The Main Mode of Galaxy/Star Formation? Avishai Dekel, HU Jerusalem Leiden, September 2008 HU Flow...

34
The Main Mode of Galaxy/Star Formation ? Avishai Dekel, HU Jerusalem Leiden, September 2008 HU Flow Team Birnboim, Freundlich, Goerdt, Neistein, Zinger Simulatio ns Teyssier, Pichon, Kravtsov Massive Disk Buildup & Breakup by Cold Streams at z=2-3

Transcript of The Main Mode of Galaxy/Star Formation? Avishai Dekel, HU Jerusalem Leiden, September 2008 HU Flow...

Page 1: The Main Mode of Galaxy/Star Formation? Avishai Dekel, HU Jerusalem Leiden, September 2008 HU Flow Team Birnboim, Freundlich, Goerdt, Neistein, Zinger.

The Main Mode of Galaxy/Star Formation?

Avishai Dekel, HU JerusalemLeiden, September 2008

HU Flow Team Birnboim, Freundlich, Goerdt, Neistein, Zinger

Simulations Teyssier, Pichon, Kravtsov

Massive Disk Buildup & Breakup by Cold Streams at

z=2-3

Page 2: The Main Mode of Galaxy/Star Formation? Avishai Dekel, HU Jerusalem Leiden, September 2008 HU Flow Team Birnboim, Freundlich, Goerdt, Neistein, Zinger.

Outline

• Massive galaxies at high z: ‘’narrow cold streams through hot halos

• Inflow rate into the halo and into the disk

• Smooth flows vs Mergers

• High-SFR galaxies at z=2-3

• Disk breakup and bulge formation

Page 3: The Main Mode of Galaxy/Star Formation? Avishai Dekel, HU Jerusalem Leiden, September 2008 HU Flow Team Birnboim, Freundlich, Goerdt, Neistein, Zinger.

Shock-Heating Scale

Mvir [Mʘ]

Birnboim & Dekel 03 Dekel & Birnboim 06

stable shock

unstable shock

typical halos

6x1011

Keres et al 05

Page 4: The Main Mode of Galaxy/Star Formation? Avishai Dekel, HU Jerusalem Leiden, September 2008 HU Flow Team Birnboim, Freundlich, Goerdt, Neistein, Zinger.

Gas through shock: heats to virial temperaturecompression on a dynamical timescale versus radiative cooling timescale

t cool−1 t compress

−1

Shock-stability analysis (Birnboim & Dekel 03): post-shock pressure vs. gravitational collapse

t compress≡215ρρ≈4

3

RsV

Page 5: The Main Mode of Galaxy/Star Formation? Avishai Dekel, HU Jerusalem Leiden, September 2008 HU Flow Team Birnboim, Freundlich, Goerdt, Neistein, Zinger.

Libeskind, Birnboim, Dekel 08

d(Entropy)/dt

A virial shock in a 3D cosmological simulation: at Mcrit – rapid expansion from the

inner halo to Rvir

Page 6: The Main Mode of Galaxy/Star Formation? Avishai Dekel, HU Jerusalem Leiden, September 2008 HU Flow Team Birnboim, Freundlich, Goerdt, Neistein, Zinger.

At High z, in Massive Halos: Cold Streams in

Hot Halos

Totally hot at z<1

in M>Mshock

Cold streams at z>2

shock

no shock

coolingDekel &

Birnboim 2006

Page 7: The Main Mode of Galaxy/Star Formation? Avishai Dekel, HU Jerusalem Leiden, September 2008 HU Flow Team Birnboim, Freundlich, Goerdt, Neistein, Zinger.

density

Temperature

adiabatic infall

shock-heate

d

cold flows

disk

Analysis of Eulerian hydro simulations by Birnboim, Zinger, Dekel, Kravtsov

Mass Distribution of Halo Gas

Page 8: The Main Mode of Galaxy/Star Formation? Avishai Dekel, HU Jerusalem Leiden, September 2008 HU Flow Team Birnboim, Freundlich, Goerdt, Neistein, Zinger.

