THE PRESSUREMETER: SOME CONTRIBUTIONS TO ......8/26/2010 1 THE PRESSUREMETER: SOME CONTRIBUTIONS TO...

41
8/26/2010 1 THE PRESSUREMETER: THE PRESSUREMETER: SOME CONTRIBUTIONS TO SOME CONTRIBUTIONS TO FOUNDATION ENGINEERING FOUNDATION ENGINEERING Jean Jean-Louis BRIAUD Louis BRIAUD President of ISSMGE President of ISSMGE Jean-Louis Briaud – Texas A&M University President of ISSMGE President of ISSMGE Professor, Texas A&M University, USA Professor, Texas A&M University, USA TEXAM TEXAM vs vs Menard Pressuremeter Menard Pressuremeter PMT results PMT results vs vs Other Tests Results Other Tests Results Shal Shal Found : Scale & Embedment Effect? Found : Scale & Embedment Effect? Shal Shal. Found.: Scale & Embedment Effect? . Found.: Scale & Embedment Effect? Shal Shal. Found.: Load . Found.: Load-Settlement Curve Settlement Curve Deep Found.: Lat. Load, Reference Case Deep Found.: Lat. Load, Reference Case Deep Found.: Lat. Load, Complex Cases Deep Found.: Lat. Load, Complex Cases Jean-Louis Briaud – Texas A&M University Deep Found.: Lat. Load, Complex Cases Deep Found.: Lat. Load, Complex Cases Deep Found.: Vert. Load, Downdrag Deep Found.: Vert. Load, Downdrag Future Work Future Work

Transcript of THE PRESSUREMETER: SOME CONTRIBUTIONS TO ......8/26/2010 1 THE PRESSUREMETER: SOME CONTRIBUTIONS TO...

  • 8/26/2010

    1

    THE PRESSUREMETER:THE PRESSUREMETER:

    SOME CONTRIBUTIONS TO SOME CONTRIBUTIONS TO FOUNDATION ENGINEERINGFOUNDATION ENGINEERING

    JeanJean--Louis BRIAUDLouis BRIAUD

    President of ISSMGEPresident of ISSMGE

    Jean-Louis Briaud – Texas A&M University

    President of ISSMGEPresident of ISSMGE

    Professor, Texas A&M University, USAProfessor, Texas A&M University, USA

    •• TEXAM TEXAM vsvs Menard PressuremeterMenard Pressuremeter

    •• PMT results PMT results vsvs Other Tests ResultsOther Tests Results

    •• ShalShal Found : Scale & Embedment Effect?Found : Scale & Embedment Effect?•• ShalShal. Found.: Scale & Embedment Effect?. Found.: Scale & Embedment Effect?

    •• ShalShal. Found.: Load. Found.: Load--Settlement CurveSettlement Curve

    •• Deep Found.: Lat. Load, Reference CaseDeep Found.: Lat. Load, Reference Case

    •• Deep Found.: Lat. Load, Complex CasesDeep Found.: Lat. Load, Complex Cases

    Jean-Louis Briaud – Texas A&M University

    Deep Found.: Lat. Load, Complex CasesDeep Found.: Lat. Load, Complex Cases

    •• Deep Found.: Vert. Load, DowndragDeep Found.: Vert. Load, Downdrag

    •• Future WorkFuture Work

  • 8/26/2010

    2

    Jean-Louis Briaud – Texas A&M University

    THE TEXAMTHE TEXAMPRESSUREMETER1981

    SimpleSafeVersatile

    Jean-Louis Briaud – Texas A&M University

    Versatile

  • 8/26/2010

    3

    Jean-Louis Briaud – Texas A&M University

    USEFUL CORRELATIONS

    Jean-Louis Briaud – Texas A&M University

  • 8/26/2010

    4

    SAND (36 sites)

    Jean-Louis Briaud – Texas A&M University

    CLAY (44 sites)

    Jean-Louis Briaud – Texas A&M University

  • 8/26/2010

    5

    VERY POOR CORRELATIONS

    Jean-Louis Briaud – Texas A&M University

    SHALLOW FOUNDATIONS: SCALE & EMBEDMENT EFFECT?

