The M/EEG inverse problem

37
The M/EEG inverse problem Gareth R. Barnes

description

The M/EEG inverse problem. Gareth R. Barnes. Format. What is an inverse problem Prior knowledge- links to popular algorithms. Validation of prior knowledge/ Model evidence. Inverse problems aren’t difficult. The forward problem. Prediction. M/EEG sensors. - PowerPoint PPT Presentation

Transcript of The M/EEG inverse problem

Page 1: The M/EEG inverse problem

The M/EEG inverse problem

Gareth R. Barnes

Page 2: The M/EEG inverse problem

Format

• What is an inverse problem• Prior knowledge- links to popular algorithms.• Validation of prior knowledge/ Model

evidence

Page 3: The M/EEG inverse problem

Inverse problems aren’t difficult

Page 4: The M/EEG inverse problem

The forward problem

Lead fields (L)

Dipolar source

Model describesconductivity & geometry

Lead fields (determined by head model) describe the sensitivity of

an M/EEG sensor to a dipolar source at a particular location

Head Model

Prediction

Predicted

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

M/EEGsensors

Page 5: The M/EEG inverse problem

Inverse problem

Gen

erat

ed s

ourc

e ac

tivity

brain?

Gen

erat

ed s

ourc

e ac

tivity

Predicted

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08Measured

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Forwardproblem

Current densityEstimate

M/EEG sensors

J

Y LJ Prior info

Measurement (Y) Prediction ( )Y

Page 6: The M/EEG inverse problem

Inverse problem

Measurement (Y)

Gen

erat

ed s

ourc

e ac

tivity

brain?

Gen

erat

ed s

ourc

e ac

tivity

Predicted

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08Measured

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Forwardproblem

Current densityEstimate

Prediction ( )

M/EEG sensors J WY

J

Y

Y LJ

Prior info

Page 7: The M/EEG inverse problem

' ' 1( )W CL R LCL Sensor Noise(known)

Lead field(known)

sour

ces

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Gene

rated

sour

ce a

ctivit

y

sources

Source covariance matrix,One diagonal element per source

Inversion depends on choice of source covariance matrix (prior information)

Prior information

Page 8: The M/EEG inverse problem

Measured

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Predicted

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

5010

015

020

025

030

035

040

0-0

.2

-0.1

5

-0.1

-0.0

50

0.050.

1

0.15

estim

ated

resp

onse

- co

nditio

n 1

at -5

4, -2

7, 1

0 m

m

time

ms

PPM

at 1

88 m

s (1

00 p

erce

nt c

onfid

ence

)51

2 di

pole

sPe

rcen

t var

ianc

e ex

plai

ned

11.2

1 (1

0.26

)lo

g-ev

iden

ce =

53.

1

Gen

erat

ed s

ourc

e ac

tivity

Y (measured field)

Prior info (source covariance)

PREDICTED

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Inverse problem

Single dipole fit

J

Page 9: The M/EEG inverse problem

Measured

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Gen

erat

ed s

ourc

e ac

tivity

Y (measured field)

Prior info (source covariance)

PREDICTED

Inverse problem

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

5010

015

020

025

030

035

040

0-0

.25

-0.2

-0.1

5

-0.1

-0.0

50

0.050.

1

0.150.

2

0.25

estim

ated

resp

onse

- co

nditio

n 1

at 5

0, -2

6, 1

1 m

m

time

ms

PPM

at 1

88 m

s (1

00 p

erce

nt c

onfid

ence

)51

2 di

pole

sPe

rcen

t var

ianc

e ex

plai

ned

99.7

8 (9

1.33

)lo

g-ev

idenc

e =

112.

8

Predicted

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Single dipole fit

J

Page 10: The M/EEG inverse problem

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Measured

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Gen

erat

ed s

ourc

e ac

tivity

Y (measured field)

Prior info (source covariance)

PREDICTED

Inverse problem

Predicted

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

5010

015

020

025

030

035

040

0-0

.25

-0.2

-0.1

5

-0.1

-0.0

50

0.050.

1

0.150.

2

0.25

estim

ated

resp

onse

- co

nditio

n 1

at 5

0, -2

6, 1

1 m

m

time

ms

PPM

at 1

88 m

s (1

00 p

erce

nt c

onfid

ence

)51

2 di

pole

sPe

rcen

t var

ianc

e ex

plai

ned

99.7

8 (9

1.33

)lo

g-ev

iden

ce =

112

.8

Two dipole fit

J

Page 11: The M/EEG inverse problem

Gen

erat

ed s

ourc

e ac

tivity

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Measured

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Y (measured field)

Prior info (source covariance)

PREDICTED

Inverse problem

Predicted

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

5010

015

020

025

030

035

040

0-4-3-2-101234

x 10

-3es

timat

ed re

spon

se -

cond

ition

1at

65,

-21,

11

mm

time

ms

PPM

at 1

88 m

s (1

00 p

erce

nt c

onfid

ence

)51

2 di

pole

sPe

rcen

t var

ianc

e ex

plai

ned

98.4

9 (9

0.16

)lo

g-ev

iden

ce =

93.

