The System and Marginal Value of CSP in the SA IRP Time ...

27
2017/01/17 1 The System and Marginal Value of CSP in the SA IRP Time Horizon: The WWF SA Scenarios and NamPower Macroeconomic Study Dr Paul Gauché [email protected] http://www.crses.sun.ac.za

Transcript of The System and Marginal Value of CSP in the SA IRP Time ...

Outline

2017/01/17 2

• Spatiotemporal approach

• Example: WWF 2030

• Example: NamPower

Resolving space

Image credit: Silinga, Rudman

2017/01/17 3

Solving in time

Load merit item & compute supply

fraction

Start year

Load 8760 hours solar, wind &

weather

Load 8760 demand hours

Configure all plants (capacity, availability merit, etc)

Demand met? Stop hour Start next hour

No

Yes

Year complete? Stop year

No Yes

Out of capacity?

No Yes Storage charging

logic (add to demand next

hour)

2017/01/17 4

Forecasting by probability Cost | account for wide range of futures probabilistically

0.0

0.5

1.0

0.50 0.52 0.54 0.56 0.58 Simple LCOE (R/kWh)

0.60 0.62 0.64

Prob

abili

ty

zero

avg Certain*

2017/01/17 5

CSP treatment

Storage Eg. 12 h

Turbine 100 MW

Collector Eg. SM=4

Hourly avg: DNI, Tamb & vwind

Grid

NodeGleocation Node

4

4

2

12

12

3 200

100

100 100

4

12

4

4

12 12

12 12

12 4

4

1

1

1

5

5

Nodal lumping provides further convenience without

losing precision

2017/01/17 6

The value of CSP in a high renewable 2030 South African energy system

SolarPACES 2015, Cape Town

Paul Gauché, Justine Rudman & Cebo Silinga. Stellenbosch University SolarPACES 2015 Cape Town 14 October, 2015

The value of CSP in a high renewable 2030 South African energy system

WWF RE VISION 2030

Stel

lio h

elio

stat

- im

age

copy

right

of s

bp g

mbh

The value of CSP in a high renewable 2030 South African energy system

Demand | scaling the entire yearly shape

30000

35000

40000

45000

65000 60000 55000 50000

Dem

and

(MW

)

Annual demand (TWh)

SolarPACES 2015, Cape Town 17 January 2017 - 8

Scenario Multiples

250 2010 n/a 358 WWF Low 1.430 407 WWF High 1.625 409 IRP Update 1.634 454 IRP 2010 1.816

The value of CSP in a high renewable 2030 South African energy system

WWF High | summer with poor sun event

0

10000

20000

30000

40000

50000

60000

24 25 26 27 Days of the year

28 29

Pow

er p

rodu

ctio

n an

d de

man

d (M

Wh)

OCGT Pumped storage

CCGT

CSP Coal

Hydro

Nuclear

City PV

Utility PV

Wind

Demand

SolarPACES 2015, Cape Town 17 January 2017 - 9

The value of CSP in a high renewable 2030 South African energy system

WWF High | summer with wind drop

0

10000

20000

30000

40000

50000

60000

32 33 34 35 36

Pow

er p

rodu

ctio

n an

d de

man

d (M

Wh)

Days of the year

OCGT Pumped storage

CCGT

CSP Coal

Hydro

Nuclear

City PV

Utility PV

Wind

Demand

SolarPACES 2015, Cape Town 17 January 2017 - 10

The value of CSP in a high renewable 2030 South African energy system

WWF High | transition to winter

0

10000

20000

30000

40000

50000

60000

92 93 94 95 96 97 Days of the year

98 99 100

Pow

er p

rodu

ctio

n an

d de

man

d (M

Wh)

OCGT

Pumped storage

CCGT

CSP

Coal

Hydro

Nuclear

City PV

Utility PV

Wind

Demand

SolarPACES 2015, Cape Town 17 January 2017 - 11

The value of CSP in a high renewable 2030 South African energy system

WWF High | deep winter

0

10000

20000

30000

40000

50000

60000

170 171 172 173 174 175 Days of the year

176 177 178

Pow

er p

rodu

ctio

n an

d de

man

d (M

Wh)

OCGT

Pumped storage

CCGT

CSP

Coal

Hydro

Nuclear

City PV

Utility PV

Wind

Demand

SolarPACES 2015, Cape Town 17 January 2017 - 12

The value of CSP in a high renewable 2030 South African energy system

Capacity | renewables, mid merit & peaking

Wind

Wind Wind Wind

PV

PV

PV PV

CSP

CSP

CSP CSP

CCGT CCGT

CCGT

CCGT

OCGT OCGT

OCGT OCGT

Pumped storage Pumped storage Pumped storage Pumped storage

SolarPACES 2015, Cape Town 17 January 2017 - 13

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

IRP IRP Update WWF High WWF Low

Cap

acity

con

tribu

tion

(%)

The value of CSP in a high renewable 2030 South African energy system

Annual generation | renewables, mid merit & peaking

Wind Wind

Wind Wind

PV 30%

PV

PV PV CSP

CSP

CSP CSP

CCGT CCGT

CCGT CCGT

OCGT OCGT

OCGT OCGT Pumped storage Pumped storage

0%

10%

20%

40%

50%

60%

70%

80%

90%

100%

IRP IRP Update WWF High WWF Low

Annu

al p

rodu

ctio

n co

ntrib

utio

n (%

)

