The LCLS at SLAC Linac Coherent Light Source

38
The LCLS at SLAC The LCLS at SLAC Linac Coherent Light Source Linac Coherent Light Source J. B. Hastings J. B. Hastings (for the (for the LCLS LCLS group) group) January 31, 2007 January 31, 2007 LCLS LCLS UCLA UCLA LLNL LLNL ANL ANL

description

ANL. LLNL. UCLA. The LCLS at SLAC Linac Coherent Light Source. J. B. Hastings (for the LCLS group) January 31, 2007. LCLS. 2 compressors. one undulator. LCLS. X-FEL based on last 1-km of existing SLAC linac. 1.5-15 Å. Beam Transport from Linac Through X-Ray Halls. - PowerPoint PPT Presentation

Transcript of The LCLS at SLAC Linac Coherent Light Source

Page 1: The LCLS at SLAC Linac Coherent Light Source

The LCLS at SLACThe LCLS at SLACLinac Coherent Light SourceLinac Coherent Light Source

The LCLS at SLACThe LCLS at SLACLinac Coherent Light SourceLinac Coherent Light Source

J. B. HastingsJ. B. Hastings(for the (for the LCLSLCLS group) group)

January 31, 2007January 31, 2007

LCLSLCLSLCLSLCLSUCLAUCLALLNLLLNL

ANLANL

Page 2: The LCLS at SLAC Linac Coherent Light Source

X-FEL based on last 1-km of existing X-FEL based on last 1-km of existing SLACSLAC linac linac

LCLSLCLSLCLSLCLS

1.5-15 Å1.5-15 Å

one undulatorone undulator

2 compressors2 compressors

Page 3: The LCLS at SLAC Linac Coherent Light Source

Beam Transport from Linac Through X-Ray HallsBeam Transport from Linac Through X-Ray HallsBeam Transport HallBeam Transport Hall::227-m, above-grade 227-m, above-grade facility to transport facility to transport electron beamelectron beam

Undulator HallUndulator Hall::170-m, underground 170-m, underground tunnel housing tunnel housing undulatorsundulators Near Experimental HallNear Experimental Hall::

underground facility to underground facility to house 3 experimental house 3 experimental hutches, prep, and shopshutches, prep, and shops

X-Ray Trans. & Diag. TunnelX-Ray Trans. & Diag. Tunnel::210-m long underground tunnel to 210-m long underground tunnel to transport photon beams from NEH to FEHtransport photon beams from NEH to FEH

Far Experimental HallFar Experimental Hall::underground 46’ cavern underground 46’ cavern housing 3 experimental housing 3 experimental hutches and prep spacehutches and prep space

Electron Beam DumpElectron Beam Dump::40-m long underground 40-m long underground facility to separate facility to separate electron and x-ray beamselectron and x-ray beams

Front End EnclosureFront End Enclosure::40-m long underground facility 40-m long underground facility housing photon beamhousing photon beam diagnostic diagnostic equipmentequipment

