The matching polytope has exponential extension...

141
The matching polytope has exponential extension complexity Thomas Rothvoß Department of Mathematics, MIT Guwahati, India — Dec 2013

Transcript of The matching polytope has exponential extension...

Page 1: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

The matching polytope has exponential

extension complexity

Thomas Rothvoß

Department of Mathematics, MIT

Guwahati, India — Dec 2013

Page 2: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Extended formulation

Page 3: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Extended formulation

Given polytope P = x ∈ Rn | Ax ≤ b

P

Page 4: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Extended formulation

Given polytope P = x ∈ Rn | Ax ≤ b

Write P = x ∈ Rn | ∃y : Bx+ Cy ≤ d

P

Q

linearprojection

Page 5: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Extended formulation

Given polytope P = x ∈ Rn | Ax ≤ b

→ many inequalities Write P = x ∈ R

n | ∃y : Bx+ Cy ≤ d→ few inequalities

P

Q

linearprojection

Page 6: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Extended formulation

Given polytope P = x ∈ Rn | Ax ≤ b

→ many inequalities Write P = x ∈ R

n | ∃y : Bx+ Cy ≤ d→ few inequalities

P

Q

linearprojection

Extension complexity:

xc(P ) := min

#facets of Q |

Q polyhedronp linear mapp(Q) = P

Page 7: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

What’s known?

Compact formulations:

Spanning Tree Polytope [Kipp Martin ’91]

Perfect Matching in planar graphs [Barahona ’93]

Perfect Matching in bounded genus graphs[Gerards ’91]

O(n logn)-size for Permutahedron [Goemans ’10](→ tight)

nO(1/ε)-size ε-apx for Knapsack Polytope [Bienstock ’08]

. . .

Page 8: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

What’s known?

Compact formulations:

Spanning Tree Polytope [Kipp Martin ’91]

Perfect Matching in planar graphs [Barahona ’93]

Perfect Matching in bounded genus graphs[Gerards ’91]

O(n logn)-size for Permutahedron [Goemans ’10](→ tight)

nO(1/ε)-size ε-apx for Knapsack Polytope [Bienstock ’08]

. . .

Here: When is the extension complexity super polynomial?

Page 9: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Lower bounds

Page 10: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Lower bounds

No symmetric compact form. for TSP [Yannakakis ’91]Compact formulation for logn size matchings, but nosymmetric one [Kaibel, Pashkovich & Theis ’10]

Page 11: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Lower bounds

No symmetric compact form. for TSP [Yannakakis ’91]Compact formulation for logn size matchings, but nosymmetric one [Kaibel, Pashkovich & Theis ’10]

xc(random 0/1 polytope) ≥ 2Ω(n) [R. ’11]

Page 12: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Lower bounds

No symmetric compact form. for TSP [Yannakakis ’91]Compact formulation for logn size matchings, but nosymmetric one [Kaibel, Pashkovich & Theis ’10]

xc(random 0/1 polytope) ≥ 2Ω(n) [R. ’11]

Breakthrough: xc(TSP) ≥ 2Ω(√n)

[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12]

Page 13: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Lower bounds

No symmetric compact form. for TSP [Yannakakis ’91]Compact formulation for logn size matchings, but nosymmetric one [Kaibel, Pashkovich & Theis ’10]

xc(random 0/1 polytope) ≥ 2Ω(n) [R. ’11]

Breakthrough: xc(TSP) ≥ 2Ω(√n)

[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12]

n1/2−ε-apx for clique polytope needs super-poly size[Braun, Fiorini, Pokutta, Steuer ’12]Improved to n1−ε [Braverman, Moitra ’13], [Braun, P. ’13]

Page 14: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Lower bounds

No symmetric compact form. for TSP [Yannakakis ’91]Compact formulation for logn size matchings, but nosymmetric one [Kaibel, Pashkovich & Theis ’10]

xc(random 0/1 polytope) ≥ 2Ω(n) [R. ’11]

Breakthrough: xc(TSP) ≥ 2Ω(√n)

[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12]

n1/2−ε-apx for clique polytope needs super-poly size[Braun, Fiorini, Pokutta, Steuer ’12]Improved to n1−ε [Braverman, Moitra ’13], [Braun, P. ’13]

(2− ε)-apx LPs for MaxCut have size nΩ(logn/ log logn)

[Chan, Lee, Raghavendra, Steurer ’13]

Page 15: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Lower bounds

No symmetric compact form. for TSP [Yannakakis ’91]Compact formulation for logn size matchings, but nosymmetric one [Kaibel, Pashkovich & Theis ’10]

xc(random 0/1 polytope) ≥ 2Ω(n) [R. ’11]

Breakthrough: xc(TSP) ≥ 2Ω(√n)

[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12]

n1/2−ε-apx for clique polytope needs super-poly size[Braun, Fiorini, Pokutta, Steuer ’12]Improved to n1−ε [Braverman, Moitra ’13], [Braun, P. ’13]

(2− ε)-apx LPs for MaxCut have size nΩ(logn/ log logn)

[Chan, Lee, Raghavendra, Steurer ’13]

Only NP-hard polytopes!!

What about poly-time problems?

Page 16: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Perfect matching polytope

Page 17: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Perfect matching polytope G = (V,E)(complete)

Page 18: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Perfect matching polytope G = (V,E)(complete)

Page 19: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Perfect matching polytope

x(δ(v)) = 1 ∀v ∈ V

xe ≥ 0 ∀e ∈ E

G = (V,E)(complete)

Page 20: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Perfect matching polytope

x(δ(v)) = 1 ∀v ∈ V

xe ≥ 0 ∀e ∈ E

12

12

12

12

12

12

G = (V,E)(complete)

Page 21: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Perfect matching polytope

x(δ(v)) = 1 ∀v ∈ V

xe ≥ 0 ∀e ∈ E

U

12

12

12

12

12

12

G = (V,E)(complete)

Page 22: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Perfect matching polytope

x(δ(v)) = 1 ∀v ∈ V

x(δ(U)) ≥ 1 ∀U ⊆ V : |U | odd

xe ≥ 0 ∀e ∈ E

U

12

12

12

12

12

12

G = (V,E)(complete)