1

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Minimum norm

J

Page 12: The M/EEG inverse problem

Gen

erat

ed s

ourc

e ac

tivity

Measured

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Y (measured field)

Prior info (source covariance)

PREDICTED

Inverse problem

246810121416

2

4

6

8

10

12

14

160

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Predicted

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

5010

015

020

025

030

035

040

0-0

.03

-0.0

2

-0.0

10

0.01

0.02

0.03

estim

ated

resp

onse

- co

nditio

n 1

at 5

7, -2

6, 9

mm

time

ms

PPM

at 1

88 m

s (1

00 p

erce

nt c

onfid

ence

)51

2 di

pole

sPe

rcen

t var

ianc

e ex

plai

ned

99.1

8 (9

0.78

)lo

g-ev

iden

ce =

99.

9

Projectiononto lead field*

Beamformer

*Assuming no correlated sources

Page 13: The M/EEG inverse problem

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Measured

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Y (measured field)

Prior info (source covariance)

PREDICTED

Inverse problem

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

160

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Predicted

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

5010

015

020

025

030

035

040

0-0

.03

-0.0

2

-0.0

10

0.01

0.02

0.03

estim

ated

resp

onse

- co

nditio

n 1

at 57

, -26

, 9 m

m

time

ms

PPM

at 1

88 m

s (1

00 p

erce

nt c

onfid

ence

)51

2 di

pole

sPe

rcen

t var

ianc

e ex

plai

ned

99.1

8 (9

0.78

)lo

g-ev

iden

ce =

99.

9

fMRI data

fMRI biased dSPM(Dale et al. 2000)

Maybe…

Page 14: The M/EEG inverse problem

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Minimum norm

Dipole fit LORETA

246810121416

2

4

6

8

10

12

14

160

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SAM,DICsBeamformer

?

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

160

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fMRI biaseddSPM

Some popular priors

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Page 15: The M/EEG inverse problem

Summary• MEG inverse problem requires prior

information in the form of a source covariance matrix.

• Different inversion algorithms- SAM, DICS, LORETA, Minimum Norm, dSPM… just have different prior source covariance structure.

• Historically- different MEG groups have tended to use different algorithms/acronyms.

See Mosher et al. 2003, Friston et al. 2008, Wipf and Nagarajan 2009, Lopez et al. 2013

Page 17: The M/EEG inverse problem

Which priors should I use ?

• Compare to other modalities..

• Use model comparison… rest of the talk.

Singh et al. 2002

fMRI

MEGbeamformer

Page 18: The M/EEG inverse problem

5010

015

020

025

030

035

040

0-0

.2

-0.1

5

-0.1

-0.0

50

0.050.1

0.15

estim

ated

resp

onse

- co

nditio

n 1

at -5

4, -2

7, 1

0 m

m

time

ms

PPM

at 1

88 m

s (1

00 p

erce

nt co

nfid

ence

)51

2 di

pole

sPe

rcen

t var

ianc

e ex

plai

ned

11.2

1 (1

0.26

)lo

g-ev

iden

ce =

53.

1

5010

015

020

025

030

035

040

0-0

.25

-0.2

-0.1

5

-0.1

-0.0

50

0.050.

1

0.150.

2

0.25

estim

ated

resp

onse

- co

nditio

n 1

at 5

0, -2

6, 1

1 m

m

time

ms

PPM

at 1

88 m

s (1

00 p

erce

nt c

onfid

ence

)51

2 di

pole

sPe

rcen

t var

ianc

e ex

plai

ned

99.7

8 (9

1.33

)lo

g-ev

iden

ce =

112

.8

5010

015

020

025

030

035

040

0-0

.03

-0.0

2

-0.0

10

0.01

0.02

0.03

estim

ated

resp

onse

- co

nditio

n 1

at 5

7, -2

6, 9

mm

time

ms

PPM

at 1

88 m

s (1

00 p

erce

nt c

onfid

ence

)51

2 dip

oles

Perc

ent v

aria

nce

expl

aine

d 99

.18

(90.

78)

log-

evid

ence

= 9

9.9

Predicted

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

Y (measured field)How do we chose between priors ?

