The elementary processes and the plasma equilibrium -...

16
Dr. L. Conde Departamento de Física Aplicada. E.T.S. Ingenieros Aeronáuticos Universidad Politécnica de Madrid The elementary processes and the plasma equilibrium Master Universitario en Ingeniería Aeroespacial. E.T.S.I. Aeronáuticos. U.P.M. miércoles 23 de octubre de 2013

Transcript of The elementary processes and the plasma equilibrium -...

Page 1: The elementary processes and the plasma equilibrium - UPMplasmalab.aero.upm.es/~lcl/PlasmaPresentations/... · 2020. 9. 9. · dQ AB dt = Q˙ AB = σ o × Γ A = σ o × (n A v A)

Dr. L. Conde

Departamento de Física Aplicada. E.T.S. Ingenieros Aeronáuticos Universidad Politécnica de Madrid

The elementary processes and the plasma equilibrium

Master Universitario en Ingeniería Aeroespacial. E.T.S.I. Aeronáuticos. U.P.M.

miércoles 23 de octubre de 2013

Page 2: The elementary processes and the plasma equilibrium - UPMplasmalab.aero.upm.es/~lcl/PlasmaPresentations/... · 2020. 9. 9. · dQ AB dt = Q˙ AB = σ o × Γ A = σ o × (n A v A)

dQAB

dt= QAB = σo × ΓA = σo × (nA vA)

nA(x) = nAo e−x/λc

nA(t) = nAo e−t νc νc = σo νB vA

We calculate the number of collision events of A particles scattered by a single B target particle by time unit:

The flux of A particles. The number of particles by time and surface unit.

The collision mean free path The collision frequency

The collision cross section, ...

The effective surface of interaction between A and B particles.

we multiply by the density of targets,

It gives the number of collisions (reactions) by time and volume unit. The A particles are removed by the reaction A+B →C+D and therefore, qAB = −nA

and then, we obtain by integration

Master Universitario en Ingeniería Aeroespacial. E.T.S.I. Aeronáuticos. U.P.M.

λc = 1/(σo nB)

dnA

dt= −nB (σo nA) vA

qAB = nB × dQAB

dt= σo × (nA vA)× nb

miércoles 23 de octubre de 2013

Page 3: The elementary processes and the plasma equilibrium - UPMplasmalab.aero.upm.es/~lcl/PlasmaPresentations/... · 2020. 9. 9. · dQ AB dt = Q˙ AB = σ o × Γ A = σ o × (n A v A)

• Large: Involves charged particles; fast process, short time energy relaxation rates• Short: Involves collisions with neutrals; slow process, large time energy relaxation

rates.

• Elastic: The kinetic energy of colliding particles is conserved and retain their charges and initial internal states. • Inelastic: A fraction of the kinetic energy is used to alter the internal

states and/or to produce new particles. • Superelastic: The potential energy is transformed in kinetic energy; the

kinetic energy of the system after the collision event is greater. •Radiative: A fraction of energy is emitted and/or absorbed as

electromagnetic radiation. • Charge exchange: The electric charge state of colliding particles is

interchanged; a electric charge is transferred.

The atomic and molecular collisions in plasmas, ...

Master Universitario en Ingeniería Aeroespacial. E.T.S.I. Aeronáuticos. U.P.M.

The interaction range

Collisions are roughly classified as

miércoles 23 de octubre de 2013

Page 4: The elementary processes and the plasma equilibrium - UPMplasmalab.aero.upm.es/~lcl/PlasmaPresentations/... · 2020. 9. 9. · dQ AB dt = Q˙ AB = σ o × Γ A = σ o × (n A v A)

g = |vA − vB |

σ(g, θ,φ) =

dQAB/dvA dΩ

nA |vA − vB |

The number of collision events by time unit of A particles scattered by a single B target particle with velocity dvA within the solid angle dΩ.

The differential collision cross section, ...

Master Universitario en Ingeniería Aeroespacial. E.T.S.I. Aeronáuticos. U.P.M.

incoming incident flux of A particles

Outgoing number of A particles with velocity dvA scattered within the solid angle dΩ.

depends on the relative speed

dQAB = nA σ(g, θ,φ) |vA − vB | dvA dΩ

dΩ = sin θ dθ dφ

miércoles 23 de octubre de 2013

Page 5: The elementary processes and the plasma equilibrium - UPMplasmalab.aero.upm.es/~lcl/PlasmaPresentations/... · 2020. 9. 9. · dQ AB dt = Q˙ AB = σ o × Γ A = σ o × (n A v A)

dQAB = nA σT (g) |vA − vB | dvA

The experimental data of the total cross sections are a function of the energy E = mvA

2/2 (or |vA|)

The total collision cross section, ...

Master Universitario en Ingeniería Aeroespacial. E.T.S.I. Aeronáuticos. U.P.M.