    Jean-Louis Briaud – Texas A&M University

  • 8/26/2010

    6

    THIS BEARING CAPACITY EQUATIONTHIS BEARING CAPACITY EQUATIONRARELY WORKSRARELY WORKS

    12u c qp cN BN DNγγ γ= + +

    1p BNγ=

    Jean-Louis Briaud – Texas A&M University

    12up BNγγ=

    Jean-Louis Briaud – Texas A&M University

  • 8/26/2010

    7

    3mx3m Footing Load Tests up to 1200 tonsTexas A&M National Site

    Jean-Louis Briaud – Texas A&M University

    3mx3m Footing Load Tests up to 1200 tonsTexas A&M National Site

    Jean-Louis Briaud – Texas A&M University

  • 8/26/2010

    8

    Jean-Louis Briaud – Texas A&M University

    THIS BEARING CAPACITY EQUATIONTHIS BEARING CAPACITY EQUATIONRARELY WORKSRARELY WORKS

    12u c qp cN BN DNγγ γ= + +

    1p BNγ=

    Jean-Louis Briaud – Texas A&M University

    12up BNγγ=

  • 8/26/2010

    9

    Jean-Louis Briaud – Texas A&M University

    Jean-Louis Briaud – Texas A&M University

  • 8/26/2010

    10

    THIS BEARING CAPACITY EQUATIONTHIS BEARING CAPACITY EQUATIONALWAYS WORKSALWAYS WORKS

    up kr=

    Jean-Louis Briaud – Texas A&M University

    , , ,L C Ur p q N s=

    Jean-Louis Briaud – Texas A&M University

  • 8/26/2010

    11

    SHALLOW FOUNDATIONS: LOAD SETTLEMENT CURVE

    Jean-Louis Briaud – Texas A&M University

    Jean-Louis Briaud – Texas A&M University

  • 8/26/2010

    12

    Jean-Louis Briaud – Texas A&M University

    LOAD SETTLEMENT CURVE METHODLOAD SETTLEMENT CURVE METHOD

    pf = Γ pp

    Jean-Louis Briaud – Texas A&M University

    s/B = 0.24 ΔR/R

  • 8/26/2010

    13

    Jean-Louis Briaud – Texas A&M University

    Jean-Louis Briaud – Texas A&M University

  • 8/26/2010

    14

    Jean-Louis Briaud – Texas A&M University

    Q (t)/Q (t ) = (t/t )-n

    LONG TERM VERTICAL LOAD

    Qu(t)/Qu(to) = (t/to) n

    s(t)/s(to) = (t/to)n

    Jean-Louis Briaud – Texas A&M University

    n = 0.01 to 0.03 in sandsn = 0.02 to 0.08 in clays

  • 8/26/2010

    15

    ΔR(t)/ΔR(t ) = (t/t )-n

    n VALUES FROM PMT TESTS

    ΔR(t)/ΔR(to) = (t/to) n

    n = -log(ΔR(t)/ΔR(to) / log(t/to)