Quick facts:

Description by [Edmonds ’65]

Page 23: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Perfect matching polytope

x(δ(v)) = 1 ∀v ∈ V

x(δ(U)) ≥ 1 ∀U ⊆ V : |U | odd

xe ≥ 0 ∀e ∈ E

U

12

12

12

12

12

12

G = (V,E)(complete)

Quick facts:

Description by [Edmonds ’65] Can optimize cTx in strongly poly-time [Edmonds ’65]

Page 24: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Perfect matching polytope

x(δ(v)) = 1 ∀v ∈ V

x(δ(U)) ≥ 1 ∀U ⊆ V : |U | odd

xe ≥ 0 ∀e ∈ E

U

12

12

12

12

12

12

G = (V,E)(complete)

Quick facts:

Description by [Edmonds ’65] Can optimize cTx in strongly poly-time [Edmonds ’65] Separation problem polytime [Padberg, Rao ’82]

Page 25: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Perfect matching polytope

x(δ(v)) = 1 ∀v ∈ V

x(δ(U)) ≥ 1 ∀U ⊆ V : |U | odd

xe ≥ 0 ∀e ∈ E

U

12

12

12

12

12

12

G = (V,E)(complete)

Quick facts:

Description by [Edmonds ’65] Can optimize cTx in strongly poly-time [Edmonds ’65] Separation problem polytime [Padberg, Rao ’82] 2Θ(n) facets

Page 26: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Perfect matching polytope

x(δ(v)) = 1 ∀v ∈ V

x(δ(U)) ≥ 1 ∀U ⊆ V : |U | odd

xe ≥ 0 ∀e ∈ E

U

12

12

12

12

12

12

G = (V,E)(complete)

Quick facts:

Description by [Edmonds ’65] Can optimize cTx in strongly poly-time [Edmonds ’65] Separation problem polytime [Padberg, Rao ’82] 2Θ(n) facets

Theorem (R.13)

xc(perfect matching polytope) ≥ 2Ω(n).

Previously known: xc(P ) ≥ Ω(n2)

Page 27: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Slack-matrix

Write: P = conv(x1, . . . , xv) = x ∈ Rn | Ax ≤ b

S# facets

# vertices

SijSij = bi −AT

i xj

slack-matrix

Pb

b b

b

b

Page 28: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Slack-matrix

Write: P = conv(x1, . . . , xv) = x ∈ Rn | Ax ≤ b

S# facets

# vertices

facet i

vertexj

SijSij = bi −AT

i xj

slack-matrix

Pb

b b

b

bAix = bi

bxj

Sij

Page 29: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Slack-matrix

Write: P = conv(x1, . . . , xv) = x ∈ Rn | Ax ≤ b

S# facets

# vertices

U≥0

V ≥ 0rr

SijSij = bi −AT

i xj

slack-matrix

Pb

b b

b

bAix = bi

bxj

Sij

Non-negative rank:

rk+(S) = minr | ∃U ∈ Rf×r≥0 , V ∈ R

r×v≥0 : S = UV

Page 30: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Yannakakis’ Theorem

Theorem (Yannakakis ’91)

If S is the slack-matrix for P = x ∈ Rn | Ax ≤ b, then

xc(P ) = rk+(S).

P

Page 31: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Yannakakis’ Theorem

Theorem (Yannakakis ’91)

If S is the slack-matrix for P = x ∈ Rn | Ax ≤ b, then

xc(P ) = rk+(S).

Factorization S = UV ⇒ extended formulation:

Let P = x ∈ Rn | ∃y ≥ 0 : Ax+ Uy = b

P

Page 32: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Yannakakis’ Theorem

Theorem (Yannakakis ’91)

If S is the slack-matrix for P = x ∈ Rn | Ax ≤ b, then

xc(P ) = rk+(S).

Factorization S = UV ⇒ extended formulation:

Let P = x ∈ Rn | ∃y ≥ 0 : Ax+ Uy = b

Extended form. ⇒ factorization:

Given an extensionQ = (x, y) | Bx+ Cy ≤ d

Qb

b b

b

b

b

b

b

b

b

b

b

P

Page 33: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Yannakakis’ Theorem

Theorem (Yannakakis ’91)

If S is the slack-matrix for P = x ∈ Rn | Ax ≤ b, then

xc(P ) = rk+(S).

Factorization S = UV ⇒ extended formulation:

Let P = x ∈ Rn | ∃y ≥ 0 : Ax+ Uy = b

Extended form. ⇒ factorization:

Given an extensionQ = (x, y) | Bx+ Cy ≤ d

Q

Aix+ 0y ≤ bi

b

b b

b

b

b

b

b

b

b

b

b

xjb

P

〈u(i), v(j)〉 = Sij

Page 34: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Yannakakis’ Theorem

Theorem (Yannakakis ’91)

If S is the slack-matrix for P = x ∈ Rn | Ax ≤ b, then

xc(P ) = rk+(S).

Factorization S = UV ⇒ extended formulation:

Let P = x ∈ Rn | ∃y ≥ 0 : Ax+ Uy = b

Extended form. ⇒ factorization:

Given an extensionQ = (x, y) | Bx+ Cy ≤ d

For facet i:u(i) := conic comb of i

Q

Aix+ 0y ≤ bi

b

b b

b

b

b

b

b

b

b

b

b

xjb

P

〈u(i), v(j)〉 = Sij

Page 35: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Yannakakis’ Theorem

Theorem (Yannakakis ’91)

If S is the slack-matrix for P = x ∈ Rn | Ax ≤ b, then

xc(P ) = rk+(S).

