The Relative Influence of Salinity and Temperature on ...The Relative Influence of Salinity and...

27
The Relative Influence of Salinity and Temperature on Surface Density Gradient in the Tropical Pacific Ocean Audrey Hasson, Tony Lee Ocean Salinity Science and Salinity Remote Sensing Workshop Met Office, Exeter, UK, 26-28 November 2014

Transcript of The Relative Influence of Salinity and Temperature on ...The Relative Influence of Salinity and...

  • The Relative Influence of Salinity and Temperature on Surface Density Gradient in the Tropical Pacific Ocean

    Audrey Hasson, Tony Lee

    Ocean Salinity Science and Salinity Remote Sensing Workshop Met Office, Exeter, UK, 26-28 November 2014

  • 2

    INTRODUCTION

    •  Surface Salinity (SSS) and Temperature (SST) influence surface Density through the Equation of State :

    ρ-ρ0=ρref {-α(T-T0)+β(S-S0)}

    •  Density gradients in the tropical Pacific are mainly meridional and are associated with baroclinic instabilities

    •  Salinity fluctuations can regulate the baroclinic energy transfer (McPhaden et al. 1984, Grodsky et al. 2005, Lee et al., 2014)

    •  The new spaceborn SSS datasets give a new capability to enhance our knowledge of the density field and its variability as well as the contribution of SSS and SST

    November 27th, 2014 Ocean Salinity Science and Salinity Remote Sensing Workshop

  • 3

    DATA SSS :

    –  Aquarius/SAC-D level-3 gridded dataset (V3.0 by the Aquarius Project via PO.DAAC) 1º spatial resolution from combined passes averaged over 7 day for August 2011-July 2014

    –  SMOS level-3 gridded dataset (v2013 CEC-LOCEAN) ¼º grid every 10 days for January 2010-July 2014

    –  ISAS in situ based optimal interpolation, 1º spatial resolution, monthly for 2010-July 2014 (Ifremer)

    SST : –  OSTIA level-4 product (V1.0 by the UK Met Office), 0.054º grid at daily

    interval from 2006 to present –  Reynolds level-4 product (V2.0 by NCDC/NOAA) ¼º daily from 1981 till

    present –  ISAS as for SSS

    Currents: –  OSCAR level-4 product (by ESR), 0.33º grid, every 5 days, 1992 to present

    All averaged on a 1º grid every 7 days over the Aquarius period November 27th, 2014 Ocean Salinity Science and Salinity Remote Sensing Workshop

  • 4

    DATA SSS :

    –  Aquarius/SAC-D level-3 gridded dataset (V3.0 by the Aquarius Project via PO.DAAC) 1º spatial resolution from combined passes averaged over 7 day for August 2011-July 2014

    –  SMOS level-3 gridded dataset (v2013 CEC-LOCEAN) ¼º grid every 10 days for January 2010-July 2014

    –  ISAS in situ based optimal interpolation, 1º spatial resolution, monthly for 2010-July 2014 (Ifremer)

    SST : –  OSTIA level-4 product (V1.0 by the UK Met Office), 0.054º grid at daily

    interval from 2006 to present –  Reynolds level-4 product (V2.0 by NCDC/NOAA) ¼º daily from 1981 till

    present –  ISAS as for SSS

    Currents: –  OSCAR level-4 product (by ESR), 0.33º grid, every 5 days, 1992 to present

    All averaged on a 1º grid every 7 days over the Aquarius period November 27th, 2014 Ocean Salinity Science and Salinity Remote Sensing Workshop

  • 5

    Pacific Ocean Meridional gradient of surface ρ

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (a) Density Mean − Aqua − Ostia

    202122232425

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (b) Density Standard Deviation − Aqua − Ostia

    0.350.550.750.951.151.35

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (c) Density Mean Meridional Gradient − Aqua − Ostia

    −2−1.2−0.40.41.22

    x 10−6

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (a) Mean SSS − Aqua

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (b) Mean SSS − Smos

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (c) Mean SSS − Isas

    32.9

    33.5

    34.1

    34.7

    35.3

    35.9

    36.5

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (d) Beta SSS Meridional Gradient − Aqua

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (e) Beta SSS Meridional Gradient − Smos

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (f) Beta SSS Meridional Gradient − Isas

    −2

    −1.6

    −1.2

    −0.8

    −0.4

    0

    0.4

    0.8

    1.2

    1.6

    2x 10−6

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (a) Mean SST − Ostia

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (b) Mean SST − Rey

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (c) Mean SST − Isas

    22.8

    23.8

    24.8

    25.8

    26.8

    27.8

    28.8

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (d) −Alpha SST Meridional Gradient − Ostia