    Jean-Louis Briaud – Texas A&M University

    n = 0.01 to 0.03 in sandsn = 0.02 to 0.08 in clays

    Jean-Louis Briaud – Texas A&M University

  • 8/26/2010

    16

    Jean-Louis Briaud – Texas A&M University

    s(t)/s(to) = (t/to)n

    LONG TERM SETTLEMENT

    o o

    t = 50 yearsto = 5 minutesn = 0.03

    Jean-Louis Briaud – Texas A&M University

    s(t)/s(to) = (50x365x24x60 / 5) 0.03

    s(50 years)/s(5 minutes) = 1.59

  • 8/26/2010

    17

    The San JacintoMonument

    Jean-Louis Briaud – Texas A&M University

    PL=2.7 MPa, Py=1.6 Mpa, E0=54 MPaEr=145 MPa, n=0.022

    Jean-Louis Briaud – Texas A&M University

  • 8/26/2010

    18

    Jean-Louis Briaud – Texas A&M University

    Ultimate Bearing Capacity

    PL = 680 kPa at 5 m depth

    Su = 100 kPa at shallow depth

    Total pressure at 5 m = 224 kPa

    Jean-Louis Briaud – Texas A&M University

    pNet pressure at 5 m = 141 kPa

  • 8/26/2010

    19

    Elastic SettlementE0 = 30 Mpa, B = 38 m, p = 141 kPa, γ = 0.35

    S(t0) = 0.88(1 – 0.352)x141x38/30000 = 138 mm

    Long Term Settlements(t)/s(to) = (t/to)n

    s(to) = 138 mm, t = 70 yrs, to = 5 min, n = 0.045

    Jean-Louis Briaud – Texas A&M University

    S(70 years) = 138 (70 x 365 x 24 x 60 / 5) 0.045S(70 years) = 325 mm

    Jean-Louis Briaud – Texas A&M University

  • 8/26/2010

    20

    LATERAL LOAD ON PILES : REFERENCE CASE

    Jean-Louis Briaud – Texas A&M University

    LATERAL LOAD-DEFLECTION CURVE

    Jean-Louis Briaud – Texas A&M University

  • 8/26/2010

    21

    Jean-Louis Briaud – Texas A&M University

    Jean-Louis Briaud – Texas A&M University

  • 8/26/2010

    22

    Jean-Louis Briaud – Texas A&M University

    ULTIMATE HORIZONTAL LOAD, Hou

    Hou = ¾ pl B Dvpl = limit pressure from PMTB = projected pile widthDv = (π/4) lo with lo = (4EI / K)1/4 for L > 3 loDv = L/3 for L < loE = modulus of pile materialI = moment of inertia of pile

    Jean-Louis Briaud – Texas A&M University

    I moment of inertia of pileK = 2.3 EoEo = PMT first load modulus of soilL = pile length

  • 8/26/2010

    23

    Jean-Louis Briaud – Texas A&M University

    HORIZONTAL DISPLACEMENT yo @ Hou/3

    y = 2 H / l K for L > 3lyo = 2 Ho / lo K for L > 3loyo = 4 Ho / L K for L < lo

    Ho = Hou/3 = horizontal load at ground surface

    Jean-Louis Briaud – Texas A&M University

    K = 2.3 Eo = horizontal modulus (line load/deflection)

  • 8/26/2010

    24

    Jean-Louis Briaud – Texas A&M University

    INTERACTION DIAGRAM FOR COMBINED HORIZ. LOAD AND OVERTURNING MOMENT

    Jean-Louis Briaud – Texas A&M University

    ANY COMBINATION OF H AND M ON THE DIAGRAM GIVES THE SAME DEFLECTION

  • 8/26/2010

    25

    LATERAL LOAD ON PILES : COMPLEX CASES

    Jean-Louis Briaud – Texas A&M University

    H (t)/H (t ) = (t/t )-n

    LONG TERM LATERAL LOAD

    Hou(t)/Hou(to) = (t/to) n

    y0(t)/yo(to) = (t/to)n

    Jean-Louis Briaud – Texas A&M University

    n = 0.01 to 0.03 in sandsn = 0.02 to 0.08 in clays

  • 8/26/2010

    26

    ΔR(t)/ΔR(t ) = (t/t )-n

    n VALUES FROM PMT TESTS

    ΔR(t)/ΔR(to) = (t/to) n

    n = -log(ΔR(t)/ΔR(to) / log(t/to)

    Jean-Louis Briaud – Texas A&M University

    n = 0.01 to 0.03 in sandsn = 0.02 to 0.08 in clays

    Jean-Louis Briaud – Texas A&M University

  • 8/26/2010

    27

    CYCLIC LATERAL LOAD

    yN = y1 N a

    a averages 0.1 for clays (one way and two way)

    a averages 0 08 for sands under one way loading

    Jean-Louis Briaud – Texas A&M University

    a averages 0.08 for sands under one way loading

    a averages 0 for sands under two way loading

    ΔR /ΔR = N a

    a FROM PMT TESTS

    ΔRN/ΔR1 = N a

    a = log (ΔRN/ΔR1) / log N

    Jean-Louis Briaud – Texas A&M University

    PMT only applicable to one way cyclic loading

  • 8/26/2010

    28

    Jean-Louis Briaud – Texas A&M University

    Jean-Louis Briaud – Texas A&M University

  • 8/26/2010

    29

    Jean-Louis Briaud – Texas A&M University

    LATERAL LOAD NEAR A TRENCH

    Jean-Louis Briaud – Texas A&M University

  • 8/26/2010

    30

    Htrench = λ Hno trench

    λ

    Jean-Louis Briaud – Texas A&M University

  • 8/26/2010

    31

    Acceleration of truck

    20Vehicle Acceleration

    ‐30

    ‐20

    ‐10

    0

    10

    Acceleration (g)

