The Power of Vedic Maths with Trigonometry

170

Transcript of The Power of Vedic Maths with Trigonometry

Page 1: The Power of Vedic Maths with Trigonometry
Page 2: The Power of Vedic Maths with Trigonometry

THEPOWEROFVEDICMATHS2ndEDITION

ATULGUPTA

Page 3: The Power of Vedic Maths with Trigonometry

PublishedbyJaicoPublishingHouseA-2JashChambers,7-ASirPhirozshahMehtaRoadFort,Mumbai-400001

[email protected]

©AtulGupta

THEPOWEROFVEDICMATHSISBN81-7992-357-6

FirstJaicoImpression:2004ThirteenthJaicoImpression(Revised&Updated):2010

FifteenthJaicoImpression:2011

Nopartofthisbookmaybereproducedorutilizedinanyformorbyanymeans,electronicormechanicalincludingphotocopying,recordingorbyany

informationstorageandretrievalsystem,withoutpermissioninwritingfromthepublishers.

Page 4: The Power of Vedic Maths with Trigonometry

PREFACEMathematicsisconsideredtobeadryandboringsubjectbyalargenumber

ofpeople.Childrendislikeand fearmathematics foravarietyof reasons.Thisbook is written with the sole purpose of helping school and college students,teachers, parents, common people and people from non-mathematical areas ofstudy,todiscoverthejoysofsolvingmathematicalproblemsbyawonderfulsetoftechniquescalled‘VedicMaths’.

Thesetechniquesarederivedfrom16sutras(verses)intheVedas,whicharethousands of years old and among the earliest literature of ancient Hindus inIndia.Theyareanendlesssourceofknowledgeandwisdom,providingpracticalknowledge in all spheresof life. JagadguruSwamiSriBharatiKrshnaTirthaji(1884-1960)wasabrilliant scholarwhodiscovered the16 sutras in theVedasandspent8yearsintheirintensestudy.Hehasleftaninvaluabletreasureforallgenerationstocome,consistingofasetofuniqueandmagnificentmethodsforsolving mathematical problems in areas like arithmetic, algebra, calculus,trigonometryandco-ordinategeometry.Thesetechniquesareveryeasytolearnand encapsulate the immense and brilliantmathematical knowledge of ancientIndians,whohadmadefundamentalcontributionstomathematicsintheformofthedecimalnumerals,zeroandinfinity.

Ihavetrainedthousandsofchildrenofallagegroupswiththesetechniquesand I find that even young children enjoy learning and using them. Thetechniques reduce drastically, the number of steps required to solve problemsand inmany cases, after a little practice,manyof theproblems canbe solvedorally. Itgives tremendousself-confidence to thestudentswhich leads themtoenjoymathematicsinsteadoffearinganddislikingit.

Ihavewrittenthisbookintheformofacookbook,whereareadercangraspa technique quickly, instead of reading through a largemass of theory beforeunderstandingit.Ihaveconsideredtechniquesformajorarithmeticaloperationslike multiplication, division, computation of squares and square roots andcomplexfractions,besidesawhole lotofother techniques.Eachtechniquehasbeenexplainedindetailwiththehelpofsolvedexamples,usingastep-by-step

Page 5: The Power of Vedic Maths with Trigonometry

approachandIamsurethatthereaderwillbeabletounderstandandmasterthecontentseasily.Everychapterhasa largenumberofproblemsforpracticeandthebookcontainsover1000suchproblems.Theanswersaregivenalongsidesothat the reader can either solve the problems orally or use paper and pen andcompare with the given answer. The chapters should be read sequentially toabsorbthematerialandthencanbeusedforreferenceinanydesiredorder.

IhavealsoincludedaspecialchapterinwhichIhaveshowntheapplicationofthetechniquestosolveproblems,collectedfromseveralcompetitiveexams.This is a unique feature of the book and should add to the popularity of thetechniques.

I have tried to make all the examples and answers error-free but if anymistakeisdiscovered,IwillbeobligedifIaminformedaboutthesame.

Constructive criticism and comments can be sent to me [email protected]

ATULGUPTAMobile:9820845036

Page 6: The Power of Vedic Maths with Trigonometry

Contents

Preface

Chapter1TwoSimpleTechniques

Subtractionfrom100/1000/10000

NormalMethod

VedicMethod

Multiplicationwithaseriesof9s

Multiplicationofanumberbysamenumberof9s

Multiplicationofanumberbygreaternumberof9s

Multiplicationofanumberbylessernumberof9s

Chapter2Operationswith9

Computationofremainder(Navasesh)ondivisionby9

Basicmethod

Firstenhancement

Secondenhancement

Finalcompactmethod

Verificationoftheproductoftwonumbers

Verificationofthesumoftwonumbers

Page 7: The Power of Vedic Maths with Trigonometry

Verificationofthedifferenceoftwonumbers

Verificationofthesquareorcubeoftwonumbers

Limitationintheverificationprocess

Computationofthequotientondivisionby9

Method1

Method2

Chapter3Operationswith11

Multiplication

Divisibilitytestofnumbersby11

Multiplicationwith111

Chapter4Multiplication(Nikhilam)

Secondarybasesof50

Secondarybaseof250

Secondarybaseof500

Secondarybaseslike40,60

Secondarybaseof300

Chapter5Multiplication(UrdhvaTiryak)

2-Digitmultiplication

3-Digitmultiplication

Multiplying3-digitand2-digitnumbers

4-Digitmultiplication

Multiplying4-digitand3-digitnumbers

Page 8: The Power of Vedic Maths with Trigonometry

Chapter6Division

Divisionbyaflagofonedigit(noremainder)

Divisionbyaflagofonedigit(withremainder)

Divisionwithadjustments

Divisionwithaflagof2digits

Divisionwithaflagof3digits

Chapter7SimpleSquares

Chapter8SquareofAnyNumber

Definition-DwandwaorDuplexSquareofanynumber

Squareofanynumber

Chapter9SquareRootofaNumber

Chapter10CubesandCubeRoots

Computingcubesof2-digitnumbers

Cuberootsof2-digitnumbers

Computingfourthpowerof2-digitnumbers

Chapter11Trigonometry

Triplet

Computingtrigonometricratios

Computingtrigonometricratiosoftwicetheangle

Computingtrigonomegtricratiosofhalftheangle

Chapter12AuxiliaryFractions

Page 9: The Power of Vedic Maths with Trigonometry

Divisorsendingwith‘9’

Divisorsendingwith‘1’

Divisorsendingwith‘8’

Divisorsendingwith‘7’

Numbersendingwith‘6’

Otherdivisors

Chapter13MishrankorVinculum

ConversiontoMishrank

ConversionfromMishrank

Applicationinaddition

Applicationinsubtraction

Applicationinmultiplication

Applicationindivision

Applicationinsquares

Applicationincubes

Chapter14SimultaneousEquations

Chapter15Osculator

Positiveosculators

Negativeosculators

Chapter16ApplicationsofVedicMaths

Sampleproblems

SolutionsusingVedicmaths

Page 10: The Power of Vedic Maths with Trigonometry

Problemsforpractice

Answers

Page 11: The Power of Vedic Maths with Trigonometry

TWOSIMPLETECHNIQUES

Wewill begin our journey into the fascinatingworld ofVedicmathswithtwosimpletechniqueswhichwilllaythefoundationforsomeofthetechniquesinthefollowingchapters.

I.Subtractionfrom100/1000/10000

Wewillstartwithaverysimpletechniquewhereinwewillseetheuseofthesutra‘Allfrom9andlastfrom10’.Thisisusedtosubtractagivennumberfrom100, 1000, 10000 etc. It removes the mental strain which is existent in themethodtaughtinschools.

ThismethodisalsousedlateronintheNikhilammethodofmultiplication.

Considerthesubtractionof7672from10000.

a)NormalMethod

Thenormalmethodis

We carry ‘1’ from the left side and continue doing so till we reach therightmostdigit,leavingbehind9ineachcolumnand10inthelastcolumn.

Then,wesubtracttherightmostdigit‘2’from10andwritedown‘8’.Next,wesubtractthedigit‘7’from‘9’andwritedown‘2’.

Werepeatthisprocessforalltheremainingdigitstotheleft.

Page 12: The Power of Vedic Maths with Trigonometry

Throughthisoperation,thefinalresultisalwaysobtainedfromrighttoleft.

Mentally,thereisacarryoperationforeverydigit,whichistimeconsumingandslowsdowntheoverallprocess.

b)VedicMethod

TheVedicmethodusesthesutra‘Allfrom9andlastfrom10’andgivesaverysimpleandpowerfultechniquetoachievethesameresult.

Theresultcanbeobtainedfrombothlefttorightaswellasrighttoleftwithequalease. Itstates that theresultcanbeobtainedbysubtractionofeachdigitfrom‘9’andthelastdigitfrom‘10’.

Hence,inthegivenexample,

Wecanget the result from left to right or viceversa from right to left as

i.e.alldigitsexceptthelastonearesubtractedfrom9,thelastdigitissubtractedfrom10andtheresult(2328)iswrittendowndirectly.Thementalburdenofacarryforeachcolumnvanishesandtheanswercanbeobtainedeasily,inajiffy.

Thesametechniquecanbeappliedfordecimalsubtractionalso,e.g.2.000-0.3436.

Thecoreoperationhereissubtractionof3436from10000where1isacarryfromleft.

1.Examplesforsubtractionsfrombasesof100,1000etc.

Page 13: The Power of Vedic Maths with Trigonometry

Thissimplesubtractionmethodwillbeusedfurtherinmultiplication(Ch.4)andmishrank(Ch.13).

II.Multiplicationwithaseriesof9s

a)Multiplicationofanumberbysamenumberof9s

Letususethistechniquetoseehowtocarryoutmultiplicationofann-digitnumberbyanumberwith‘n’numberof9seg.any3-digitnumberby999ora4-digitnumberby9999.

Letusseeanexampleviz.533×999

Thesolutioncanbeobtainedas533×(1000-1)

=533000-533

Page 14: The Power of Vedic Maths with Trigonometry

=532467.

Theanswerconsistsoftwo3-partnumbersviz.‘532’and‘467’.

Thefirstpart‘532’is1lessthanthegivennumber,i.e.533-1.

Thesecondpart‘467’isequalto(1000-533)or(999-532).Itissimplythe‘9’s complement of the first 3 digits of the result; i.e. 9s complement of 532wheretherequireddigitscanbeobtainedas:4=9-5

6=9-3

7=9-2

Similarly,3456×9999willconsistoftwoparts

3455/6544

i.e.34556544(where,6544is‘9’scomplementof3455).

This simple technique can be used to get the result orally whenever anynumberismultipliedbyanumberconsistingofanequalnumberof9s.

Thesametechniquecanbeusedformultiplicationofdecimalnumbers.

Considertheexample4.36×99.9

Firstly,multiply436by999andwritedowntheresultas435564.

Now,since thenumbershave twoandonedecimalplaces respectively, thefinal resultwill have three decimal places andwe put the decimal point threepointsfromtheright.So,thefinalanswerwillbe435.564.

b)Multiplicationofanumberbygreaternumberof‘9’s

Let us now see how to carry outmultiplication of an n-digit number by anumberwithgreaternumberof‘9’sE.g.235by9999or235by99999

i)Consider235by9999

Sincethenumberofdigitsin235isthreewhiletherearefourdigitsin9999,wepad235withonezerotoget0235andcarryoutthemultiplicationasbefore.

Page 15: The Power of Vedic Maths with Trigonometry

0235×9999=0234/9765andthefinalresultis2349765.

ii)Consider235by99999

Padding235withtwozeroes,weget

00235×99999=00234/99765andthefinalresultis23499765.

c)Multiplicationofanumberbylessernumberof9s

Let us now see how to carry outmultiplication of an n-digit number by anumberwithlessernumberof9s.

i)Consider235by99

Sincetherearetwodigitsin99,weplaceacolontwodigitsfromtherightinthegivennumbertoget2:35

Weenclosethisnumberwithinacolonontherighttoget

2:35:

Wenowincreasethenumbertotheleftofthecolonby1andderiveanewnumberas3:35

We align the colon of the new number with the enclosing colon of theoriginalnumbertoget2:35:

3:35

Wenow subtract 3 from235 and35 from100, to get the final answer as

ii)Consider12456by99

Sincetherearetwodigitsin99,weplaceacolontwodigitsfromtherightinthegivennumbertoget124:56Weenclosethisnumberwithinacolonontherighttoget124:56:

Wenowincreasethenumbertotheleftofthecolonby1andderiveanewnumberas125:56

Page 16: The Power of Vedic Maths with Trigonometry

We align the colon of the new number with the enclosing colon of theoriginalnumbertoget124:56:

125:56Wenowsubtracttogetthefinalansweras

2.Examplesformultiplicationbyseriesof9s

In examples where decimal numbers are involved, we multiply the twonumbersassumingthattherearenodecimalsandthenplacethedecimalintherightplace,asexplainedabove.

Page 17: The Power of Vedic Maths with Trigonometry

OPERATIONSWITH9

The number 9 has a special significance inVedicmaths.Wewill start bylookingatasimplebutpowerfultechniquewhichisusedtogettheremainderondividing any number by 9. This remainder is given several names like‘Navasesh’,‘Beejank’ordigitalroot.Ithaspowerfulpropertieswhichareusedto check the correctness of arithmetic operations like addition, subtraction,multiplication,squaring,cubingetc.Itcanalsobeusedtocheckthedivisibilityofanygivennumberby9.

Wewillbeginbyseeinghowtocomputethenavaseshofanygivennumberandthenproceedtoseeitsapplications.

I.Computationofremainder(Navasesh)ondivisionby9

Thenavaseshofanumberisdefinedastheremainderobtainedondividingitby9.

Example:Thenavaseshof20is2Thenavaseshof181is1Thenavaseshof8132is5.Thenavaseshof2357is8

Letusseehow touse techniquesprovidedbyVedicmaths tocompute thenavaseshforanynumber.Wewilldenoteitby‘N’.

a)BasicMethod

Tocomputethenavasesh(N)addallthedigitsinthenumber.

Page 18: The Power of Vedic Maths with Trigonometry

Ifwegetasingledigitastheanswer,thenthatisthenavasesh(ifthesumis0or9,thenthenavaseshis0).If there ismore thanonedigit in the sum, repeat the process on the sumobtained.Keeprepeatingtillasingledigitisobtained.

Examples:

Navaseshof20canbecomputedbyaddingthedigits2and0togettheresultas2.

Navaseshof8132issimilarlyobtainedasfollows:Pass1:8+1+3+2gives14,whichhasmorethanonedigit.

Pass2:1+4gives5whichistherequirednavasesh.

b)FirstEnhancement

If there isoneormore‘9’ in theoriginalnumber, theseneednotbeaddedand can be ignored while computing the sum of the digitsExample : If thenumberis23592,then‘N’canbecomputedasfollows.

Pass1:2+3+5+2=12(ignore9)Pass2:1+2=3.Sothenavaseshis3.

c)SecondEnhancement

Whilesummingupthedigits,ignoregroupswhichaddupto9.

Example:Ifthenumberis23579,then‘N’canbecomputedasfollows.

Ignore‘9’asexplainedabove

Ignore2+7(ie1stand4thdigitswhichaddupto‘9’)andaddonly‘3’and‘5’togetthe‘N’as8.

d)FinalCompactMethod

Asbefore,ignoreall‘9’sandgroupswhichaddupto9.

Whilesumminguptheremainingdigits,ifthesumaddsuptomorethantwodigitsatanyintermediatepoint, reduce it toonedigit there itselfbyaddingup

Page 19: The Power of Vedic Maths with Trigonometry

thetwodigits.Thiswilleliminatetheneedforthesecondpasswhichisshownintheexamplesabove.

Example:Ifthenumberis44629,then‘N’canbecomputedasfollows.

Ignore‘9’inthelastposition.

Addtheremainingdigitsfromtheleftwherethefirstthreedigits,viz4+4+6addupto14.

Since,thishastwodigits,weaddthesedigitshereitselftogetasingledigiti.e.1+4=5

Nowadd‘5’totheremainingdigit‘2’togetthe‘N’as7.

