The USC Microbial Observatory

23
The USC Microbial Observatory tment of Biological Sciences tment of Biological Sciences rsity of Southern California rsity of Southern California Trousdale Parkway, AHF 301 Trousdale Parkway, AHF 301 ngeles, CA 900089-0371 ngeles, CA 900089-0371 //www.usc.edu/dept/LAS/biosci/Caron_lab/index.html //www.usc.edu/dept/LAS/biosci/Caron_lab/index.html D. Caron, J.Fuhrman: P. Countway, M. Brown, I. Hewson, P. Savai, A. Schnetzer, S. Moorthi, J. Rose, J. Steele, I. Gilg, M. Schwalbach, R. Schaffner, E. Brauer, L. Farrar, B. Strachan, P. Vigil …at the San Pedro Ocean Time-series Station T. Michaels: B. Jones, W. Berelson M. Neumann, R. Schimmoeller E. Caporelli, J. Herndon, X. Hernandez, G. Smith

description

The USC Microbial Observatory. …at the San Pedro Ocean Time-series Station. D. Caron, J.Fuhrman: P. Countway, M. Brown, I. Hewson, P. Savai, A. Schnetzer, S. Moorthi, J. Rose, J. Steele, I. Gilg, M. Schwalbach, R. Schaffner, E. Brauer, L. Farrar, B. Strachan, P. Vigil. T. Michaels: - PowerPoint PPT Presentation

Transcript of The USC Microbial Observatory

Page 1: The USC Microbial Observatory

The USCMicrobial Observatory

Department of Biological SciencesDepartment of Biological SciencesUniversity of Southern CaliforniaUniversity of Southern California3616 Trousdale Parkway, AHF 3013616 Trousdale Parkway, AHF 301Los Angeles, CA 900089-0371Los Angeles, CA 900089-0371http://www.usc.edu/dept/LAS/biosci/Caron_lab/index.htmlhttp://www.usc.edu/dept/LAS/biosci/Caron_lab/index.html

D. Caron, J.Fuhrman:P. Countway, M. Brown, I. Hewson, P. Savai, A. Schnetzer, S. Moorthi, J. Rose, J. Steele, I. Gilg, M. Schwalbach, R. Schaffner, E. Brauer, L. Farrar, B. Strachan, P. Vigil

…at the San PedroOcean Time-series Station

T. Michaels:B. Jones, W. BerelsonM. Neumann, R. Schimmoeller E. Caporelli, J. Herndon, X. Hernandez, G. Smith

Page 2: The USC Microbial Observatory

The USC M.O.Broad Objectives/Directions

Prokaryote and Eukaryote Discovery

Diversity: Short and Long(ish) Time

Scales

Characterizing Distributions

Defining Relationships among Microbial

Taxa

Autecological studies

Page 3: The USC Microbial Observatory

N

USC Microbial Observatory and San Pedro Ocean Time Series

20 km

Page 4: The USC Microbial Observatory

http://wrigley.usc.edu/data_sys/

Nitrate (µM)

Temperature °C

Phosphate (µM)

Page 5: The USC Microbial Observatory

Silicate (µM)

Chlorophyll

Oxygen (ml/l)

Page 6: The USC Microbial Observatory

Temperature

Oxygen

Chlorophyll a

USC Microbial Observatory and San Pedro Ocean Time Series

Sept 2000 Dec 2003

Bacteria by FCM

by EFM

Viruses by EFM (SYBR Green)

Page 7: The USC Microbial Observatory

Prochlorococcus FCMSynechococcus FCMPicoeukaryotes FCM

USC Microbial Observatory and San Pedro Ocean Time Series

Sept Dec2000 2003

Aloricate ciliates

Dinoflagellates

Diatoms

Page 8: The USC Microbial Observatory

Whole Bacterial Community FingerprintsAmplified Ribosomal Intergenic Spacer Analysis (ARISA)

backed by Clone Libraries for ID. Phylogenetic resolution near “species” level

Each peak represents an “Operational Taxonomic Unit.”Reference: Fisher and Triplett 1999, others...