Factorization S = UV ⇒ extended formulation:

Let P = x ∈ Rn | ∃y ≥ 0 : Ax+ Uy = b

Extended form. ⇒ factorization:

Given an extensionQ = (x, y) | Bx+ Cy ≤ d

For facet i:u(i) := conic comb of i

For vertex xj :v(j) := d−Bxj − Cyj = slack of (xj , yj)

Q

Aix+ 0y ≤ bi

b

b b

b

b

b

b

b

b

b

b

b

xjb

(xj , yj)b

P

〈u(i), v(j)〉 = Sij

Page 36: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Yannakakis’ Theorem

Theorem (Yannakakis ’91)

If S is the slack-matrix for P = x ∈ Rn | Ax ≤ b, then

xc(P ) = rk+(S).

Factorization S = UV ⇒ extended formulation:

Let P = x ∈ Rn | ∃y ≥ 0 : Ax+ Uy = b

Extended form. ⇒ factorization:

Given an extensionQ = (x, y) | Bx+ Cy ≤ d

For facet i:u(i) := conic comb of i

For vertex xj :v(j) := d−Bxj − Cyj = slack of (xj , yj)

Q

Aix+ 0y ≤ bi

b

b b

b

b

b

b

b

b

b

b

b

xjb

(xj , yj)b

P

〈u(i), v(j)〉 = u(i)Td︸ ︷︷ ︸

=bi

−u(i)B︸ ︷︷ ︸

=Ai

xj − u(i)C︸ ︷︷ ︸

=0

yj = Sij

Page 37: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Rectangle covering lower bound

Observation

rk+(S) ≥ rectangle-covering-number(S).

Page 38: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Rectangle covering lower bound

U

V

S

3

1

0

0

2

0 0 2 1 0

2

1

2

0

0

0 2 2 0 3

0 4 10 3 5

0 2 4 1 3

0 4 4 0 6

0 0 0 0 0

0 0 4 2 0

Observation

rk+(S) ≥ rectangle-covering-number(S).

Page 39: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Rectangle covering lower bound

U

V

S

+

+

0

0+

0 0 + + 0

+

+

+

0

0

0 + + 0 +

0 + + + +

0 + + + +

0 + + 0 +

0 0 0 0 0

0 0 + + 0

Observation

rk+(S) ≥ rectangle-covering-number(S).

Page 40: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Rectangle covering lower bound

U

V

S

+

+

0

0+

0 0 + + 0

+

+

+

0

0

0 + + 0 +

0 + + + +

0 + + + +

0 + + 0 +

0 0 0 0 0

0 0 + + 0

Observation

rk+(S) ≥ rectangle-covering-number(S).

Page 41: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Rectangle covering lower bound

U

V

S

+

+

0

0+

0 0 + + 0

+

+

+

0

0

0 + + 0 +

0 + + + +

0 + + + +

0 + + 0 +

0 0 0 0 0

0 0 + + 0

Observation

rk+(S) ≥ rectangle-covering-number(S).

Page 42: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Rectangle covering for matching

Recall SU,M = |δ(U) ∩M | − 1

Observation

Rect-cov-num(matching polytope) ≤ O(n4).

Re1,e2

matchings

cuts

S

Page 43: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Rectangle covering for matching

Recall SU,M = |δ(U) ∩M | − 1

Observation

Rect-cov-num(matching polytope) ≤ O(n4).

e1

e2 Re1,e2

matchings

cuts

S

For e1, e2 ∈ E:

Page 44: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Rectangle covering for matching

Recall SU,M = |δ(U) ∩M | − 1

Observation

Rect-cov-num(matching polytope) ≤ O(n4).

U

e1

e2 Re1,e2

matchings

cuts

S

For e1, e2 ∈ E: take U | e1, e2 ∈ δ(U)

Page 45: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Rectangle covering for matching

Recall SU,M = |δ(U) ∩M | − 1

Observation

Rect-cov-num(matching polytope) ≤ O(n4).

U

e1

e2M

Re1,e2

matchings

cuts

S

For e1, e2 ∈ E: take U | e1, e2 ∈ δ(U) ×M | e1, e2 ∈ M

Page 46: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Rectangle covering for matching

Recall SU,M = |δ(U) ∩M | − 1

Observation

Rect-cov-num(matching polytope) ≤ O(n4).

U M

e1

e2...ek

Re1,e2

matchings

cuts

S

For e1, e2 ∈ E: take U | e1, e2 ∈ δ(U) ×M | e1, e2 ∈ M (U,M) with M ∩ δ(U) = e1, . . . , ek lies in

(k2

)rectangles

Page 47: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Rectangle covering for matching

Recall SU,M = |δ(U) ∩M | − 1

Observation

Rect-cov-num(matching polytope) ≤ O(n4).

U M

e1

e2...ek

Re1,e2

matchings

cuts

S

For e1, e2 ∈ E: take U | e1, e2 ∈ δ(U) ×M | e1, e2 ∈ M (U,M) with M ∩ δ(U) = e1, . . . , ek lies in

(k2

)rectangles

S?=

e1,e2

0 1 1

0 1 1

0 0 0

Re1,e2

Page 48: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Rectangle covering for matching

Recall SU,M = |δ(U) ∩M | − 1

Observation

Rect-cov-num(matching polytope) ≤ O(n4).

U M

e1

e2...ek

Re1,e2

matchings

cuts

S

For e1, e2 ∈ E: take U | e1, e2 ∈ δ(U) ×M | e1, e2 ∈ M (U,M) with M ∩ δ(U) = e1, . . . , ek lies in

(k2

)rectangles

S?=

e1,e2

0 1 1

0 1 1

0 0 0

Re1,e2|M ∩ δ(U)| = k

SUM = k − 1∼ k2

Page 49: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Rectangle covering for matching

Recall SU,M = |δ(U) ∩M | − 1

Observation

Rect-cov-num(matching polytope) ≤ O(n4).

U M

e1

e2...ek

Re1,e2

matchings

cuts

S

For e1, e2 ∈ E: take U | e1, e2 ∈ δ(U) ×M | e1, e2 ∈ M (U,M) with M ∩ δ(U) = e1, . . . , ek lies in

(k2

)rectangles

Question

Does every rectangle coveringover-cover entries of large slack?

Page 50: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Rectangle covering for matching

Recall SU,M = |δ(U) ∩M | − 1

Observation

Rect-cov-num(matching polytope) ≤ O(n4).

