The Lifetime of Dust Disks Lynne Hillenbrand . . . . . . . . . . . Caltech

12
The Lifetime of Dust Disks Lynne Hillenbrand . . . . . . . . . . . Caltech

description

The Lifetime of Dust Disks Lynne Hillenbrand . . . . . . . . . . . Caltech. 10. 10 5 yr. Disk/wind. L star. 10 4 yr. Planet building. 10 7 yr. 10 9 yr. 1. Planetary system. 100 AU. Main sequence. Cloud collapse. 8,000. 5,000. 2,000. T star (K). - PowerPoint PPT Presentation

Transcript of The Lifetime of Dust Disks Lynne Hillenbrand . . . . . . . . . . . Caltech

Page 1: The  Lifetime  of Dust Disks Lynne Hillenbrand . . . . . . . . . . .   Caltech

The Lifetime of

Dust Disks

Lynne Hillenbrand. . . . . . . . . . .

Caltech

Page 2: The  Lifetime  of Dust Disks Lynne Hillenbrand . . . . . . . . . . .   Caltech

Star and planet formation/evolution

Cloud collapse

104 yr

Planetary system

109 yr

105 yr

100 AU

107 yr

Tstar (K)

Lstar

Main sequence

8,000 5,000

10

1

2,000

Disk/wind

Planet building

[Beckwith & Sargent 1996]

Page 3: The  Lifetime  of Dust Disks Lynne Hillenbrand . . . . . . . . . . .   Caltech

Before/during/afterprotostellar collapse

[Alves, Lada, Lada]

[B68]

[Padgett et al.]

[McCaughrean et al.; Stauffer et al.]

[04302+2247]

[ONC “proplyd”]

Page 4: The  Lifetime  of Dust Disks Lynne Hillenbrand . . . . . . . . . . .   Caltech

Not so much later: Debris disks

Page 5: The  Lifetime  of Dust Disks Lynne Hillenbrand . . . . . . . . . . .   Caltech

What is the difference between “primordial” and “debris” disks?

Primordial Debris

[Dullemond and Pontoppidian]

Page 6: The  Lifetime  of Dust Disks Lynne Hillenbrand . . . . . . . . . . .   Caltech

Spitzer legacy science:The formation and evolution of planetary systems

• Birth of planetary embryos:

Characterize transition from

primordial to debris dust disks.

• Growth of gas giant planets:

Constrain time scale for gas

disk dissipation.

• Mature solar system evolution:

Examine diversity of planetary

systems based on debris disks.

PO

ST A

CC

RE

TIO

ND

EB

RIS

DIK

S

ice

gian

t for

mat

ion

3 Myr – 3 Gyr

Page 7: The  Lifetime  of Dust Disks Lynne Hillenbrand . . . . . . . . . . .   Caltech

Evolution of our own dust disk in time

Model spectral energy distribution

Is our solar system

common

or

u n i q u e ?

[D. Backman]

Page 8: The  Lifetime  of Dust Disks Lynne Hillenbrand . . . . . . . . . . .   Caltech

Circumstellar disk and SED

In an observed SED, each wavelength traces a distinct temperature, and different temperatures correspond to different radii in disk (cooler at larger radii).

NIR MID FIR sub-m

0.1 1.0 10.0 – 40.0 100 AU

Temperature

1 10 100

Page 9: The  Lifetime  of Dust Disks Lynne Hillenbrand . . . . . . . . . . .   Caltech

Young (< 30 Myr) disks

NIR – MID

0.1 – <1.0 AU

A Spitzer instrument to detect these disks: IRAC (3.6 m, 4.5 m, 8.0 m)

Page 10: The  Lifetime  of Dust Disks Lynne Hillenbrand . . . . . . . . . . .   Caltech

Warm disks

MIR FIR

10.0 – 40.0

A Spitzer instrument to detect these disks: IRS (10 – 35 m)

Page 11: The  Lifetime  of Dust Disks Lynne Hillenbrand . . . . . . . . . . .   Caltech

Cold outer disks

FIR

~20 – 100 AU

A Spitzer Instrument to detectthese disks: MIPS (24 – 160 m)

Page 12: The  Lifetime  of Dust Disks Lynne Hillenbrand . . . . . . . . . . .   Caltech

Constraints on planet-formation time scales

Inner disk dissipationData suggest <3–10 Myr as maximum accretion disk lifetime. Typical lifetime for material at <0.1 AU is <3 Myr.

Mid-disk dissipationMaximum disk lifetime for terrestrial planet material at 1 AU is also <10 Myr. Compare with meteoritic evidence suggesting Earth formed in <10 Myr with moon-forming impact occurring at 30 Myr.

Outer disk dissipation and re-generationPrimordial disk lifetimes as yet unconstrained. Debris disk lifetimes consistent with expectations from self-sustaining collisional cascade.