The nanomechanics of Compositional Mapping by Amplitude Modulation AFM

download The nanomechanics of Compositional Mapping by Amplitude Modulation AFM

of 33

Transcript of The nanomechanics of Compositional Mapping by Amplitude Modulation AFM

  • 8/7/2019 The nanomechanics of Compositional Mapping by Amplitude Modulation AFM

    1/33

    Laboratorio de Fuerzas y TLaboratorio de Fuerzas y Tnelnel

    Instituto de Microelectrnica de Madrid

    Ricardo Garca

    Frontiers of SPM, 5 Oct. 2006

    Outline

    i). Forces and molecular resolution

    ii). The physics of phase Imaging:elastic vs. Inelastic processes

    iii). Identification of energy dissipation

    Quantitative information

    iv). Enhancing Force Sensitivity: Beyond1st mode Imaging

    v). Summary

    The nanomechanics ofCompositional Mapping byAmplitude Modulation AFM

  • 8/7/2019 The nanomechanics of Compositional Mapping by Amplitude Modulation AFM

    2/33

    Laboratorio de Fuerzas y TLaboratorio de Fuerzas y Tnelnel

    Instituto de Microelectrnica de Madrid

    10 nm

    a

    GroEL in liquid, T. Ando et al. PNAS 98, 12468 (2001)

    PM in liquid, D.J. Muller et al.Biophys. J. 77, 1150 (1999)

    50 nm

    IgG, SanPaulo, Garcia, Biophys.J. 78, 1599 (2000)

    8 nm

  • 8/7/2019 The nanomechanics of Compositional Mapping by Amplitude Modulation AFM

    3/33

    Laboratorio de Fuerzas y TLaboratorio de Fuerzas y Tnelnel

    Instituto de Microelectrnica de Madrid

    verified values

    Medium Force (pN) Forcesensitivity

    Resolution*

    (nm)

    Air IgG 300 0.1 3

    Liquid 1 PMcrystal

    100 0.05 1.1

    Liquid 2GroEL patches

    No available No available 2

    Process Force (pN) length scale

    DNA entropicelasticity

    0.01-10 0.8 L

    DNA intrinsicelasticity

    10-70 0.8-1 L

    Proteinunfolding

    15-50 3-5 nm

    Some forces in molecular biology

    Forces and Resolution in AM-AFM (biomolecules)

  • 8/7/2019 The nanomechanics of Compositional Mapping by Amplitude Modulation AFM

    4/33

  • 8/7/2019 The nanomechanics of Compositional Mapping by Amplitude Modulation AFM

    5/33

    /0

    SIMULATION

    R= 10 nm, A0=10 nm, zc=8 nm,

    E=1 GPa, k=40 N/m, f0=325kHz

    Free oscillating tip (10 nm ) Interacting tip (10 nm size )

    Mechanics of vibrating

    nanosystems:

    Coexistence of oscillationstates: Bi-stability

    AS Paulo, R Garca, PRB 66, 041406(R) (2002)

    Resonance Curves

  • 8/7/2019 The nanomechanics of Compositional Mapping by Amplitude Modulation AFM

    6/33

    0

    2

    4

    6

    8

    10

    -1.0

    -0.5

    0.0

    0.5

    1.0

    0 2 4 6 8 10 12

    0.0

    0.5

    1.0

    (a)

    High amplitude solution

    Low amplitude solutionAmplitude(nm

    )

    (b)

    (nN)

    (c)

    Contacttime

    Tip-surface separation (nm)

    Simulation data: R=20 nm

    f0=350 kHz, Q=400,

    H=6.4x10-20, E*=1.52 GPa

    0

    45

    90

    135

    180

    Phase(deg)

    H

    L

    6 9 12 15 18 21 24

    6

    9

    12

    15

    18

    Amplitude(nm)

    z piezo displacement (nm)

    40 nm

    H

    L

    Garcia, San Paulo, PRB 61, R13381 (2000);Garcia, Prez, Surf. Sci. Rep. 47, 197 (2002)

    simulationsExps.

    H and L states have

    different properties

  • 8/7/2019 The nanomechanics of Compositional Mapping by Amplitude Modulation AFM

    7/33

    Driving signal:F(t) = F0cos(wt)

    The dynamic response of the cantilever is modified by thetip-surface interactions

    Laboratorio de Fuerzas y TLaboratorio de Fuerzas y Tnelnel

    Instituto de Microelectrnica de Madrid

    Phase Imaging

  • 8/7/2019 The nanomechanics of Compositional Mapping by Amplitude Modulation AFM

    8/33

    Topography Phase Image

    Wood pulp fiber, D.A. Chernoff (1995)

    1 m

    c

    2 m2 m

    b

    S. Typhimurium cells, R. Acvi, Biophys. J. (2006)

  • 8/7/2019 The nanomechanics of Compositional Mapping by Amplitude Modulation AFM

    9/33

    10 nm

    a

    GroEL in liquid, T. Ando et al. PNAS 98, 12468 (2001)

  • 8/7/2019 The nanomechanics of Compositional Mapping by Amplitude Modulation AFM

    10/33

    Polymer morphology and structure as a

    function of temperature. Hydrogenated diblock

    copolymer (PEO-PB). Crystallisation of PEO

    blocks occurs individually for each sphere

    (light are crystalline, dark amorphous). Reiteret al., Phys. Rev. Lett. 87, 2261 (2001) Phase Image,

    size 1m2

    Topography Phase Image

    Polymers: Morphology and Structure

  • 8/7/2019 The nanomechanics of Compositional Mapping by Amplitude Modulation AFM

    11/33

    PHASECONTRAST

    ELASTICCONTRIBUTIONS

    INELASTICCONTRIBUTIONS

    TOPOGRAPHIC EFFECTS

    TAPPING NON CONTACTTRANSITIONS

    VISCOELASTICITY

    ADHESION HYSTERESIS

    CAPILLARY FORCES

    HIDROPHILIC/HIDROPHOBICINTERACTIONS

    YOUNG MODULUS(In presence of dissipative channels)

    Sources of Phase Imaging Contrast

  • 8/7/2019 The nanomechanics of Compositional Mapping by Amplitude Modulation AFM

    12/33

    +>>z0The virial theorem applied to the tip allows to deduce

    0

    2cos

    AAk

    zFQ

    c

    ts>