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (e) −Alpha SST Meridional Gradient − Rey

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (f) −Alpha SST Meridional Gradient − Isas

    −2

    −1.6

    −1.2

    −0.8

    −0.4

    0

    0.4

    0.8

    1.2

    1.6

    2x 10−6

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (a) Mean SST − Ostia

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (b) Mean SST − Rey

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (c) Mean SST − Isas

    22.8

    23.8

    24.8

    25.8

    26.8

    27.8

    28.8

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (d) −Alpha SST Meridional Gradient − Ostia

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (e) −Alpha SST Meridional Gradient − Rey

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (f) −Alpha SST Meridional Gradient − Isas

    −2

    −1.6

    −1.2

    −0.8

    −0.4

    0

    0.4

    0.8

    1.2

    1.6

    2x 10−6

    •  When looking in the density space, SSS and SST meridional gradients are of the same magnitude

    November 27th, 2014 Ocean Salinity Science and Salinity Remote Sensing Workshop

    Contributions of SSS (Aquarius v3) and SST (OSTIA)

  • 6

    Pacific Ocean Meridional gradient of surface ρ

    SSS dominates density where we observe strong regional gradients : •  in the upwelling zones •  near the ITCZ and SPCZ •  around the great estuaries (Amazon, Congo, Niger)

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (a) Density Mean − Aqua − Ostia

    202122232425

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (b) Density Standard Deviation − Aqua − Ostia

    0.350.550.750.951.151.35

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (c) Density Mean Meridional Gradient − Aqua − Ostia

    −2−1.2−0.40.41.22

    x 10−6

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (a) Mean SSS − Aqua

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (b) Mean SSS − Smos

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (c) Mean SSS − Isas

    32.9

    33.5

    34.1

    34.7

    35.3

    35.9

    36.5

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (d) Beta SSS Meridional Gradient − Aqua

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (e) Beta SSS Meridional Gradient − Smos

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (f) Beta SSS Meridional Gradient − Isas

    −2

    −1.6

    −1.2

    −0.8

    −0.4

    0

    0.4

    0.8

    1.2

    1.6

    2x 10−6

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (a) Mean SST − Ostia

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (b) Mean SST − Rey

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (c) Mean SST − Isas

    22.8

    23.8

    24.8

    25.8

    26.8

    27.8

    28.8

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (d) −Alpha SST Meridional Gradient − Ostia

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (e) −Alpha SST Meridional Gradient − Rey

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (f) −Alpha SST Meridional Gradient − Isas

    −2

    −1.6

    −1.2

    −0.8

    −0.4

    0

    0.4

    0.8

    1.2

    1.6

    2x 10−6

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (a) Mean SST − Ostia

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (b) Mean SST − Rey

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (c) Mean SST − Isas

    22.8

    23.8

    24.8

    25.8

    26.8

    27.8

    28.8

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (d) −Alpha SST Meridional Gradient − Ostia

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (e) −Alpha SST Meridional Gradient − Rey

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (f) −Alpha SST Meridional Gradient − Isas

    −2

    −1.6

    −1.2

    −0.8

    −0.4

    0

    0.4

    0.8

    1.2

    1.6

    2x 10−6

    •  When looking in the density space, SSS and SST meridional gradients are of the same magnitude

    •  SSS and SST both contribute around the equator

    November 27th, 2014 Ocean Salinity Science and Salinity Remote Sensing Workshop

    Contributions of SSS (Aquarius v3) and SST (OSTIA)

  • 170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (a) Density Mean − Aqua − Ostia

    202122232425

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (b) Density Standard Deviation − Aqua − Ostia

    0.350.550.750.951.151.35

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (c) Density Mean Meridional Gradient − Aqua − Ostia

    −2−1.2−0.40.41.22

    x 10−6

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (a) Mean SSS − Aqua

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (b) Mean SSS − Smos

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (c) Mean SSS − Isas

    32.9

    33.5

    34.1

    34.7

    35.3

    35.9

    36.5

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (d) Beta SSS Meridional Gradient − Aqua

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (e) Beta SSS Meridional Gradient − Smos

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (f) Beta SSS Meridional Gradient − Isas