Page 4: The LCLS at SLAC Linac Coherent Light Source

LCLSLCLS Parameters Parameters

Page 5: The LCLS at SLAC Linac Coherent Light Source

LCLSLCLS Accelerator Schematic Accelerator Schematic

SLAC linac tunnelSLAC linac tunnel research yardresearch yard

Linac-0Linac-0L L =6 m=6 m

Linac-1Linac-1L L 9 m9 m

rf rf 25°25°

Linac-2Linac-2L L 330 m330 mrf rf 41°41°

Linac-3Linac-3L L 550 m550 mrf rf 0° 0°

BC1BC1L L 6 m6 m

RR5656 39 mm39 mm

BC2BC2L L 22 m22 m

RR5656 25 mm25 mm DL2 DL2 L L =275 m=275 mRR56 56 0 0

DL1DL1L L 12 m12 mRR56 56 0 0

undulatorundulatorL L =130 m=130 m

6 MeV6 MeVz z 0.83 mm 0.83 mm 0.05 %0.05 %

135 MeV135 MeVz z 0.83 mm 0.83 mm 0.10 %0.10 %

250 MeV250 MeVz z 0.19 mm 0.19 mm 1.6 %1.6 %

4.30 GeV4.30 GeVz z 0.022 mm 0.022 mm 0.71 %0.71 %

13.6 GeV13.6 GeVz z 0.022 mm 0.022 mm 0.01 %0.01 %

Linac-Linac-XXL L =0.6 m=0.6 mrfrf= =

21-1b,c,d

...existinglinac

L0-a,b

rfrfgungun

21-3b24-6dX

25-1a30-8c

Commission in Jan. 2007Commission in Jan. 2007 Commission in Jan. 2008Commission in Jan. 2008

Page 6: The LCLS at SLAC Linac Coherent Light Source

LCLS Installation and Commissioning LCLS Installation and Commissioning Time-LineTime-Line

Oct. 19, 2006Oct. 19, 2006

AAAA SSSS OOOO NNNN DDDD JJJJ FFFF MMMM AAAA MMMM JJJJ JJJJ AAAA SSSS OOOO NNNN DDDD JJJJ FFFF MMMM AAAA MMMM JJJJ JJJJ

Drive-Laser Drive-Laser InstalledInstalled

Drive-Laser Drive-Laser Commissioning Commissioning

Gun/Inj./BC1 Gun/Inj./BC1 Commissioning Commissioning

Gun/Inj./BC1 Gun/Inj./BC1 InstallInstall

(8/21 – 2/20)(8/21 – 2/20)linac/BC2 linac/BC2

Install Install

Inj./Linac/BC2 Inj./Linac/BC2 Commissioning Commissioning

LTU/und. LTU/und. Install Install

2006200620062006 2007200720072007

LTU/und.LTU/und.hall “ready”hall “ready”

ControlsControlsCheckout Checkout

LTU/und. LTU/und. Commissioning Commissioning

First Spont. First Spont. LightLight

2008200820082008

Page 7: The LCLS at SLAC Linac Coherent Light Source

LCLS Installation and Commissioning LCLS Installation and Commissioning Time-LineTime-Line

Oct. 19, 2006Oct. 19, 2006

AAAA SSSS OOOO NNNN DDDD JJJJ FFFF MMMM AAAA MMMM JJJJ JJJJ AAAA SSSS OOOO NNNN DDDD JJJJ FFFF MMMM AAAA MMMM JJJJ JJJJ

Drive-Laser Drive-Laser InstalledInstalled

Drive-Laser Drive-Laser Commissioning Commissioning

Gun/Inj./BC1 Gun/Inj./BC1 Commissioning Commissioning

Gun/Inj./BC1 Gun/Inj./BC1 InstallInstall

(8/21 – 2/20)(8/21 – 2/20)linac/BC2 linac/BC2

Install Install

Inj./Linac/BC2 Inj./Linac/BC2 Commissioning Commissioning

LTU/und. LTU/und. Install Install

2006200620062006 2007200720072007

LTU/und.LTU/und.hall “ready”hall “ready”

ControlsControlsCheckout Checkout

LTU/und. LTU/und. Commissioning Commissioning

First Spont. First Spont. LightLight

2008200820082008

Page 8: The LCLS at SLAC Linac Coherent Light Source

Emittance Measurements with ‘Quad-Emittance Measurements with ‘Quad-Scan’ on OTR ScreenScan’ on OTR Screen

yy = 1.06 = 1.06 μμmm

OTR screenOTR screen

95%95%area cutarea cut

135 MeV, 1 nC, 100 A135 MeV, 1 nC, 100 AGaussian used only Gaussian used only as visual aid hereas visual aid here

Page 9: The LCLS at SLAC Linac Coherent Light Source

Projected Emittance Below 1 Projected Emittance Below 1 μμm at 0.7 nCm at 0.7 nC

xx = 0.76 = 0.76 μμmm

yy = 0.85 = 0.85 μμmm

QQ = 700 pC = 700 pC

Page 10: The LCLS at SLAC Linac Coherent Light Source

Emittance Measured Over 8 HoursEmittance Measured Over 8 Hours

0.7 nC, 135 MeV, 70 A0.7 nC, 135 MeV, 70 A

xx

yy

Page 11: The LCLS at SLAC Linac Coherent Light Source

Commissioning ResultsCommissioning Results

xx & & yy emittanceemittance 1.2 1.2 μμmm at at 1 nC1 nC charge (design) charge (design)