U M

e1

e2...ek

Re1,e2

matchings

cuts

S

For e1, e2 ∈ E: take U | e1, e2 ∈ δ(U) ×M | e1, e2 ∈ M (U,M) with M ∩ δ(U) = e1, . . . , ek lies in

(k2

)rectangles

Question

Does every rectangle coveringover-cover entries of large slack? YES!!

Page 51: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Hyperplane separation lower bound [Fiorini]

Frobenius inner product: 〈W,S〉 :=∑

i

j WijSij

Page 52: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Hyperplane separation lower bound [Fiorini]

Frobenius inner product: 〈W,S〉 :=∑

i

j WijSij

Lemma

Pick W : 〈W,R〉 ≤ α ∀ rectangles R.

R

0

b

b

b

b

b W

〈W,R〉 ≤ αrectangles

Page 53: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Hyperplane separation lower bound [Fiorini]

Frobenius inner product: 〈W,S〉 :=∑

i

j WijSij

Lemma

Pick W : 〈W,R〉 ≤ α ∀ rectangles R. Then rk+(S) ≥〈W,S〉

‖S‖∞ · α

R

S0

b

b

b

b

b W

〈W,R〉 ≤ αrectangles

Page 54: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Hyperplane separation lower bound [Fiorini]

Frobenius inner product: 〈W,S〉 :=∑

i

j WijSij

Lemma

Pick W : 〈W,R〉 ≤ α ∀ rectangles R. Then rk+(S) ≥〈W,S〉

‖S‖∞ · α

Proof: Write S =∑r

i=1Ri with rk+(Ri) = 1. Then

〈W,S〉 =r∑

i=1

‖Ri‖∞·

W,Ri

‖Ri‖∞

︸ ︷︷ ︸

≤α

≤ α·r∑

i=1

‖Ri‖∞︸ ︷︷ ︸

≤‖S‖∞

≤ α·r·‖S‖∞.

R

S0

b

b

b

b

b W

〈W,R〉 ≤ αrectangles

[0, 1]-rank-1matrices

Page 55: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Applying the Hyperplane bound

Lemma

Pick W : 〈W,R〉 ≤ α ∀ rectangles R. Then rk+(S) ≥〈W,S〉

‖S‖∞ · α

Page 56: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Applying the Hyperplane bound

Lemma

Pick W : 〈W,R〉 ≤ α ∀ rectangles R. Then rk+(S) ≥〈W,S〉

‖S‖∞ · α

Recall SUM = |δ(U) ∩M | − 1

Page 57: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Applying the Hyperplane bound

Lemma

Pick W : 〈W,R〉 ≤ α ∀ rectangles R. Then rk+(S) ≥〈W,S〉

‖S‖∞ · α

Recall SUM = |δ(U) ∩M | − 1 Abbreviate Qℓ := (U,M) : |δ(U) ∩M | = ℓ

Page 58: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Applying the Hyperplane bound

Lemma

Pick W : 〈W,R〉 ≤ α ∀ rectangles R. Then rk+(S) ≥〈W,S〉

‖S‖∞ · α

Recall SUM = |δ(U) ∩M | − 1 Abbreviate Qℓ := (U,M) : |δ(U) ∩M | = ℓ Choose

WU,M =

0 otherwise.

Page 59: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Applying the Hyperplane bound

Lemma

Pick W : 〈W,R〉 ≤ α ∀ rectangles R. Then rk+(S) ≥〈W,S〉

‖S‖∞ · α

Recall SUM = |δ(U) ∩M | − 1 Abbreviate Qℓ := (U,M) : |δ(U) ∩M | = ℓ Choose

WU,M =

−∞ |δ(U) ∩M | = 1

0 otherwise.

Then 〈W,S〉 = 0

Page 60: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Applying the Hyperplane bound

Lemma

Pick W : 〈W,R〉 ≤ α ∀ rectangles R. Then rk+(S) ≥〈W,S〉

‖S‖∞ · α

Recall SUM = |δ(U) ∩M | − 1 Abbreviate Qℓ := (U,M) : |δ(U) ∩M | = ℓ Choose

WU,M =

−∞ |δ(U) ∩M | = 11

|Q3| |δ(U) ∩M | = 3

0 otherwise.

Then 〈W,S〉 = 0 + 2

Page 61: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Applying the Hyperplane bound

Lemma

Pick W : 〈W,R〉 ≤ α ∀ rectangles R. Then rk+(S) ≥〈W,S〉

‖S‖∞ · α

Recall SUM = |δ(U) ∩M | − 1 Abbreviate Qℓ := (U,M) : |δ(U) ∩M | = ℓ Choose

WU,M =

−∞ |δ(U) ∩M | = 11

|Q3| |δ(U) ∩M | = 3

− 1k−1 · 1

|Qk| |δ(U) ∩M | = k

0 otherwise.

Then 〈W,S〉 = 0 + 2− 1 = 1

Page 62: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Applying the Hyperplane bound

Lemma

Pick W : 〈W,R〉 ≤ α ∀ rectangles R. Then rk+(S) ≥〈W,S〉

‖S‖∞ · α

Recall SUM = |δ(U) ∩M | − 1 Abbreviate Qℓ := (U,M) : |δ(U) ∩M | = ℓ Choose

WU,M =

−∞ |δ(U) ∩M | = 11

|Q3| |δ(U) ∩M | = 3

− 1k−1 · 1

|Qk| |δ(U) ∩M | = k

0 otherwise.

Then 〈W,S〉 = 0 + 2− 1 = 1

Lemma

For k large, any rectangle R has 〈W,R〉 ≤ 2−Ω(n).