Allmethodsgivethesameanswer,buttheresultcanbeobtainedfasterandwithlessercomputationwhenweusetheimprovedmethods.

II)Verificationoftheproductoftwonumbers

Thecorrectnessofanyarithmeticoperationcanbeverifiedbycarryingoutthe sameoperationon thenavaseshof thenumbers in theoperation.Oncewehave learnthow tocompute thenavaseshofanumber,wecanuse it tocheckwhethertheresultofoperationslikemultiplication,additionandsubtractionontwo(ormore)numbersiscorrectornot.

Letusseeanexample.

Let’staketheproductof38×53whichis2014.

Howdoweverifythecorrectnessoftheanswer‘2014’?

Let’stakethe‘N’ofeachofthemultiplicandsandoftheproductandseetherelationbetweenthesameNow,N(38)=2..Navaseshofthefirstnumber

N(53)=8..Navaseshofthesecondnumber

N(2014)=7..Navaseshoftheproduct

Considertheproductofthe‘N’ofthe2multiplicandsi.e.N(38)×N(53)=2×8=16whosenavaseshinturnis7.

The‘N’oftheproductisalso‘7’!!

Page 20: The Power of Vedic Maths with Trigonometry

Thus theproduct of the navaseshof the twomultiplicands is equal to thenavaseshoftheproductitself.Thissimpletestcanbeusedtoverifywhethertheansweriscorrect.

AnotherExample

22.4×1.81=40.544

Onignoringthedecimalpoints,thenavaseshofthetwonumbersareN(224)=8and

N(181)=1andtheproductofthenavaseshis8.

Thenavaseshof theproduct isalsoN(40544)=8andhence theanswer isverified.Thepositionofthedecimalpointcanbeverifiedeasily.

III)Verificationofthesumoftwonumbers

Similarly,let’sseethecaseofthesumofthetwonumbers38+53whichis91.

WeseethatN(38)+N(53)=2+8=10whichinturnhasanavaseshof1.

Thereforethenavaseshofthesumofthenavaseshis1.

The‘N’ofthesum(91)isalso1!!

Thusthesumofthenavaseshofthetwonumbersisequaltothenavaseshofthesumitself.

IV)Verificationofthedifferenceoftwonumbers

Let’sseethecaseofthedifferenceofthetwonumbers.

53-38=15N(53)–N(38)=8-2=6N(15)=6

Thus the difference of the navasesh of the two numbers is equal to thenavaseshofthedifferenceitself.

Sometimes,thedifferenceofthenavaseshmaybenegative.Then,itcanbeconvertedtoapositivevaluebyadding9toit.

Page 21: The Power of Vedic Maths with Trigonometry

ThusN(–5)=4,N(–6)=3.

Letustakeanotherexample,viz

65-23=42N(65)=2N(23)=5N(65)–N(23)=–3,

Asexplainedabove,N(–3)=6

Thenavaseshoftheresultshouldbe6.

Weseethatthenavaseshof42isindeed6.

Hence,wecanusethismethodtoverifythedifferenceoftwonumbers.

V)Verificationofthesquareorcubeoftwonumbers

Let’stakethecaseofsquaringanumber,say,34.

342=1156

Nowtakethenavaseshonbothsides,i.e.navaseshof34is7andnavaseshof1156is4.

Letussquarethenavaseshoftheleftsidei.e.72=49whosenavaseshisalso4.

Thusthesquareofthenavaseshofthegivennumberisequaltothenavaseshof the square. The reader can try verifying for the cube of any number byhimself.

VI)Limitationintheverificationprocess

Thisverificationmethodhasalimitationwhichhastobekeptinmind.

Page 22: The Power of Vedic Maths with Trigonometry

Consideragaintheexampleof38×53=2014

WeknowthatN(38)×N(53)shouldequalN(2014)

Ontheleftside,wehave2×8=16which,inturn,givesanavaseshof7.

Now, if theproducton theRHSwasassignedas2015, its ‘N’wouldbe8fromwhichwewouldcorrectlyconcludethattheresultiswrong.

Butiftheanswerwaswrittenas2041insteadof2014,the‘N’wouldstillbe7,leadinguswronglytotheconclusionthattheproductiscorrect.

So, we have to remember that this verification process using navasesh,wouldpointoutwronglycomputedresultswith100%accuracybuttherecanbemore than one result which would pass the ‘correctness’ test.We have to becarefulaboutthis.

Inspiteofthislimitation,itremainsaverypowerfulmethodforverificationofresultsobtainedbyanyofthethreemainarithmeticoperations.

VII)Computationofthequotientondivisionby9

Letusnowseehowtogetthequotientondividinganumberby9.InVedicmaths,thedivisionisconvertedtoasimpleadditionoperation.

a)Method1

Thefirstmethodconsistsofaforwardpassfollowedbyabackwardpass.

Example:Divide8132by9

Steps:

Placeacolonbeforethelastdigit,whichshowsthepositionseparatingthequotientandtheremainder.

Page 23: The Power of Vedic Maths with Trigonometry

Startfromtheleftmostdigitandbringitdownasitis.

Carryit(8)tothenextcolumnandaddittothedigitinthatcolumni.e.1+8andbringdown9.

Carry9tothenextcolumn,additto3andbringdown12.

Repeatbycarrying12tothenext(last)column,addto2andbringdown14asshown.

After reaching the end,wework backwards from the right to the left bycomputing the remainder in the last column and by carrying the surplusdigitstotheleft.Wehavetoretainonlyonedigitateachlocation.

Examinethelastcolumn,whichshouldholdtheremainder.Ifthenumberismorethan9,wesubtractthemaximummultiplesof9fromit,whichgivesthequotientdigittobecarriedtotheleft,leavingtheremainderbehind.

Since the number in the last column (14) contains onemultiple of 9,wecarry1tothelefthanddigit(12)andretain5(14-9)asfinalremainder.

Attheendoftheforwardpass,thedigitslookedasfollows:8.9.12:14.

Page 24: The Power of Vedic Maths with Trigonometry

whichnowbecome

8.9.13:5.

Nowretain3andcarry1tothelefttoget10.

8.10.3:5.

Next,retain0andcarry1tothelefttoget9.

9.0.3:5.

Sothefinalcomputationwouldappearasfollow

The quotient is 903 and the remainder is 5.Notice that the steps are verysimpleandverylittlementaleffortisrequiredtoobtaintheanswer.

b)Method2

Here,wewillcomputetheresultintheforwardpassitself.Duringcolumn-wisecomputation,ifthedigitinanycolumnbecomes9ormore,wecantransferthemultiplesof9totheleftandretaintheremainderinthecolumn.

Intheaboveexample,atthesecondcolumn,whenweget9,weretainzero(9 - 9) in the column and carry one to the left. We then take 0 to the nextcolumn.

Here,wewillsubtract9from9toretain0andcarry1totheleft.Onadding1to8,wewillget9andthecomputationwilllookasshownbelow.

Page 25: The Power of Vedic Maths with Trigonometry

This eliminates the need for the backward pass and increases the overallspeedofcomputation.

AnotherExample

Considerthedivisionof8653by9

So,thequotientis961andtheremainderis4.

3.Examplesfornavasesh

Page 26: The Power of Vedic Maths with Trigonometry
Page 27: The Power of Vedic Maths with Trigonometry

OPERATIONSWITH11

Inthischapterwewillconsidertwodistinctoperationswiththenumber11.Firstly,wewillseehowtomultiplyanynumberofanylengthby11andwritethe result, orally in a single line. Secondly, we will see how to test thedivisibility of a given number by 11, i.e. whether a given number is fullydivisible by 11 or not. These are useful techniques and if while solving aproblem, one of the intermediate steps leads to multiplication by 11 or itsmultiple,thistechniquecanbeusedtosolvetheproblemquickly.

Oncethetechniqueformultiplicationby11ismastered,multiplicationofanumberby22,33,44etc,amultipleof11,canbecarriedoutquicklybysplittingthemultiplicandas11×2,11×3or11×4.Thegivennumbercanbemultipliedby11andthentheproductcanbemultipliedfurtherbytheremainingdigit,i.e.2or3,asthecasemaybe.

Multiplication

I.Letusconsiderthemultiplicationof153by11.

Thetraditionalmethodiscarriedoutasfollows:

Thefaster,onelinemethodisasfollows:

Page 28: The Power of Vedic Maths with Trigonometry

Weobtaineachdigitof theresultbyaddingpairsofnumbersasexplainedbelow:Steps

Startfromtherightandwritedownthedigit3directly

Formpairsofconsecutivedigits,startingfromtherightandwritedownthesum,oneatatime.

Startfromtheright,formthefirstpairconsistingof3and5,addthemandwritedowntheresult,i.e.writedown8

Movetotheleft,formthenextpairbydroppingtheright-mostdigit3andincludingthenextdigiti.e.1.

Add5and1andwritedowntheresult6.

Now,ifwemoveleftanddropthedigit5,weareleftonlywithonedigit,i.e.theleft-mostdigit.

Writedowntheleftdigit1directly.

Thusthefinalansweris1683.Isn’tthatrealfast?

II.Letusnowmultiply25345by11

Theresultisobtainedstepbystepasshownbelow:Steps

Page 29: The Power of Vedic Maths with Trigonometry

Thisgivestheresultof25345×11=278795

III.Let’stryanotherexample:157×11

Wewillusethesametechniqueasfollows:

Here,theadditionof7and5gives12,whereinweretain2andcarry1totheleft.Thenextpairconsistsof5and1whichonadditiongives6.Addthecarrydigit1toittoget7.

Sothefinalansweris1727,whichcanbeverifiedbythetraditionalmethod.

If the multiplication is between decimal numbers, we carry out themultiplication as if there are no decimals and then simply place the decimalpointattherightplace.

4.Examplesformultiplicationby11

Page 30: The Power of Vedic Maths with Trigonometry

Divisibilitytestofnumbersby11

Howdowetestwhetheranumberisdivisibleby11?

Example:Is23485divisibleby11?

Steps

Startfromtheright(unit’splace)andaddallthealternatenumbersi.e.allthedigitsintheoddpositionsviz.5,4and2whichgives11.

Now,startfromthedigitinthetensplaceandaddallthealternatenumbersi.e.allthedigitsintheevenpositionsviz.8and3whichgives11.

Page 31: The Power of Vedic Maths with Trigonometry

Ifthedifferenceofthetwosumsthusobtainediseitherzeroordivisibleby11,thentheentirenumberisdivisibleby11.

In the example above, the difference is zero and hence the number isdivisible.

Let’stakeanotherexampleandcheckthedivisibilityof17953.

Thesumofthedigitsintheoddpositionsis3+9+1whichisequalto13.

Thesumofthedigitsintheevenpositionsis5+7whichisequalto12.

Sincethedifferenceof thesetwosumsis1whichisneither0nordivisibleby11,thegivennumberisnotdivisibleby11.

Ifthegivennumberis17952insteadof17953,thetwosumsare12(2+9+1)and12(5+7).Thedifferenceof the twosums iszeroandhence thegivennumberisdivisibleby11.

Exercises

1.Is8084divisibleby11?Ans(No)2.IfX381isdivisibleby11,whatisthesmallestvalueofXAns(7)

Multiplicationwith111

Wecanusethesametechniquetomultiplyanumberby111.Aswith11,weproceed with the computation from the right starting with 1 digit andprogressivelyincreasingthedigitstillwereach3digits.Anexamplewillmakeitclear.

E.g.4132×111

Theresultisobtainedstepbystepasshownbelow:

Steps

Page 32: The Power of Vedic Maths with Trigonometry

Thisgivestheresultof4132×111=458652

Thetechniquecanbeextendedfornumberslike1111,11111etc.

Page 33: The Power of Vedic Maths with Trigonometry

MULTIPLICATION(NIKHILAM)

Multiplicationofnumbersplaysaveryimportantroleinmostcomputations.Vedicmaths offers twomain approaches tomultiplying2 numbers.These arethe

NikhilammethodandUrdhvaTiryakmethod

IntheNikhilammethodwesubtractacommonnumber,calledthebase,fromboth the numbers. The multiplication is then between the differences soobtained.

Inthenextchapterwewilltakeupthe‘UrdhyaTiryak’method,whichusescross-multiplication.

Let us start the study of the Nikhilam method now by consideringmultiplication of numberswhich are close to a base of 100, 1000, 10000 etc.Lateron,wewillseethemultiplicationofnumbersclosetobaseslike50,500,5000etc.andfinallyanyconvenientbase.

Forabase100,thenumberswhicharebeingmultipliedmaybe

lessthanthebase(e.g.96,98)morethanthebase(e.g.103,105)mixed(e.g.96&103)

Case1:Integerslessthanthebase(100)

Page 34: The Power of Vedic Maths with Trigonometry

Consider the multiplication of 93 × 98. Let’s look first at the traditionalmethodandthenatVedicmethod.

VedicMethod

Write the twonumbersonebelowtheotherandwrite thedifferenceof thebase (100) from each of the number, on the right side as shown:

Takethealgebraicsumofdigitsacrossanycrosswise-pair.e.g.93+(-2)or98+(-7).

Bothgivethesameresultviz.91,whichisthefirstpartoftheanswer.

Thisisinterpretedas91hundredsor9100,asthebaseis100.

Now, justmultiply the twodifferences (–2)× (–7) to get 14,which is thesecondpartoftheanswer.

Thefinalansweristhen9114,whichcanalsobeinterpretedas9100+14.

ImportantPoints

Sincethebaseis100,weshouldhavetwodigits(equaltonumberofzeroesinthebase)inthesecondpartoftheanswer.

If thenumberofdigits isone, thenumber ispaddedwithonezeroontheleft.

Page 35: The Power of Vedic Maths with Trigonometry

If the number of digits ismore than two, then the leftmost digit (in thehundred’sposition)iscarriedtotheleft.

Themethodisequallyeffectiveevenifonenumberisclosetothebaseandtheotherisnot.

Case2:Integersabovethebase(100)

Considerthemultiplicationof103×105.Thetechniqueremainsexactlythe

sameandcanbewrittenasfollows:

Noticethatherethedifferencesarepositive,i.e.+3(103-100)and+5(105-100).

Theadditioninthecrosswisedirectiongives108(103+5or105+3).

Theproductofthedifferencesis15andsothefinalresultis10815.

Onceagain,wehavetoensurethatwehaveexactlytwodigitsinthesecondpartoftheanswer,whichisachievedbyeitherpaddingwithzeroesorbycarrytotheleft.

E.g.Considerthefollowingtwocases

Page 36: The Power of Vedic Maths with Trigonometry

Here, 13 and15havebeenmultipliedbyusing the same technique,wherethebasehasbeentakenas10.

Thissametechniquecanalsobeusedtofindthesquaresofnumbersclosetothebase,e.g.962or1042.

Case3:Integersbelowandabovethebase(100)

Considerthemultiplicationof97×104.

Here97isbelow100while104isabove100.Usingthesametechnique,weget

Herethe2ndpartoftheansweris-12.Wenowcarry1fromtheleftwhichisequivalent to 100 (since the base is 100) and the final answer is obtained asfollows:101(–12)=100(100-12)

=100/88=10088.

Thiscanalsobeinterpretedas10100-12=10088.

Use the technique explained in chapter 1 (all from 9 and last from 10) tosubtractfrom100.

Onceagain,the2ndpartofthenumbershouldhaveexactlytwodigits,sincethebasehas2zeroes.

Page 37: The Power of Vedic Maths with Trigonometry

Considerthefollowing2examples:

132 can be obtained by multiplying 12 by 11 as explained in Chapter 2.Since 132 ismore than 100, we have to carry 2 from the left, whichwill beequivalentto200(2×100).

Page 38: The Power of Vedic Maths with Trigonometry

Hencetheresultwouldbe

=99/(200-132)=9968

Orasbefore,wecangettheanswerbyinterpretingitas

10100-132=9968.