    −2

    −1.6

    −1.2

    −0.8

    −0.4

    0

    0.4

    0.8

    1.2

    1.6

    2x 10−6

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (a) Mean SST − Ostia

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (b) Mean SST − Rey

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (c) Mean SST − Isas

    22.8

    23.8

    24.8

    25.8

    26.8

    27.8

    28.8

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (d) −Alpha SST Meridional Gradient − Ostia

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (e) −Alpha SST Meridional Gradient − Rey

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (f) −Alpha SST Meridional Gradient − Isas

    −2

    −1.6

    −1.2

    −0.8

    −0.4

    0

    0.4

    0.8

    1.2

    1.6

    2x 10−6

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (a) Mean SST − Ostia

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (b) Mean SST − Rey

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (c) Mean SST − Isas

    22.8

    23.8

    24.8

    25.8

    26.8

    27.8

    28.8

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (d) −Alpha SST Meridional Gradient − Ostia

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (e) −Alpha SST Meridional Gradient − Rey

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (f) −Alpha SST Meridional Gradient − Isas

    −2

    −1.6

    −1.2

    −0.8

    −0.4

    0

    0.4

    0.8

    1.2

    1.6

    2x 10−6

    7

    Pacific Ocean Meridional gradient of surface ρ

    β ∂S/∂y is much larger than –α ∂T/∂y at the equator

    November 27th, 2014 Ocean Salinity Science and Salinity Remote Sensing Workshop

    β*dS/dy -α*dT/dy 1ºN -1.3 -1.4

    Equator -0.8 -0.1 1ºS -0.3 0.8

    *10-6

    Contributions of SSS (Aquarius v3) and SST (OSTIA)

    −2 −1 0 1x 10−6

    10ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(a) Beta .* dSSS/dy

    −2 −1 0 1x 10−6

    10ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(b) − Alpha .* dSST/dy

    −4 −2 0 2x 10−6

    10ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(c) dDensity/dy

    0 0.1 0.2 0.3 0.4 0.510ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(d) STD Beta .* SSS

    Aqua

    Smos

    Isas

    0 0.1 0.2 0.3 0.4 0.510ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(e) STD Alpha .* SST

    Ostia

    Rey

    Isas

    0.3 0.4 0.5 0.6 0.7 0.810ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(f) STD Density

    Aqua Ostia

    Smos Rey

    Isas Isas

    Profiles over 220 − 261ºE

    −2 −1 0 1x 10−6

    10ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(a) Beta .* dSSS/dy

    −2 −1 0 1x 10−6

    10ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(b) − Alpha .* dSST/dy

    −4 −2 0 2x 10−6

    10ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(c) dDensity/dy

    0 0.1 0.2 0.3 0.4 0.510ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(d) STD Beta .* SSS

    Aqua

    Smos

    Isas

    0 0.1 0.2 0.3 0.4 0.510ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(e) STD Alpha .* SST

    Ostia

    Rey

    Isas

    0.3 0.4 0.5 0.6 0.7 0.810ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(f) STD Density

    Aqua Ostia

    Smos Rey

    Isas Isas

    Profiles over 220 − 261ºE

    −2 −1 0 1x 10−6

    10ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(a) Beta .* dSSS/dy

    −2 −1 0 1x 10−6

    10ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(b) − Alpha .* dSST/dy

    −4 −2 0 2x 10−6

    10ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(c) dDensity/dy

    0 0.1 0.2 0.3 0.4 0.510ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(d) STD Beta .* SSS

    Aqua

    Smos

    Isas

    0 0.1 0.2 0.3 0.4 0.510ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(e) STD Alpha .* SST

    Ostia

    Rey

    Isas

    0.3 0.4 0.5 0.6 0.7 0.810ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(f) STD Density

    Aqua Ostia

    Smos Rey

    Isas Isas

    Profiles over 220 − 261ºE

    −2 −1 0 1x 10−6

    10ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(a) Beta .* dSSS/dy

    −2 −1 0 1x 10−6

    10ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(b) − Alpha .* dSST/dy

    −4 −2 0 2x 10−6

    10ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(c) dDensity/dy

    0 0.1 0.2 0.3 0.4 0.510ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(d) STD Beta .* SSS

    Aqua

    Smos

    Isas

    0 0.1 0.2 0.3 0.4 0.510ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(e) STD Alpha .* SST

    Ostia

    Rey

    Isas

    0.3 0.4 0.5 0.6 0.7 0.810ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(f) STD Density

