The Trigonometric Parallax

16
The Trigonometric Parallax B p B = 1 AU = 1.496*10 13 cm d = (1/p[arcsec]) parsec d 1 pc = 3.26 LY ≈ 3*10 18 cm

description

0. The Trigonometric Parallax. B. d. p. d = (1/p[arcsec]) parsec. B = 1 AU = 1.496*10 13 cm. 1 pc = 3.26 LY ≈ 3*10 18 cm. 0. The Moving Cluster Method. v. q. v f. v r. q. f. x. 0. - PowerPoint PPT Presentation

Transcript of The Trigonometric Parallax

Page 1: The Trigonometric Parallax

The Trigonometric Parallax

Bp

B = 1 AU = 1.496*1013 cmd = (1/p[arcsec]) parsec

d

1 pc = 3.26 LY ≈ 3*1018 cm

Page 2: The Trigonometric Parallax

The Moving Cluster Method

x

vvr

v

Page 3: The Trigonometric Parallax

The magnitude scale system can be extended towards negative numbers (very bright) and

numbers > 6 (faint objects):

Sirius (brightest star in the sky): mv = -1.42

Full moon: mv = -12.5

Sun: mv = -26.5

Page 4: The Trigonometric Parallax

Color and Temperature

Orion

Betelgeuze

Rigel

Stars appear in different colors,

from blue (like Rigel)

via green / yellow (like our sun)

to red (like Betelgeuze).

These colors tell us about the star’s

temperature.

Page 5: The Trigonometric Parallax

Blackbody Radiation (I)

The light from a star is usually concentrated in a rather narrow

range of wavelengths.

The spectrum of a star’s light is approximately a thermal

spectrum called Blackbody Spectrum.

Page 6: The Trigonometric Parallax

Blackbody Radiation

Fsurf = Teff4

= 5.67*10-5 erg/(cm2 s K4)

Wien’s displacement law:

max ≈ 0.29 cm / TK

(TK = temperature in Kelvin).

Page 7: The Trigonometric Parallax

The Color Index (I)B band

V bandThe color of a star is measured by comparing its brightness in different wavelength bands:

The blue (B) band and the visual (V) band.

We define B-band and V-band magnitudes just as we did

before for total magnitudes.

Page 8: The Trigonometric Parallax

Optical Wavelength Bands

U: 0 ≈ 3650 Å

B: 0 ≈ 4400 Å

V: 0 ≈ 5500 Å

Page 9: The Trigonometric Parallax

The Color IndexWe define the Color Index

B – V(i.e., B magnitude – V magnitude)

The bluer a star appears, the smaller the color index B – V.The hotter a star is, the smaller its color index B – V.

B - V

Temperature

Page 10: The Trigonometric Parallax

Example:For our sun:

Absolute V magnitude: 4.83

Absolute B magnitude: 5.51

=> Color index:

B – V = 0.68

From standard tables:

B – V = 0.68 => T ≈ 5800 K.

Page 11: The Trigonometric Parallax

The Color-Color Diagram

B - V

U -

B

-0.5 1.51.00.50.0 2.01.5

1.0

0.5

0.0

-0.5

-1.0

Blackbody

B0

A0F0 G0

K0

M0

Page 12: The Trigonometric Parallax

The Hertzsprung-Russell Diagram

B - V

Teff

Mbo

l

Log(

L)

Most stars are found along the Main Sequence

Zero-Age Main Sequence (ZAMS)

Page 13: The Trigonometric Parallax

Radii of Stars in the Hertzsprung-Russell Diagram

10,000 times the

sun’s radius

100 times the

sun’s radius

As large as the sun100 times smaller than the sun

Rigel Betelgeuze

Sun

Polaris

Giants

Supergiants

White Dwarfs

Page 14: The Trigonometric Parallax

Extinction and Reddening

Page 15: The Trigonometric Parallax

Interstellar Extinction

Page 16: The Trigonometric Parallax

Wavelength-Dependent Extinction