Case4:Examplesofdecimalnumbers

Consider9.8×89.Wewillassumethenumbers tobe98and89andcarry

outthemultiplicationasshownbelow:

Now,sincetheoriginalnumbershaveonedigitinthedecimalplace,weputthedecimalpointonedigitfromtherightandgetthefinalansweras872.2.

Case5:Exampleswithbasesof1000and10000

Considertheexample997×993,wherethebaseis1000.

Theprocedureremainsthesame.

Thefirstpartoftheansweri.e.990isobtainedbythecrosswisesum,993-3or997–7.

Thesecondpartisobtainedbymultiplying3and7andpadding21with‘0’sinceweshouldhave3digits.

Hencethefinalansweris990021.

Now,considertheexample9998×10003,wherethebaseis10000.

Page 39: The Power of Vedic Maths with Trigonometry

Thefirstpartoftheansweri.e.10001isobtainedbythecrosswisesum,9998+3or10003-2.

Thesecondpart isobtainedbymultiplying–2and+3andpadding–6with‘000’sinceweshouldhave4digits(numberofzeroesinbase10000).Wenowcarry1fromtheleft,(equivalentto10000)andsubtract6fromittoget9994.

Asbefore,thisis100010000-6.

Hencethefinalansweris10000/9994i.e.100009994.

The method for multiplying decimal numbers has been explained abovewherein we first consider the numbers without decimal points, multiply themusingthistechnique,andthenplacethedecimalpointattheappropriatelocation.

Case6:Otherbases—50,250,500etc

Let us now consider themultiplication of numberswhichmay be close tootherbaseslike50,250,500etc.whicharemultiplesof50.Later,wewillseehowthemethodcanbeextendedtobaseslike40,whicharenotmultiplesof50.Thereaderwillthenbeabletoextendthemethodtoanybaseofhischoice.

Thesolvedexamplesaregroupedunder:

i.Secondarybaseof50ii.Secondarybaseof250iii.Secondarybaseof500iv.Secondarybaseof40and60v.Secondarybaseof300

I.Secondarybaseof50

Example1-Considerthemultiplicationof42×46

Here,wecantakethesecondarybaseas50.Thecorrespondingprimarybasecan be considered as 10 or 100. The scaling factor between the primary andsecondarybasewouldbeasfollows:Factor=Secondarybase/Primarybase

5=50/10(ifprimarybase=10)

1/2=50/100(ifprimarybase=100)

Page 40: The Power of Vedic Maths with Trigonometry

We can use either of these scaling operations and compute the requiredanswer.Let’sseeeachcaseindetail.

A)Case1-Primarybase10andsecondarybase50for42×46

Secondarybaseis50Scalingoperation:Factor=5=50/10

(secondarybase÷primarybase)One digit to be retained in the right hand part of the answer becauseprimarybasehasonezero.

Theinitialpartofthemethodremainsthesameandisasfollows:Consider:42×46(subtract50fromeachnumber)

Now, we have to scale up the left part of this intermediate result bymultiplyingby5.

Since38×5=190,theanswerbecomes190/32.

Sincetheprimarybase(10)containsonezero,wewillretainonedigitintherightpartoftheanswerandcarry3totheleft.

So,thefinalanswerbecomes1932.

B)Case2-Primarybase100andsecondarybase50for42×46

Secondarybaseis50Scalingoperation:Factor=1/2=50/100

(secondarybase÷primarybase)Twodigitstoberetainedintherighthandpartoftheanswer.

Thetechniqueremainsthesameandisasfollows:

Consider:42×46(subtract50fromeachnumber)

Page 41: The Power of Vedic Maths with Trigonometry

Now, we have to scale down the left part of this intermediate result bymultiplyingitby1/2.

Since38/2=19,theanswerbecomes19/32=1932.

Sincetheprimarybaseis100,whichcontainstwozeroes,wewillretaintwodigitsintherightpartoftheanswer.

So,thefinalanswerbecomes1932.

Wow,isn’tthatwonderful?Boththeoperationsgiveusthesameresult.

SpecificSituations

Letusnowconsiderafewspecificsituations:

Afractionisobtainedduringthescalingoperationand/orTherightpartisnegative

Wewilltakeanexamplehavingboththesesituations.

Example2-Considerthemultiplicationof52×47

C)Case1-Primarybase10,secondarybase50for52×47

Secondarybaseis50Scalingoperation:Factor=5=50/10

(secondarybase÷primarybase)Onedigittoberetainedintherighthandpartoftheanswer

Consider:52×47(subtract50fromeachnumber)

Wewillscaleupthisintermediateresultbymultiplying49by5.

Page 42: The Power of Vedic Maths with Trigonometry

Since49×5=245,theanswerbecomes245/(–6)

Sincetheprimarybaseis10,wewillcarryonefromtheleftwhichisequalto10andsubtract6fromit.

Sothefinalanswerbecomes244/4=2444.

Thiscanalsobeconsideredas2450-6=2444.

D)Case2-Primarybase100andsecondarybase50for52×047

Secondarybaseis50ScalingOperation:Factor=1/2=50/100

(secondarybase÷primarybase)Twodigitstoberetainedintherighthandpartoftheanswer

Consider:52×47(Subtract50fromeachnumber)

Wewillscaledownthisintermediateresultbydividing49by2.

Since49/2=24.5,theanswerbecomes24½/(–6)

Sincetheprimarybaseis100,wewillcarry1/2fromtheleft.Thisisequaltoacarryof50(primarybase100/2).Wewillsubtract6from50giving44.

Sothefinalanswerbecomes24/44=2444.

Since 24.5 hundreds is 2450, this can be interpreted also as 2450 / (–6) =2444

Wegetthesameanswerirrespectiveoftheprimarybase.Thefractionalpartcanbeavoidedifwechooseascalingoperationinvolvingmultiplicationinsteadofdivision.

II.Secondarybaseof250

Example2-Considerthemultiplicationof266×235

Page 43: The Power of Vedic Maths with Trigonometry

E)Primarybase1000andsecondarybase250for235×266

Secondarybaseis250Scalingoperation:Factor=1/4=250/1000

(secondarybase÷primarybase)Threedigitstoberetainedintherighthandpartoftheanswer

Consider:235×266(subtract250fromeachnumber)

Page 44: The Power of Vedic Maths with Trigonometry

Considerthesteps

Wewillscaledownthisintermediateresultbydividing251by4.

Since251/4=62¾,theanswerbecomes62¾/(–240).

Sincetheprimarybaseis1000,wewillcarry3/4fromtheleftwhichisequaltoacarryof750(primarybase1000*¾)andsubtract240from750giving510.

Sothefinalanswerbecomes62/510=62510.

Or,itcanbeconsideredas62750-240=62510.

III.Secondarybaseof500

Example2-Considerthemultiplicationof532×485

F)Primarybase100andsecondarybase500for532×485

Secondarybaseis500Scalingoperation:Factor=5=500/100

(secondarybase÷primarybase)Twodigitstoberetainedintherighthandpartoftheanswer

Consider:532×485(Subtract500fromeachnumber)

Page 45: The Power of Vedic Maths with Trigonometry

Considerthesteps

Wewillscaleupthisintermediateresultbymultiplying517by5.

Since517×5=2585

Sotheanswerbecomes2585/(–480).

Sincetheprimarybaseis100,wewillcarry5fromtheleftwhichisequaltoacarryof500(primarybase100*5)andsubtract480from500giving20.

Sothefinalanswerbecomes2580/020=258020.

Or,itcanbeconsideredas258500-480giving258020.

G)Primarybase1000andsecondarybase500for532×485

Secondarybaseis500Scalingoperation:Factor=1/2=500/1000

(secondarybase÷primarybase)Threedigitstoberetainedintherighthandpartoftheanswer

Page 46: The Power of Vedic Maths with Trigonometry

Considerthesteps

Wewillscaledownthisintermediateresultbydividing517by2.

Since517/2=258½,theanswerbecomes258½/(–480).

Sincetheprimarybaseis1000,wewillcarry½fromtheleftwhichisequaltoacarryof500(primarybase1000*½)andsubtract480from500giving20.

Sothefinalanswerbecomes258/020=258020.

Theleftpartoftheansweris258.5hundredswhichisequalto258500.

So,itcanbeconsideredas258500-480giving258020.

IV.Secondarybaseslike40,60

Example3-Considerthemultiplicationof32×48

H)Primarybase10andsecondarybase40for32×48

Secondarybaseis40Scalingoperation:Factor=4=40/10

(secondarybase÷primarybase)Onedigittoberetainedintherighthandpartoftheanswer

Consider:32×48(subtract40fromeachnumber)

Wewillscaleupthisintermediateresultbymultiplying40by4.

Since40×4=160,theanswerbecomes160/(–64).

Page 47: The Power of Vedic Maths with Trigonometry

Sincetheprimarybaseis10,wewillcarry7fromtheleftwhichisequaltoacarryof70(primarybase10*7)andsubtract64from70giving6.

Thisisalsoequivalentto1600-64.

So,thefinalansweris1536.

Example4-Considerthemultiplicationof64×57

I)Primarybase10andsecondarybase60for64×57

Secondarybase=60Scalingoperation:Factor=6=60/10

(secondarybase÷primarybase)Onedigittoberetainedintherighthandpartoftheanswer

Consider:64×57(subtract60fromeachnumber)

Wewillscaleupthisintermediateresultbymultiplying61by6.

Since61×6=366,theanswerbecomes366/(–12)=364/8.

Sincetheprimarybaseis10,wewillcarry2fromtheleftwhichisequaltoacarryof20(primarybase10*2)andsubtract12from20giving8.

Thisisalsoequivalentto3660-12.

So,thefinalansweris3648.

V.Secondarybaseof300

Example-Considerthemultiplicationof285×315

J)Primarybase100andsecondarybase300for285×315

Secondarybase=300Scalingoperation:Factor=3=300/100

Page 48: The Power of Vedic Maths with Trigonometry

(secondarybase÷primarybase)Twodigitstoberetainedintherighthandpartoftheanswer

Consider:285×315(subtract300fromeachnumber)

Wewillscaleupthisintermediateresultbymultiplying300by3.

Since300×3=900,theanswerbecomes900/(–225).

Sincetheprimarybaseis100,wewillcarry3fromtheleftwhichisequaltoacarryof300(primarybase100*3)andsubtract225from300giving75.

Sothefinalanswerbecomes897/75=89775.

Conclusion

Thissectiongivesanideaofhowavarietyofcombinationsofprimaryandsecondary bases can be used to arrive at the final answer quickly. The readershould choose the secondary base carefully which can reduce the time forcomputationdrastically.

5.Examplesformultiplicationofnumbersbelowthebase(100)

Page 49: The Power of Vedic Maths with Trigonometry

6.Examplesformultiplicationofnumbersabovethebase(100)

Page 50: The Power of Vedic Maths with Trigonometry

7. Examples for multiplication of numbers above and below the base(100)

Page 51: The Power of Vedic Maths with Trigonometry

8.Examplesforsquaresofnumbersbelowthebase(100)

Page 52: The Power of Vedic Maths with Trigonometry

9.Examplesforsquaresofnumbersabovethebase(100)

Page 53: The Power of Vedic Maths with Trigonometry

10. Examples for multiplication of numbers (3-digits) below the base(1000)

11. Examples for multiplication of numbers (3-digits) abov the base(1000)

Page 54: The Power of Vedic Maths with Trigonometry

12.Examplesformultiplicationofnumbers(3-digits)above&belowthebase(1000)

Page 55: The Power of Vedic Maths with Trigonometry

13.Examplesforsquaresofnumbers(3-digits)belowthebase(1000)

Page 56: The Power of Vedic Maths with Trigonometry

14.Examplesforsquaresofnumbers(3-digits)abovethebase(1000)

Page 57: The Power of Vedic Maths with Trigonometry

15. Examples for multiplication of numbers (4-digits) below the base(10000)

Page 58: The Power of Vedic Maths with Trigonometry

16. Examples for multiplication of numbers (4-digits) above the base(10000)

Page 59: The Power of Vedic Maths with Trigonometry

17.Examplesforsquaresofnumbers(4-digits)belowthebase(10000)

Page 60: The Power of Vedic Maths with Trigonometry

18.Examplesforsquaresofnumbers(4-digits)abovethebase(10000)

Page 61: The Power of Vedic Maths with Trigonometry

19.Examplesformultiplicationofmixednumbers

Page 62: The Power of Vedic Maths with Trigonometry
Page 63: The Power of Vedic Maths with Trigonometry

MULTIPLICATION(URDHVATIRYAK)

VerticallyandCrosswise

Wewill now consider the othermethod ofmultiplication viz. the ‘UrdhvaTiryak’ or cross-multiplication technique. It consists of vertical and crossmultiplication between the various digits and gives the final result in a singleline.

Wewillconsiderthemultiplicationofthefollowing:

Two2-digitnumbersTwo3-digitnumbersTwo4-digitnumbers2-digitwith3-digitnumber2-digitwith4-digitnumber3-digitwith4-digitnumber

Once the technique isclear, itcanbeextended to themultiplicationofanynumberofdigits.

Case1:2-digitmultiplication

Considerthefollowingmultiplicationasdonebythetraditionalmethod.

Page 64: The Power of Vedic Maths with Trigonometry

TheVedicmathsmethod consists of computing three digits a, b and c as

showninthediagram

Steps:

Digit(a):Multiplytherightmostdigits8and2toget16.

Digit(b):Carryoutacrossmultiplicationbetween3and2,and8and5toget6and40respectivelyandonaddingthem,weget46.

Digit(c):Multiplytheleftmostdigits3and5toget15.

We have to retain one digit at each of the three locations and carry thesurplustotheleft.

Page 65: The Power of Vedic Maths with Trigonometry

Hencein

154616

westartfromtheright,retain6andcarry1totheleft.Thisgives47inthemiddlelocation.

Now,weretain7andcarry4totheleft.Weadd4to15toget19.

Thisgives1976i.e.1976whichistherequiredanswer.

To speed up this operation, the carry digit can be written just below thenumber on the left. It can then be added to the number to it’s left at eachoperationitself.Let’sseethemultiplicationagain.

Here,therightmostverticalmultiplicationiscarriedoutfirsttoget8×2=16.Wewrite6andwritethecarry1asshown.

Nextwecarryoutthecrossmultiplication3×2+5×8=46,addthecarry(1)toitandget47.Wewritedown7andthecarrydigit4asshown.

The3rdproductis3×5whichgives15towhichweaddthecarrydigitof4andget19.

Asyoucansee,themethodgivesyouthefinalanswerfasterinjustoneline.

Let’stryanotherexample.

Steps:

Digit(a):Multiplytherightmostdigits6and3toget18.Wewrite8andshow1asthecarryonit’sleft.

Page 66: The Power of Vedic Maths with Trigonometry

Digit(b):Carryoutacrossmultiplicationbetween7and3,and6and4toget21and24respectivelyandaddthemtoget45.Addthecarrydigit1andget46.Writedown6andshowthecarryas4.

Digit (c) :Multiply the left-most digits 7 and 4 to get 28.Add the carrydigit4toittoget32.

20.Examplesfor2digitcrossmultiplication

Case2:3-digitmultiplication

Letusnowconsidermultiplicationoftwo3digitsnumbers.

Page 67: The Power of Vedic Maths with Trigonometry

Considerthefollowingexample

TheVedicmathsmethodconsistsof computing fivedigits a, b, c, d, e as

showninthediagram

Wewill use themethod explained in the previous case inwhich the carrydigitateachstepwasaddedtothenumbertoitsleft.

Steps:

Digit(a):Multiplytherightmostdigits6and8toget48.Wewrite8andshow4asthecarry,onitsleftside.

Digit (b) :Carryout a2-digit crossmultiplicationbetween2 and8 (16),and6and5(30).Addtheproducts16and30toget46.Addthecarrydigit4andget50.Writedown0andshowthecarryas5.

Digit (c) :Carry out a 3-digit crossmultiplication between3 and 8 (24),and6and2(12)and2and5(10).Addthethreeproducts24,12and10toget46.Addthecarrydigit5andget51.Writedown1andshowthecarryas5.