Page 63: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Applying the Hyperplane bound (II)

Uniform measure: µℓ(R) := |R∩Qℓ||Qℓ|

Page 64: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Applying the Hyperplane bound (II)

Uniform measure: µℓ(R) := |R∩Qℓ||Qℓ|

Main lemma

µ1(R) = 0 =⇒ µ3(R) ≤ O( 1k2) · µk(R) + 2−Ω(n)

matchings

cuts

S

Page 65: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Applying the Hyperplane bound (II)

Uniform measure: µℓ(R) := |R∩Qℓ||Qℓ|

Main lemma

µ1(R) = 0 =⇒ µ3(R) ≤ O( 1k2) · µk(R) + 2−Ω(n)

R

matchings

cuts

S

Page 66: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Applying the Hyperplane bound (II)

Uniform measure: µℓ(R) := |R∩Qℓ||Qℓ|

Main lemma

µ1(R) = 0 =⇒ µ3(R) ≤ O( 1k2) · µk(R) + 2−Ω(n)

R

matchings

cuts

S

Page 67: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Applying the Hyperplane bound (II)

Uniform measure: µℓ(R) := |R∩Qℓ||Qℓ|

Main lemma

µ1(R) = 0 =⇒ µ3(R) ≤ O( 1k2) · µk(R) + 2−Ω(n)

R

matchings

cuts

S

Page 68: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Applying the Hyperplane bound (II)

Uniform measure: µℓ(R) := |R∩Qℓ||Qℓ|

Main lemma

µ1(R) = 0 =⇒ µ3(R) ≤ O( 1k2) · µk(R) + 2−Ω(n)

R

matchings

cuts

S

Page 69: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Applying the Hyperplane bound (II)

Uniform measure: µℓ(R) := |R∩Qℓ||Qℓ|

Main lemma

µ1(R) = 0 =⇒ µ3(R) ≤ O( 1k2) · µk(R) + 2−Ω(n)

R

matchings

cuts

S

Technique: Partition scheme [Razborov ’91]

Page 70: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Applying the Hyperplane bound (II)

Uniform measure: µℓ(R) := |R∩Qℓ||Qℓ|

Main lemma

µ1(R) = 0 =⇒ µ3(R) ≤ O( 1k2) · µk(R) + 2−Ω(n)

RT

matchings

cuts

S

Technique: Partition scheme [Razborov ’91]

Page 71: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Partitions

RT

matchings

cuts

S

Partition T = (A,C,D,B)

Page 72: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Partitions

RT

matchings

cuts

S

Partition T = (A,C,D,B)

A

Page 73: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Partitions

RT

matchings

cuts

S

Partition T = (A,C,D,B)

A B

Page 74: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Partitions

RT

matchings

cuts

S

Partition T = (A,C,D,B)

A C B

k

Page 75: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Partitions

RT

matchings

cuts

S

Partition T = (A,C,D,B)

A C D B

k k

Page 76: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Partitions

RT

matchings

cuts

S

Partition T = (A,C,D,B)

A C D B

A1

. . .

Amk − 3nodes

k k

Page 77: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Partitions

RT

matchings

cuts

S

Partition T = (A,C,D,B)

A C D B

B1. . . BmA1

. . .

Amk − 3nodes

k k 2(k − 3)nodes

Page 78: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Partitions

RT

matchings

cuts

S

Partition T = (A,C,D,B)

Edges E(T )

A C D B

B1. . . BmA1

. . .

Amk − 3nodes

k k 2(k − 3)nodes

Page 79: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Partitions

RT

matchings

cuts

S

Partition T = (A,C,D,B)

Edges E(T )

A C D B

B1. . . BmA1

. . .

Amk − 3nodes

k k 2(k − 3)nodes

Page 80: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Partitions

RT

matchings

cuts

S

Partition T = (A,C,D,B)

Edges E(T )

A C D B

B1. . . BmA1

. . .

Amk − 3nodes

k k 2(k − 3)nodes

U

Page 81: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Rewriting µ3(R)

RRT

matchings

cuts

S

Randomly generate (U,M) ∼ Q3:

µ3(R) =

Page 82: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Rewriting µ3(R)

RRT

matchings

cuts

S

A C D B

B1. . . BmA1

. . .

Am

Randomly generate (U,M) ∼ Q3:

1. Choose T

µ3(R) = ET

[ ]

Page 83: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Rewriting µ3(R)

RRT

matchings

cuts

S

A C D B

B1. . . BmA1

. . .

Am

H

Randomly generate (U,M) ∼ Q3:

1. Choose T2. Choose 3 edges H ⊆ C ×D

µ3(R) = ET

[

E|H|=3

[ ]]

Page 84: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Rewriting µ3(R)

RRT

matchings

cuts

S

A C D B

B1. . . BmA1

. . .

Am

H

Randomly generate (U,M) ∼ Q3:

1. Choose T2. Choose 3 edges H ⊆ C ×D3. Choose M ⊇ H (not cutting any other edge in C ×D)

µ3(R) = ET

[

E|H|=3

[ ]]

Page 85: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Rewriting µ3(R)

RRT

matchings

cuts

S

A C D B

B1. . . Bm

U

A1

. . .

Am

H

Randomly generate (U,M) ∼ Q3:

1. Choose T2. Choose 3 edges H ⊆ C ×D3. Choose M ⊇ H (not cutting any other edge in C ×D)4. Choose U cutting H (not cutting any Ai)

µ3(R) = ET

[

E|H|=3

[

Pr[(U,M) ∈ R | T,H]]]

Page 86: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Rewriting µ3(R)

RRT

matchings

cuts

S

A C D B

B1. . . Bm

U

A1

. . .

Am

H

Randomly generate (U,M) ∼ Q3:

1. Choose T2. Choose 3 edges H ⊆ C ×D3. Choose M ⊇ H (not cutting any other edge in C ×D)4. Choose U cutting H (not cutting any Ai)

µ3(R) = ET

[

E|H|=3

[

Pr[U ∈ R | T,H] · Pr[M ∈ R | T,H]]]

Page 87: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Rewriting µk(R)

RRT

matchings

cuts

S

Randomly generate (U,M) ∼ Qk:

µk(R) =

Page 88: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Rewriting µk(R)

RRT

matchings

cuts

S

A C D B

B1. . . BmA1

. . .

Am

Randomly generate (U,M) ∼ Qk:

1. Choose T

µk(R) = ET

[ ]

Page 89: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Rewriting µk(R)

RRT

matchings

cuts

S

A C D B

B1. . . BmA1

. . .