M*

Mvir [Mʘ]

all hot

1014

1013

1012

1011

1010

109

0 1 2 3 4 5 redshift z

all cold

cold filamentsin hot medium

MshockMshock>>M*

Mshock~M

*

Cold Streams in Big Galaxies at High z

Dekel & Birnboim 06 Fig. 7

Page 9: The Main Mode of Galaxy/Star Formation? Avishai Dekel, HU Jerusalem Leiden, September 2008 HU Flow Team Birnboim, Freundlich, Goerdt, Neistein, Zinger.

the millenium cosmological simulation

high-sigma halos: fed by relatively thin, dense filaments → cold narrow streams

typical halos: reside in relatively thick filaments, fed ~spherically → no cold streams

Page 10: The Main Mode of Galaxy/Star Formation? Avishai Dekel, HU Jerusalem Leiden, September 2008 HU Flow Team Birnboim, Freundlich, Goerdt, Neistein, Zinger.

Ms~M*

Ms>>M*

Large-scale filaments grow self-similarly with M*(t) and always have typical width ~R* ∝M*

1/3

At high z, Mshock halos are high-σ peaks: they are fed by a few thinner filaments of higher density

Origin of dense filaments in hot halos (M≥Mshock)at high z

At low z, Mshock halos are typical: they reside in thicker filaments of comparable density

Page 11: The Main Mode of Galaxy/Star Formation? Avishai Dekel, HU Jerusalem Leiden, September 2008 HU Flow Team Birnboim, Freundlich, Goerdt, Neistein, Zinger.

Gas Density in Massive Halos 2x1012Mʘ

Ocvirk, Pichon, Teyssier 08

high z low z

M=1012Mʘ

M=1012Mʘ

Page 12: The Main Mode of Galaxy/Star Formation? Avishai Dekel, HU Jerusalem Leiden, September 2008 HU Flow Team Birnboim, Freundlich, Goerdt, Neistein, Zinger.

Critical Mass in Cosmological Simulations

Ocvirk, Pichon, Teyssier 08

Mstream

Mshock

DB06cold filamentsin hot medium

Page 13: The Main Mode of Galaxy/Star Formation? Avishai Dekel, HU Jerusalem Leiden, September 2008 HU Flow Team Birnboim, Freundlich, Goerdt, Neistein, Zinger.

Massive high-z disks by cold narrow streams

Dekel et al. 2008, Nature

MareNostrum AMR simulation 50 Mpc cosmological box 1 kpc resolution Ocvirk, Pichon, Teyssier 2008

Mvir=1012Mʘ at z=2.5

Page 14: The Main Mode of Galaxy/Star Formation? Avishai Dekel, HU Jerusalem Leiden, September 2008 HU Flow Team Birnboim, Freundlich, Goerdt, Neistein, Zinger.

Gas density following dark-matter filaments

Page 15: The Main Mode of Galaxy/Star Formation? Avishai Dekel, HU Jerusalem Leiden, September 2008 HU Flow Team Birnboim, Freundlich, Goerdt, Neistein, Zinger.

Entropy: virial shock & low-entropy streams

log T / ρ2/ 3

Page 16: The Main Mode of Galaxy/Star Formation? Avishai Dekel, HU Jerusalem Leiden, September 2008 HU Flow Team Birnboim, Freundlich, Goerdt, Neistein, Zinger.

Inward gas flux: all in the streams

m= ρ v r r2 [ M⊗ yr−1 rad−2 ].

Page 17: The Main Mode of Galaxy/Star Formation? Avishai Dekel, HU Jerusalem Leiden, September 2008 HU Flow Team Birnboim, Freundlich, Goerdt, Neistein, Zinger.

Another example

Always 3 streams?

Page 18: The Main Mode of Galaxy/Star Formation? Avishai Dekel, HU Jerusalem Leiden, September 2008 HU Flow Team Birnboim, Freundlich, Goerdt, Neistein, Zinger.