SolarPACES 2015, Cape Town 17 January 2017 - 14

The value of CSP in a high renewable 2030 South African energy system

Cost | each scenario probability costing

IRP Update WWF Low WWF High

0.5

IRP

SolarPACES 2015, Cape Town 17 January 2017 - 15

0

1

0.50 0.60 0.70 0.80 0.90 1.00 1.10 Cost of electricity (R/kWh)

1.20 1.30 1.40 1.50

Prob

abili

ty

The value of CSP in a high renewable 2030 South African energy system

Cost resilience | the final test

R 0.10

R 1.00

R 10.00

IRP 2010 system IRP update system

WWF High system WWF Low system

SolarPACES 2015, Cape Town 17 January 2017 - 16

IRP 2010 demand WWF High / IRP Update demand

WWF Low demand

Typi

cal c

ost o

f ele

ctric

ity (R

/kW

h)

WWF scenario findings

• CSP in balance offers two key system attributes

– Resilience to gas (and other fuel) price fluctuation

– Resilience to sudden demand changes (up and down)

• In WWF scenario, this caused 8 GW of CSP by 2030 to lead to the lowest cost system

2017/01/17 17

Towards Electricity Autonomy: Namibia’s Unique CSP Case Explored

Presenter: Paul Gauché

Contributors: Grant Muller (NP), Margaret Mutschler (NP), Elena Broughton (UE) & Karin Kritzinger (CRSES)

The solar resource 19

Towards Electricity Autonomy: Namibia’s Unique CSP Case Explored SolarPACES 2016 – Abu Dhabi

Demand 20

NamPow 2015/16

700 600 500 400 300 200 100

0 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Towards Electricity Autonomy: Namibia’s Unique CSP Case Explored SolarPACES 2016 – Abu Dhabi

Demand multiple demand growth [%/yr]

Year 1.5% 3.0% 4.0%

2020 107.7% 115.9% 121.7%

2025 116.1% 134.4% 148.0%

2030 125.0% 155.8% 180.1%

2035 134.7% 180.6% 219.1%

Generation options before 2020

Towards Electricity Autonomy: Namibia’s Unique CSP Case Explored SolarPACES 2016 – Abu Dhabi

21

Supply type / name Capacity [MW]

Notes

Ruacana hydropower 347 See river flow

Van Eck coal (4 x 27 MW) 108 Old, refurb for life extension, expensive due to coal transport

Backup generators 61 Expensive to run engines

Imports ~ 400 Various regional options

Wind IPPs ~ 50 At some level of approval

Solar PV IPPs ~160 At some level of approval

CSP ?

New coal ?

Backup / peaking ?

Hydro: P50 & P80 river flow 22

500 450 400 350 300 250 200 150 100 50 0

0 50 100 150 200 250 Year day from 1 June

300 350 400

Flow

rate

(m3/

s)

P80 (m3/s) P50 (m3/s) Min power level (all units) Max power level

Towards Electricity Autonomy: Namibia’s Unique CSP Case Explored SolarPACES 2016 – Abu Dhabi

Selected scenario system outcomes 23

300 300 300 300 300 300 300

50 50 50 80 80 80 108 108 108

347 347 347

347 347 347 347

162 49

162 49

162 49

243 49

324

49

324

49

324

49

61.36 61.36 61.36 61.36

61.36 61.36 61.36

135 435 250 435 535 200

100

300 300

300 400

200

200

300

300

0

500

1000

1500

2000

2500

1015 Base 2020 Base 2020 Coal 2025 Base 2025 Slow CSP

2030 Base 2035 Base

Cap

acity

(MW

)

CSP

Towards Electricity Autonomy: Namibia’s Unique CSP Case Explored SolarPACES 2016 – Abu Dhabi

2020 – selected scenarios (lots of assumptions)

24

Base case

1.5% 4% Demand Demand CAGR CAGR

No CSP 200 MW Ruacana Ruacana Coal - CSP P80 P80 + 150 MW 200 MW

200MW CSP

Coal - Coal R- P80

Coal 1.5% CAGR

Coal 4% CAGR

Big PV and

backup

System cost high (N$/kWh) System cost low (N$/kWh)

Towards Electricity Autonomy: Namibia’s Unique CSP Case Explored SolarPACES 2016 – Abu Dhabi

2020 – selected scenarios (lots of assumptions)

25

0%

10%

20%

30%

40%

50%

60%

70%

80%

0

5 000

10 000

15 000

20 000

25 000

30 000

35 000

40 000

Rene

wal

be e

nerg

y ge

nera

tion

%

Uns

erve

d el

ectr

icity

(MW

h/ye

ar) Unserved electricity (MWh) Renewable %

Towards Electricity Autonomy: Namibia’s Unique CSP Case Explored SolarPACES 2016 – Abu Dhabi

GDP impact: PT vs. CR 26

Big picture: Either PT or CR will be good for Namibia (as first project)

Towards Electricity Autonomy: Namibia’s Unique CSP Case Explored SolarPACES 2016 – Abu Dhabi

Conclusion

• For different reasons in SA and Namibia, CSP offers value to the system

– Resilience at low system cost

– Macroeconomic advantage

• Thanks!

Paul Gauché – [email protected]

2017/01/17 27