ARISA PCR

Run products on a fragment analyzer.

16S rRNA gene

ARISAPCR primers

Fluorochrome

23S rRNA geneIntergenic Spacer, Variable Length

PCR from these primers to make Clone Libraries to identify ARISA OTUs16S sequence provides ID, ITS sequence provides length and very high resolution phylogenetic information (ca. “strain” level).

Page 9: The USC Microbial Observatory

Microdiversity - The rule rather than the exception.ITS shows clusters well. Populations are not clonal.

0.1

SAR 11 cluster alone - we estimate ~800 distinguishable sequence types at our coastal study site (Chao 1)- clustered into ~10 groups (ecotypes?)

0.1ITS

16S

284 clones138 from SPOTS

SAR11cluster(in San PedroChannel)

Page 10: The USC Microbial Observatory

ARISA Bins1-50 51-100 100-150

Discriminant Function Analysis

‘Clockfaces’ - Months are like hours on the clock.

Radii represent discriminant function of taxa (a function of community composition).

Central line: meanDashed lines: range over 3 years

Annual Bacterial Community Reassembly with Shahid Naeem, Columbia University

Chl max

Page 11: The USC Microbial Observatory

6179

129148

184198

218231

261277

292324

340359

375449

478

494508

590

606

Jan-01

Apr-01

Jul-01

Oct-01

Jan-02

Apr-02

Aug-02

Jan-03

May-03

Jul-03

Oct-03

0

50000

100000

150000

200000

250000

300000

350000

Fragment Size (bp)

USC MO Chl a Max: Protistan HaeIII T-RFLPT-RFLP Eukaryote Seasonal Pattern USC M.O.HaeIII Digest

Important tool forCorrelating to ARISAs(prokaryote community structure)

Typically 40-70 fragments/sample.

Page 12: The USC Microbial Observatory

T-RFLP Similarity Matrix Tool Results: RDP II website

HaeIIIHaeIII

TRFsTRFs DateDate JanJan AprApr MayMay JulJul OctOct

(74)(74) JanJan 0.530.53 0.540.54 0.670.67 0.550.55

(69)(69) AprApr 0.530.53 0.590.59 0.580.58 0.500.50

(64)(64) MayMay 0.540.54 0.590.59 0.630.63 0.440.44

(89)(89) JulJul 0.670.67 0.580.58 0.630.63 0.560.56

(44)(44) OctOct 0.550.55 0.500.50 0.440.44 0.560.56

Page 13: The USC Microbial Observatory

1.0

0.9

0.8

0.7

0.6

0.5

0.4

Kendall Rank Similarity

e606e590e339e277e235e486e234e236e332

710e232e333e283667

e346780616520

e229e136e132945e181625541

e591e450e275960

e497e340e336e274905

e595e453e224493

e503613

e603e600e451e598e324e261469825755679676418775725715472

e300652e128421424400e175628e501568

1050664661

e402e228e331e195e196e327e325700

e282885785850745685649433

e487e237795571

e504e61

e231e94691e68835481

e602e459e454e262760e301e177e179e492e2685295381180985740805592790532508631610

e589855e1921030e233487770619547

e597e488e485e498e338e341e496e493e272e182e198e502e126655

e230682559478800526475e281e131705765e74e73

e130e481e335e362e302e276e500e129e135e76607940517646640643

Protistan OTU Bacterial OTU

•But certain Bacterial and Protistan OTU covary most closely with each other

•Bacterial and Protistan OTU usually cluster within domains (e.g. protist with protist)

