The Human Visual System - University of...

12
The Human Visual System Lecture 1 The Human Visual System Retina Optic Nerve Optic Chiasm Lateral Geniculate Nucleus (LGN) Visual Cortex Optic Nerve Fovea Vitreous Optic Disc Lens Pupil Cornea Ocular Muscle Retina Humor Iris The Human Eye light rods cones horizontal amacrine bipolar ganglion The Human Retina

Transcript of The Human Visual System - University of...

  • The Human Visual System

    Lecture 1 The Human Visual System

    Retina

    Optic Nerve

    Optic Chiasm

    LateralGeniculateNucleus (LGN)

    Visual Cortex

    Optic NerveFovea

    Vitreous

    Optic Disc

    Lens

    Pupil

    Cornea

    Ocular MuscleRetina

    Humor

    Iris

    The Human Eye

    light

    rods cones

    horizontal

    amacrine

    bipolar

    ganglion

    The Human Retina

  • Light

    OS

    GCL

    INL

    ONL

    Inner

    Outer

    Cross-section of Human Retina Retinal Photoreceptors

    rods

    cone

    10 µm

    X 1000

    Receptor Models

    Retinal PhotoreceptorsRods -

    Distribution of rod and cone photoreceptors

    Cones - • High illumination levels (Photopic vision)• Less sensitive than rods.• 5 million cones in each eye.• Only cones in fovea (aprox. 50,000).• Density decreases with distance from fovea.

    • Low illumination levels (Scotopic vision).• Highly sensitive (respond to a single photon).• 100 million rods in each eye.• No rods in fovea.

    Degrees of Visual Angle

    Rec

    epto

    rs p

    er s

    quar

    e m

    m

    -60 -40 -20 0 20 40 60

    2

    6

    10

    14

    18x 104

    rodscones

    2.3 µ − width2.5 µ − inter-cone distance0.5‘− field of view

    θθ

    17mm

    2.5µ

    tan(θ) = 2.5 x 101.7 x 10

    = 1.47 x 10-6

    -2-4

    = 0.0084 deg = 0.5 (arcmin)~ '

    Cones -

    Calculating the viewing angle of a single cone in the fovea:

    θ

  • Cone Mosaic

    Cone Mosaic at Fovea

    Cone Mosaic in periphery

    Rods

    Cones

    10 µm

    Cones - • High illumination levels (Photopic vision)• Less sensitive than rods.• 5 million cones in each eye.• Only cones in fovea (aprox. 50,000).• Density decreases with distance from fovea.• 3 cone types differing in their spectral

    sensitivity: L , M, and S cones.

    Retinal Photoreceptors

    Wavelength (nm)

    Rel

    ativ

    e se

    nsiti

    vity

    Cone Spectral Sensitivity

    400 500 600 7000

    0.25

    0.5

    0.75

    1ML

    SM

    Cone Receptor Mosaic(Roorda and Williams, 1999)

    L-cones M-cones S-cones

    S cone Sampling Mosaic

    rodsS - Cones

    L/M - Cones

    Foveal Periphery

  • Human Image Formation

    What is the quality of the opticsof the human eye?

    scene film

    Put a piece of film in front of an object.

    source: Yung-Yu Chuang

    Image Formation - Optics

    scene film

    Add a barrier to block off most of the rays.

    • It reduces blurring• The pinhole is known as the aperture• The image is inverted

    barrier

    pinhole camera

    source: Yung-Yu Chuang

    Image Formation - Optics Image Formation - Optics

    Shrinking the aperture

    Why not create the aperture as small as possible?

    • Less light gets through

    • Diffraction effect

  • Image Formation - Optics

    Shrinking the apertureImage Formation - Optics

    Adding a Lens

    scene film

    Image Formation - OpticsAdding a Lens

    scene filmlens

    “circle of confusion”

    Lens Design: Snell’s Law

    )'sin(')sin( φφ nn =

  • Lensmaker’s Equation

    lengthfocalfdistimageddistsourced

    i

    s

    ===

    obje

    ct

    imag

    e

    ds di

    fdd is111 =+

    Optical power and object distance

    Encoding Characteristics - Line spread

    Line spread defines the optical quality of the eye

    Light Scattered From From The Retina Is Used To Estimate Optical Quality

    (e.g., Campbell and Gubisch)

    Double Pass Method

  • Campell and Gubisch 1966

    Inte

    nsity

    of l

    ight

    refle

    cted

    from

    the

    eye

    Visual Angle (minutes of arc)

    6.6

    5.8

    4.9

    3.8

    3.0

    2.4

    2.0

    1.5

    1.0

    Measurements of light reflected from the retina (Linespread) at various pupil diameters

    a/22aa

    bb/2

    2b

    Homogeneity:

    Additivity:

    a

    b b’

    a’ a a’

    b b’

    monitor image

    retinal image

    monitor image

    retinal image

    Image formation satisfies :

    Image formation is a linear system

    Image Formation is a Linear System

    A system is Linear if it satisfies superposition:

    A finite dimensional linear system can be writtenas a matrix equation:

    where R is the system matrix.