    ‐50

    ‐40

    0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

    Time (sec)

    Raw acc

    50ms

    62

  • 8/26/2010

    32

    Impact Force (X ,Y and Z directions)

    300

    500

    50ms Vehicle Force

    ‐700

    ‐500

    ‐300

    ‐100

    100

    Force (kN)

    ‐1500

    ‐1300

    ‐1100

    ‐900

    0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

    Time (sec)

    X‐dir

    Y‐dir

    Z‐dir

    63

    Full‐scale K‐12 Test and Numerical simulation(LS‐DYNA )      Drucker‐Prager  γ= 21 kN/m3, E= 50 MPa, c=20 kPa, φ=40 ˚, ψ=20˚

    64

  • 8/26/2010

    33

    3m embedded Single Post in Very Dense SandDrucker‐Prager  γ= 22 kN/m3, E= 32 MPa, c= 4 kPa, φ= 40 ˚, ψ= 15˚

    Soil pressure (x‐drection)Drucker‐Prager  γ= 22 kN/m3, E= 32 MPa, c= 4 kPa, φ= 40 ˚, ψ= 15˚

  • 8/26/2010

    34

    Numerical Simulation Matrix‐ Single post in sandNum Energy level Soil Strength E (Mpa) γ (kN/m3) φ ψ c (kPa) Depth Remark Results

    1 K-12 V.Dense+ 50 21 40 20 15 3m Akram OK2 K-12 V.Dense 32 22 40 15 4 3m OK3 K-12 V.Dense 32 22 40 10 4 3m OK4 K-12 V.Dense 32 22 40 5 4 3m OK5 K-12 V.Dense 32 22 40 0 4 3m OK6 K-12 V.Dense 32 22 40 -5 4 3m contact v1 NG7 K-12 V.Dense 32 22 40 5 4 3m contact v1 OK8 K-12 V.Dense 32 22 40 10 4 3m contact v3 B9 K-12 V.Dense 32 22 40 10 4 4m contact v3 OK10 K-12 V.Dense/Dense 20 20.6 37 6 3.3 6m contact v2 OK11 K-12 V.Dense/Dense 20 20.6 37 6 3.3 5m contact v2 OK12 K 12 V Dense/Dense 20 20 6 37 6 3 3 5m contact v3 B12 K-12 V.Dense/Dense 20 20.6 37 6 3.3 5m contact v3 B13 K-12 V.Dense/Dense 20 20.6 37 6 3.3 4m contact v2 OK14 K-12 V.Dense/Dense 20 20.6 37 6 3.3 4m contact v3 NG15 K-12 V.Dense/Dense 20 20.6 37 6 3.3 3m contact v2 OK16 K-12 V.Dense/Dense 20 20.6 37 6 3.3 3m contact v3 NG17 K-12 Dense 16 20 36 5 3 6m contact v2 NG18 K-12 Dense 16 20 36 5 3 5m OK19 K-12 Dense 16 20 36 5 3 5m contac v1 NG20 K-12 Loose 1.8 17 27 -15 1 6m Error NG21 K-12 Loose 1.8 17 27 -15 1 3m NG22 K-08 Dense 16 20 36 5 3 3m OK23 K-08 Dense 16 20 36 5 3 3m contact v2 Ok24 K-08 Dense 16 20 36 5 3 3m contact v3 Ok25 K-08 Dense/Medium 12 19.1 35 0 2.5 3m contact v2 OK26 K-08 Dense/Medium 12 19.1 35 0 2.5 3m contact v3 OK27 K-08 Medium 8 18 33 -5 2 6m contact v2 OK28 K-08 Medium 8 18 33 -5 2 5m contact v2 OK29 K-08 Medium 8 18 33 -5 2 5m contact v3 OK30 K-08 Medium 8 18 33 -5 2 4m contact v2 OK31 K-08 Medium 8 18 33 -5 2 4m contact v3 NG32 K 08 Medium 8 18 33 5 2 3m contact v2 NG32 K-08 Medium 8 18 33 -5 2 3m contact v2 NG33 K-04 Loose 2 17 27 -10 1 3m contact v2 NG34 K-04 Medium 8 18 33 -5 2 3m contact v2 OK35 K-04 Medium 8 18 33 -5 2 3m contact v3 OK36 K-08 Medium/Loose 4 17.3 29 -8 1.3 6m contact v3 NG37 K-04 Medium/Loose 4 17.3 29 -8 1.3 5m contact v3 OK38 K-04 Medium/Loose 4 17.3 29 -8 1.3 4m contact v2 OK39 K-04 Loose 2 17 27 -10 1 6m contact v3 OK40 K-04 Medium/Loose 4 17.3 29 -8 1.3 4m contact v3 NG41 K-04 Medium/Loose 4 17.3 29 -8 1.3 3m contact v3 NG42 K-04 Loose 2 17 27 -10 1 5m contact v3 NG43 K-04 Loose 2 17 27 -10 1 4m contact v3 NG44 K-04 Dense/Medium 12 19.1 35 0 2.5 2m contact v3 NG45 K-04 Dense 16 20 36 5 3 2m contact v3 NG46 K-04 V.Dense/Dense 20 20.6 37 6 3.3 2m contact v3 OK47 K-08 Dense 16 20 36 5 3 2m contact v3 NG48 K-08 V.Dense/Dense 20 20.6 37 6 3.3 2m contact v3 NG49 K-08 V.Dense 32 22 40 10 4 2m contact v3 OK50 K-04 Medium/Loose 4 17.3 29 -8 1.3 4.5m contact v3 OK