Digit(d):Carryouta2-digitcrossmultiplicationbetween3and5(15)and2and2(4).Add15and4toget19.Addthecarrydigit5toget24,Writedown4andshow2asthecarry.

Page 68: The Power of Vedic Maths with Trigonometry

Digit(e):Multiplytheleftmostdigits3and2,toget6.Addthecarrydigit2toittoget8.

Finally,themultiplicationlooksasfollows:

Let’stryanotherexample;thecomputationisasshown.

Case3:Multiplying3-digitand2-digitnumbers

Ifwehave tomultiplya3-digitwitha2-digitnumber,wecan treat the2-digitnumberasa3-digitnumberbypaddingitwithazeroontheleft.

E.g. 354×45canbewrittenas354×045and the same techniquecanbeused.

21.Examplesfor3digitcrossmultiplication

Page 69: The Power of Vedic Maths with Trigonometry

22.Moreexamples3digits×2digits

Page 70: The Power of Vedic Maths with Trigonometry

Case4:4-digitmultiplication

The techniques discussed till now can be extended further for four digits.

Page 71: The Power of Vedic Maths with Trigonometry

Thediagrambelowcanbeused

Let’sconsiderthefollowingexample

Thefinalansweris9073792.

Steps:

Digit(a):Multiplytherightmostdigits2and6toget12.Writedown2

Page 72: The Power of Vedic Maths with Trigonometry

andshowthecarryas1.

Digit (b) :Carryout a2-digit crossmultiplicationbetween3 and6 (18),and2and5(10)andaddthemtoget28.Addthecarrydigit1andget29.Writedown9andshowthecarryas2.

Digit (c) :Carryouta3-digitcrossmultiplicationbetween1and6 (6),2and2(4)and3and5(15)andaddthemtoget25.Addthecarrydigit2andget27.Writedown7andshowthecarryas2.

Digit(d):Carryouta4-digitcrossmultiplicationbetween2and6(12),2and4(8),1and5(5)and3and2(6)andaddthemtoget31.Addthecarrydigit2toget33.Writedown3andshow3asthecarry.

Digit(e):Carryouta3-digitcrossmultiplicationbetween2and5(10),3and4(12)and1and2(2)andaddthemtoget24.Addthecarrydigit3andget27.Writedown7andshowthecarryas2.

Digit(f):Carryouta2-digitcrossmultiplicationbetween2and2(4),and1and4(4)andaddthemtoget8.Addthecarrydigit2andget10.Writedown0andshowthecarryas1.

Digit(g):Multiplytheleftmostdigits2and4toget8.Addthecarrydigit1toittoget9.

Let’s try another example; the computation is as shown:

Thefinalresultis19745313.

Case5:Multiplying4-digitand3-digitnumbers

Ifwehave tomultiplya4-digitwitha3-digitnumber,wecan treat the3-digitnumberasa4-digitnumberbypaddingitwithazeroontheleft.

E.g.3542×453canbewrittenas3542×0453andthesametechniquecan

Page 73: The Power of Vedic Maths with Trigonometry

beused.

23.Examplesfor4digitand5-digitcrossmultiplication

24.Examplesformultiplication4-digitsand5-digitsw3-digits

Page 74: The Power of Vedic Maths with Trigonometry
Page 75: The Power of Vedic Maths with Trigonometry

DIVISIONThe operation of division is basically the reverse of multiplication. In the

traditionalapproach,itisaslowandtediousmethodwithaconsiderableamountofguesswork.Ateachstep,anapproximatequotientdigit isguessed,which isthenmultipliedbythedivisorandtheremainderiscomputed.Iftheremainderisnegative or contains additional multiples of the divisor, the quotient digit isrecomputed. As the number of digits in the divisor increase, the divisionbecomesprogressivelyslower.

Vedicmathsprovidesaveryelegantmethodwhereinthedivisionisreducedtoadivisionbyasingledigitinmostcasesoratmosttotwosmalldigitslike12,13etc.inafewcases.Ateachstep,thedivisionbya1-digitor2-digitdivisorisfollowedbyamultiplication,basedonthe‘UrdhavTiryak’approachandfinallyasubtraction.

The reduction in both time and mental strain using the Vedic mathstechniqueisastounding.

Considertheexampleofdividing87108by84whichisa2-digitdivisor.The

Page 76: The Power of Vedic Maths with Trigonometry

traditionalmethodisshownbelow:

Ateachstage,wehavetomentallycarryoutatrialdivisionandthenwritedownthequotientwhichgiveseitherapositiveorzeroremainder.Thisisaslowand tedious procedure and hence the operation of division is detested.As thenumber of digits increase in the divisor, the process becomesmore andmoreslowandtimeconsuming.

TheVedicmethodhasbeendevisedbeautifullyinwhichthedivisionshavebeen reduced to a one-digit division. This speeds up the process considerablyandmakesitanenjoyableexperience.

Case1:Divisionbyanumberwithaflagofonedigit(noremainder)

Let’sconsider thesameexampleagainandcarryoutdivisionbytheVedicmethod.

Divide87108by84

Wewillwritethedivisoras84where4iscalledtheflag.Thedivisionwillbecarriedoutbyasingledigitviz.8.

Steps:

Placeacolononedigitfromtheright(=numberofdigitsofflag)

Page 77: The Power of Vedic Maths with Trigonometry

Divide8by8togetquotientas1andremainderas0

Carrytheremainder0tothenextdigit7andget7(calledgrossdividend,GD)

Multiplythequotient1bytheflag4toget4andsubtractitfrom7toget3(callednetdividend,ND)

Divide3by8togetthequotientas0andremainderas3

Carrytheremainder3tothenextdigit1andget31(GD)

Multiplythequotient0bytheflag4toget0andsubtractitfrom31toget31(ND)

Divide31by8togetthequotientas3andremainderas7

Carrytheremainder7tothenextdigit0andget70.

Multiplythequotient3bytheflag4toget12andsubtractitfrom70toget58

Divide58by8togetthequotientas7andremainderas2

Atthispoint,theintegerpartofthefinalquotienthasbeenobtainedsincewehavereachedthecolon.Allthebalancedigitswouldbethedecimalpart

Carrytheremainder2tothenextdigit8andget28

Multiplythequotient7bytheflag4toget28andsubtractitfrom28toget0

Since the difference is now 0, the division is completed and we get theansweras1037

Importantpoints:

Ateach stage, thenetdividend isobtainedbymultiplying thequotient inthepreviouscolumnbytheflagdigit

Page 78: The Power of Vedic Maths with Trigonometry

Thenetdividendwasalwayspositive

Later,wewill seewhat adjustments have to bemade if the net dividendbecomesnegativeinanycolumn.

SecondExample

Divide43409by83

Steps:

Placeacolononedigitfromtheright(=numberofdigitsofflag)

Divide43by8togetquotientas5andremainderas3

Carrytheremainder3tothenextdigit4andget34

Multiplythequotient5bytheflag3toget15andsubtractitfrom34toget19

Divide19by8togetthequotientas2andremainderas3

Carrytheremainder3tothenextdigit0andget30

Multiplythequotient2bytheflag3toget6andsubtractitfrom30toget24

Divide24by8togetthequotientas3andremainderas0

Carry the remainder 0 to the next digit 9 and get 09. At this point, theintegerpartof thefinalquotienthasbeenobtainedsincewehavereachedthecolon.Allthebalancedigitswouldbethedecimalpart.

Page 79: The Power of Vedic Maths with Trigonometry

Multiplythequotient3bytheflag3toget9andsubtractitfrom9toget0

Since the difference is now 0, the division is completed and we get theansweras523

Trya)4341283andb)4340373

Case2:Divisionbyanumberwithaflagofonedigit(withremainder)

Considerthedivisionof26382by77

Thequotientis342andtheremainderis48,whichappearsunderthecolumnjustafterthecolon.Thefinalanswerindecimalformis342.623.

Steps:

Thestepsasexplainedabovearecarriedouttillwereachthecolumnafterthecolonwhichshowstheremainderas48.Ifwewanttogettheanswerindecimal form, we have to carry out division further by using the sameprocedure.

Divide48by7togetquotientas6andremainderas6

Now,weattachazero to thedividendandwrite the remainder to its left,givingthenextnumberas60.

Multiplythequotient6bytheflag7toget42andsubtractitfrom60toget18

Divide18by7togetquotientas2andremainderas4

Carrytheremainder4tothenextdigit0(attachedasbefore)andget40

Page 80: The Power of Vedic Maths with Trigonometry

Multiplythequotient2bytheflag7toget14andsubtractitfrom40toget26

Divide26by7togetthequotientas3andremainderas5

Thisprocesscanbecarriedoutuptoanydesiredlevelofaccuracy.

Case3:Divisionwithadjustments

Considerthedivisionof25382by77

Steps:

Placeacolononedigitfromtheright(=numberofdigitsofflag)

Divide25by7togetquotientas3andremainderas4

Carrytheremainder4tothenextdigit3andget43(GD)

Multiplythequotient3bytheflag7toget21andsubtractitfrom43toget22(ND)

Divide22by7togetthequotientas3andremainderas1

Carrytheremainder1tothenextdigit8andget18(GD)

Multiplythequotient3bytheflag7toget21andsubtractitfrom18toget-3(ND)

Now,wehaveapeculiarsituationwhereinthe‘NetDividend’hasbecomenegative.Theprocesscannotgoanyfurther.Wewillnowhavetomakeanadjustment.

Page 81: The Power of Vedic Maths with Trigonometry

Wewillgoonestepbackwardandinsteadofwritingthequotientas3whiledividing 22 by 7, we will write down only 2 as the quotient and carryforwardabiggerremainderof8(ie22-7*2)

Carrytheremainder8tothenextdigit8andget88(GD)

Multiplythequotient2bytheflag7toget14andsubtractitfrom88toget74(ND)whichisnowpositive

Carry out the process in the remaining columns, making an adjustmentwheneverthenetdividendbecomesnegative.

Thefinalresultis329withremainder49orindecimalform,itis329.6363.

Case4:Divisionbyanumberwithaflagof2digits

Letusnowconsiderdivisionbya3digitdivisorwheretheflagwouldhavetwodigits.

Considerthedivisionof2329989by514

Steps:

Placeacolontwodigitsfromtherightsincewenowhavetwodigitsintheflag

Divide23by5togetquotientas4andremainderas3

Carrytheremainder3tothenextdigit2andget32(GD)

Now,sincetherearetwodigitsintheflag,wewillusetwoquotientdigitsfromtheprevioustwocolumnstocarryoutacrossmultiplicationwiththetwo digits of the flag. We will then subtract the result from the gross

Page 82: The Power of Vedic Maths with Trigonometry

dividend(GD)tocomputethenetdividend(ND).

Sincethequotient4hasonlyonedigit,wepaditwithazeroontheleftand

multiplythequotient04bytheflag14asfollows:

Wewillsubtract4fromtheGD32toget28(ND)

Divide28by5togetthequotientas5andremainderas3

Carrytheremainder3tothenextdigit9andget39(GD)

Now,theprevioustwoquotientdigitsare4and5whicharemultipliedby

theflag14asfollows:

Wewillsubtract21fromtheGD39toget18(ND).

Repeattheprocessfortheremainingcolumns.

Case5:Divisionbyanumberwithaflagof3digits

Letusnowconsiderdivisionbya4-digitdivisorwheretheflagwouldhavethreedigits.

Considerthedivisionof6851235by65245246

Steps:

Page 83: The Power of Vedic Maths with Trigonometry

Placeacolonthreedigitsfromtherightsincenowtherearethreedigitsintheflag

Divide6by6togetquotientas1andremainderas0

Carrytheremainder0tothenextdigit8andget08(GD)

Now, since there are three digits in the flag, we will use three quotientdigits from the three immediatelypreviouscolumnsandcarryout a crossmultiplicationwith the three digits of the flag.Wewill then subtract theresultfromthegrossdividend(GD)tocomputethenetdividend(ND).

Sincethequotient1hasonlyonedigit,wepaditwithtwozeroesontheleftand multiply the quotient 001 by the flag 524 as follows :

Wewillsubtract5fromtheGD8toget3(ND)

Divide3by6togetthequotientas0andremainderas3

Carrytheremainder3tothenextdigit5andget35(GD)

Now,theprevioustwoquotientdigitsare0and1.Wepadthemwithone

zeroandmultiplybytheflag524asfollows:

Wewillsubtract2fromtheGD35toget33(ND).

Divide33by6togetthequotientas5andremainderas3

Carrytheremainder3tothenextdigit1andget31(GD)

Now,thepreviousthreequotientdigitsare1,0and5.Wemultiplybythe

flag524asfollows:

Page 84: The Power of Vedic Maths with Trigonometry

Wewillsubtract29fromtheGD31toget2(ND).

Repeattheprocessfortheremainingcolumns.

25.Examplesfordivision-flagof1digit

26.Examplesfordivision-flagof2digits

Page 85: The Power of Vedic Maths with Trigonometry

27.Examplesfordivision-flagof3digits

Page 86: The Power of Vedic Maths with Trigonometry
Page 87: The Power of Vedic Maths with Trigonometry

SIMPLESQUARESInthischapterwewilllookattwosimpletechniques.Inthefirstone,wewill

learnhowtofindthesquareofanumberwhichendsin5,e.g.35.Inthesecondone,wewillseehowtofindtheproductoftwonumberswhichhavethesamestartingdigitandwhichhavethesumofthelastdigitas10e.g.33and37.

Case1:Numbersendingin5

Considerthesquareof35.Thetechniqueisverysimpleandconsistsoftwosteps.

Steps:

Multiplythefirstnumberviz.3bythenumbernexttoiti.e.multiply3by4andwritedowntheresultas12.Next,multiplytheseconddigiti.e.5byitselftoobtain25andattachitattheendoftheresultobtainedinthepreviousstep.

Theresultis1225.

Example-1

Compute652

Step1:6×7=42

Step2:5×5=25

Page 88: The Power of Vedic Maths with Trigonometry

Andthefinalansweris4225.

Example-2

Let’scompute1252

Step1:12×13=156

Step2:5×5=25

Andthefinalansweris15625.

Theproductof12×13canbeobtainedbytheNikhilammethodasexplainedbefore.

28.Examplesforsquaresofnumbersendingin5

Page 89: The Power of Vedic Maths with Trigonometry

Case2:Twonumbersstartingwithsamedigitandendingdigitsaddingupto10

Considertheexample23×27.

Now,23×27=621

The product can be obtained by using the same technique as for squaringnumbersendingwith5.

Steps:

Sinceboththenumbersstartwiththesamedigit,multiplyit(i.e.2)byitsnextdigit(i.e.3)toget6.

Nowmultiplythelastdigitsofboththenumbersviz.3×7toget21.

Thefinalresultisobtainedbytheconcatenationofthetwonumbersi.e.‘6’+‘21’=621.

Example-1

Compute84×86

Theresultwillbeobtainedas

Step1:8×9=72(firstdigit‘8’multipliedbyitsnextdigit‘9’)Step2:4×6=24(productoflastdigitofeachnumber)givingthefinalresultas7224.

Example-2

Compute92×0.98

Theresultcanbeobtainedas

Step1:9×10=90

Step2:2×8=16

whichgivestheintermediateansweras9016.

Now,placethedecimalpointaftertwodigitsfromtherighttogetthefinal

Page 90: The Power of Vedic Maths with Trigonometry

answeras90.16.

Important

Thesametechniquecanalsobeusedforbiggernumberslike318×312or1236×1234,wherethelastdigitsaddupto10andtheremainingdigitsarethesame.

29.Examplesforproductofnumbershavingendingdigitsaddingto10

Page 91: The Power of Vedic Maths with Trigonometry

SQUAREOFANYNUMBERThere are many problems in which we have to compute the square of a

number,i.e.multiplyanumberbyitself.E.g.squareof382,2.3672etc.

Vedic maths provides a powerful method to compute the square of anynumber of any length with ease and get the answer in one line. It uses theconceptof‘dwandwa’orduplexwhichisexplainedinthischapter.

Wewillstartwithsomebasicdefinitions,whicharethebuildingblocksforthesetechniques.