Flux per solid angle

Page 19: The Main Mode of Galaxy/Star Formation? Avishai Dekel, HU Jerusalem Leiden, September 2008 HU Flow Team Birnboim, Freundlich, Goerdt, Neistein, Zinger.

Flux per solid angle

Page 20: The Main Mode of Galaxy/Star Formation? Avishai Dekel, HU Jerusalem Leiden, September 2008 HU Flow Team Birnboim, Freundlich, Goerdt, Neistein, Zinger.

Average Assembly Rate into Rvir by

EPSNeistein, van den Bosch, Dekel 06; Birnboim, Dekel, Neistein 07; Neistein & Dekel 07, 08

⟨ M b⟩ vir≈6 . 6 M Θ yr−1 M 12

1 . 15 1z 2. 25 f 0. 165

d ln Mdω

≈ − 2/ π 1/ 2 σ 2 M / q −σ2 M −1/ 2

ω≡δ c

D t q≈2. 2

Growth rate of main progenitor (time invariant):

Approximate for LCDM

M=2x1012Mʘ z=2.2 dM/dt ~ ~ 200 Mʘyr-

1

May explain high-SFR galaxies if - a similar flux penetrates to the disk - it is gas rich - SFR follows rapidly

Page 21: The Main Mode of Galaxy/Star Formation? Avishai Dekel, HU Jerusalem Leiden, September 2008 HU Flow Team Birnboim, Freundlich, Goerdt, Neistein, Zinger.

Inflow Rate into the Disk

At z~~2-3, M~~1012Mʘ, the input rate into the disk is comparable to the infall rate into the virial shock, most of it along narrow streams

Page 22: The Main Mode of Galaxy/Star Formation? Avishai Dekel, HU Jerusalem Leiden, September 2008 HU Flow Team Birnboim, Freundlich, Goerdt, Neistein, Zinger.

Conditional Distribution of Gas Inflow Rate

mergers >1:10

⟨ M b⟩ ≈6 . 6 M Θ yr−1 M 12

1. 15 1z 2 . 25

P M ∣ M

smooth flows

Page 23: The Main Mode of Galaxy/Star Formation? Avishai Dekel, HU Jerusalem Leiden, September 2008 HU Flow Team Birnboim, Freundlich, Goerdt, Neistein, Zinger.

n M =∫0

P M ∣ M n M dM

Assume scaling of P(Mdot|M)

M b≈6. 6 M Θ yr−1 M 12

1. 15 1z 2 . 25

P(M) by Sheth-Tormen

Comoving Number Density of Galaxies as a function of gas inflow

rate

Gas inflow rate > SFR but by a small margin SFR very efficient!

Star-Forming Gal’s

Sub-Millimeter Gal’s

SFR=

prediction, e.g., n=2x10-4 SFR<200

Page 24: The Main Mode of Galaxy/Star Formation? Avishai Dekel, HU Jerusalem Leiden, September 2008 HU Flow Team Birnboim, Freundlich, Goerdt, Neistein, Zinger.

Streams in 3D: partly clumpy

Page 25: The Main Mode of Galaxy/Star Formation? Avishai Dekel, HU Jerusalem Leiden, September 2008 HU Flow Team Birnboim, Freundlich, Goerdt, Neistein, Zinger.

Half the stream mass is in clump >1:10

Birnboim, Zinger, Dekel, Kravtsov

Page 26: The Main Mode of Galaxy/Star Formation? Avishai Dekel, HU Jerusalem Leiden, September 2008 HU Flow Team Birnboim, Freundlich, Goerdt, Neistein, Zinger.

Inflow Rate into the Disk

50% of the flux is in mergers > 1:10

but the duty cycle is < 10%

Page 27: The Main Mode of Galaxy/Star Formation? Avishai Dekel, HU Jerusalem Leiden, September 2008 HU Flow Team Birnboim, Freundlich, Goerdt, Neistein, Zinger.

n M =∫0

P M ∣ M n M dM

Fraction of Mergers

BzK/BX/BM are mostly mini-minor mergers <1:10, i.e. smooth flowsBright SMG are half-and-half mergers >1:10 and smooth flows

SFG: Stream-Fed Galaxies

At a given Mdot, 75% of the galaxies are fed by smooth flows

Page 28: The Main Mode of Galaxy/Star Formation? Avishai Dekel, HU Jerusalem Leiden, September 2008 HU Flow Team Birnboim, Freundlich, Goerdt, Neistein, Zinger.