    67

    5

    6

    Design chart for single post

    Design Chart For Single Post in Sand

    1

    2

    3

    4

    Post Embe

    dmen

    t (m)

    K12

    K8

    K4

    K12 Est

    K8 Est

    K‐12 OK

    K‐12 NG

    K‐8 OK

    0

    1

    1 1.5 2 2.5 3 3.5 4

    Sand Strength 

    K‐8 OK

    K‐8 NG

    K‐4 OK

    K‐4 NG

    E (MPa) 2                                             4                                            8 12                                           16                                         20                                         32      

    N (bpf) 0                                           10                                           20 30                                           40                                          50                                       50+      

    PL (kPa) 200                                       500                                       1000 1500                                       2000                                       2500     2500+       

    * W14‐109 Post 68

  • 8/26/2010

    35

    69

    70

  • 8/26/2010

    36

    71

    72

  • 8/26/2010

    37

    73

    74

  • 8/26/2010

    38

    75

    Pile Ult. CapacityQu = 706 + 1000

    Q = 1706 kNQu 1706 kNAssume Neutral Pt.

    wp = wsFind Load Distrib.Qt + Qd = Qp +Qf

    Jean-Louis Briaud – Texas A&M University

    t d p fCalculate Pile Mmt.

    wp # ws

  • 8/26/2010

    39

    TIEBACK WALLS

    Jean-Louis Briaud – Texas A&M University

    EARTH PRESSURE COEF. Vs MOVEMENT / HEIGHT

    Jean-Louis Briaud – Texas A&M University

  • 8/26/2010

    40

    So what !So what !

    Too complicated !

    Jean-Louis Briaud – Texas A&M University

    p

    THE PREBORING PRESSUREMETERTHE PREBORING PRESSUREMETER

    DISADVANTAGESDISADVANTAGES

    •• Influence of borehole qualityInfluence of borehole quality

    •• Uncontrolled drainageUncontrolled drainage

    •• Limited use for slopes and wallsLimited use for slopes and walls

    Jean-Louis Briaud – Texas A&M University

    Limited use for slopes and wallsLimited use for slopes and walls

  • 8/26/2010

    41

    THE PREBORING PRESSUREMETERTHE PREBORING PRESSUREMETER

    ADVANTAGESADVANTAGES

    CC i ii i• Can be doneCan be done in many soilsin many soils•• Gives in situ stress strain curveGives in situ stress strain curve•• In situ “load test”In situ “load test”•• Inexpensive Inexpensive equipmentequipment•• Quality of test from shapeQuality of test from shape of curveof curve

    Jean-Louis Briaud – Texas A&M University

    Q y pQ y p•• Laterally loaded pilesLaterally loaded piles•• Shallow foundationsShallow foundations•• End bearing pilesEnd bearing piles