I.Definition-DwandwaorDuplex

Wewilldefineatermcalled‘dwandwa’orduplexdenotedby‘D’.

a)DuplexofasingledigitisdefinedasD(a)=a2

D(3)=32=9,D(6)=62=36etc.

b)DuplexoftwodigitsisdefinedasD(ab)=2abD(37)=237=42D(41)=241=8D(20)=0

c)Duplexof3digitsisdefinedasD(abc)=2ac+b2

Page 92: The Power of Vedic Maths with Trigonometry

ThiscanbederivedbyusingD(a)andD(ab)definedabove.

Wepickupthedigitsatthetwoextremeendsi.e‘a’and‘c’andcomputeitsduplexas2ac.

Wethenmoveinwardsandpickuptheremainingdigit‘b’.

Weaddtheduplexofbi.e.b2totheresulttogettheduplexofthe3digits‘a’,‘b’and‘c’.

ThusD(346)=236+42=36+16=52

D(130)=210+32=9D(107)=217+02=14.

d)Duplexof4digitsisdefinedas

D(abcd)=2ad+2bc=2(ad+bc)Onceagain,westartfromthetwo digits ‘a’ and ‘d’, compute their duplex as 2 a d, then moveinwards,wegetanotherpair‘b’and‘c’andcomputetheirduplexas2bc.

Thusthefinalduplexis2ad+2bcD(2315)=(225)+(231)=20+6=26

D(3102)=(232)+(210)=12+0=12

D(5100)=(250)+(210)=0

e)DuplexoffivedigitsisdefinedasD(abcde)=2ae+2bd+c2

D(21354)=(2×2×4)+(2×1×5)+32=16+10+9=35

D(31015)=(2×3×5)+(2×1×1)+02=30+2+0=32

Summaryofcomputationofduplex

Page 93: The Power of Vedic Maths with Trigonometry

30.Computetheduplexofthefollowingnumbers

II.Squareofanynumber

Once the concept of ‘duplex’ is clear, we can compute the square of anynumber very easily.Let us startwith the square of a 2-digit number and thenextendittobiggernumbers.

The square of a 2-digit number ab is defined as (ab)2 = D(a)D(ab)D(b)Considerthesquareof34.

Then,342=D(3)D(34)D(4)WhereD(3)=9,D(34)=24andD(4)=16

So,342=9/24/16.

Now, we start a backward pass from the right, retain one digit at eachlocationandcarry thesurplus to the left.Theworkingwould lookasfollows:342=92416

=9256..Weretain6andcarry1totheleftgetting25.=1156..Weretain5andcarry2totheleftgetting11.

Sothefinalansweris1156.

Page 94: The Power of Vedic Maths with Trigonometry

Similarly,822=64/32/4=6724

Thetechniquecannowbeextendedtoa3-digitnumberasfollows:(abc)2=D(a)D(ab)D(abc)D(bc)D(c)Thus,2132=441369

=45369

Thesquareofanynumbercannowbeobtainedveryeasilybyjustextendingthesetofduplexes.

31.Examplesforsquaresof2-digitnumbers

32.Squaresof3-digitnumbers

Page 95: The Power of Vedic Maths with Trigonometry

33.Examplesforsquaresof4-digitnumbers

Page 96: The Power of Vedic Maths with Trigonometry

34.Examplesforsquaresof5-digitnumbers

Page 97: The Power of Vedic Maths with Trigonometry

SQUAREROOTOFANUMBERIn the previous chapter we have seen the concept of ‘duplex’ and how it

helpsustocomputethesquareofanynumberveryrapidly.

Thecomputationofthesquarerootalsoinvolvestheuseoftheduplex,onlythistime,wewouldbesubtractingitateachsteptocomputethesquareroot.

We will now study the technique to find the square root of any numberwhich may or may not be a perfect square. The first three examples are ofnumberswhichareperfectsquares,andthenexttwoexamplesareofimperfectsquares including a decimal number. The general steps are explained withspecificexamplesbelow:Steps:

Countthenumberofdigits,n,inthegivennumber.

Ifthenumberofdigitsiseven,startwiththeleftmosttwodigits,elsestartwith the leftmost singledigit.Letuscall thenumber soobtainedas ‘SN’(startingnumber).

Considerthehighestpossibleperfectsquare,say‘HS’,lessthanorequalto‘SN’andcomputeitssquareroot‘S’.

Writedownthesquareroot‘S’belowtheleftmostdigits.Thisbecomesthefirstdigitoftherequiredsquareroot.

Multiplythesquareroot‘S’by2andwriteitontheleftside.Thiswouldbethedivisor,say‘d’.

Page 98: The Power of Vedic Maths with Trigonometry

Forallthebalancedigitsintheoriginalnumber,themethodwouldconsistofdivisionbythedivisor‘d’aftersubtractionoftheduplexofthepreviousdigits(exceptthefirstone).

Thedifferencebetween‘SN’and‘HS’ i.e. theremainder ‘R’ iscarried tothenextdigitandwrittentoitslowerleft,forminganewnumber.Thisnextnumberiscalledthegrossdividend(GD).

The first GD is divided by the divisor ‘d’ to get a quotient Q and aremainder ‘R’. The quotient is written down as the second digit of thesquarerootandtheremainderisagaincarriedtothenextdigittoformthenextGD.

Fromthis stageonwards, theduplexofalldigits starting from theseconddigit of the square root, to the column previous to the column ofcomputation,issubtractedfromeachGDtogettheNetDividend,ND.

Ateachcolumn,theNDisthendividedbythedivisor‘d’andthequotientiswritten downas the next digit of the square root, and the remainder iscarriedtothenextdigittoformthenextGD.

TheprocessiscarriedouttilltheNDbecomeszeroandnomoredigitsareleftinthenumberforcomputationorwhenwehavereachedadesiredlevelofaccuracy.

If theND does not become zero,we can attach zeroes to the end of thegivennumberandcarryouttheprocesstogetthesquareroottoanylevelofaccuracy,i.e.anynumberofdecimalplaces.

Once thesquareroot isobtainedorwhenwedecide tostop,weplace thedecimalpointaftertherequireddigitsfromtheleft.Ifniseven,thedecimalpointisput(n2)digitsfromtheleft.Ifnisodd,thedecimalpointisplaced(n+1)2digitsfromtheleft.

Theprocesswillbecomeveryclearonstudyingtheexamplesgivenbelow.

I.Perfectsquareroot

Page 99: The Power of Vedic Maths with Trigonometry

Considertheexampleofcomputingthesquarerootof2116Theworkingisasfollowswhichisexplainedstepwise.

Steps:

Countthenumberofdigits,n,whichis4.

Sinceniseven,westartwiththetwoleftmostdigitswhere‘SN’is21

Here the highest perfect square (‘HS’) less than 21 is 16, its square root(‘S’)is4andthedifference‘R’is5.

Wewritethesquareroot4belowtheleftmostdigitsandwrite8(=2×4)ontheleftsideasshown.

4isthefirstdigitoftherequiredsquareroot.

Forthebalancedigits,themethodwouldconsistofdivisionbythedivisor8.

Thedifference i.e.5 iscarriedtothenextdigit1andwrittentoit’s lowerleftasshown.ThevalueoftheGDisnow51.

TheveryfirstGDi.e.51isdividedbythedivisor8togetaquotient6andaremainder3.Thequotientiswrittendownaspartofthefinalresultandtheremainderiscarriedtothenextdigit6toformthenextGD36.

Wehavenowreachedthethirdcolumn.WewillsubtracttheduplexofthedigitinthesecondcolumnfromtheGDtogettheNetDividend,ND.

Thedigitinthesecondcolumnoftheresultis6anditsduplexis36.

36 is subtracted from theGDwhich is also 36 to get theND as 0. Thissignalstheendoftheprocess.

Page 100: The Power of Vedic Maths with Trigonometry

Hence,thesquarerootisobtained.Now,wewillplacethedecimalpoint.

Sincenis4andiseven,thedecimalpointisplaced(n/2)digitsfromtheleft.So,here,thedecimalpointwillbeplaced2digitsfromtheleftandthefinalansweris46.

II.Perfectsquareroot

Considertheexampleofcomputingthesquarerootof59049

Steps:

Countthenumberofdigits,n,whichis5.

Sincenisodd,westartwiththeleftmostdigitviz.5

Herethehighestperfectsquarelessthan5is4,itssquarerootis2andtheremainder‘R’is1(5–4).

Wewritethesquareroot2belowtheleftmostdigitandwrite4(=2×2)ontheleftsideasshown.

Theremainder1iscarriedtothenextdigit9givingthevalueoftheGDas19.

19 is dividedby4 toget aquotient 4 and a remainder3.Thequotient iswrittendownandtheremainderiscarriedtothenextdigit0togivethenextGDas30.

Theduplexof4is16whichissubtractedfrom30(GD)toget14(ND).

14 is dividedby4 toget aquotient 3 and a remainder2.Thequotient iswrittendownandtheremainderiscarriedtothenextdigit4togivethenextGD24.

Page 101: The Power of Vedic Maths with Trigonometry

Now, the duplex of the two previous digits 4 and 3, i.e. 2 4 3 = 24 issubtracted from the GD 24 to get the ND as 0. Since we have not yetreachedthelastdigitinthegivennumber,wecannotstophere.Ondividing0by4wegetthequotientas0andtheremainderas0,whichiscarriedtothenextdigitgivingtheGDas09.

Thethreeimmediatelypreviousdigitsare4,3and0.Theirduplexis9(240+32).Whentheduplexissubtracted,theNDbecomesequaltozeroandnomoredigitsareleft.Thissignalstheendoftheprocess.

Sincenis5,thedecimalpointisplaced(n+1)/2digitsi.e.3digitsfromtheleftandthefinalansweris243.

III.Imperfectsquarerootasadecimalnumber

Considertheexampleofcomputingthesquarerootof59064

Since this number is slightly larger than the number taken in the previousexample,itisnotaperfectsquare.Wewillnowseehowtogetitssquareroottoanydesiredlevelofaccuracy.Atanypoint,iftheNDbecomesnegative,wegobackonestepanddecreasethequotientbyonetoincreasetheremainderthatiscarriedforward.Thisprocessofadjustmentisexplainedinthisexample.

Steps:

ThefirstfewstepsarethesametillwereachthefourthcolumnwheretheGDis26andtheNDis2.

2 is divided by 4 to get a quotient 0 and a remainder 2. The quotient iswrittendownandtheremainderiscarriedtothenextdigit4togivethenextGD24.

Theduplexof4,3and0is9whichissubtractedfrom24(GD)toget15

Page 102: The Power of Vedic Maths with Trigonometry

(ND).

15isdividedby4togetaquotient3andaremainder3.Weattachazerotocontinuewiththeprocess.

Thequotientiswrittendownandtheremainderiscarriedtothenextdigit0toformthenextGD30.

Now, the duplex of the previous digits 4, 3, 0 and 3 i.e. 2 4 3 = 24 issubtractedfromtheGD30togettheNDas6.

Ondividing6by4wegetthequotientas1andtheremainderas2,whichiscarriedtothenextdigitgivingtheGDas20.

Theduplexoftheimmediatelypreviousdigits4,3,0,3and1is26(241+2 3 3) which gives a negative ND. Hence, we decrease the previousquotientby1andcarryforwardtheremainder6givingtheGDas60.

Nowtheduplexofthepreviousdigits4,3,0,3and0is18(233).WhenthisduplexissubtractedfromtheGD,wegettheNDas42.

Thisprocesscanbecarriedouttoanydesiredlevelofaccuracy.

Sincen is5, thedecimalpoint isput (5+1) /2=3digits fromthe left,givingthefinalansweras243.03086.

IV.Squarerootwithadjustments

Considerthesquarerootofadecimalnumber59064.78

Thisisadecimalnumberwhichisnotaperfectsquare.

Steps:

Page 103: The Power of Vedic Maths with Trigonometry

Writethenumberwithoutthedecimalpointandcarryoutthesamestepsasexplainedbefore.

The starting number (SN) is obtained from the integer port only of thedecimalnumber.

ThefirstfewstepsarethesametillwereachthefifthcolumnwheretheGDis24andtheNDis15.

As before, 15 is divided by 4 to get a quotient 3 and a remainder 3.Wecarrytheremaindertothenextdigit7toget37(GD).

Now,theduplexofthepreviousdigits4,3,0and3is24(243)whichissubtractedfromtheGD37togettheNDas13.

Ondividing13by4,wegetthequotientas2andtheremainderas5,whichis carried to thenext digit giving theGDas58.Note that thequotient istakenas2andnot3togetapositiveNDinthenextcolumn.

Theduplexoftheimmediatelypreviousdigits4,3,0,3and2is34(242+233)whichissubtractedfrom58givingtheNDas24.

24 is divided by 4 to get a quotient of 4 and a remainder of 8which iscarried forward. A zero is attached at this stage to enable the process tocontinuetohigherlevelsofaccuracy.

Thisprocessiscarriedfurtherasshown.

Sincen is5, thedecimalpoint isput (5+1) /2=3digits fromthe left,givingthefinalansweras243.032467.

V.Perfectsquarerootofadecimalnumber

Now, consider the square root of a decimal number 547.56which is aperfectsquare.

Page 104: The Power of Vedic Maths with Trigonometry

Steps:

Thestepsaresimilartothoseexplainedbeforeandthereadershouldhavenodifficultyincomputingthesame.

Since theoriginalnumberhas3digits, thedecimalpoint isplacedafter2digitsfromtheleft.

Important

IfthestartingnumberSNissmall,saylessthan4,thenthenextgroupof2digitscanbeincludedintheSN.e.g.incomputingthesquarerootof13251,wecantakeSNas132insteadof1.

35.ExamplesforsquarerootsofMiscellaneousnumbers

Page 105: The Power of Vedic Maths with Trigonometry
Page 106: The Power of Vedic Maths with Trigonometry

CUBESANDCUBEROOTS

a)Computingcubesof2-digitnumbers

Let us consider a two digit number say ‘ab’. Further, let us consider theexpansionoftheexpression(a+b)3,whichcanbeusedtofindthecubeofthegivennumber‘ab’.

Weknowthat(a+b)3=a3+3a2b+3ab2+b3

Wenoticethatthe1sttermisa3,the2ndterma2b=a3×(b/a),the3rdtermab2=a2b×(b/a)andthe4thtermb3=ab2×(b/a)Thus,eachofthe2nd,3rdand4thtermscanbeobtainedfromitsprevioustermbymultiplyingitbythecommonratio(b/a).

Wecan also consider the2nd term3a2b= a2b+2a2band the3rd termas3ab2=ab2+2ab2

i.e.wecansplititasthesumoftwoterms.

Hence,ifwecomputea3andtheratio(b/a),wecanderivealltheremainingtermsveryeasily.Thetwomiddletermshavetobethendoubledandaddedasshowntoget(ab)3.

Page 107: The Power of Vedic Maths with Trigonometry

Hence, in order to get the cube of any two digit number, we start bycomputingthecubeofthefirstdigitandtheratioofthe2nddigitbythe1stdigit.Theratiocanbemorethan,equal toor less thanone.Themethodremains thesameinallcases.

Case1:Ratioismorethan1

Letusconsiderasimpleexamplei.e.123

Herethefirstdigitis1anditscubeisalso1.Theratioofthe2ndtothe1stdigitis2(=2/1).

Theremaining3termscanbeobtainedbymultiplyingeachoftheprevioustermsby2asshown:123=1248(cubeoflastdigit)

Wealsonoticethatthe4thtermisthecubeofthe2nddigiti.e.8isthecubeof2whichistheseconddigitinthegivennumber12.

Wehave tonow take twice thevalueofeachof the twomiddle termsandwritethemdown.Onaddition,wegetthecubeofthegivennumber12.

Similarly,letuslookat253

Case2:Ratioisequalto1

Page 108: The Power of Vedic Maths with Trigonometry

Case3:Ratioislessthan1

36.Examplesforcubesofnumbers

b)Cuberootsof2-digitnumbers

Let’sconsiderthecubesofnumbersfrom1to9.13=123=8

Page 109: The Power of Vedic Maths with Trigonometry

33=2743=6453=12563=21673=34383=51293=729

Ifweobserveclosely,wefindthatthelastdigitineverycubeisuniqueanddoesnot repeat foranynumber (1 to9).Thispropertycanbeused to find thecuberootofanytwodigitnumberveryeasily.