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Variance explained

Predicted

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Predicted

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

246810121416

2

4

6

8

10

12

14

160

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Predicted

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

5010

015

020

025

030

035

040

0-4-3-2-101234

x 10

-3es

timat

ed re

spon

se -

cond

ition

1at

65,

-21,

11

mm

time

ms

PPM

at 1

88 m

s (1

00 p

erce

nt c

onfid

ence

)51

2 di

pole

sPe

rcen

t var

ianc

e ex

plai

ned

98.4

9 (9

0.16

)log

-evi

denc

e =

93.1

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Measured

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

11 % 96% 97% 98%

Prior

J

Y

Page 19: The M/EEG inverse problem

Measurement (Y)

Gen

erat

ed s

ourc

e ac

tivity

Gen

erat

ed s

ourc

e ac

tivity

Forwardproblem

Prediction ( )

Eyes

J

Y

Inverse problem

True recipe J

Estimatedrecipe

Page 20: The M/EEG inverse problem

Measurement (Y)

Gen

erat

ed s

ourc

e ac

tivity

Forwardproblem

Prediction ( )

J

Y

Inverse problem

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Prior info (source covariance)

Diagonal elements correspondto ingredients

Use prior info (possible ingredients)

Page 21: The M/EEG inverse problem

Possible priors

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

246810121416

2

4

6

8

10

12

14

160

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

246810121416

2

4

6

8

10

12

14

160

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

246810121416

2

4

6

8

10

12

14

160

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A

B

C

Page 22: The M/EEG inverse problem

Measurement (Y)

Gen

erat

ed s

ourc

e ac

tivity

Forwardproblem

Prediction ( )

J

Y

Inverse problem

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Prior info (source covariance)

246810121416

2

4

6

8

10

12

14

160

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

?

Which is most likely prior (which prior has highest evidence) ?

A

B

C

Page 23: The M/EEG inverse problem

P(Y)

Complexity

Area under each curve=1.0

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

246810121416

2

4

6

8

10

12

14

160

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Space of possible datasets (Y)

Consider 3 generative models

Evidence

Page 24: The M/EEG inverse problem

Measurement (Y)

Gen

erat

ed s

ourc

e ac

tivity

Forwardproblem

Prediction ( )

J

YInverse problem

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Prior info (source covariance)

246810121416

2

4

6

8

10

12

14

160

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

?

Cross validation or prediction of unknown data

A

B

C

Page 25: The M/EEG inverse problem

The more parameters in the model the more accurate the fit(to training data).

y

x

Polynomial fit example

4 parameter fit

2 parameter fit

Training data

Page 26: The M/EEG inverse problem

The more parameters the more accurate the fit to training data, but more complex model may not generalise to new (test) data.

y

x

Polynomial fit example

4 parameter fit

2 parameter fittest data

Page 27: The M/EEG inverse problem

Training data

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

x-0.6 -0.4 -0.2 0 0.2 0.4

-0.6

-0.4

-0.2

0

0.2

0.4

Measured

Pre

dict

ed

GSIID

Predicted

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Measured

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

O

Fit to training data

More complex model fits training data better

Page 28: The M/EEG inverse problem

-0.6 -0.4 -0.2 0 0.2 0.4-0.6

-0.4

-0.2

0

0.2

0.4

Measured

Pre

dict

ed

GSIID

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

x

Predicted

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Measured

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

O

Fit to test data

Simpler model fits test data better

Page 29: The M/EEG inverse problem

0.37 0.38 0.39 0.4 0.410

5

10

15

20

Mod

el e

vide

nce

Cross validation accuracy

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

160

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

160

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

160

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

160

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cross validation error

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Relationship between model evidence and cross validation

Random priorslo

g

Can be approximated analytically…

Page 30: The M/EEG inverse problem

5010

015

020

025

030

035

040

0-0

.2

-0.1

5

-0.1

-0.0

50

0.050.

1

0.15

estim

ated

resp

onse

- co

nditio

n 1

at -5

4, -2

7, 1

0 m

m

time

ms

PPM

at 1

88 m

s (1

00 p

erce

nt c

onfid

ence

)51

2 di

pole

sPe

rcen

t var

ianc

e ex

plai

ned

11.2

1 (1

0.26

)log

-evi

denc

e =

53.1

5010

015

020

025

030

035

040

0-0

.25

-0.2

-0.1

5

-0.1

-0.0

50

0.050.

1

0.150.