<1.5%<1.5% rms charge stability (design is 2%) rms charge stability (design is 2%)

Drive laser Drive laser 98%98% up-time with up-time with 500 500 μμJJ (250 design) (250 design)

Bunch compression in BC1 fully demonstratedBunch compression in BC1 fully demonstrated

Accelerated Accelerated LCLSLCLS beam to 16 GeV (13.6 design) beam to 16 GeV (13.6 design)

X-band & 2 RF deflectors both operationalX-band & 2 RF deflectors both operational

New RF performing within spec (New RF performing within spec (e.g.,e.g., <0.1º rms) <0.1º rms)

Feedback ON: launch, charge, energy, RF, & Feedback ON: launch, charge, energy, RF, & zz

Robust, high-quality RF gun demonstratedRobust, high-quality RF gun demonstrated

Page 12: The LCLS at SLAC Linac Coherent Light Source

Atomic, molecular and optical Atomic, molecular and optical science (AMOS)science (AMOS)

Nano-particle and single molecule Nano-particle and single molecule coherent x-ray imaging (CXI)coherent x-ray imaging (CXI)

Coherent-scattering studies of Coherent-scattering studies of nanoscale fluctuations (XCS)nanoscale fluctuations (XCS)

Diffraction studies of stimulated Diffraction studies of stimulated dynamics (pump-probe) (XPP)dynamics (pump-probe) (XPP)

High energy density science High energy density science (HEDS)(HEDS)

Aluminum plasma

10-4 10-2 1 102 104

classical plasma

dense plasma

high den. matter

G=1

Density (g/cm-

3)

G=10

G=100

t=0

t=

SLAC Report 611SLAC Report 611

Science OpportunitiesScience Opportunities

Page 13: The LCLS at SLAC Linac Coherent Light Source

Atomic, molecular, and optical (AMO) physicsAtomic, molecular, and optical (AMO) physics

Very-intense, ultrashort x-ray pulses will interact with matter in new ways.

Atomic strong-field effects may alter the properties of the materials.

Page 14: The LCLS at SLAC Linac Coherent Light Source

- Ip

1015 W/cm2

- Ip

1013 W/cm2

- Ip10x20 W/cm2

• Keldysh parameter <<1• Tunnel / over the barrier

ionisation• Ponderomotive energy 10 –

100 eV

• Keldysh parameter >>1• Multi-photon ionisation• Ponderomotive energy 10

meV

IR:Low frequency regime

VUV FEL:Intense photon source

XFEL FEL:Highly ionizing source

• Angstrom wavelength• Direct multiphoton ionisation• Secondary processes

Optical Frequency = (Ip/2Up)1/2 -1; Up=I/4ω2 (au) Tunneling Frequency

Low-Frequency Physics Low-Frequency Physics → High Frequency→ High Frequency

Page 15: The LCLS at SLAC Linac Coherent Light Source

•depth of field limit•lens-limited•direct

sample

Microscopy

light

lens

image

•No depth of field limit•No lens-limited•Computer-limited

Known: k-space amplitude: ISupport (outline of the object)

in real space s

Diffractiveimaging

Diffraction Microscopy

Coherent-light

CCD

Imaging with coherent x-raysImaging with coherent x-rays

Page 16: The LCLS at SLAC Linac Coherent Light Source

X-ray free-electron lasers may enable atomic-resolution imaging of X-ray free-electron lasers may enable atomic-resolution imaging of biological macromoleculesbiological macromolecules