Let’sfindthecuberootof438976.

Wegroup it into setsof3digitseach, starting from the right.So,wehavetwogroupsviz.

438976Steps:

Welookatthefirstgroupfromtheright,i.e.976andcompareitslastdigiti.e.6withthecubesofdigitsfrom1to9wherethecubealsoendswith6.Thenumber216endswith6.

Wetakeitscuberootwhichis6.Thelastdigitoftherequiredcuberootis6.

Now, we consider the remaining 3-digit group i.e. 438. We locate thehighestcubelessthan438.Therequiredcubeis343sincethecubeaboveitis512whichisgreaterthan438.

Wetakeitscuberootwhichis7.Thefirstdigitoftherequiredcuberootis7.

Therequiredcuberootis76.

Page 110: The Power of Vedic Maths with Trigonometry

This technique provides an easy and powerful method to compute 2-digitcuberoots.Itcanbeusedonlywhenthegivennumberisaperfectcube.

37.Examplesforcuberootsof2digitnumbers

c)Computingfourthpowerof2-digitnumbers

A similar approach can be used to obtain the fourth power of a two-digitnumber,i.e.(ab)4

Subsequent to the first term, each of the remaining terms is obtained bymultiplyingtheprevioustermbyb/a.Letusconsiderexamplesfromeachofthecasesviz.whentheratioismorethan,equaltoandlessthan1.

Page 111: The Power of Vedic Maths with Trigonometry

Case1:Ratioismorethan1

Letusconsiderasimpleexamplei.e.124

Herethefirstdigitis1anditsfourthpowerisalso1.Theratioofthe2ndtothe1stdigitis2.

Theremaining4termscanbeobtainedbymultiplyingeachoftheprevioustermsby2asshown:Case2:Ratioisequalto1

Letusconsiderasimpleexamplei.e.114

Herethefirstdigitis1anditsfourthpowerisalso1.Theratioofthe2ndtothe1stdigitis1.

Theremaining4termscanbeobtainedbymultiplyingeachoftheprevious

termsby1asshown:

Case3:Ratioislessthan1

Letusconsiderasimpleexamplei.e.214

Herethefirstdigitis2anditsfourthpoweris16.Theratioofthe2ndtothe1stdigitis1/2.

Theremaining4termscanbeobtainedbymultiplyingeachoftheprevious

termsby1/2asshown:

38.Examplesforfourthpowerofnumbers

Page 112: The Power of Vedic Maths with Trigonometry
Page 113: The Power of Vedic Maths with Trigonometry

TRIGONOMETRY

It is that branchofmaths inwhichwe study the relationshipsbetween thesides and angles of triangles.Most of the readers would be familiar with thebasic concepts of trigonometry which are taught in schools and colleges.Wehavelearntaboutthedefinitionsofsine,cosineandtangentofagivenangleinatriangle and how to compute any of these ratios, if any of the other ratios isgiven.

Letus refresh these conceptsbyusing the following right-angled triangle:

Thevarioustrigonometricratiosaredefinedasfollows:1.sinA=b/c2.cosA=a/c3.tanA=b/a4.cosecA=1/sinA=c/b5.secA=1/cosA=c/a6.cotA=1/tanA=a/b

Someoftheproblemsintrigonometryareasfollows:

Page 114: The Power of Vedic Maths with Trigonometry

givenanyoneofthesixratiosforanyangleinatriangle,computeanyoftheremainingratiosgivenanyoneof theratios ina triangle,compute theremainingratiosfortwicethegivenanglee.g.givensinA,computetan2Agivenanyoneoftheratios,computetheremainingratiosforhalfthegivenanglee.g.givensinA,computetanA/2

Standard trigonometric formulaeexist tocarryoutvariouscomputationsofthisnature.

A.Triplet

In Vedic maths we have a concept of a triplet which is very effective insolvingallthesetypesofproblems.Intheabovetriangle,atripletisdefinedasa,b,c

which are the measures of the two sides ‘a’ and ‘b’ followed by thehypotenuse(‘c’)attheend.

Therelationc2=a2+b2holdstrueinthiscase.

Ifanytwovaluesofthetripletaregiven,wecancomputethe3rdvalueandbuildthecompletetriplet.

Theratiosarenowdefinedasfollows

sinA=2ndvalue/lastvaluecosA=1stvalue/lastvaluetanA=2nd

value/1stvalueLetusseesomeexamplesofhowtobuildandusethetriplet.

1.Supposethata=3andb=4.Letusseehowtobuildthetriplet.

Givenpartialtripletis3,4,

Thereforethelastvaluewillbe

Hencethecompletedtripletis3,4,5.

2.Ifwearegivenanincompletetripletas12,__,13,Thecompletedtriplet

Page 115: The Power of Vedic Maths with Trigonometry

wouldbe12,5,13wherethevalue5isobtainedas

Oncethetripletisbuilt,allthesixtrigonometricratioscanbereadoffeasilywithoutanyfurthercomputationoruseofanyformulae.

B.Computingtrigonometricratios

Letusassumethatinatriangle,thevalueoftanAisgivenas4/3.WehavetofindoutthevalueofcosecA.Thetraditionaltrigonometricmethodwouldusethefollowingformula:cosec2A=1+cot2AastanA=43,cotA=34

Onsubstitutingthisvalueinthegivenformula,wegetcosec2A=1+9/16

Therefore,cosec2A=25/16

andcosecA=54,sinA=45

IfwealsowantthevalueofcosA,wecanusetheformulatanA=sinA/cosA

OnsubstitutingthevalueoftanAandsinA,wegetcosA=sinA/tanA=(45)(43)=35

Let us now see how to use the Vedic maths technique of the triplet tocomputethevaluesofcosecA,cosAetc.

Theincompletetripletinthisexampleis3,4,__

tanA=4/3=2ndvalue/1stvalueThecompletetripletwouldnowbe

3,4,5asseenbefore.

Assoonasthistripletisbuilt,wecanreadoffalltheratiosE.g.cosecA=lastvalue/2ndvalue=5/4

cosA=1stvalue/lastvalue=3/5

Page 116: The Power of Vedic Maths with Trigonometry

The reader can see that there is no need to carry out any complexcalculations at all and the triplet can be used to obtain all the six ratios veryeasily.

C.Computingtrigonometricratiosoftwicetheangle

Aswehaveseenabove,thetripletfortheangleAiswrittenasa,b,c

The triplet for the angle 2A can be obtained very easily by using thefollowingcomputation(a2–b2),2ab,c2

Letusseeanexample.

AssumethatwearegiventhevalueofsinA=3/5andwehavetocomputetan2A.

Thenormalwaywouldbeasfollows:

Sin2A+cos2A=1

Thereforecos2A=1–sin2A=1–(9/25)

=16/25

ThereforecosA=4/5

Now,sin2A=2*sinA*cosA=2*(3/5)*(4/5)=24/25

Also,cos22A=1–sin22A=1–(242/252)=49/625

Thereforecos2A=7/25

andtan2A=sin2A/cos2A

=24/7

Considerthetripletmethodnow.

SincesinA=3/5,thepartialtripletforangleAis__,3,5

AndthereforethecompletetripletforangleAwillbe

4,3,5

Page 117: The Power of Vedic Maths with Trigonometry

4,3,5Thetripletforangle2Acanbecomputedbyusingtheformula(a2–b2),2ab,

c2

7,24,25Thevalueoftan2AcannowbereadoffdirectlyastanA=24/7and

cos2A=7/24

Theeaseandeleganceofthemethodisobvious.Thereisnoneedtouseanyformulaeandalltheratioscanbereadoffeasily.

D.Computingtrigonometricratiosofhalftheangle

IfthetripletfortheangleAis

a,b,c

then the triplet for the angle A/2 can be obtained by using the followingcomputation

Let us see the example where the value of sin A = 3 5 and we want tocomputetanA2.

Nowaspertrigonometricformula,

sinA=(2*tanA/2)/(1+tan2A/2)Ifwesolvethisequation,weget

tanA/2=1/3

LetusseethetripletmethodinactionThecompletetripletforangleAis4,3,5

The triplet for angle A / 2 can be computed by using the formula

andhencethetripletforA/2is

Page 118: The Power of Vedic Maths with Trigonometry

Now,wecanreadoffthevalueas

tanA/2=1/3,

Exercise-39

*

Page 119: The Power of Vedic Maths with Trigonometry

AUXILLIARYFRACTIONSWehave seen elegant techniques provided byVedicmaths for division of

any number by any divisor. Themethodsmake the process easy and fast andcoupledwith the techniquesofmishrank(Chapter13), the increase inspeed isamazing.

Wewillnowseeadditional techniqueswhichcan speedup thedivisionoffractionalnumberswhere:

thedividendislessthanthedivisorandthedivisorissmalle.g.having2or3digitsandthelastdigitofthedivisorendswith1,6,7,8and9E.g.ofsuchdivisorsare19,29,27,59,41,67,121etc.

Otherdivisorsendingin2,3,4,5and7canbeconvertedtosuchdivisorsbymultiplyingbyasuitablenumber.

Wewillseeexamplesofdivisorsendingineachofthedigitsfrom1to9togetagoodinsightintotheentireprocess.

I)Divisorsendingwith‘9’

Letusstartwiththecasewherethedivisorendswith9.

E.g.19,29,39,89etc.

GeneralSteps

Page 120: The Power of Vedic Maths with Trigonometry

Add1tothedenominatorandusethatasthedivisor

Remove the zero from the divisor and place a decimal point in thenumeratorattheappropriateposition

Carryoutastep-by-stepdivisionbyusingthenewdividend

Everydivisionshouldreturnaquotientandaremainderandshouldnotbeadecimaldivision

Everyquotientdigitwillbeusedwithoutanychange tocompute thenextnumber to be taken as the dividend. In all other cases, the quotient digitwouldbealteredbyapre-definedmethodwhichwillbeexplainedineachcase.

Example1:

Letusnowseethedetailsfor5/29

Steps

Add1tothedivisortoget30

Themodifieddivisionisnow5/30

Remove thezero from thedenominatorbyplacingadecimalpoint in thenumeratorgivingthemodifieddivisionas0.5/3

Wewillnotwritethefinalansweras0.16666but

Wewillcarryoutastep-by-stepdivisionexplainedbelow

Stepsforstep-by-stepdivision

Divide5by3,togetaquotient(q)=1andremainder(r)=2

Writedownthequotientintheanswerlineandtheremainderjustbelowittoitsleftasshown

Page 121: The Power of Vedic Maths with Trigonometry

Now,thenextnumberfordivisionis21whichondivisionby3givesq=7

andr=0.Theresultnowlooksas

Repeatthedivisionateachdigittogetthefinalanswertoanydesiredlevelofaccuracy!!Thenextfewdigitsareshownbelow.

On dividing 7 by 3, we get q = 2 and r = 1. The result now looks as

On dividing 12 by 3, we get q = 4 and r = 0. The result now looks as

Thefinalresultupto8digitsofaccuracyis

andtheresultof5/29=0.17241379.

Example2:

Similarly,88/89willbecomputedas

Example3:Similarly,41/119willbecomputedas

So,41/119=0.34453781

Notes:

For all numbers endingwith 3, we can convert them to numbers endingwith9bymultiplyingby3.

E.g.ifthedivisoris13,wecanconvertitto39bymultiplyingby3.

Page 122: The Power of Vedic Maths with Trigonometry

Hence,3/13=9/395/23=15/69.

Similary,fornumbersendingwith7,wecanmultiplyby7togetanumberendingwith9.

E.g.ifthedivisoris17,wecanconvertitto119bymultiplyingby7.Hence,5/7=35/49,4/17=28/1195/27=35/189.

40.Examplesforauxiliaryfractions-divisorendingwith9

II.Divisorsendingwith‘1’

Now, let us consider the fractions where the divisors are numbers endingwith1.

E.g.21,31,51,71etc.

GeneralSteps

Page 123: The Power of Vedic Maths with Trigonometry

Subtract1fromthenumerator

Subtract1fromthedenominatorandusethatasthedivisor

Remove the zero from the divisor and place a decimal point in thenumeratorattheappropriateposition

Carryoutastep-by-stepdivisionbyusingthenewdivisor

Everydivisionshouldreturnaquotientandaremainderandshouldnotbeadecimaldivision

Subtractthequotientfrom9ateachsteptoformthenextdividend

Example1:

Letusnowseethedetailsfor4/21

Steps

Subtract1fromthenumeratortoget3

Subtract1fromthedivisortoget20

Themodifieddivisionnowis3/20

Remove thezero from thedenominatorbyplacingadecimalpoint in thenumerator

Themodifieddivisionis0.3/2

Wewillnotwritethefinalansweras0.15but

Wewillcarryoutastep-by-stepdivisionasexplainedbelow

Stepsforstep-by-stepdivision

Divide3by2,togetaquotient(q)=1andremainder(r)=1

Page 124: The Power of Vedic Maths with Trigonometry

Writedownthequotientintheanswerlineandtheremainderjustbelowit

toit’sleftasshown

Subtractthequotient(1)from9andwriteitdown

Now,thenextnumberfordivisionis18andnot11.

Ondividing18by2,weget theq=9andr=0.Theresultnowlooksas

Subtractthequotient(9)from9andwriteitdown

Now,thenextnumberfordivisionis0andnot9.

Repeatthedivisionasexplainedbefore.

On dividing 0 by 2, we get q = 0 and r = 0. The result now looks as

The final result upto 8 digits of accuracy is

andtheresultof4/21=0.19047619

Example2

Letusnowseethedetailsfor7/111

Page 125: The Power of Vedic Maths with Trigonometry

Since the pattern is repeating, we can write down the answer as 7/111 =0.063063063

Notes:

For all numbers endingwith 3, we can convert them to numbers endingwith1bymultiplyingby7.

E.g.ifthedivisoris13,wecanconvertitto91bymultiplyingby7.

Hence,3/13=21/915/23=35/161

Similary,fornumbersendingwith7,wecanmultiplyby3togetanumberendingwith1.

E.g.ifthedivisoris17,wecanconvertitto51bymultiplyingby3.

Hence,5/7=15/214/17=12/515/27=15/81

Once themethods are clear for divisors endingwith 9 andwith 1,we canmoveovertootherdivisorsendingwith8,7and6.

41.Examplesforauxilliaryfractions

Page 126: The Power of Vedic Maths with Trigonometry

III)Divisorsendingwith‘8’

Letusconsidercaseswherethedivisorendswith8.

E.g.18,28,48,88etc.

GeneralSteps

Add2tothedenominatorandusethatasthedivisor

Remove the zero from the divisor and place a decimal point in thenumeratorattheappropriateposition

Carryoutastep-by-stepdivisionasexplainedbefore

Everydivisionshouldreturnaquotientandaremainderandshouldnotbecarriedoutasadecimaldivision

The quotient and the remainder is taken as the next base dividend asexplainedabove

Page 127: The Power of Vedic Maths with Trigonometry

Sincethelastdigitofthedivisoris8whichhasadifferenceof1from9,wemultiply the quotient by 1 and add to the base dividend at each stage tocomputethegrossdividend.

Example1:

Letusnowseethedetailsfor5/28

Steps

Add2tothedivisortoget30

Themodifieddivisionisnow5/30

Remove thezero from thedenominatorbyplacingadecimalpoint in thenumeratorgivingthemodifieddivisionas0.5/3

Wewillnotwritethefinalansweras0.16666but

Wewillcarryoutastep-by-stepdivisionasexplainedbelow

Stepsforstep-by-stepdivision

Divide5by3,togetaquotient(q)=1andremainder(r)=2

Writedownthequotientintheanswerlineandtheremainderjustbelowittoitsleftasshown

Now,thebasedividendis21

Addthequotientdigit(1)totheinitialdividendtoget22.