Kendall Rank Similarity

e606e590e339e277e235e486e234e236e332

710e232e333e283667

e346780616520

e229e136e132945e181625541

e591e450e275960

e497e340e336e274905

e595e453e224493

e503613

e603e600e451e598e324e261469825755679676418775725715472

e300652e128421424400e175628e501568

1050664661

e402e228e331e195e196e327e325700

e282885785850745685649433

e487e237795571

e504e61

e231e94691e68835481

e602e459e454e262760e301e177e179e492e2685295381180985740805592790532508631610

e589855e1921030e233487770619547

e597e488e485e498e338e341e496e493e272e182e198e502e126655

e230682559478800526475e281e131705765e74e73

e130e481e335e362e302e276e500e129e135e76607940517646640643

Protistan OTU Bacterial OTU

Kendall Rank Similarity

e606e590e339e277e235e486e234e236e332

710e232e333e283667

e346780616520

e229e136e132945e181625541

e591e450e275960

e497e340e336e274905

e595e453e224493

e503613

e603e600e451e598e324e261469825755679676418775725715472

e300652e128421424400e175628e501568

1050664661

e402e228e331e195e196e327e325700

e282885785850745685649433

e487e237795571

e504e61

e231e94691e68835481

e602e459e454e262760e301e177e179e492e2685295381180985740805592790532508631610

e589855e1921030e233487770619547

e597e488e485e498e338e341e496e493e272e182e198e502e126655

e230682559478800526475e281e131705765e74e73

e130e481e335e362e302e276e500e129e135e76607940517646640643

Protistan OTU Bacterial OTU

0.1

Kendall Rank Similarity

e606e590e339e277e235e486e234e236e332

710e232e333e283667

e346780616520

e229e136e132945e181625541

e591e450e275960

e497e340e336e274905

e595e453e224493

e503613

e603e600e451e598e324e261469825755679676418775725715472

e300652e128421424400e175628e501568

1050664661

e402e228e331e195e196e327e325700

e282885785850745685649433

e487e237795571

e504e61

e231e94691e68835481

e602e459e454e262760e301e177e179e492e2685295381180985740805592790532508631610

e589855e1921030e233487770619547

e597e488e485e498e338e341e496e493e272e182e198e502e126655

e230682559478800526475e281e131705765e74e73

e130e481e335e362e302e276e500e129e135e76607940517646640643

Protistan OTU Bacterial OTU

Kendall Rank Similarity

e606e590e339e277e235e486e234e236e332

710e232e333e283667

e346780616520

e229e136e132945e181625541

e591e450e275960

e497e340e336e274905

e595e453e224493

e503613

e603e600e451e598e324e261469825755679676418775725715472

e300652e128421424400e175628e501568

1050664661

e402e228e331e195e196e327e325700

e282885785850745685649433

e487e237795571

e504e61

e231e94691e68835481

e602e459e454e262760e301e177e179e492e2685295381180985740805592790532508631610

e589855e1921030e233487770619547

e597e488e485e498e338e341e496e493e272e182e198e502e126655

e230682559478800526475e281e131705765e74e73

e130e481e335e362e302e276e500e129e135e76607940517646640643

Protistan OTU Bacterial OTU

0.1

Rank correlation of occurrence of OTU

Bacterial - Protistan Relationships

Relates Prokaryotic-Eukaryotic Ecology

Page 14: The USC Microbial Observatory

2,224 clones

(400 – 650 bp ea.)Ciliophora

Dinophyceae

PolycystineaStreptophyta

Haptophyceae

Stramenopiles

Perkinsea

Euk; env.

Choanoflagellida

ApusomonadidaeEuglenozoa Apicomplexa

Glaucocystophyceae

Ichthyosporea

Cryptophyta

Cercozoa

Fungi

Chlorophyta

Acantharea

M.O. 2001ARB Tax.

Phylogenetic breakdown of Euks in 18S libraries from the time-series.

Page 15: The USC Microbial Observatory

What about species diversity?Protistan taxa are morphologically defined. You might think that would be an advantage,and yet…

-Complexity of taxonomy(ies)multiple fixation proceduresmultiple analytical proceduresdiverse taxonomic characters

-Deficiencies of taxonomysmall species (few characters)morphologically amorphous speciesconvergent evolution

-Demands of ecological researchhigh sample numbercomplexity of natural assemblages

Page 16: The USC Microbial Observatory

• Select complete 18S sequences of ‘well-defined’ (i.e. morphologically-defined) protistan species from GenBank.