Combine 10Combine 1055--101077 measurements measurements

ClassificationClassification AveragingAveraging OrientationOrientation ReconstructionReconstruction

Noisy diffraction patternNoisy diffraction pattern

10-fs 10-fs pulsepulse

Particle injectionParticle injection

One pulse, one One pulse, one measurementmeasurement

H. ChapmanH. Chapman

Page 17: The LCLS at SLAC Linac Coherent Light Source

Radiation damage Radiation damage interferes with atomic interferes with atomic positions and the positions and the atomic scattering atomic scattering factorsfactors

Janos HajduJanos Hajdu

Motivation for even Motivation for even shorter shorter xx-ray pulses-ray pulses

40%

30%

20%

15%

Relec

1010

1011

1012

1013

1014

1 10 100 1000

b Relectronic

Tolerable damage(single exposures)

Initial LCLSparameters

20% 30% 40%

tt /fsec /fsec

Further Further ee compression compression difficult:difficult:

Further Further ee compression compression difficult:difficult: CSR in bendsCSR in bends Undulator wakefieldsUndulator wakefields

Coulomb Explosion Coulomb Explosion of Lysozyme (50 fs) of Lysozyme (50 fs)

Page 18: The LCLS at SLAC Linac Coherent Light Source

First image reconstructed from an ultrafast FEL diffraction pattern First image reconstructed from an ultrafast FEL diffraction pattern

1st shot at full power

2nd shot at full power

Reconstructed Image – achieved diffraction limited resolution!

Wavelength = 32 nm

1 micron

1 micron

SEM of structure etched into silicon nitride membrane

Chapman et al. Nature Physics (2006)

Edge of membrane support also reconstructed

Page 19: The LCLS at SLAC Linac Coherent Light Source

1 LYSOZYME 5x5x5 LYSOZYMES

Nanocrystal of Nanocrystal of lysozymelysozyme

LCLS

Page 20: The LCLS at SLAC Linac Coherent Light Source

DynamicsDynamics

Silica: 2610 Å, ΔR/R=0.03, 10 vol% in glycerol, T=-13.6C, 56000 cp

V. Trappe and A. Robert

22µm direct illumination 1k x 1k CCD

1 MHz ADC

1 s exposure 4 s overhead

sample CCD

today: 1 s

Page 21: The LCLS at SLAC Linac Coherent Light Source

XPCS ScienceXPCS Science

LCLS ParametersTransverse Coherence

8 and 24 keV

High Time–average BrillianceRep. Rate 120 Hz

Dedicated 2D-Detector

Sequential ModeHigh Peak BrillianceShort pulse duration 100fs

Split & Delay

Page 22: The LCLS at SLAC Linac Coherent Light Source

Ultrafast XPCSUltrafast XPCS

Peak Brilliance & Pulse Duration

pulse duration < tC< several ns

Large Q’s accessible

Page 23: The LCLS at SLAC Linac Coherent Light Source

Split and DelaySplit and Delay

Provided by DESY/SLAC MoUPrototype existing Prototype existing

11stst Commissioning May 2007 Commissioning May 2007

pulse duration < delay < 3 ns pulse duration < delay < 3 ns

based on based on SiSi (511)(511) with with 22θθ = 90º= 90º

E=8.389 keVE=8.389 keV

Page 24: The LCLS at SLAC Linac Coherent Light Source

Traditional Pump-probe

Delay will be achieved by optical delay and/or RF phase shiftDelay will be achieved by optical delay and/or RF phase shiftResolution limited by LCLS/laser jitter ~ 1 ps limitResolution limited by LCLS/laser jitter ~ 1 ps limit

Page 25: The LCLS at SLAC Linac Coherent Light Source

Short Pulse Laser Excitation Impulsively Modifies Potential Energy Short Pulse Laser Excitation Impulsively Modifies Potential Energy SurfacesSurfaces