    Systemf

    in outa f(a) = b

    homogeneity f(ka) = kf(a) = kb

    additivity f(a1+a2) = f(a1) + f(a2) = b1 + b2

    b = Ra

    Image formation is a Shift Invariant linear system

    A shifted input produces a shifted output:

    a

    b b’

    a’ monitor image

    retinal image

  • Scene:

    Retinal Image:

    Visual angle (arc mins)

    Rel

    ativ

    e In

    tens

    ity

    -4 -2 2 40

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    Modeling Image Formation(Westheimer)

    Visual angle (arc mins)

    Rel

    ativ

    e In

    tens

    ity

    -4 -2 2 40

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    The Human Linespread Function

    10 3020 40 50 60Spatial Frequency (cpd)

    Sca

    le fa

    ctor

    0.5

    1.0

    0.0

    The Human Modulation Transfer Function

    The Pointspread Function

    The pointspread function is a generalizationof the linespread function.

    Monitor Image

    Retinal Image

    Astigmatism Measures the Assymmetry andOrientation of the Pointspread Function

  • Visual Acuity

    Cones at fovea are 2.5µ apart corresponding to 0.5’ (arc min).

    Typical acuity targets:

    VernierAcuity

    Landolt C Resolutionacuity

    Gratingacuity

    SnellenLetter

    Expected acuity is size of cone or visual angle of cone.

    receptors

    light stimulus

    Actual acuity ~ 5’’ (arc seconds) = Hyperacuity~

    PhotopicScotopic

    0.4

    0.0

    0.6

    0.2

    1.0

    0.8

    0-1-2-3-4 1 2 3 4

    0.4

    0.0

    0.6

    0.2

    1.0

    0.8

    0-20-40 20 40

    Blind spot

    Fovea TemporalNasalVisual angle

    Do to linespread, movement of stimulus by less than receptor width causes change in receptor response:

    receptorpositions

    reseptorresponses

    stimuli

    Acuity is affected by retinal position and illumination:

    Rel

    ativ

    e vi

    sual

    acu

    ity

    Log illumination (trolands)

    Visual Acuity

    K+50

    B+40

    X+30

    M+20

    P+10

    A+5

    S+0

    Visual Acuity Test Electromagnetic Radiation -Spectrum

    Gamma X rays Infrared Radar FM TV AMUltra-violet

    10-12

    10-8

    10-4

    104

    1 108

    electricityACShort-

    wave

    400 nm 500 nm 600 nm 700 nmWavelength in nanometers (1nm=10-9 m)

    Wavelength in meters (m)

    Visible light

  • The Spectral Power Distribution (SPD) of a light is a function f(l) which defines the energy at each wavelength.

    Wavelength (λ)

    400 500 600 7000

    0.5

    1

    Rel

    ativ

    e P

    ower

    Spectral Power Distribution Examples of Spectral power Distributions

    Blue Skylight Tungsten bulb

    Red monitor phosphor Monochromatic light

    400 500 600 7000

    0.5

    1

    400 500 600 7000

    0.5

    1

    400 500 600 7000

    0.5

    1

    400 500 600 7000

    0.5

    1

    400 nm 500 nm 600 nm 700 nm

    Multispectral Images

    400 500 600 7000

    Chromatic Aberration

    Different wavelengths bending at lens, focus at different distances.

    Wavelength (nm)

    Pow

    er o

    f Len

    s (d

    iopt

    ers)

    400 500 600 700

    1.0

    0.0

    -1.0

    -2.0

    -3.0

    * Wald and Griffin (1947)Bedford and Wyszecki (1957)Thibos et al. (1992)

  • Chromatic Aberration Measures Differencesin Optical Focus Across Wavelength

    Chromatic Aberration

    A B C D E F G

    A B C D E F G

    A B C D E F G

    A B C D E F G

    A B C D E F G

    Chromatic Aberration affects the MTF

    Chromatic Modulation Transfer Function

    1

    0.8

    0.6

    0.4

    0.2

    0

    Spatial Frequency0 10 20 30

    Atte

    nuat

    ion

    Fact

    or

    Blue vs Green Modulation Transfer Function

    Sampling rate of Blue vs Green is in accord with Nyquist Theorem

  • Wavel

    ength (

    nm)

    Spatial position (deg)

    Chromatic Linespread Function

    Some Animals Have Non-Circular Pupils

    Cat Eye