Only depend on the relative speed g and is the number of collision events by time unit of A particles scattered by a single B particle with velocity dvA

Outgoing number of A particles with velocity dvA

incoming incident flux of A particles

σT (|vA − vB |) =

0

π

0σ(g, θ,φ) sin θ dθ dφ

σT (|vA − vB |) =dQAB/dvA

nA |vA − vB |

miércoles 23 de octubre de 2013

Page 6: The elementary processes and the plasma equilibrium - UPMplasmalab.aero.upm.es/~lcl/PlasmaPresentations/... · 2020. 9. 9. · dQ AB dt = Q˙ AB = σ o × Γ A = σ o × (n A v A)

The collisional processes, of ions, ...

Master Universitario en Ingeniería Aeroespacial. E.T.S.I. Aeronáuticos. U.P.M.

The ion and neutral collisions The ion and neutral collisions The ion and neutral collisions The ion and neutral collisions Scheme Process Macroscopic effect

1 A + A → A + A Elastic collision between neutral atomsTransport of neutrals and energy thermalization

2 A+ + A → A+ + A Elastic collision between ions and neutral atoms

Transport of ions, diffusion and energy thermalization

3 A + B+ → A+ + B Resonant or non resonant charge exchange

Ion transport diffusion and energy thermalization

4 A* + A → A* + A Collisions between metastable and neutral atoms

Diffusion of metastable atoms

5 A* + B → e + B+ + A Penning ionization Production of ions in gas mixtures

6 A + B* → e + AB+ Associative ionizationProduction of molecular ions in diatomic gas mixtures

7 A + B+ + C → A + BC+ Ion associationProduction of molecular ion in gas mixtures

8 A* + A* → e + A+ + A Cross Penning reaction Ion production from metastable atoms

9 AB- + AB+ → AB + AB Ion-ion recombinationLoss of negative ions in electronegative or diatomic gases

miércoles 23 de octubre de 2013

Page 7: The elementary processes and the plasma equilibrium - UPMplasmalab.aero.upm.es/~lcl/PlasmaPresentations/... · 2020. 9. 9. · dQ AB dt = Q˙ AB = σ o × Γ A = σ o × (n A v A)

E = h ν

Elastic collisions:

Charge exchange: A + B+ → B + A+

A + B → B + A

Dissociative ioniz.: A*+ B → B + A+ + e

(resonant and non resonant)

Attachment: A + e‒ → A‒

(Important for O2, N2, NO2, ...)

Photoionization: A + hν → A + + e

A + hν → A* Photoexcitation:

Photon energy:

… and photoprocesses ...

The collisions of ions, ...

Master Universitario en Ingeniería Aeroespacial. E.T.S.I. Aeronáuticos. U.P.M.

miércoles 23 de octubre de 2013

Page 8: The elementary processes and the plasma equilibrium - UPMplasmalab.aero.upm.es/~lcl/PlasmaPresentations/... · 2020. 9. 9. · dQ AB dt = Q˙ AB = σ o × Γ A = σ o × (n A v A)

Production of charges by electron collisions Production of charges by electron collisions Production of charges by electron collisions Production of charges by electron collisions Scheme Process Macroscopic effect

1 e + A+ → e + A+ Elastic Coulomb collisions between electrons and ions

Transport and energy transfer in highly ionized plasmas.

2 e + A → e + A Elastic collision between electrons and neutrals

Electron transport and diffusion. Electron mobility.

3 e + A → e + A* Excitation of neutrals by electron impact Multiplication of metastable neutral atoms.

4 e + AB → e + AB* Vibrational excitation Energy transfer to vibrational levels of molecules.

5 e + A → 2e + A+ Electron impact ionization Multiplication of ions and electrons from the ground state.

6 e + A* → 2e + A+ Multistep ionization Ionization of neutral atoms from an excited state.

7 e + AB → A + B- Dissociative attachment Production of negative ions in electronegative gases.8 e + A + B → AB- Three body attachment

Production of negative ions in electronegative gases.

9 e + AB → 2e + A + B+ Dissociative ionization Production of atomic ions in electronegative gases

10 e + AB → e + A + B Detachment by electron impact Production of neutral atoms in molecular gases

The electron collisions with charge production, ...

Master Universitario en Ingeniería Aeroespacial. E.T.S.I. Aeronáuticos. U.P.M.

miércoles 23 de octubre de 2013

Page 9: The elementary processes and the plasma equilibrium - UPMplasmalab.aero.upm.es/~lcl/PlasmaPresentations/... · 2020. 9. 9. · dQ AB dt = Q˙ AB = σ o × Γ A = σ o × (n A v A)

Recombination of charges by electron collisions Recombination of charges by electron collisions Recombination of charges by electron collisions Recombination of charges by electron collisions Scheme Process Macroscopic effect

10 e + AB → e + A + B Molecule dissociation by electron impact Production of neutral atom in molecular gases

11 e + A+ → e + A De-excitation of neutrals (quenching) Destruction of metastable neutral atoms

12 2e + A+ → e + A* Three body recombinationOnly relevant in dense highly ionized plasmas

13 e + A+ → hν + A Radiative recombinationOnly relevant in dense highly ionized plasmas

14 e + AB+ → A + B* Dissociative recombination Important in weakly ionized molecular plasmas

15 e + A- → 2e +A Detachment by electron impact Loss of negative ions in electronegative gases

The electron collisions with charge losses, ...