Non-thermal meltingNon-thermal meltingof InSb of InSb

Coherent phononsCoherent phononsin Biin Bi

Page 26: The LCLS at SLAC Linac Coherent Light Source

Ultrafast X-ray Scattering Provides Direct Access to Atomic Motion on Ultrafast X-ray Scattering Provides Direct Access to Atomic Motion on non-Equilibrium Potential Energy Surfacesnon-Equilibrium Potential Energy Surfaces……characterizes the shape of the potentialcharacterizes the shape of the potential

D.M. Fritz, et al. Science 315, 633 (2007).A. Lindenberg, et al. Science 308, 392 (2005).

Page 27: The LCLS at SLAC Linac Coherent Light Source

3-D x-ray tomographic

reconstruction of dynamic fracture

High brightness of LCLS will enable unique studies of High brightness of LCLS will enable unique studies of in situin situ material material failurefailure

Current: Post Processing x-ray scattering

• Diffraction lattice compression and phase change• SAXS sub-micron defect scattering• Diffuse dislocation content and lattice disorder

Shocked and incipiently fractured

single crystal Al slug

APSBeam

Future:Measure during pressure pulse

• LCLS will provide unprecedented fidelity to measure dynamics of the microstate with sub-picosecond resolution

Simulated x-ray scattering

Multiple and single bunch x-ray scattering from shock recovered samples in progress

LCLS

Part

icle

d

ata Free e-

Te

-300-200-100 0 100

LFCSLFCRPA Shift

Bound e-

Energy shift (eV)

-60 -40 -20 0

LFC

SLFC

RPA

Collecti

ve

R. LeeR. Lee

Page 28: The LCLS at SLAC Linac Coherent Light Source

These complement the standard instruments, e.g., VISAR and other optical

diagnostics

LCLS enables real-time, LCLS enables real-time, in situ in situ study of deformation at high pressure and study of deformation at high pressure and strain ratestrain rate

Current Status Simulation Classical scattering

• MD simulation of FCC copper

• X-ray diffraction image using LCLS probe of the (002) shows in situ stacking fault information

0

0

Diffuse scattering from stacking fault

Peak diffraction moves from 0,0 due to relaxation of lattice under pressure

Periodic features average distance between faults

Future with LCLS Unique capabilities

• Imaging capability•Point projection imaging

• Phase contrast • High resolution (sub-µm)

•Direct determination of density contrast

• Diffraction & scattering•Detection of high pressure phase

transitions

•Lattice structure, including dislocation & defects

• Liquid structure

• Electronic structure• Ionization

• Te, f(v)

Page 29: The LCLS at SLAC Linac Coherent Light Source

Attosecond PulsesAttosecond Pulses

SLAC Contacts:SLAC Contacts: P. Emma, Z. Huang, P. Emma, Z. Huang, et al.et al.

Impact:Impact: X-ray pulses 500 X-ray pulses 500 times shorter than times shorter than nominal LCLS nominal LCLS (2-fsec already in (2-fsec already in baseline)baseline)

Lag:Lag: 1 yr1 yr

Level:Level: StraightforwardStraightforward – – Spoiler wakefield Spoiler wakefield needs checkingneeds checking

Ref:Ref: PRL 92:074801,2004PRL 92:074801,2004, SLAC-PUB-10712SLAC-PUB-10712.

Parameters:Parameters:<400 attosecond pulses<400 attosecond pulses22101099 photons/pulse photons/pulse100 pC bunch charge100 pC bunch charge

22101099 photons photons

380 as380 as

BeBe foil foil in BC2 in BC2 chicanechicane

Page 30: The LCLS at SLAC Linac Coherent Light Source

100 m100 m

330 m330 m

62 m62 m

FF

TB

F

FT

B

-shi

eldi

ng-s

hiel

ding

535 m535 m

LCLSLCLS with Multiple Beamlines with Multiple Beamlines

Note: Design Hall A and Hall B compatible with LCLS II Expansion

Page 31: The LCLS at SLAC Linac Coherent Light Source

Multiple Undulators and Multiple Undulators and Fast Multi-Bunch SwitchingFast Multi-Bunch Switching

SLAC Contacts:SLAC Contacts: F.-J. Decker, P. Emma, F.-J. Decker, P. Emma, et al.et al.