    Aqua Ostia

    Smos Rey

    Isas Isas

    Profiles over 220 − 261ºE

    −2 −1 0 1x 10−6

    10ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(a) Beta .* dSSS/dy

    −2 −1 0 1x 10−6

    10ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(b) − Alpha .* dSST/dy

    −4 −2 0 2x 10−6

    10ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(c) dDensity/dy

    0 0.1 0.2 0.3 0.4 0.510ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(d) STD Beta .* SSS

    Aqua

    Smos

    Isas

    0 0.1 0.2 0.3 0.4 0.510ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(e) STD Alpha .* SST

    Ostia

    Rey

    Isas

    0.3 0.4 0.5 0.6 0.7 0.810ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(f) STD Density

    Aqua Ostia

    Smos Rey

    Isas Isas

    Profiles over 220 − 261ºE

  • −2 −1 0 1x 10−6

    10ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(a) Beta .* dSSS/dy

    −2 −1 0 1x 10−6

    10ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(b) − Alpha .* dSST/dy

    −4 −2 0 2x 10−6

    10ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(c) dDensity/dy

    0 0.1 0.2 0.3 0.4 0.510ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(d) STD Beta .* SSS

    Aqua

    Smos

    Isas

    0 0.1 0.2 0.3 0.4 0.510ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(e) STD Alpha .* SST

    Ostia

    Rey

    Isas

    0.3 0.4 0.5 0.6 0.7 0.810ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(f) STD Density

    Aqua Ostia

    Smos Rey

    Isas Isas

    Profiles over 220 − 261ºE

    −2 −1 0 1x 10−6

    10ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(a) Beta .* dSSS/dy

    −2 −1 0 1x 10−6

    10ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(b) − Alpha .* dSST/dy

    −4 −2 0 2x 10−6

    10ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(c) dDensity/dy

    0 0.1 0.2 0.3 0.4 0.510ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(d) STD Beta .* SSS

    Aqua

    Smos

    Isas

    0 0.1 0.2 0.3 0.4 0.510ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(e) STD Alpha .* SST

    Ostia

    Rey

    Isas

    0.3 0.4 0.5 0.6 0.7 0.810ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(f) STD Density

    Aqua Ostia

    Smos Rey

    Isas Isas

    Profiles over 220 − 261ºE

    −2 −1 0 1x 10−6

    10ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(a) Beta .* dSSS/dy

    −2 −1 0 1x 10−6

    10ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(b) − Alpha .* dSST/dy

    −4 −2 0 2x 10−6

    10ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(c) dDensity/dy

    0 0.1 0.2 0.3 0.4 0.510ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(d) STD Beta .* SSS

    Aqua

    Smos

    Isas

    0 0.1 0.2 0.3 0.4 0.510ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(e) STD Alpha .* SST

    Ostia

    Rey

    Isas

    0.3 0.4 0.5 0.6 0.7 0.810ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(f) STD Density

    Aqua Ostia

    Smos Rey

    Isas Isas

    Profiles over 220 − 261ºE

    8

    Comparison of SSS and SST products Pacific Ocean Meridional gradient of surface ρ

    November 27th, 2014 Ocean Salinity Science and Salinity Remote Sensing Workshop

    All SSS and SST products show consistent meridional profiles

    SSS •  All SSS products show

    relative maxima at the same latitudes

    •  ISAS SSS fronts are weaker •  SMOS fronts are stronger

    SST •  All SST product show similar

    amplitude in the maxima •  ISAS SST maxima are shifted

    poleward and less narrow

  • 9

    Contributions of SSS (Aquarius v3) and SST (OSTIA) Variability of ρ in the 14-50d band

    170oE 150oW 110oW 70oW 30oW 10oE

    10oS

    0o

    10oN

    (a) STD Density (14−50d filtered) − Aqua − Ostia

    170oE 150oW 110oW 70oW 30oW 10oE

    10oS

    0o

    10oN

    (b) STD SSS (14−50d filtered) − Aqua

    170oE 150oW 110oW 70oW 30oW 10oE

    10oS

    0o

    10oN

    (c) STD SST (14−50d filtered) − Ostia

    0.03

    0.09

    0.15

    0.21

    0.27

    0.33

    0.05 0.1 0.15 0.2 0.25 0.310ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(c) STD TIW (14−50d) Density

    0.02 0.04 0.06 0.08 0.110ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(b) STD (50−80d) Density

    0.1 0.2 0.3 0.4 0.5 0.610ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(a) STD (< 365d) Density

    •  In the Pacific Ocean, strongest variability found with 3ºN off the equator and around 7.5ºN