Am

F

Randomly generate (U,M) ∼ Qk:

1. Choose T2. Choose k edges F ⊆ C ×D

µk(R) = ET

[

E|F |=k

[ ]]

Page 90: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Rewriting µk(R)

RRT

matchings

cuts

S

A C D B

B1. . . BmA1

. . .

Am

F

Randomly generate (U,M) ∼ Qk:

1. Choose T2. Choose k edges F ⊆ C ×D3. Choose M ⊇ F

µk(R) = ET

[

E|F |=k

[

Pr[M ∈ R | T,H]]]

Page 91: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Rewriting µk(R)

RRT

matchings

cuts

S

A C D B

B1. . . Bm

U

A1

. . .

Am

F

Randomly generate (U,M) ∼ Qk:

1. Choose T2. Choose k edges F ⊆ C ×D3. Choose M ⊇ F4. Choose U ⊇ C (not cutting any Ai)

µk(R) = ET

[

E|F |=k

[

Pr[M ∈ R | T,H] · Pr[U ∈ R | T,H]]]

Page 92: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Pseudorandom-behaviour of large sets

Consider vectors X ⊆ [q]n.

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1 2 . . . n

Page 93: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Pseudorandom-behaviour of large sets

Consider vectors X ⊆ [q]n.

Draw x ∼ X.

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1 2 . . . n

Page 94: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Pseudorandom-behaviour of large sets

Consider vectors X ⊆ [q]n.

Draw x ∼ X.

i

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1 2 . . . n

Page 95: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Pseudorandom-behaviour of large sets

Consider vectors X ⊆ [q]n.

Draw x ∼ X.

i

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1 2 . . . n

2

..

1

..

q

1

..

Page 96: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Pseudorandom-behaviour of large sets

Consider vectors X ⊆ [q]n.

Draw x ∼ X.

i

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1 2 . . . n

1

..

q

2

..

q

1

Page 97: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Pseudorandom-behaviour of large sets

Consider vectors X ⊆ [q]n.

Draw x ∼ X.

Lemma

|X| large ⇒ for most indices xi is approx. uniform

i

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1 2 . . . n

1

..

q

2

..

q

1

Page 98: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Pseudorandom-behaviour of large sets

Consider vectors X ⊆ [q]n.

Draw x ∼ X.

Lemma

εn biased indices ⇒ |X|qn ≤ 2−Ω(n).

i

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1 2 . . . n

1

..

q

2

..

q

1

Page 99: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Pseudorandom-behaviour of large sets

Consider vectors X ⊆ [q]n.

Draw x ∼ X.

Lemma

εn biased indices ⇒ |X|qn ≤ 2−Ω(n).

log2(|X|) = H(x)

i

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1 2 . . . n

1

..

q

2

..

q

1

Page 100: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Pseudorandom-behaviour of large sets

Consider vectors X ⊆ [q]n. Draw x ∼ X.

Lemma

εn biased indices ⇒ |X|qn ≤ 2−Ω(n).

log2(|X|) = H(x) ≤n∑

i=1

H(xi)

i

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1 2 . . . n

1

..

q

2

..

q

1

Page 101: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Pseudorandom-behaviour of large sets

Consider vectors X ⊆ [q]n.

Draw x ∼ X.

Lemma

εn biased indices ⇒ |X|qn ≤ 2−Ω(n).

log2(|X|) = H(x) ≤∑

i biased

H(xi) +∑

i unbiased

H(xi)

i

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1 2 . . . n

1

..

q

2

..

q

1

Page 102: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Pseudorandom-behaviour of large sets

Consider vectors X ⊆ [q]n. Draw x ∼ X.

Lemma

εn biased indices ⇒ |X|qn ≤ 2−Ω(n).

log2(|X|) = H(x) ≤∑

i biased

H(xi)︸ ︷︷ ︸

≤log2(q)−Θ(1)

+∑

i unbiased

H(xi)︸ ︷︷ ︸

≤log2(q)

i

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1 2 . . . n

1

..

q

2

..

q

1

Page 103: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Pseudorandom-behaviour of large sets

Consider vectors X ⊆ [q]n. Draw x ∼ X.

Lemma

εn biased indices ⇒ |X|qn ≤ 2−Ω(n).

log2(|X|) = H(x) ≤∑

i biased

H(xi)︸ ︷︷ ︸

≤log2(q)−Θ(1)

+∑

i unbiased

H(xi)︸ ︷︷ ︸

≤log2(q)

i

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1 2 . . . n

1

..

q

2

..

q

1

0

1

0 0.5 1.0

Entropy for q = 2

p

Page 104: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Pseudorandom-behaviour of large sets

Consider vectors X ⊆ [q]n. Draw x ∼ X.

Lemma

εn biased indices ⇒ |X|qn ≤ 2−Ω(n).

log2(|X|) = H(x) ≤∑

i biased

H(xi)︸ ︷︷ ︸

≤log2(q)−Θ(1)

+∑

i unbiased

H(xi)︸ ︷︷ ︸

≤log2(q)

≤ n log2(q)−Ω(n)

i

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1

2

..

q

1 2 . . . n

1

..

q

2

..

q

1

0

1

0 0.5 1.0

Entropy for q = 2

p

Page 105: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Pseudorandom-behaviour of large sets

Consider vectors X ⊆ [q]n.

Draw x ∼ X.

Lemma

εn biased indices ⇒ |X|qn ≤ 2−Ω(n).

log2(|X|) = H(x) ≤∑

i biased

H(xi)︸ ︷︷ ︸

≤log2(q)−Θ(1)

+∑

i unbiased

H(xi)︸ ︷︷ ︸

≤log2(q)

≤ n log2(q)−Ω(n)

Corollary

If X large, then for most i

Prx∼[q]n

[x ∈ X] ≈ Prx∼[q]n

[x ∈ X | xi = j]

Page 106: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

M-good

Definition

(T,H) M-good if M ∼ M ∈ R | H ⊆ M ⊆ E(T ) is ε-uniformon (C ∪D)\V (H).