Impact:Impact: Converts LCLS Converts LCLS into a user facility into a user facility with extended with extended wavelength range, wavelength range, shorter pulses, shorter pulses, and enhanced and enhanced power levelspower levels

Lag:Lag: ~10 yrs~10 yrs

Level:Level: ChallengingChallenging – – need multi-bunch need multi-bunch EE--compensation compensation (variable spacing)(variable spacing)

Ref:Ref: SLAC-PUB-10133.SLAC-PUB-10133.

Parameters:Parameters:1 to 60 bunches/RF pulse1 to 60 bunches/RF pulseUp to 8 undulatorsUp to 8 undulatorsWavelengths below 1 Wavelengths below 1 Å?Å?Pulse lengths to 1 fsecPulse lengths to 1 fsec

4.9 ns4.9 ns

up to 60 bunchesup to 60 bunches

(same again on North side)(same again on North side)

Page 32: The LCLS at SLAC Linac Coherent Light Source

13.6 GeV Long-13.6 GeV Long-Wavelength FELWavelength FEL

SLAC Contacts:SLAC Contacts: J. Arthur, J. Hastings, Z. Huang, PE J. Arthur, J. Hastings, Z. Huang, PE

Impact:Impact: Provide soft x-ray Provide soft x-ray FEL in addition to FEL in addition to hard x-rayshard x-rays

Lag:Lag: ~5 yrs~5 yrs

Level:Level: ModerateModerate

Ref:Ref: (none yet)(none yet) 1.5-15 1.5-15 ÅÅ

10-50 10-50 ÅÅ250 MeV250 MeV

Adjustable-Gap UndulatorAdjustable-Gap Undulator

Simultaneous Operation with 1.5-Simultaneous Operation with 1.5-ÅÅ, but ½-rate, but ½-rate

Parameters:Parameters:II =3.4 kA =3.4 kA1.2 mm-mrad emittance1.2 mm-mrad emittanceσσδδ = = 1x10 1x10-4-4

ββ = 25m= 25mλλuu = 10 cm = 10 cm

K = 5~12K = 5~12B= 0.53~1.28 TB= 0.53~1.28 Tλλrr = 10 -50 = 10 -50 ÅÅ

Page 33: The LCLS at SLAC Linac Coherent Light Source

X-FEL based on last 1-km of existing X-FEL based on last 1-km of existing SLACSLAC linac linac

LCLSLCLSLCLSLCLS

1.5-15 Å1.5-15 Å

one undulatorone undulator

2 compressors2 compressors

?

Page 34: The LCLS at SLAC Linac Coherent Light Source

LCLS Future Options:27 GeV, = 0.8 m, 6.0 kA:

14 GeV, = 1.2 m, 3.4 kA:

LCLS Future Options:27 GeV, = 0.8 m, 6.0 kA:

14 GeV, = 1.2 m, 3.4 kA:

The SLAC linac can explore and The SLAC linac can explore and reach the limits of FEL reach the limits of FEL performance:performance:

Peak brightnessPeak brightnessFluenceFluencePulse durationPulse duration

These limits are primarily These limits are primarily determined at LOW energy:determined at LOW energy:

GunGunBunch compressionBunch compression

This is an extraordinary scientific This is an extraordinary scientific opportunityopportunityNear- and long-term payoffNear- and long-term payoff

LCLSLCLS nom. nom.LCLSLCLS soft soft

XFELXFEL27 GeV 27 GeV LCLSLCLS

Photon EnergyPhoton Energy (eV) (eV)

Pea

k B

rig

htn

ess

Pea

k B

rig

htn

ess

(pho

t./s/

mra

d (

phot

./s/m

rad22 /

mm

/mm

22 /0.