    •  Contribution of SSS in the 2 zones •  Contribution of SST only near equator

    November 27th, 2014 Ocean Salinity Science and Salinity Remote Sensing Workshop

    Pacific Atlantic

  • 10

    Contributions of SSS (Aquarius v3) and SST (OSTIA) Variability of ρ in the 14-50d band

    170oE 150oW 110oW 70oW 30oW 10oE

    10oS

    0o

    10oN

    (a) STD Density (14−50d filtered) − Aqua − Ostia

    170oE 150oW 110oW 70oW 30oW 10oE

    10oS

    0o

    10oN

    (b) STD SSS (14−50d filtered) − Aqua

    170oE 150oW 110oW 70oW 30oW 10oE

    10oS

    0o

    10oN

    (c) STD SST (14−50d filtered) − Ostia

    0.03

    0.09

    0.15

    0.21

    0.27

    0.33

    0.05 0.1 0.15 0.2 0.25 0.310ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(c) STD TIW (14−50d) Density

    0.02 0.04 0.06 0.08 0.110ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(b) STD (50−80d) Density

    0.1 0.2 0.3 0.4 0.5 0.610ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(a) STD (< 365d) Density

    •  In the Pacific Ocean, strongest variability found with 3ºN off the equator and around 7.5ºN

    •  Contribution of SSS in the 2 zones •  Contribution of SST only near equator

    November 27th, 2014 Ocean Salinity Science and Salinity Remote Sensing Workshop

    Pacific Atlantic

  • 11

    From SSS (Aquarius v3) and SST (OSTIA)

    Sources of variability in the 14-50d band

    –  Baroclinic instabilities via the 50d low passed (LF) meridional density gradient (a) –  Barotropic instabilities via the LF meridional gradient of zonal current (b) –  Freshwater fluxes via Precipitation standard deviation (c)

    •  Tropical Instability Waves (TIWs) which extract energy through: –  Baroclinic conversion between the background available potential

    energy and the perturbation potential energy (PPE) –  Barotropic conversion between the background kinetic energy

    and the perturbation kinetic energy –  We neglect the Kelvin-Helmholtz conversion (daily and shorter

    fluctuations)

    •  Freshwater fluxes mainly in the ITCZ and SPCZ

    November 27th, 2014 Ocean Salinity Science and Salinity Remote Sensing Workshop

  • 12

    From SSS (Aquarius v3) and SST (OSTIA)

    Sources of variability in the 14-50d band

    −4 −2 0 2x 10−6

    10ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(a) Mean LF Density Gradient

    −1 −0.5 0 0.5 1x 10−6

    10ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(b) Mean LF dy/du

    0 2 4 6 8 1010ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(c) P std deviation

    Pacific Atlantic

    November 27th, 2014 Ocean Salinity Science and Salinity Remote Sensing Workshop

    To give an idea on where sources of variability are important: 3 proxies

    –  Baroclinic instabilities via the 50d low passed (LF) meridional density gradient (a) –  Barotropic instabilities via the LF meridional gradient of zonal current (b) –  Freshwater fluxes via Precipitation standard deviation (c)

    Baroclinic proxy Barotropic proxy Freshwater f. proxy

  • 13

    From SSS (Aquarius v3) and SST (OSTIA)

    Sources of variability in the 14-50d band

    To give an idea on where sources of variability are important: 3 proxies

    –  Baroclinic instabilities via the 50d low passed (LF) meridional density gradient (a) –  Barotropic instabilities via the LF meridional gradient of zonal current (b) –  Freshwater fluxes via Precipitation standard deviation (c)

    −4 −2 0 2x 10−6

    10ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(a) Mean LF Density Gradient

    −1 −0.5 0 0.5 1x 10−6

    10ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(b) Mean LF dy/du

    0 2 4 6 8 1010ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(c) P std deviation

    November 27th, 2014 Ocean Salinity Science and Salinity Remote Sensing Workshop

    Baroclinic proxy Barotropic proxy Freshwater f. proxy

    Pacific Atlantic

    5.5ºN -

    7.5ºN

  • 14

    From SSS (Aquarius v3) and SST (OSTIA)

    Sources of variability in the 14-50d band

    −4 −2 0 2x 10−6

    10ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(a) Mean LF Density Gradient

    −1 −0.5 0 0.5 1x 10−6

    10ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(b) Mean LF dy/du

    0 2 4 6 8 1010ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(c) P std deviation

    November 27th, 2014 Ocean Salinity Science and Salinity Remote Sensing Workshop

    To give an idea on where sources of variability are important: 3 proxies

    –  Baroclinic instabilities via the 50d low passed (LF) meridional density gradient (a) –  Barotropic instabilities via the LF meridional gradient of zonal current (b) –  Freshwater fluxes via Precipitation standard deviation (c)