A C D B

B1. . . BmA1

. . .

Am

H

Page 107: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

M-good

Definition

(T,H) M-good if M ∼ M ∈ R | H ⊆ M ⊆ E(T ) is ε-uniformon (C ∪D)\V (H).

A C D B

B1. . . BmA1

. . .

Am

H

Page 108: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

M-good

Definition

(T,H) M-good if M ∼ M ∈ R | H ⊆ M ⊆ E(T ) is ε-uniformon (C ∪D)\V (H).

A C D B

B1. . . BmA1

. . .

Am

H

Page 109: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

U-good

A C D B

B1. . . BmA1

. . .

Am

H

Page 110: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

U-good

c

A C D B

B1. . . BmA1

. . .

Am

H

Page 111: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

U-good

Definition

(T,H) U-good if U ∼ U ∈ R | c ⊆ U ; doesn’t cut any Ai hasPr[U ∩ C = c] ≈ 1

2 ≈ Pr[U ∩ C = C].

c

A C D B

B1. . . BmA1

. . .

Am

H

Page 112: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

U-good

Definition

(T,H) U-good if U ∼ U ∈ R | c ⊆ U ; doesn’t cut any Ai hasPr[U ∩ C = c] ≈ 1

2 ≈ Pr[U ∩ C = C].

c

A C D B

B1. . . Bm

U

A1

. . .

Am

H

Page 113: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

U-good

Definition

(T,H) U-good if U ∼ U ∈ R | c ⊆ U ; doesn’t cut any Ai hasPr[U ∩ C = c] ≈ 1

2 ≈ Pr[U ∩ C = C].

c

A C D B

B1. . . BmA1

. . .

Am

H

Page 114: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Splitting µ3(R)

µ3(R)

Page 115: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Splitting µ3(R)

µ3(R) = ET

[

E|H|=3

[Pr[(U,M) ∈ R | T,H]

]]

Page 116: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Splitting µ3(R)

µ3(R) = ET

[

E|H|=3

[Pr[(U,M) ∈ R | T,H]

]]

≤ ET

[

E|H|=3

[

GOOD(T,H) · Pr[(U,M) ∈ R | T,H]]]

+ ET

[

E|H|=3

[

M−BAD(T,H) · Pr[(U,M) ∈ R | T,H]]]

+ ET

[

E|H|=3

[

U−BAD(T,H) · Pr[(U,M) ∈ R | T,H]]]

Page 117: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Splitting µ3(R)

µ3(R) = ET

[

E|H|=3

[Pr[(U,M) ∈ R | T,H]

]]

≤ ET

[

E|H|=3

[

GOOD(T,H) · Pr[(U,M) ∈ R | T,H]]]

+ ET

[

E|H|=3

[

M−BAD(T,H) · Pr[(U,M) ∈ R | T,H]]]

+ ET

[

E|H|=3

[

U−BAD(T,H) · Pr[(U,M) ∈ R | T,H]]]

≤ O( 1k2)µk(R)

Page 118: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Splitting µ3(R)

µ3(R) = ET

[

E|H|=3

[Pr[(U,M) ∈ R | T,H]

]]

≤ ET

[

E|H|=3

[

GOOD(T,H) · Pr[(U,M) ∈ R | T,H]]]

+ ET

[

E|H|=3

[

M−BAD(T,H) · Pr[(U,M) ∈ R | T,H]]]

+ ET

[

E|H|=3

[

U−BAD(T,H) · Pr[(U,M) ∈ R | T,H]]]

≤ O( 1k2)µk(R)

≤ ε · µ3(R) + 2−Ω(n)

Page 119: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Splitting µ3(R)

µ3(R) = ET

[

E|H|=3

[Pr[(U,M) ∈ R | T,H]

]]

≤ ET

[

E|H|=3

[

GOOD(T,H) · Pr[(U,M) ∈ R | T,H]]]

+ ET

[

E|H|=3

[

M−BAD(T,H) · Pr[(U,M) ∈ R | T,H]]]

+ ET

[

E|H|=3

[

U−BAD(T,H) · Pr[(U,M) ∈ R | T,H]]]

≤ O( 1k2)µk(R)

≤ ε · µ3(R) + 2−Ω(n)

≤ ε · µ3(R) + 2−Ω(n)

Page 120: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Contribution of good partitions

For T

B1. . . BmA1

. . .

Am

Page 121: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Contribution of good partitions

For T and F ⊆ C ×D with |F | = k compare: Contribution to µk(R):

B1. . . BmA1

. . .

AmF

Page 122: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Contribution of good partitions

For T and F ⊆ C ×D with |F | = k compare: Contribution to µk(R):

B1. . . BmA1

. . .

AmF

Page 123: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Contribution of good partitions

For T and F ⊆ C ×D with |F | = k compare: Contribution to µk(R): Pr[(U,M) ∈ R | T, F ]

B1. . . BmA1

. . .

AmF

Page 124: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Contribution of good partitions

For T and F ⊆ C ×D with |F | = k compare: Contribution to µk(R): Pr[(U,M) ∈ R | T, F ] Contribution to µ3(R):

B1. . . BmA1

. . .

AmF

Page 125: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Contribution of good partitions

For T and F ⊆ C ×D with |F | = k compare: Contribution to µk(R): Pr[(U,M) ∈ R | T, F ] Contribution to µ3(R):

E

H∼(F3)[GOOD(T,H)·Pr[(U,M) ∈ R | T,H]]

B1. . . BmA1

. . .

AmF

H

Page 126: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Contribution of good partitions

For T and F ⊆ C ×D with |F | = k compare: Contribution to µk(R): Pr[(U,M) ∈ R | T, F ] Contribution to µ3(R):

E

H∼(F3)[GOOD(T,H)·Pr[(U,M) ∈ R | T,H]] . Pr[. . . | T, F ]· Pr

H∼(F3)[GOOD(T,H)]

︸ ︷︷ ︸

=O(1/k2)

B1. . . BmA1

. . .

