  NGC 5548

Long term variability of NGC 5548

• Difference between LETGS spectra:

• Dec 1999 - Jan 2002• Difference in red wing

broad C VI lines (@ +2000 to 3000 km/s, FWHM=1000 km/s)

• Difference in O V line → log ξ~-0.2

Page 39: The warm absorber in  NGC 5548

Short term continuum variability

Page 40: The warm absorber in  NGC 5548

8. New LETGS data: april 2005

Page 41: The warm absorber in  NGC 5548

New LETGS data: april 2005

• New data 150 ks• Taken in april 2005• NGC 5548 was in a

very low state: 4.5 x weaker than in 2002

• Continuum is very hard

Page 42: The warm absorber in  NGC 5548

Changes in warm absorber

• Plot shows scaled spectra

• Significant change in O V- OIII (see plot)

• OV is deeper and broader: trend of 2002 continued

• Very deep O III• Other ions no

significant change

Page 43: The warm absorber in  NGC 5548

Interpretation of WA changes

• Luminosity drop of factor 4.5 since 2002

• But not simply scaling with ξ=L/nr²

• Columns O III, O IV and O V much larger

• Also larger width: σ=440 km/s versus 70-140 km/s in 2002

Page 44: The warm absorber in  NGC 5548

Forbidden line O VII: time variable

• Forbidden line constant during 1999-2002 Chandra/XMM observations

• Fluxes in ph/m2/s:• 1999: 0.81±0.19• 2002: 0.88±0.12• 2005: 0.35±0.08 forbidden line

formed at pc scale

Page 45: The warm absorber in  NGC 5548

Conclusions/questions

• Warm absorber in NGC 5548 and other sources more consistent with continuous NH(ξ) distribution then separate components in pressure equilibrium

• Outflow should occur in narrow, density stratified streamers

• What determines maximum ionization parameter?