Streams – Clumpy Disk - Bulge

One stream with impact parameter ~~ Rdisk

determines the disk spin, while other streams generate turbulence

The streams provide continuous rapid gas supply into a disk Jeans instabilityAt z>2, the streams maintain high dispersion:

Giant clumps. They interact, lose AM, and coalesce into a compact spheroid - “classical bulge” (Noguchi 99; Elmegreen, Bournaud, Elmegreen 08)

M V 2 t circ≈Mσ 2 σ2

V 2≈0 . 1

RJeans≈ 3σ 2

V 2 Rdisk

Page 29: The Main Mode of Galaxy/Star Formation? Avishai Dekel, HU Jerusalem Leiden, September 2008 HU Flow Team Birnboim, Freundlich, Goerdt, Neistein, Zinger.

merger

hhalos

accretion

disk

Old Paradigm

radiative cooling

cold

hot

cold gas young stars

spheroid

old stars

Page 30: The Main Mode of Galaxy/Star Formation? Avishai Dekel, HU Jerusalem Leiden, September 2008 HU Flow Team Birnboim, Freundlich, Goerdt, Neistein, Zinger.

hot halo

spheroidclumpy

disk

New Paradigm

z>2

clumpydisk

spheroid

cold streams

hot halo

thick disk

Mv>1012

z<1

new disk

Page 31: The Main Mode of Galaxy/Star Formation? Avishai Dekel, HU Jerusalem Leiden, September 2008 HU Flow Team Birnboim, Freundlich, Goerdt, Neistein, Zinger.

Detectable by absorption:

External source: c.d.>20 cm-2 at 30% sky coverage

Internal source: c.d.>21 cm-2 at 5% sky coverage

Column density of cold, in-streaming gas

Page 32: The Main Mode of Galaxy/Star Formation? Avishai Dekel, HU Jerusalem Leiden, September 2008 HU Flow Team Birnboim, Freundlich, Goerdt, Neistein, Zinger.

Here is what it should look like in Hα

Page 33: The Main Mode of Galaxy/Star Formation? Avishai Dekel, HU Jerusalem Leiden, September 2008 HU Flow Team Birnboim, Freundlich, Goerdt, Neistein, Zinger.

M*

Mvir [Mʘ]

all hot

1014

1013

1012

1011

1010

109

0 1 2 3 4 5 redshift z

all cold

cold filamentsin hot medium

MshockMshock>>M*

Mshock~M

*

When and where did most stars form?

Dekel & Birnboim 06

at z=2-3 in galaxies of ~~1011 Mʘ by cold streams

Page 34: The Main Mode of Galaxy/Star Formation? Avishai Dekel, HU Jerusalem Leiden, September 2008 HU Flow Team Birnboim, Freundlich, Goerdt, Neistein, Zinger.

Conclusions: SFG = Stream-Fed Galaxies

At z=2-3,=2-3, “disks” of ~~1011Mʘ grow rapidly via narrow cold gas streams through shock-heated halos

Penetration: disk input rate ~~ halo entry rate ~ 200 M~ 200 Mʘ ʘ yryr-1-1

Streams are half Streams are half clumps >1:10 and half smooth, merger duty cycle <0.1

Abundance: SFR>150 at n~~3x10-4 , SFR>500 at n~~6x10-5

Most sBzK/BX/BM are fed by smooth streams in halos 1012-13Mʘ

Half the SMG are mergers >1:10

At z>2, streams generate rotation & maintain gas-rich & turbulent disk giant clumps (1) SFR & (2) coalescence into a spheroid

The cold streams should be detectable at z>2 in absorption and emission (DLAS? Lyman-limit? Lyman-alpha emitters?)

Observed SFGs SFR must closely follow gas input rate