AmF

H

Page 127: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Contribution of good partitions

For T and F ⊆ C ×D with |F | = k compare: Contribution to µk(R): Pr[(U,M) ∈ R | T, F ] Contribution to µ3(R):

E

H∼(F3)[GOOD(T,H)·Pr[(U,M) ∈ R | T,H]] . Pr[. . . | T, F ]· Pr

H∼(F3)[GOOD(T,H)]

︸ ︷︷ ︸

=O(1/k2)

B1. . . BmA1

. . .

AmF

H

Page 128: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Contribution of good partitions

For T and F ⊆ C ×D with |F | = k compare: Contribution to µk(R): Pr[(U,M) ∈ R | T, F ] Contribution to µ3(R):

E

H∼(F3)[GOOD(T,H)·Pr[(U,M) ∈ R | T,H]] . Pr[. . . | T, F ]· Pr

H∼(F3)[GOOD(T,H)]

︸ ︷︷ ︸

=O(1/k2)

Suffices to show: H,H∗ ⊆ F good ⇒ |H ∩H∗| ≥ 2

B1. . . BmA1

. . .

AmF

H

Page 129: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Contribution of good partitions

For T and F ⊆ C ×D with |F | = k compare: Contribution to µk(R): Pr[(U,M) ∈ R | T, F ] Contribution to µ3(R):

E

H∼(F3)[GOOD(T,H)·Pr[(U,M) ∈ R | T,H]] . Pr[. . . | T, F ]· Pr

H∼(F3)[GOOD(T,H)]

︸ ︷︷ ︸

=O(1/k2)

Suffices to show: H,H∗ ⊆ F good ⇒ |H ∩H∗| ≥ 2

Suppose |H ∩H∗| ≤ 1B1

. . . BmA1

. . .

Am

H

H∗

Page 130: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Contribution of good partitions

For T and F ⊆ C ×D with |F | = k compare: Contribution to µk(R): Pr[(U,M) ∈ R | T, F ] Contribution to µ3(R):

E

H∼(F3)[GOOD(T,H)·Pr[(U,M) ∈ R | T,H]] . Pr[. . . | T, F ]· Pr

H∼(F3)[GOOD(T,H)]

︸ ︷︷ ︸

=O(1/k2)

Suffices to show: H,H∗ ⊆ F good ⇒ |H ∩H∗| ≥ 2

Suppose |H ∩H∗| ≤ 1

(T,H) good⇒ ∃M : u, v ∈ M

B1. . . BmA1

. . .

Am

H

H∗u

v

Page 131: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Contribution of good partitions

For T and F ⊆ C ×D with |F | = k compare: Contribution to µk(R): Pr[(U,M) ∈ R | T, F ] Contribution to µ3(R):

E

H∼(F3)[GOOD(T,H)·Pr[(U,M) ∈ R | T,H]] . Pr[. . . | T, F ]· Pr

H∼(F3)[GOOD(T,H)]

︸ ︷︷ ︸

=O(1/k2)

Suffices to show: H,H∗ ⊆ F good ⇒ |H ∩H∗| ≥ 2

Suppose |H ∩H∗| ≤ 1

(T,H) good⇒ ∃M : u, v ∈ M

(T,H∗) good⇒ ∃U : u, v ∈ U

B1. . . BmA1

. . .

Am

H

H∗u

v

Page 132: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Contribution of good partitions

For T and F ⊆ C ×D with |F | = k compare: Contribution to µk(R): Pr[(U,M) ∈ R | T, F ] Contribution to µ3(R):

E

H∼(F3)[GOOD(T,H)·Pr[(U,M) ∈ R | T,H]] . Pr[. . . | T, F ]· Pr

H∼(F3)[GOOD(T,H)]

︸ ︷︷ ︸

=O(1/k2)

Suffices to show: H,H∗ ⊆ F good ⇒ |H ∩H∗| ≥ 2

Suppose |H ∩H∗| ≤ 1

(T,H) good⇒ ∃M : u, v ∈ M

(T,H∗) good⇒ ∃U : u, v ∈ U

|δ(U) ∩M | = 1Contradiction!

B1. . . BmA1

. . .

Am

H

u

v

Page 133: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Most partitions are good

Lemma

Pr[(T,H) is M -bad] ≤ ε

Page 134: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Most partitions are good

Lemma

Pr[(T,H) is M -bad] ≤ ε

Pick H

H

Page 135: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Most partitions are good

Lemma

Pr[(T,H) is M -bad] ≤ ε

Pick H, A

A

A1

. . .

Am

H

Page 136: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Most partitions are good

Lemma

Pr[(T,H) is M -bad] ≤ ε

Pick H, A, B1, . . . , Bm+1.

A B1 B2. . . Bm+1

A1

. . .

Am

H

Page 137: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Most partitions are good

Lemma

Pr[(T,H) is M -bad] ≤ ε

Pick H, A, B1, . . . , Bm+1. Split Bi = Ci∪Di.

A B1 B2. . . Bm+1

C2

D2

. . .

. . .

Cm+1

Dm+1

A1

. . .

Am

H

Page 138: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Most partitions are good

Lemma

Pr[(T,H) is M -bad] ≤ ε

Pick H, A, B1, . . . , Bm+1. Split Bi = Ci∪Di. Pick randomly i ∈ 1, . . . ,m

A B1 B2. . . Bm+1

C2

D2

. . .

. . .

Cm+1

Dm+1

A1

. . .

Am

H

i

Page 139: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Most partitions are good

Lemma

Pr[(T,H) is M -bad] ≤ ε

Pick H, A, B1, . . . , Bm+1. Split Bi = Ci∪Di. Pick randomly i ∈ 1, . . . ,m and let C := Ci, D := Di

A C D B1. . . Bm

A1

. . .

Am

H

Page 140: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Open problems

Open problem

Show that there is no small SDP representing theCorrelation/TSP/matching polytope!

Page 141: The matching polytope has exponential extension complexityRothvoss/Slides/Matchingpolytope-slides.pdf[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12] n1/2−ε-apx for clique polytope

Open problems

Open problem

Show that there is no small SDP representing theCorrelation/TSP/matching polytope!

Thanks for your attention