    Baroclinic proxy Barotropic proxy Freshwater f. proxy

    Pacific Atlantic

    2.5ºN -

    4.5ºN

  • 15

    From SSS (Aquarius v3) and SST (OSTIA)

    Sources of variability in the 14-50d band

    −4 −2 0 2x 10−6

    10ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(a) Mean LF Density Gradient

    −1 −0.5 0 0.5 1x 10−6

    10ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(b) Mean LF dy/du

    0 2 4 6 8 1010ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(c) P std deviation

    November 27th, 2014 Ocean Salinity Science and Salinity Remote Sensing Workshop

    To give an idea on where sources of variability are important: 3 proxies

    –  Baroclinic instabilities via the 50d low passed (LF) meridional density gradient (a) –  Barotropic instabilities via the LF meridional gradient of zonal current (b) –  Freshwater fluxes via Precipitation standard deviation (c)

    Baroclinic proxy Barotropic proxy Freshwater f. proxy

    Pacific Atlantic

    0.5ºS -

    1.5ºN

  • 16

    From SSS (Aquarius v3) and SST (OSTIA)

    Sources of variability in the 14-50d band

    −4 −2 0 2x 10−6

    10ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(a) Mean LF Density Gradient

    −1 −0.5 0 0.5 1x 10−6

    10ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(b) Mean LF dy/du

    0 2 4 6 8 1010ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(c) P std deviation

    November 27th, 2014 Ocean Salinity Science and Salinity Remote Sensing Workshop

    Baroclinic proxy

    The recent SSS datasets give a new insight to the Baroclinic Energy conversion between the background available potential energy and the TIW induced Perturbation Potential Energy (PPE)

  • 17

    Contributions of SSS (Aquarius v3) and SST (OSTIA)

    Indication of Baroclinic conversion of energy

    –  High correlation in SST as found by Shelton et al. (2000) over 1998-99 –  High correlation in SSS as well

    Shows the relation between the 14-50d variability and the low frequency meridional gradient, reflecting baroclinic energy transfer between the TIW and background field

    SST SSS

    Between 0.5ºS and 1.5ºN

    November 27th, 2014 Ocean Salinity Science and Salinity Remote Sensing Workshop

    R2=0.71 R2=0.75

    LP Mean SST gradient LP Mean SSS gradient

    14-5

    0d S

    ST

    std

    14-5

    0d S

    SS

    std

    Pacific Atlantic

  • November 27th, 2014 Ocean Salinity Science and Salinity Remote Sensing Workshop 18

    ρ’2 as a proxy for the PPE and baroclinic conversion rate Contribution of S and T to density variance

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (a) Mean Rho’^2

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (b) Mean Rho(SSS)’^2

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (c) Mean Rho(T)’^2

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (d) Mean −2*Beta*SSS’*Alpha*SST’

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (e) Mean Mean Rho(SSS)’^2 −2*Beta*SSS’*Alpha*SST’’

    0.006

    0.011

    0.016

    0.021

    0.026

    0.031

    0.036

    0.041

    0.046

    Perturbation Potential Energy (PPE) :

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (a) Mean Rho’^2

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (b) Mean Rho(SSS)’^2

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (c) Mean Rho(T)’^2

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (d) Mean −2*Beta*SSS’*Alpha*SST’

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (e) Mean Mean Rho(SSS)’^2 −2*Beta*SSS’*Alpha*SST’’

    0.006

    0.011

    0.016

    0.021

    0.026

    0.031

    0.036

    0.041

    0.046

    PPE is linked to Baroclinic conversion if no transfer from Kinetic to Potential Energy

  • !′! = !! !"′ ! + −!"′ ! − 2!"#′!′ !