2

0.25

estim

ated

resp

onse

- co

nditio

n 1

at 5

0, -2

6, 1

1 m

m

time

ms

PPM

at 1

88 m

s (1

00 p

erce

nt c

onfid

ence

)51

2 di

pole

sPe

rcen

t var

ianc

e ex

plai

ned

99.7

8 (9

1.33

)lo

g-ev

iden

ce =

112

.8

5010

015

020

025

030

035

040

0-0

.03

-0.0

2

-0.0

10

0.01

0.02

0.03

estim

ated

resp

onse

- co

nditio

n 1

at 5

7, -2

6, 9

mm

time

ms

PPM

at 1

88 m

s (1

00 p

erce

nt c

onfid

ence

)51

2 di

pole

sPe

rcen

t var

iance

exp

lain

ed 9

9.18

(90.

78)

log-

evid

ence

= 9

9.9

Predicted

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

How do we chose between priors ?

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Predicted

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Predicted

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

246810121416

2

4

6

8

10

12

14

160

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Predicted

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

5010

015

020

025

030

035

040

0-4-3-2-101234

x 10

-3es

timat

ed re

spon

se -

cond

ition

1at

65,

-21,

11

mm

time

ms

PPM

at 1

88 m

s (1

00 p

erce

nt c

onfid

ence

)51

2 di

poles

Perc

ent v

aria

nce

expl

aine

d 98

.49

(90.

16)

log-

evid

ence

= 9

3.1

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Prior

J

Y

Dip 1 Dip 2 BMF Min Norm05

10152025

Log modelevidence

Page 31: The M/EEG inverse problem

Muliple Sparse Priors (MSP), Champagne

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

l1

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

l2

l3

Prior to maximise model evidence

12345678910

1

2

3

4

5

6

7

8

9

10

Candidate Priors

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

ln

Page 32: The M/EEG inverse problem

0 100 200 300 400 500 600 700-8

-6

-4

-2

0

2

4

6

8

estimated response - condition 1at 36, -18, -23 mm

time ms

PPM at 229 ms (100 percent confidence)512 dipoles

Percent variance explained 99.15 (65.03)log-evidence = 8157380.8

0 100 200 300 400 500 600 700-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

estimated response - condition 1at 46, -31, 4 mm

time ms

PPM at 229 ms (100 percent confidence)512 dipoles

Percent variance explained 99.93 (65.54)log-evidence = 8361406.1

0 100 200 300 400 500 600 700-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

estimated response - condition 1at 46, -31, 4 mm

time ms

PPM at 229 ms (100 percent confidence)512 dipoles

Percent variance explained 99.87 (65.51)log-evidence = 8388254.2

0 50 100 15010

2

104

106

108

Iteration

Free energyAccuracyComplexity

0 100 200 300 400 500 600 700-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

estimated response - condition 1at 46, -31, 4 mm

time ms

PPM at 229 ms (100 percent confidence)512 dipoles

Percent variance explained 99.90 (65.53)log-evidence = 8389771.6

AccuracyFree EnergyCompexity

Multiple Sparse priors

So now construct the priors to maximise model evidence(minimise cross validation error).

Page 33: The M/EEG inverse problem

Conclusion

• MEG inverse problem can be solved.. If you have some prior knowledge.

• All prior knowledge encapsulated in a source covariance matrix.

• Can test between priors (or develop new priors) using cross validation or Bayesian framework.

Page 34: The M/EEG inverse problem

References• Mosher et al., 2003• J. Mosher, S. Baillet, R.M. Leahi• Equivalence of linear approaches in bioelectromagnetic inverse solutions• IEEE Workshop on Statistical Signal Processing (2003), pp. 294–297

• Friston et al., 2008• K. Friston, L. Harrison, J. Daunizeau, S. Kiebel, C. Phillips, N. Trujillo-Barreto, R.

Henson, G. Flandin, J. Mattout• Multiple sparse priors for the M/EEG inverse problem• NeuroImage, 39 (2008), pp. 1104–1120

• Wipf and Nagarajan, 2009• D. Wipf, S. Nagarajan• A unified Bayesian framework for MEG/EEG source imaging• NeuroImage, 44 (2009), pp. 947–966

Page 35: The M/EEG inverse problem

Thank you

• Karl Friston• Jose David Lopez• Vladimir Litvak• Guillaume Flandin• Will Penny• Jean Daunizeau

• Christophe Phillips• Rik Henson• Jason Taylor• Luzia Troebinger• Chris Mathys• Saskia Helbling

And all SPM developers

Page 36: The M/EEG inverse problem

Analytical approximation to model evidence

• Free energy= accuracy- complexity

Page 37: The M/EEG inverse problem

MEG

EEG

What do we measure with EEG & MEG ?

From a single source to the sensor: MEG