Thenextnumberfordivisionis22whichondivisionby3givesq=7andr

=1.Theresultnowlooksas

Now,thebasedividendis17

Page 128: The Power of Vedic Maths with Trigonometry

Addthequotientdigit(7)tothebasedividendtoget24

Thenextnumberfordivisionis24whichondivisionby3givesq=8andr

=0.Theresultnowlooksas

Repeatthedivisiontogetthefinalanswerasshownbelow.

Thefinalresultupto5digitsofaccuracyis

andtheresultof5/28=0.17856.

42.Examplesforauxilliaryfractions-divisorsendingwith8

IV)Divisorsendingwith‘7’

Letusconsidercaseswherethedivisorendswith7.

E.g.17,27,37,57etc.

GeneralSteps

Page 129: The Power of Vedic Maths with Trigonometry

Add3tothedenominatorandusethatasthedivisor

Remove the zero from the divisor and place a decimal point in thenumeratorattheappropriateposition

Carryoutastep-by-stepdivisionasexplainedbefore

Everydivisionshouldreturnaquotientandaremainderandshouldnotbeadecimaldivision

The quotient and the remainder is taken as the next base dividend asexplainedbefore

Sincethelastdigitofthedivisoris7whichhasadifferenceof2from9,wemultiply the quotient by 2 and add to the base dividend at each stage tocomputethenextgrossdividend.

Example1:

Letusnowseethedetailsfor5/27

Steps

Add3tothedivisortoget30

Themodifieddivisionisnow5/30

Remove thezero from thedenominatorbyplacingadecimalpoint in thenumeratorgivingthemodifieddivisionas0.5/3

Wewillnotwritethefinalansweras0.16666but

Wewillcarryoutastep-by-stepdivisionexplainedbelow

Stepsforstep-by-stepdivision

Divide5by3,togetaquotient(q)=1andremainder(r)=2

Page 130: The Power of Vedic Maths with Trigonometry

Writedownthequotientintheanswerlineandtheremainderjustbelowit

toitsleftasshown

Now,theinitialbasedividendis21

Multiplythequotientdigit(1)by2andaddtothebasedividend21toget23

Thenextnumberfordivisionis23whichondivisionby3givesq=7andr

=2.Theresultnowlooksas

Now,thebasedividendis27

Multiplythequotientdigit(7)by2toget14andaddittothebasedividend(27)toget41

Thenextnumberfordivisionis41whichondivisionby3givesq=13and

r=2.Theresultnowlooksas

Atthispoint,notethatthequotientdigithasbecomea2-digitnumberviz.13. Like before, it ismultiplied by 2 to get 26which is added as shown

below:

Theremainder‘2’isaddedtothetensdigitof13and26.

Now,wedivide59by3 toget thequotientas19andtheremainderas2.

Theworkingappearsasshownbelow:

19ismultipliedby2toget38,whichisaddedasshownbelow:

Now,wedivide77by3 toget thequotientas25andtheremainderas2.

Theworkingappearsasshownbelow:

Page 131: The Power of Vedic Maths with Trigonometry

25ismultipliedby2toget50,whichisaddedasshownbelow:

Ondividing95by3wegetthequotientas31andtheremainderas2.The

workingappearsasshownbelow:

Wewillnowseehowtobuildthefinalresultbyretainingasingledigitateachlocation.Theanswerconsistsofthefollowingnumbers:0.17(13)(19)(25)(31)

Startfromtheright,retain1,carry3totheleft toget0. 1 7 (13) (19)(28)1

Retain8from28,carry2tothelefttoget0.17(13)(21)81

Repeattogetthefinalresultas0.17(15)1810.185181

Thefinalresultwith6digitsofaccuracyis5/27=0.185181.

43.Examplesforauxiliaryfractions

Page 132: The Power of Vedic Maths with Trigonometry

V)Numbersendingwith‘6’

Letusconsidercaseswherethedivisorendswith6.

E.g.26,36,56,86etc.

GeneralSteps

Add4tothedenominatorandusethatasthedivisor

Remove the zero from the divisor and place a decimal point in thenumeratorattheappropriateposition

Carryoutastep-by-stepdivisionasexplainedbefore

Everydivisionshouldreturnaquotientandaremainderandshouldnotbeadecimaldivision

The quotient and the remainder is taken as the next base dividend as

Page 133: The Power of Vedic Maths with Trigonometry

explainedbefore

Sincethelastdigitofthedivisoris6whichhasadifferenceof3from9,ateachstage,wemultiply thequotientby3andadd to thebasedividend tocomputethenextgrossdividend.

Example1:

Letusnowseethedetailsfor6/76

Steps

Add4tothedivisortoget80

Themodifieddivisionisnow6/80

Remove thezero from thedenominatorbyplacingadecimalpoint in thenumeratorgivingthemodifieddivisionas0.6/8

Wewillnotwritethefinalansweras0.075but

Wewillnowcarryoutastep-by-stepdivisionasexplainedbelow

Stepsforstep-by-stepdivision

Divide6by8,togetaquotient(q)=0andremainder(r)=6

Writedownthequotientintheanswerlineandtheremainderjustbelowit

toit’sleftasshown

Now,theinitialbasedividendis60

Multiplythequotientdigit(0)by3andaddtothebasedividend60toget60.This is a redundant stephere since thequotientdigit is zero,but it isshownforuniformity.

Thenextnumberfordivisionis60whichondivisionby8givesq=7andr

Page 134: The Power of Vedic Maths with Trigonometry

=4.Theresultnowlooksas

Now,thebasedividendis47

Multiplythequotientdigit(7)by3toget21andaddittothebasedividend(47)toget68

Thenextnumberfordivisionis68whichondivisionby8givesq=8andr

=4.Theresultnowlooksas

Repeatthedivisiontogetthefinalanswerasshownbelow.

The final result upto 8 digits of accuracy is

44.Examplesforauxiliaryfractionsdivisorsendingwith6

Page 135: The Power of Vedic Maths with Trigonometry

VI.OtherDivisorsInthesectionsgivenabove,wehaveseendivisorsendingwith1,6,7,8and

9.Whatdowedowithdivisorsendingwith2,3,4and5?Wecanconvertsuchdivisors,byasuitablemultiplication,todivisorsforwhichwehaveseenVedictechniques.Usethetablegivenbelowforguidance.

We can see from this table that if a proper digit is used to multiply thenumeratorandthedenominator,wecanobtainafractionwhereinwecanapplyoneoftheknowntechniquesandderivetheanswerquickly.Sometimes,wemayhavetocarryoutthemultiplicationtwicetogetitinastandardform.

45.Examplesforauxiliaryfractionsmiscellaneousexercises

Page 136: The Power of Vedic Maths with Trigonometry
Page 137: The Power of Vedic Maths with Trigonometry

MISHRANK(VINCULUM)

Thetechniqueofmishrankisverypowerfulandprovidesuswithamethodtoconvertdigitsinanumberwhicharegreaterthan5,todigitslessthan5.Afterthe conversion, all arithmetic operations are carried out using the convertednumber,whichmaketheoperationverysimpleandfast.

It is not necessary to convert all the digits but a judicious conversion ofcertain digits (above 5) can decrease the computation effort considerably.Thereaderhastobepatientwhilelearningthistotallynewandfascinatingtechniqueandgainexpertiseinordertousethismethodeffectivelytogreatadvantage.

We will begin by seeing the method to convert any given number to itsmishrankequivalentandbacktoitsoriginalvalue.

a)ConversiontoMishrank

Mishrankdigitsarecomputedforthosedigitswhicharegreaterthan5.

Thestepsinvolvedare:

Subtractthegivendigitfrom10andwriteitwithabaraboveit

Addonetothedigitontheleft

Examples

Page 138: The Power of Vedic Maths with Trigonometry

Themishrankdigithasanegativevalueinthenumber.

Thus,inthefirstexampleabove,

15 isequivalentto150-2i.e.148

Similarly, 2 3 is equivalent to 2305 - 20 = 2285while 1 isequivalentto10000-1112=8888

b)ConversionfromMishrank

Onlymishrankdigits,whicharemarkedwithabar,arereconvertedbacktotheiroriginalvalues,asfollows:

Subtract 1 from the non-mishrank digit to the immediate left of themishrankdigitandwriteitdown.Subtractthemishrankdigitfrom10andwriteitdown.Repeatforallmishrankdigits.

Page 139: The Power of Vedic Maths with Trigonometry

Inexample4,wehaveaseriesofmishrankdigitsandwecanusethesutra‘Allfrom9andlastfrom10’toconverttotheoriginalnumber.

Mishrank can be used very effectively in operations like addition,subtraction,multiplication,division,findingsquaresandcubesofnumbers.Wewilllookatsomeexamplestoseeitstremendouspower.

c)Applicationinmultipleadditionandsubtraction

Letusconsiderthefollowingproblem:

232+4151–2889+1371

This could either be solvedby first adding232 and4151, then subtracting2889fromthesumandthenadding1371totheresult.

Or,wecouldadd232,4151and1371andthensubtract2889fromthesum.

Instead,wecouldspeeduptheoperationbyconvertingthesubtractiontoanadditionoperationasshownbelow:Letuswrite–2889as+

Here,eachdigitiswrittenasanegativedigit.

Now,theproblemcanberewrittenas

232+4151+ +1371

orwrittenvertically,itappearsas

Page 140: The Power of Vedic Maths with Trigonometry

Sincethisisasingleoperation,itisfasterandcauseslessstraintothemind.Themishrankdigitsintheresultcanbeconvertedtonormaldigitstoobtainthefinalansweras2865.

d)Applicationinsubtraction

Example1:Considerthesubtractionof6869from8988

Thesubtractionoperationwouldbeslowandmentallytiring,withacarryatalmost every step. The operation can be simplified and speeded up by usingeitherofthefollowingtechniques:

Convert the subtraction toadditionofanumberas shown in thepreviousexample.

Carryoutadigit-by-digitsubtraction,withoutanycarry.

Let’sseethefirsttechnique.

6869iswrittenwithabarontopofeachdigittosignifythatitisanegativedigit.

whichisequalto2119.Here,intheunit’splace,8+ gives .

Let’sseethesecondtechnique.

Thesameresultcanbeobtained ifwesimplysubtracteachdigitwithoutacarry.

Let’sseetheoperation:

Page 141: The Power of Vedic Maths with Trigonometry

Here, in the unit’s place, 8 – 9 gives ,which gives 2119 on conversionfrommishrank.

e)Applicationinmultiplication

Example1:Considerthemultiplicationof69with48.

The operation can be carried out by the cross-multiplication techniqueexplainedinChapter5.Thecomputationcanbesimplifiedfurtherifweconvertthenon-mishrankdigitstomishrankdigits.Wewillseethemethodbelow.

69=7

48=5

Now,wewillcarryoutacrossmultiplicationofthesetwonumbers.

Example2:Considerthemultiplicationof882by297

Page 142: The Power of Vedic Maths with Trigonometry

Thecorrespondingmishrankdigitsare

882=9 2(Weconvertthe8intheten’splaceanddonotconvertthe8inthehundred’splace)297=30

Now,wewillcarryoutacrossmultiplicationofthesetwonumbers.

f)Applicationindivision

ExampleI:Considerthedivisionof25382by77

77canbewrittenas8 ,whereweconvert7inunit’splacetoitsmishrankdigit.

Divisioniscarriedoutbythesametechniqueasexplainedbefore.Itwillbeseen that there is no need to make any adjustment at any column and theprocedurecanprogressveryfast.

Thefinalresultis329withremainder49,orindecimalformitis329.6363.

g)Applicationinsquares

Inordertogetthesquareofanynumber,weneedtocomputeduplexvaluesof a lot of numbers. If someof thedigits are above5, the computationof theduplex becomes tedious. Consider the square of 897. The computation of theduplexisquitetime-consumingsincethedigitsarebig.Wewillseethemagicofthemishrankdigitsnow.

Page 143: The Power of Vedic Maths with Trigonometry

Botharevalidmishrankequivalentnumbers.

Wewillnowcomparethecomputationofthesquareofthegivennumberforallthesenumbers.

Let’slookatthenextconversion,i.e.1 0

asbefore.

Wecanseethatthecomputationsbecomeincreasinglysimpler.

h)Applicationincubes

Considerthecubeof89where893=704969

The computation without using the mishrank would appear as follows :

Thecomputationisverytediousandcumbersome.

Let’sconverttomishrankandseewhatistheresult.

Thisiseasierandfaster.

In each of the operations it can be seen that the operation on thecorrespondingmishranknumberisbotheasyandfast.Thereaderhastopracticetoconvertnumberstotheirmishrankequivalentsandbackagain, tofullyavailofthepowerofthistechnique.

Page 144: The Power of Vedic Maths with Trigonometry

46.Examplesinuseofmishrank

Page 145: The Power of Vedic Maths with Trigonometry

SIMULTANEOUSEQUATIONSEveryoneisfamiliarwithsimultaneousequationswhereinwehavetosolve

twoequationsintwounknownssayxandy.

The normal method consists of multiplying each equation by a suitablenumber so that the coefficients of either x or y become same in both theequations,which can then be subtracted out of the equations, leaving a singleequationinoneunknown.

Vedicmathsprovidesasimplemethodtosolvetheequationswithoutgoingthroughthislengthyprocessandgivesthevaluesofxandyinasingleline.Thiswouldbesimilarto‘Cramer’sRule’butiseasiertorememberanduse.

Wewillconsiderpairsofequationseachwithtwounknownssayxandy.

Example4x+7y=5…(1)3x+9y=10…(2)

Thenormalmethodtosolvesuchsimultaneousequationsistoeliminateanyoneunknownbysuitablemultiplicationofeachequationbyaconstantandthensolvingfortheotherunknownvariable.Intheaboveexample,multiplyequation(1)by3andequation(2)by4andsubtract.

Whichgivesy=5/3.

Onsubstitutingthisvalueofyinequation(1),weget4x+7*5/3=5

Page 146: The Power of Vedic Maths with Trigonometry

Giving4x=-20/3∴x=-5/3

WewillnowseethetechniquesprovidedbyVedicmaths.

Equationsin2unknownscanbedividedinto3categoriesandwewillseethetechniquesforeachofthem.

Whentheratioofthecoefficientsofeitherxoryisthesameasthatoftheconstants

Whentheratioofthecoefficientsofxandyareinterchanged

Allothertypesnotfallinginthesetwocategories

Category1

Considertheexample:

3x+4y=10

5x+8y=20

Inthisexample,theratioofthecoefficientsofyis4/8=1/2.Theratiooftheconstantsis10/20=1/2.

Since both are equal, the value of x in such a case is equal to 0. If thecoefficientsofxwereinthesameratio,valueofywouldbezero.

Thevalueofycanbeobtainedfromthefirstequationbysubstitutingx=0,givingtheequationas4y=10

ory=5/2

Category2

Now,letusconsiderthemethodtosolvesimultaneousequationswherethecoefficients of x and y are interchanged. Let us consider the example givenbelow.

45x–23y=113…(1)

Page 147: The Power of Vedic Maths with Trigonometry

23x–45y=91…(2)

Wewilladdandthensubtractthegivenequationstogetasimplifiedsetasshownbelow68x–68y=204…(3)

22x+22y=22…(4)

Dividingeq(3)by68andeq(4)by22,wegetx-y=3…(5)

x+y=1…(6)

Thisisatrivialset,whichgivesthevaluesofx=2andy=-1.

Category3

Letusconsiderthemethodtosolveanygeneralsimultaneousequation.Letusconsidertheexamplesolvedatthebeginningofthischapter.

4x+7y=5…(1)

3x+9y=10…(2)

Letusrepresentthisasasetofcoefficientsasfollowsabc

pqr

Wherea=4,b=7,c=5,p=3,q=9,r=10

Westartwiththecoefficientatthecentreintheupperrowviz‘b’andgetthe

valueof‘x’byusingtheformula

Notice the cross multiplication which is used extensively here in thisformula.

b*randc*qarecross-multiplications,fromthecentretotheright.

Similarly,b*p anda*q are crossmultiplications, from the centre to theleft.