    November 27th, 2014 Ocean Salinity Science and Salinity Remote Sensing Workshop 19

    ρ’2 as a proxy for the PPE and baroclinic conversion rate Contribution of S and T to density variance

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (a) Mean Rho’^2

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (b) Mean Rho(SSS)’^2

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (c) Mean Rho(T)’^2

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (d) Mean −2*Beta*SSS’*Alpha*SST’

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (e) Mean Mean Rho(SSS)’^2 −2*Beta*SSS’*Alpha*SST’’

    0.006

    0.011

    0.016

    0.021

    0.026

    0.031

    0.036

    0.041

    0.046

    Perturbation Potential Energy (PPE) Is proportional to :

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (a) Mean Rho’^2

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (b) Mean Rho(SSS)’^2

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (c) Mean Rho(T)’^2

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (d) Mean −2*Beta*SSS’*Alpha*SST’

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (e) Mean Mean Rho(SSS)’^2 −2*Beta*SSS’*Alpha*SST’’

    0.006

    0.011

    0.016

    0.021

    0.026

    0.031

    0.036

    0.041

    0.046

    Direct contribution of SSS

    Direct contribution of SST

    Contribution of the SSS and SST covariance

  • !′! = !! !"′ ! + −!"′ ! − 2!"#′!′ !

    November 27th, 2014 Ocean Salinity Science and Salinity Remote Sensing Workshop 20

    ρ’2 as a proxy for the PPE and baroclinic conversion rate Contribution of S and T to density variance

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (a) Mean Rho’^2

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (b) Mean Rho(SSS)’^2

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (c) Mean Rho(T)’^2

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (d) Mean −2*Beta*SSS’*Alpha*SST’

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (e) Mean Mean Rho(SSS)’^2 −2*Beta*SSS’*Alpha*SST’’

    0.006

    0.011

    0.016

    0.021

    0.026

    0.031

    0.036

    0.041

    0.046

    Perturbation Potential Energy (PPE) Is proportional to :

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (a) Mean Rho’^2

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (b) Mean Rho(SSS)’^2

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (c) Mean Rho(T)’^2

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (d) Mean −2*Beta*SSS’*Alpha*SST’

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (e) Mean Mean Rho(SSS)’^2 −2*Beta*SSS’*Alpha*SST’’

    0.006

    0.011

    0.016

    0.021

    0.026

    0.031

    0.036

    0.041

    0.046

    Direct contribution of SST

    Direct and indirect contribution of SSS

  • November 27th, 2014 Ocean Salinity Science and Salinity Remote Sensing Workshop 21

    ρ’2 as a proxy for the PPE and baroclinic conversion rate Contribution of S and T to density variance

    Omitting SSS to the PPE computation lead to an underestimation of •  72% in the entire domain •  66% in the northern edge

    of the CT •  84% in the ITCZ consistent with Grodsky et al. (2005) and Lee et al. (2014) findings in the Atlantic Ocean.

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (a) Mean Rho’^2

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (b) Mean Rho(SSS)’^2

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (c) Mean Rho(T)’^2

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (d) Mean −2*Beta*SSS’*Alpha*SST’

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (e) Mean Mean Rho(SSS)’^2 −2*Beta*SSS’*Alpha*SST’’

    0.006

    0.011

    0.016

    0.021

    0.026

    0.031

    0.036

    0.041

    0.046

    !′! = !! !"′ ! + −!"′ ! − 2!"#′!′ !

    Perturbation Potential Energy (PPE) Is proportional to :

  • 22

    CONCLUSIONS

    •  Satellite measurements of SSS has enabled the studies of the relative contribution of SST and SSS on the mean meridional density gradient as well as the TIW-related density variability on basin scale.

    •  Salinity has a substantial effect on meridional gradient

    and thus TIW-related baroclinic energy conversion, both in the Pacific and the Atlantic.

    •  All SSS and SST products are consistent. Spaceborn data captures sharp gradients and variability not seen in gridded observations.

    November 27th, 2014 Ocean Salinity Science and Salinity Remote Sensing Workshop

  • Date Goes Here Name of presentation or other info goes here 24

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (a) Mean SSS − Aqua

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (b) Mean SSS − Smos

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (c) Mean SSS − Isas

    32.9

    33.5

    34.1

    34.7

    35.3

    35.9

    36.5

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (d) Beta SSS Meridional Gradient − Aqua

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (e) Beta SSS Meridional Gradient − Smos

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (f) Beta SSS Meridional Gradient − Isas

    −2

    −1.6

    −1.2

    −0.8

    −0.4

    0

    0.4

    0.8

    1.2

    1.6

    2x 10−6

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (a) Mean SST − Ostia

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (b) Mean SST − Rey

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (c) Mean SST − Isas

    22.8

    23.8

    24.8

    25.8

    26.8

    27.8

    28.8

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (d) −Alpha SST Meridional Gradient − Ostia

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (e) −Alpha SST Meridional Gradient − Rey