1%-B

W)

/0.1

%-B

W)

Page 35: The LCLS at SLAC Linac Coherent Light Source

By-Pass Line to Long-By-Pass Line to Long-Wavelength FELWavelength FEL

SLAC Contacts:SLAC Contacts: J. Arthur, J. Hastings, Z. Huang, PE J. Arthur, J. Hastings, Z. Huang, PE

Impact:Impact: Provide soft x-ray Provide soft x-ray FEL in addition to FEL in addition to hard x-rays hard x-rays

Lag:Lag: ~5 yrs~5 yrs

Level:Level: Moderate Moderate (use (use ee++ PEP-II by-pass line)PEP-II by-pass line)

Ref:Ref: (none yet)(none yet)

Parameters:Parameters:

1.5-15 1.5-15 ÅÅ

10-50 10-50 ÅÅ

PEP-II PEP-II ee++

by-pass lineby-pass line

pulsed dipolespulsed dipoles

4.3 GeV4.3 GeV250 MeV250 MeV

Adjustable-Gap UndulatorAdjustable-Gap Undulator

Simultaneous Operation with 1.5-Simultaneous Operation with 1.5-ÅÅ, but ½-rate, but ½-rate

Possible after-burner undulator addedPossible after-burner undulator added

Possible locations:Possible locations:

Endstaion A or BEndstaion A or B

ESB

ESA

10-50 10-50 ÅÅ

Page 36: The LCLS at SLAC Linac Coherent Light Source

Circular Polarization for Circular Polarization for Soft x-raysSoft x-rays

Contacts:Contacts: Y. Ding, Z. Huang Y. Ding, Z. Huang

Impact: Impact: Provide variable Provide variable polarization in the polarization in the 1-5 nm wavelength 1-5 nm wavelength rangerange

Lag:Lag: ~5 yrs~5 yrs

Level:Level: ModerateModerate – new – new undulatorundulator

Ref:Ref: none yetnone yet

Parameters:Parameters:

Parameters:Parameters:Electron energy 4.3 GeVElectron energy 4.3 GeV1.2 mm-mrad emittance1.2 mm-mrad emittanceEnergy spread 1 MeVEnergy spread 1 MeVStandard LCLS undulatorStandard LCLS undulator

planar helical

~ 2 GW (linear polarized)~ 2 GW (linear polarized)

~ 20 GW (90% circular polarized)~ 20 GW (90% circular polarized)

Six 3.4m sectionsSix 3.4m sections Two sectionsTwo sections

Page 37: The LCLS at SLAC Linac Coherent Light Source

Two-Stage SASE FELTwo-Stage SASE FEL

Contacts:Contacts: C. Pellegrini C. Pellegrini

Impact: Impact: Short pulse, or Short pulse, or narrow bandwidth, narrow bandwidth, & wavelength is & wavelength is more stablemore stable

Lag:Lag: ~5 yrs~5 yrs

Level:Level: ModerateModerate – new – new undulator line or undulator line or upgradeupgrade

Ref:Ref: SLAC-PUB-9370SLAC-PUB-9370,TESLA-FEL-97-06E,TESLA-FEL-97-06E,SLAC-PUB-9633,SLAC-PUB-9633,SLAC-PUB-10310SLAC-PUB-10310

Parameters:Parameters:

30 fs30 fs

3030

Page 38: The LCLS at SLAC Linac Coherent Light Source

For For LCLSLCLS, slice emittance >, slice emittance > mm will not saturate FEL… will not saturate FEL…

SASE FEL is not forgivingSASE FEL is not forgiving — instead of mild luminosity loss, — instead of mild luminosity loss, power nearly switches power nearly switches OFFOFF

Final CommentsFinal Comments

courtesy S. Reiche

PP = = PP00

NN = 1.2 = 1.2 mm

PP = = PP00/100/100NN = 2.0 = 2.0 mm

electron beamelectron beam mustmust meet brightness requirementsmeet brightness requirements