THE INVERTERS

67
Digital Integrated Circuits © Prentice Hall 1995 Inverter Inverter THE INVERTERS

description

THE INVERTERS. DIGITAL GATES Fundamental Parameters. Functionality Reliability, Robustness Area Performance Speed (delay) Power Consumption Energy. Noise in Digital Integrated Circuits. DC Operation: Voltage Transfer Characteristic. Mapping between analog and digital signals. - PowerPoint PPT Presentation

Transcript of THE INVERTERS

Page 1: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

THE INVERTERS

Page 2: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

DIGITAL GATES Fundamental Parameters

Functionality Reliability, Robustness Area Performance

» Speed (delay)» Power Consumption» Energy

Page 3: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Noise in Digital Integrated Circuits

VDDv(t)

i(t)

(a) Inductive coupling (b) Capacitive coupling (c) Power and ground

noise

Page 4: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

DC Operation: Voltage Transfer Characteristic

V(x)

V(y)

VOH

VOL

VM

VOHVOL

fV(y)=V(x)

Switching Threshold

Nominal Voltage Levels

V(y)V(x)

Page 5: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Mapping between analog and digital signals

"1"

"0"

VOH

VIH

VIL

VOL

UndefinedRegion

V(x)

V(y)

VOH

VOL

VIH

VIL

Slope = -1

Slope = -1

Page 6: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Definition of Noise Margins

VIH

VIL

UndefinedRegion

"1"

"0"

VOH

VOL

NMH

NML

Gate Output Gate Input

Noise Margin High

Noise Margin Low

Page 7: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

The Regenerative Property

(a) A chain of inverters.

v0, v2, ...

v1, v3, ... v1, v3, ...

v0, v2, ...

(b) Regenerative gate

f(v)

finv(v)

finv(v)

f(v)

(c) Non-regenerative gate

v0 v1 v2 v3 v4 v5 v6

...

Page 8: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Fan-in and Fan-out

N

M

(a) Fan-out N

(b) Fan-in M

Page 9: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

The Ideal Gate

Vin

Vout

g=

Ri =

Ro = 0

Page 10: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

VTC of Real Inverter

0.0 1.0 2.0 3.0 4.0 5.0Vin (V)

1.0

2.0

3.0

4.0

5.0

Vo

ut (V

)

VMNMH

NML

Page 11: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Delay Definitions

tpHL

tpLH

t

t

Vin

Vout

50%

50%

tr

10%

90%

tf

Page 12: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Ring Oscillator

v0 v1 v2 v3 v4 v5

v0 v1 v5

T = 2 tp N

Page 13: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Power Dissipation

Page 14: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

CMOS INVERTER

Page 15: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

The CMOS Inverter: A First Glance

VDD

Vin Vout

CL

Page 16: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

CMOS Inverters

Polysilicon

InOut

Metal1

VDD

GND

PMOS

NMOS

1.2 m=2

Page 17: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Switch Model of CMOS Transistor

Ron

|VGS| < |VT||VGS| > |VT|

|VGS|

Page 18: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

CMOS Inverter: Steady State Response

VDD VDD

VoutVout

Vin = VDD Vin = 0

Ron

Ron

VOH = VDD

VOL= 0

VM = Ronp) f(Ronn,

Page 19: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

CMOS Inverter: Transient Response

VDD

Vout

Vin = VDD

Ron

CL

tpHL = f(Ron.CL)

= 0.69 RonCL

t

Vout

VDD

RonCL

1

0.5

ln(0.5)

0.36

Page 20: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

CMOS Properties

Full rail-to-rail swing Symmetrical VTC Propagation delay function of load

capacitance and resistance of transistors No static power dissipation Direct path current during switching

Page 21: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Voltage TransferCharacteristic

Page 22: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

PMOS Load Lines

VDSp

IDp

VGSp=-5

VGSp=-2VDSp

IDnVin=0

Vin=3

Vout

IDnVin=0

Vin=3

Vin = VDD-VGSpIDn = - IDp

Vout = VDD-VDSp

Vout

IDnVin = VDD-VGSpIDn = - IDp

Vout = VDD-VDSp

Page 23: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

CMOS Inverter Load Characteristics

In,pVin = 5

Vin = 4

Vin = 3

Vin = 0

Vin = 1

Vin = 2

NMOSPMOS

Vin = 0

Vin = 1

Vin = 2Vin = 3

Vin = 4

Vin = 4

Vin = 5

Vin = 2Vin = 3

Page 24: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

CMOS Inverter VTC

Vout

Vin1 2 3 4 5

12

34

5

NMOS linPMOS off

NMOS satPMOS sat

NMOS offPMOS lin

NMOS satPMOS lin

NMOS linPMOS sat

Page 25: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Simulated VTC

0.0 1.0 2.0 3.0 4.0 5.0Vin (V)

0.0

2.0

4.0

Vo

ut (V

)

Page 26: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Gate Switching Threshold

0.1 0.3 1.0 3.2 10.01.0

2.0

3.0

4.0

kp/kn

VM

Page 27: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

MOS Transistor Small Signal Model

rogmvgsvgs

+

-

S

DG

Page 28: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Determining VIH and VIL

Page 29: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Propagation Delay

Page 30: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

CMOS Inverter: Transient Response

VDD

Vout

Vin = VDD

Ron

CL

tpHL = f(Ron.CL)

= 0.69 RonCL

t

Vout

VDD

RonCL

1

0.5

ln(0.5)

0.36

Page 31: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

CMOS Inverter Propagation Delay

VDD

Vout

Vin = VDD

CLIav

tpHL = CL Vswing/2

Iav

CL

kn VDD

~

Page 32: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Computing the Capacitances

VDD VDD

VinVout

M1

M2

M3

M4Cdb2

Cdb1

Cgd12

Cw

Cg4

Cg3

Vout2

Fanout

Interconnect

VoutVin

CL

SimplifiedModel

Page 33: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

CMOS Inverters

Polysilicon

InOut

Metal1

VDD

GND

PMOS

NMOS

1.2 m=2

Page 34: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

The Miller Effect

Vin

M1

Cgd1Vout

V

V

Vin

M1

Vout V

V

2Cgd1

“A capacitor experiencing identical but opposite voltage swings at both its terminals can be replaced by a capacitor to ground, whose value is two times the original value.”