    170oE 150oW 110oW 70oW 30oW 10oE 10oS

    0o 10oN

    (f) −Alpha SST Meridional Gradient − Isas

    −2

    −1.6

    −1.2

    −0.8

    −0.4

    0

    0.4

    0.8

    1.2

    1.6

    2x 10−6

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (a) Density Mean − Aqua − Ostia

    202122232425

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (b) Density Standard Deviation − Aqua − Ostia

    0.350.550.750.951.151.35

    170oE 170oW 150oW 130oW 110oW 90oW 70oW 50oW 30oW 10oW 10oE

    10oS

    0o

    10oN

    (c) Density Mean Meridional Gradient − Aqua − Ostia

    −2−1.2−0.40.41.22

    x 10−6

    −2 −1 0 1x 10−6

    10ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(a) Beta .* dSSS/dy

    −2 −1 0 1x 10−6

    10ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(b) − Alpha .* dSST/dy

    −4 −2 0 2x 10−6

    10ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(c) dDensity/dy

    0 0.1 0.2 0.3 0.4 0.510ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(d) STD Beta .* SSS

    Aqua

    Smos

    Isas

    0 0.1 0.2 0.3 0.4 0.510ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(e) STD Alpha .* SST

    Ostia

    Rey

    Isas

    0.2 0.4 0.6 0.810ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(f) STD Density

    Aqua Ostia

    Smos Rey

    Isas Isas

    Profiles over 330 − 356ºE

    −2 −1 0 1x 10−6

    10ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(a) Beta .* dSSS/dy

    −2 −1 0 1x 10−6

    10ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(b) − Alpha .* dSST/dy

    −4 −2 0 2x 10−6

    10ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(c) dDensity/dy

    0 0.1 0.2 0.3 0.4 0.510ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(d) STD Beta .* SSS

    Aqua

    Smos

    Isas

    0 0.1 0.2 0.3 0.4 0.510ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(e) STD Alpha .* SST

    Ostia

    Rey

    Isas

    0.2 0.4 0.6 0.810ºS

    5ºS

    0

    5ºN

    10ºN

    15ºN(f) STD Density

    Aqua Ostia

    Smos Rey

    Isas Isas

    Profiles over 330 − 356ºE

  • Date Goes Here Name of presentation or other info goes here 25

    Contributions of SSS (Aquarius v3) and SST (OSTIA)

    Baroclinic conversion of energy

    −2 0 2

    x 10−6

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    mean LF SST gradient

    std T

    IW S

    ST

    −2 0 2

    x 10−6

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    mean LF SSS gradient

    std T

    IW S

    SS

    4.5ºS

    2.5ºS

    0.5ºS

    1.5ºN

    3.5ºN

    5.5ºN

    7.5ºN

    9.5ºN

    10.5ºN

    Pacific (blue) and Atlantic Oceans (red) between −5.5−11.5ºN

    (a) (b)

    Pacific Atlantic

  • Oct11 Jan12 Apr12 Jul12 Oct12 Jan13 Apr13 Jul13 Oct13 Jan14 Apr140

    0.002

    0.004

    0.006

    0.008

    0.01

    0.012

    0.014

    0.016

    0.018

    Oct11 Jan12 Apr12 Jul12 Oct12 Jan13 Apr13 Jul13 Oct13 Jan14 Apr140

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    0.035

    (Rho’)2 (Beta*SSS’)2 (−Alpha*SST’)2 −2*Beta*SSS’*Alpha*SST’

    110ºW − 0.5ºN

    15.5ºW − 0.5ºN

    Date Goes Here Name of presentation or other info goes here 26

    Contribution of SSS and SST Seasonality of the baroclinic conversion rate

  • Oct11 Jan12 Apr12 Jul12 Oct12 Jan13 Apr13 Jul13 Oct13 Jan14 Apr140

    0.002

    0.004

    0.006

    0.008

    0.01

    0.012

    0.014

    0.016

    0.018

    Oct11 Jan12 Apr12 Jul12 Oct12 Jan13 Apr13 Jul13 Oct13 Jan14 Apr140

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    0.035

    (Rho’)2 (Beta*SSS’)2 (−Alpha*SST’)2 −2*Beta*SSS’*Alpha*SST’

    110ºW − 0.5ºN

    15.5ºW − 0.5ºN

    27

    Contribution of SSS and SST Seasonality of the baroclinic conversion rate

    Seasonal cycle in the proxy for PPE Maximum from July to January – consistent with TIW activity cycle Contribution from SST following the cycle Contribution from SSS has a strong interannual variability

    November 27th, 2014 Ocean Salinity Science and Salinity Remote Sensing Workshop