• Perform all pairwise comparisons of full-length sequences.• examine intra-species (strain-strain) sequence variability.• examine inter-species sequence variability.

• Attempt to determine logical demarcation (% similarity) for species-level distinction.

• Apply criteria to environmental sequence databases for assessing microbial eukaryote diversity.

There is a need to develop practical guidelines for defining OTUs for protistan taxa based on rDNA sequence information.

Caveats:-This will not resolve the issue of the ‘species concept’.-Ultimately, multiple gene sequences will provide identity.

Our approach:

Page 17: The USC Microbial Observatory

99

98

97

9695

9493

9291

9089

88

8786

85

807570656055504540300

50

100

150

200

250

300

350

400

450

20 40 60 80 100

Percent Similarity

Number of Taxonomic Units

95%, 165 OTUs

Consequences of varying percent similarity for OTU calling.(application to real data)

Results for 970 environmental 18Sclone sequences from a sample inthe Coastal western North Atlantic

Page 18: The USC Microbial Observatory

0

20

40

60

80

100

120

140

160

180

200

1 19 37 55 73 91 109 127 145 163 181 199 217 235 253 271 289 307 325 343 361 379 397 415 433 451 469 487

0

20

40

60

80

100

120

140

160

180

200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

‘Taxon-level’ distinction≈1200 18S clones(Single date, 6 depths, USC M.O. site)

Taxonomic Units

*Large Euk diversity (488 OTUs; 95% similarity: pairwise alignments).

*Most OTUs are rare (large number of ‘background’ of taxa).

Fre

quen

cy o

f T

axon

omic

Uni

t

Page 19: The USC Microbial Observatory

0

10

20

30

40

50

60

70

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161

Phylotype Rank

Phylotype Abundance

Countway et al. (2005), GenBank accession AY937465-AY938434

Study in Coastal N. Atlantic72-hr bottle incubationNatural light; ambient temp.

970 clones analyzed.

165 Total phylotypes (95%).

68% (108 out of 165) observed at only one sampling time.

Only 18% observed at all 3 sampling times.

Global distributionor

Endemism?

Global distributionor

Endemism?Jury

still

out!

Page 20: The USC Microbial Observatory

Target Organisms – Caron Target Organisms – Caron LabLab

Phaeocystis (Haptophyte)

Lingulodinium (Dinoflagellate)

Ostreococcus (Chlorophyte)Chrétiennot-Dinet et al., 1995

Pseudonitzschia(Diatom)

The Daily Breeze: May 12, 2002

Page 21: The USC Microbial Observatory

Cryptophytes4%

Ostreococcus9.1%

Stramenopiles2%

Haptophytes4%

OtherChlorophytes

9.1%

Dinoflagellates38.2%

Ciliates20.0%

Unclass. Eukaryotes14.5%

Ostreococcus T-RFLP signatureat the Chl a Max: July 2001

9.8%

10.7%

11.3%

Percent of total amplified DNA

Caron, Countway & Brown (2004)

Page 22: The USC Microbial Observatory

Comparison to flow cytometry…Comparison to flow cytometry…

Page 23: The USC Microbial Observatory

In parting, two popular microbial myths…(and their corollaries)

The ‘age of discovery’ in oceanography is over.(if you believe this, you’ve come to the wrong workshop)

C1: We have accurate estimates of protistan diversity. We know a lot of common morphotypes, but... (There is genetic diversity we don’t understand) (Relationship between morphology, sequence identity and physiology is poorly known; we lack ecological tools)

We can forget about (or ignore) the species concept. C1: The ‘omes’ (genome, transcriptome, proteome, metabolome) will ‘tell all’.

The species (however defined) is the evolutionary unit; not the gene, not the assemblage, not the community.The problem (sp. concept) is different for proks and euks.