Page 35: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Computing the Capacitances

Page 36: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Impact of Rise Time on Delayt p

HL(n

sec

)

0.35

0.3

0.25

0.2

0.15

trise (nsec)10.80.60.40.20

Page 37: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Delay as a function of VDD

0

4

8

12

16

20

24

28

2.00 4.001.00 5.003.00

Nor

mal

ized

Del

ay

VDD (V)

Page 38: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Where Does Power Go in CMOS?

• Dynamic Power Consumption

• Short Circuit Currents

• Leakage

Charging and Discharging Capacitors

Short Circuit Path between Supply Rails during Switching

Leaking diodes and transistors

Page 39: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Dynamic Power Dissipation

Energy/transition = CL * Vdd2

Power = Energy/transition * f = CL * Vdd2 * f

Need to reduce CL, Vdd , and f to reduce power.

Vin Vout

CL

Vdd

Not a function of transistor sizes!

Page 40: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Impact ofTechnology

Scaling

Page 41: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Technology Evolution

Page 42: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Technology Scaling (1)

Minimum Feature Size

Page 43: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Technology Scaling (2)

Number of components per chip

Page 44: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Propagation Delay Scaling

Page 45: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Technology Scaling Models

• Full Scaling (Constant Electrical Field)

• Fixed Voltage Scaling

• General Scaling

ideal model — dimensions and voltage scaletogether by the same factor S

most common model until recently —only dimensions scale, voltages remain constant

most realistic for todays situation —voltages and dimensions scale with different factors

Page 46: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Scaling Relationships for Long Channel

Devices

Page 47: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Scaling of Short Channel

Devices

Page 48: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

BIPOLAR INVERTERS

Page 49: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Resistor-Transistor Logic

Vin

Vout

Vcc

RB

RC

Q1

Vin

Vout

SaturationCutof f

Forward-active

VCE(sat)

VCC

VB E(on) V in(eos)

VTC of nonsaturating gate

Page 50: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

VTC of RTL Inverter

0.0 1.0 2.0 3.0 4.0 5.0Vin

0.0

1.0

2.0

3.0

4.0

5.0V

ou

t

FO=5

FO=2

FO=1

FO=0

VOH is function of fan-out

Page 51: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Transient Response of RTL Inverter

0.00e+00 5.00e-10 1.00e-09 1.50e-09 2.00e-09t

0.0

1.0

2.0

3.0

4.0

5.0V

ou

t

tp = 290 psec !!!!

Page 52: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

The ECL Gate at a GlanceVcc

RC

Q1

Vc c

RC

Q2 VrefVin

Vout2Vout1

IEE

VEE

Vx

Core of gate:The differential pairor “current switch”

Page 53: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Single-ended versus Differential Logic

VinVin

Vout1 Vout2

Vout1

Vout2

Vout1Vout2 Vout2Vout1

DifferentialSingle-ended

Page 54: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Complete ECL Gate

Vcc

RC

Q1

Vc c

RC

Q2 Vre fVin

IEE

VEE

Vx

Vc cVcc

VEE

RB

Vout2Vout1

Q4Q3

VC1 VC2

Emitter-followeroutput driver

Page 55: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

The Bias Network

Q5

R1

R2R3

D1

D2

Vref

VCC

VEE

Issues:•Temperature variations•Device variations

Page 56: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Photomicrograph of early ECL Gate (1967)

Page 57: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

ECL VTC

VCC – VBE (on)

VCC – VBE(on) – IEERC

Vin

Vout

Vout2

Vout1

V r ef

+/– n T

Q1 saturates

Page 58: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

ECL VTC

Vswing = IEE RC

Page 59: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Simulated VTC of ECL Gate

–1.5 –1.3 –1.1 –0.9 –0.7 –0.5Vin (V)

–1.30

–1.20

–1.10

–1.00

–0.90

–0.80

–0.70V

out (

V)

Vout1 Vout2

Page 60: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

ECL Gate with Single Fan-out

Vcc

RC

Q1Vin

IE E

VE E

Vx

Vc c

Q3

Vcc

RC

Q1

IEE

VEE

RB

VE E

Cd Cbe

Cc s

Cbc Cbc

CbeCd

CbeVout1

FAN-OUT

VC1

Cbc

Page 61: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Simulated Collector Currents of Differential

Pair

0 0.1 0.2Time (nsec)

–1

0

1

Col

lect

or

curr

ent

(nor

mal

ized

)

10 mA 5 mA

1 mA

0.5 mA

IC1

IC2

Page 62: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Propagation Delay of ECL Gate

Page 63: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Simulated Transient Response of ECL Inverter

0 0.2 0.4 0.6 0.8 1.0

t (nsec)

–1.30

–1.10

–0.90

–0.70V

(V

olt)

Vout1V in

Page 64: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Propagation Delay as a Function of Bias Current

0 5 10 15 200

50

100

150

200

IE E (mA)

t pLH

(pse

c)

Page 65: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

ECL Power Dissipation

Page 66: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Scaling Model for Bipolar Inverter

Page 67: THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Bipolar Scaling