Togetthevalueofy

Page 148: The Power of Vedic Maths with Trigonometry

Here,again,c*panda*rarecross-multiplicationswhilethedenominatoristhesameasbefore.

47.Exercisesforpractice

Page 149: The Power of Vedic Maths with Trigonometry

OSCULATORSThe concept of ‘Osculator’ is useful to check the divisibility of a given

numberbydivisorsendingwith9or1oramultiplethereof.

E.g.Checkthedivisibilityof52813by59orof32521by31orof35213by13or17.

An osculator is a number defined for any number ending in 9 or 1 and isobtainedfromthenumberbyasimplemechanismdescribedinthischapter.

Theuseofosculatorswouldbeseverelylimitedifonlythesetwocategoriesof numbers viz. ending with 9 or 1 were considered. Interestingly, numbersending with 3 and 7 can also converted to numbers ending with 1 or 9 by asuitablemultiplication.The same techniques canbeused for all suchnumberstoo.

Osculators are categorized into two main types viz. positive and negativedependingonwhetherthenumberendswith9orwith1.

PositiveOsculators

Theosculatorofanumberendingin9isconsideredpositive.

Itisobtainedby

Dropping9

Adding1totheremainingnumber

Page 150: The Power of Vedic Maths with Trigonometry

Theosculatorfor19is2,for29itis3andfor59,itis6.

Ifthegivennumberdoesnotendin9butin1or3or7,wecanmultiplyitby9, 3 or 7 respectively, to convert it to a number which ends in 9 and thencomputetheosculatorbydroppingthe9.

Examples are given below of how to compute the osculators for variousnumbers.

Oncetheosculatorofanumberhasbeencomputed,itisasimplemattertocheckthedivisibilityofanygivennumberbyit.

Example:Letuscheckthedivisibilityof228by19.

Steps

Computetheosculatorofthedivisor(19)whichis2.

Digit1

Startwiththecomputationfromtherighthanddigit(8)ofthedividend

Multiplyitbytheosculatortoget16(8×2)

Digit2

Addittothedigittoitslefttoget18(16+2)

Multiplyitbytheosculatortoget36(18×2)

Subtractmaximumpossiblemultiplesofthedivisorfromit.Hence,19canbesubtractedfromittoget17.

Digit3

Addittothedigittoitslefttoget19(17+2)

Since19isdivisibleby19,thegivennumberisalsodivisibleby19.

Page 151: The Power of Vedic Maths with Trigonometry

Computationofpositiveosculatorsfordifferentnumbers

48.Examplesforcheckingthedivisibilityofthefollowingby19

49.Examplesforcheckingthedivisibilityofthefollowingby29

Page 152: The Power of Vedic Maths with Trigonometry

50.Examplesforcheckingthedivisibilityofthefollowingby13

Page 153: The Power of Vedic Maths with Trigonometry

51.Examplesforcheckingdivisibility–miscellaneousexamples

Page 154: The Power of Vedic Maths with Trigonometry

NegativeOsculators

Let us now consider negative osculators, which are defined for numbersendingwith1.

Togetthenegativeosculatorsofanumberendingin1

Drop1

Theremainingnumberistheosculator

Theosculatorfor11is1,for21itis2andfor61,itis6.

Page 155: The Power of Vedic Maths with Trigonometry

Example:Letusworkoutthedivisibilityof2793by21.

Steps

Startwiththeosculatorofthedivisor(21)whichis2

Markallalternatedigitsfromthesecondlastdigitasnegativebyplacingabarontop

Digit1

Startwiththecomputationfromtherighthanddigit(3)ofthedividend

Multiplyitbytheosculatortoget6(3×2)

Digit2

Addittothedigittoitslefttoget3(6+9)Multiplyitbytheosculatortoget6(3×2)Subtract maximum possible multiples of the divisor from it. We cannotsubtractanythinghere.

Digit3

Addittothepreviousdigittoget1(7+6)Multiplyitbytheosculatortoget2(1×2)

Page 156: The Power of Vedic Maths with Trigonometry

Digit4

Addittothepreviousdigittoget0(2+2)Multiplyitbytheosculatortoget0(0×2)

Since0isdivisibleby21,thegivennumberisalsodivisibleby21.

52.Examplesforcheckingthedivisibilityby21

53.Examplesforcheckingthedivisibilityby31

Page 157: The Power of Vedic Maths with Trigonometry

54.Miscellaneousexamples

Page 158: The Power of Vedic Maths with Trigonometry
Page 159: The Power of Vedic Maths with Trigonometry

APPLICATIONSOFVEDICMATHS

Wenowcometothemostinterestingchapterofthisbook,inwhichwewilllearn how to apply the techniques learnt so far.After reading and solving theproblems in this chapter, the reader will realize the immense benefit that isderived by using the simple and elegantmethods ofVedicmaths in solving avarietyofproblems.

Ihavedividedthischapterinto3parts.Inthefirstpart,Ihavelistedtwentyquestionsselectedfromvariouscompetitiveexams.Thereaderisencouragedtosolve these problems independently and track the time taken for solving.Thispart is followedby thesolutions to theproblems,using techniquesfromVedicmaths,includingareferencetotherelevantchapter.Thesolutionsarebriefbutsufficient to follow and the reader will easily grasp the application of thetechniqueslearntsofar.Theeaseandtheefficiencywouldbeappreciated.Inthethird part, I have included somemore problems for practicewhich the readershouldsolveandgainexpertiseinthesubject.

SampleProblems

1)Whichisthegreatest6-digitnumberwhichisaperfectsquare?

2) If the length and the breadth of a square is increased and reduced by 5%respectively,whatisthepercentageincreaseordecreaseinthearea?

3)Compute896×896–204×204

4) If all the digits in numbers 1 to 24 are written down, would the number soformedbedivisibleby9?

Page 160: The Power of Vedic Maths with Trigonometry

5)Whatshouldbethevalueof*inthefollowingnumbersothatitisdivisibleby11?

8287*845*381

6)Whichofthefollowingnumbersisdivisibleby99?135792,114345,3572404,913464

7)Compute781×819.

8)Agardenerplanted103041treesinsuchawaythatthenumberofrowswereasmanyastreesinarow.Findthenumberofrows.

9)Findthevalueof5112.

10)Packetsofchalkarekeptinaboxintheformofacube.Ifthetotalnumberofpacketsis2197,findthenumberofrowsofpacketsineachlayer.

11)Givena+b=10,ab=1.Computethevalueofa4+b4.

12) The population in a village increases at a rate of 5% every year. If thepopulationinagivenyearis80000,whatwillbethepopulationafter3years.

13)Whatisthelengthofthegreatestrodwhichcanfitintoaroomoflength=24mt,breadth=8mtandheight=6mt.

14)Thedifferenceonincreasinganumberby8%anddecreasingitby3%is407.Whatistheoriginalnumber?

15)Rs.500growstoRs.583.20in2yearscompoundedannually.Whatistherateofinterest?

16)Anumber19107isdividedinto2partsintheratio2:7.Findthetwonumbers.

17)AsumofRs.21436isdividedamong92boys.Howmuchmoneywouldeachboyget?

Page 161: The Power of Vedic Maths with Trigonometry

18)Evaluate13992.

19)Evaluate397*397+397104+104104+397*104

20)Ifthesurfaceareaofthesideofacubeis225cm2.Whatisthevolumeofthecube?

SolutionsusingVedicmaths

1)Whichisthegreatest6-digitnumberwhichisaperfectsquare?

Solution:A6-digitnumberwillhaveasquarerootofexactly3digits.

Thelargest3-digitnumberis999.Hence,thesquareof999istherequirednumber.

999×999=998001(ReferChapter1)2)Ifthelengthandthebreadthofa square is increased and reduced by 5% respectively, what is thepercentageincreaseordecreaseinthearea?

Solution:Letthelengthandbreadthbe‘l’and‘b’respectively.Thenewlengthwillbe1.05landthenewbreadthwillbe0.95b.Hence,thenewareawillbe1.05l×0.95b.Bynikhilam,weget1.05×0.95=100/-25=0.9975

Thenewareais0.9975lbandhencetheareadecreasesby(1.0000-0.9975)whichis0.25%.Or,thedecreasecanalsobereadoffdirectlyastherightsideoftheproductviz100/-25.

3)Compute896×896-204×204

Solution:Theproblembelongstothetypea2-b2wherethefactorsare(a-b)and(a+b).Hencethesolutionis(896-204)(896+204)=692*1100

=761200(ReferChapter3)4)Ifallthedigitsinnumbers1to24arewrittendown,wouldthenumbersoformedbedivisibleby9?

Solution:Thenumberwouldbe

123456789101112131415161718192021222324.

Page 162: The Power of Vedic Maths with Trigonometry

123456789101112131415161718192021222324.Thesumofthefirst‘n’naturalnumbersisn(n+1)/2.

Hence,thesumwouldbe24*25/2=300andtheremainderis3.Thereforethenumberisnotdivisibleby9.(ReferChapter2)5)Whatshouldbethevalueof*inthefollowingnumbersothatitisdivisibleby11?

8287*845*381

Solution:Forthefirstnumber,thesumsofthealternatesetsare22and(20+).Ifthevalueofthe''is2,thedifferencewillbezeroandthenumberwillbedivisibleby11.Hence,'*'=2.

Forthesecondnumber,thesumsare4and(8+'*').Ifthevalueofthe''is7,thedifferencewillbe11andthenumberwillbedivisibleby11.Hence,''=7.

6)Whichofthefollowingnumbersisdivisibleby99?

135792,114345,3572404,913464

Solution:Thenumbershouldbedivisiblebothby9and11.

Navaseshofeachofthenumbersis0,0,7,0

So,3rdnumberisrejected.

Ofthebalance,only2ndnumberisdivisibleby11.(Referchapter3).

Hence,114345isdivisibleby99.

7)Compute781×819.

Solution:Usethebaseas800inNikhilamandwriteas781–19819+19

Hence,theproductwillbe800/-381.

Multiplytheleftpartby8toconverttotheprimarybaseof100,toget6400/–381

Page 163: The Power of Vedic Maths with Trigonometry

381

So,borrow4fromlefttogetthefinalansweras6396/19.

8)A gardenerplanted 103041 trees in such away that the number of rowswereasmanyastreesinarow.Findthenumberofrows.

Solution:Computethesquarerootof103041

Hence,thenumberoftreesineachrowis321.

9)Findthevalueof5112.

Solution:Mentally,using500asthebase,Weget5112=522/121.

Now,converttothebaseofthousandbydividingtheleftpartoftheanswerby2.

So,thefinalansweris261121.

10) Packets of chalk are kept in a box in the form of a cube. If the totalnumber of packets is 2197, find the number of rows of packets in eachlayer.

Solution:RefertoChapter10,takethecuberootof2197whichis13.Hence,eachrowcontains13packets.

11)Givena+b=10,ab=1.Computethevalueofa4+b4.

Solution:Sincea+b=10andab=1,

(a+b)2 = a2+b2+2ab

a2+b2 = 100-2=98

=

Page 164: The Power of Vedic Maths with Trigonometry

(a2+b2)2=a4+b4+2a2b2

a4+b4 = (a2+b2)2-2a2b2

= 982-2

= 9604-2=9602.(UseNikhilamtoget982orally)

12)The population in a village increases at a rate of 5% every year. If thepopulation in a given year is 80000, what will be the population after 3years.

Solution:Finalpopulation = 80000(1+5/100)3

= 80000(21/20)3

= 10*213

Therefore,thepopulationwillbe92610.

13)Whatisthelengthofthegreatestrodwhichcanfitintoaroomoflength=24mt,breadth=8mtandheight=6mt.

Solution:LetthelengthofthegreatestrodbeL.

Then,L2 = 242+82+62

= 576+64+36=676

Page 165: The Power of Vedic Maths with Trigonometry

Therefore,L = 26mt.

UsetechniquesinChapters8and9togetthesquareof24andthesquarerootof676.

14)Thedifferenceonincreasinganumberby8%anddecreasingitby3%is407.Whatistheoriginalnumber?

Solution:LetthenumberbeN.

Now,(1.08N-0.97N)=407

Hence,0.11N=407(407isdivisibleby11)

GivingN=3700

Therefore,theoriginalnumberis3700.

15)Rs.500growstoRs.583.20in2yearscompoundedannually.Whatistherateofinterest?

Solution:583.20=500(1+r)2

116.64=(1+r)2

ByNikhilam,weknowthat116.64=10.82

Hence,requiredrateofinterestis8%.

16)Anumber 19107 is divided into 2 parts in the ratio 2 : 7. Find the twonumbers.

Solution:Thefirstnumberwouldbe(2/9)*19107.

Thisisadivisionby9,refertoChapter2,wegettheansweras4246.

Thesecondnumberis19107-4246,usemishranktogetthesecondas14861.

Page 166: The Power of Vedic Maths with Trigonometry

17)A sumofRs 21436 is divided among 92boys.Howmuchmoneywouldeachboyget?

Solution:Thisisadivisionproblem,refertoChapter6.

18)Evaluate13992.

Solution:Usemishranktoconvertthegivennumberto140

Now,140 2=1/9/16/ / /0/1

=1957201

19)Evaluate397*397+397104+104104+397*104

Solution:Theexpressionis

(397+104)2 = 5012

= 502/001(byNikhilam)

= 251/001

20)Ifthesurfaceareaofthesideofacubeis225cm2,whatisthevolumeofthecube?

Solution:Theareaofanyonesideis225.

Therefore,eachsideis15cm.(Sincethenumberendswith25,squarerootendswith5,andtogetthefirstdigit,1×2=2)Thereforethevolumeis153whichis

Page 167: The Power of Vedic Maths with Trigonometry

3375cm3.

ProblemsforPractice

1)Ashopkeeperknows that13%orangeswithhimarebad.Hesells75%of thebalanceandhas261orangesleftwithhim.Howmanyorangesdidhestartwith?

2)Whatshouldbethevalueof*inthefollowingnumberssothattheyaredivisibleby9?

38*1451*603

3)Theareaofasquarefieldis180625mt2. If thecostoffencingit isRs10permetre,howmuchwoulditcosttofenceit?

4)Find thenumbernearest to99547which isdivisibleby687 :100166,99615,99579,98928

5) Inaparade,soldiersarearranged in rowsandcolumns insuchaway that thenumbersofrowsisthesameasthenumberofcolumns.Ifeachrowconsistsof333soldiers,howmanysoldiersarethereintheparade?

6)Onesideofa square is increasedby15%and theother isdecreasedby11%.Whatisthe%changeinthearea?

7)Findthesquarerootof

530.38090.7

8)If1000isinvestedinbankandearns5%interest,compoundedyearly,whatistheamountattheendofthreeyears?

9) The difference in compound interest compounded half-yearly and simpleinterestat10%onasumforayearisRs25.Whatisthesum?

Page 168: The Power of Vedic Maths with Trigonometry

10)Computethefollowing:1/35,3/14

11)‘A’sellsaradioto‘B’atagainof10%and‘B’sellsitto‘C’atagainof5%.If‘C’paysRs924forit,whatdiditcost‘A’?

12)Findthenearestnumberto77993whichisexactlydivisibleby718.

13)‘A’received15%higherthan‘B’and‘C’received15%higherthan‘A’.If‘A’received9462,whichofthefollowingdid‘B’and‘C’receive?

(8218,10032or8042,10881or1419,10881or8228,10881)

14)Findthegreatestandtheleast5digitnumberexactlydivisibleby654.

15)Anilwalks120metresnorth,70metreswest,175metressouthand22metreseast.Findhisdistancefromhisstartingpoint.

Answers

1)1200oranges

2)6,8

3)Side=425mt,cost=Rs.17000

4)99615

5)110889soldiers

6)Increaseof2.35%

7)Squarerootsare23.03,0.8366

8)Rs.1157.625

9)Rs.10000

10)0.0285714,0.2142857

11)CostisRs.800

Page 169: The Power of Vedic Maths with Trigonometry

12)78262

13)‘B’received8228,‘C’received10881

14)10464,99408

15)Anilis73metresaway.

Page 170: The Power of Vedic Maths with Trigonometry