Master Universitario en Ingeniería Aeroespacial. E.T.S.I. Aeronáuticos. U.P.M.

miércoles 23 de octubre de 2013

Page 10: The elementary processes and the plasma equilibrium - UPMplasmalab.aero.upm.es/~lcl/PlasmaPresentations/... · 2020. 9. 9. · dQ AB dt = Q˙ AB = σ o × Γ A = σ o × (n A v A)

∆E = δ × νc =

2me

mi

na σc Vth

Elastic collisions:

A + e → A + e

Ramssauer effectThe amount of the electron energy lost by collision is of the order,

Usually, the electron energy losses are negligible. The energy transfer between electron and neutrals is low … except when the collision frequency becomes ν ~ 1/δ or equivalently, high neutral pressures.

The electron impact elastic collisions, ...

Master Universitario en Ingeniería Aeroespacial. E.T.S.I. Aeronáuticos. U.P.M.

δ = 2me/mi

miércoles 23 de octubre de 2013

Page 11: The elementary processes and the plasma equilibrium - UPMplasmalab.aero.upm.es/~lcl/PlasmaPresentations/... · 2020. 9. 9. · dQ AB dt = Q˙ AB = σ o × Γ A = σ o × (n A v A)

Electron impact ionization:

A + e → A* + e

A + e → A+ + 2 e

Ramssauer effect

Ionization and excitation collisions have a threshold energy for the colliding electron. Note when the axis are in log or linear scales, ...

Electron impact excitation:

Energy thresholds

The electron impact inelastic collisions, ...

Master Universitario en Ingeniería Aeroespacial. E.T.S.I. Aeronáuticos. U.P.M.

miércoles 23 de octubre de 2013

Page 12: The elementary processes and the plasma equilibrium - UPMplasmalab.aero.upm.es/~lcl/PlasmaPresentations/... · 2020. 9. 9. · dQ AB dt = Q˙ AB = σ o × Γ A = σ o × (n A v A)

dne

dt= νI ne = kI na ne = ne QI

QI = na

EI

σI(E)√E g(E) dE

QI = na

vI

σI(|ve|) |ve| f(ve) dve

QI = na C vth (1 + 2kBTe) e−EI/kBTe

Piecewise aproximation for the ionization cross section:

Reaction rate

Ionization frequency

C (E − EI) E ≥ EI

E < EI0σI(E) =

and for a Maxwell Boltzmann distribution

The electron impact ionization frequency, ...

Master Universitario en Ingeniería Aeroespacial. E.T.S.I. Aeronáuticos. U.P.M.

miércoles 23 de octubre de 2013

Page 13: The elementary processes and the plasma equilibrium - UPMplasmalab.aero.upm.es/~lcl/PlasmaPresentations/... · 2020. 9. 9. · dQ AB dt = Q˙ AB = σ o × Γ A = σ o × (n A v A)

dne

dt= −kR ni ne

dne

dt= −kR n2

ne ni

1

n=

1

no+ kR t

n(t) =no

1 + no kR t 1

kR tkR ∼ 10−7 cm3/s

The recombination is the reverse reaction of ion production and its reaction rate depends on the particular collisional processes.

A*+ B ← B + A + + e‒

A + e‒ ← A + + e‒ A + e‒ ← A ‒

All possible processes, ...

On average

…, ← ...

Recombination rate Local equilibrium

The recombination ...

Master Universitario en Ingeniería Aeroespacial. E.T.S.I. Aeronáuticos. U.P.M.

On average, the plasma decreases with time as,

and the typical time scale is in the order of 0,1 microseconds

miércoles 23 de octubre de 2013

Page 14: The elementary processes and the plasma equilibrium - UPMplasmalab.aero.upm.es/~lcl/PlasmaPresentations/... · 2020. 9. 9. · dQ AB dt = Q˙ AB = σ o × Γ A = σ o × (n A v A)

The relevance of charged particle collisions rely on the ionization degree of the neutral gas. In dense plasmas these Coulomb collisions may involve more than two particles.

A+ + e‒ → A+ + e‒

e‒ + e‒ → e‒ + e‒

A++ A+ → A+ + A+

The charged particle collisions, …

Master Universitario en Ingeniería Aeroespacial. E.T.S.I. Aeronáuticos. U.P.M.

• Colliding particles are deflected at distances much larger than the atomic radius

• Small angle scattering dominates.• Dense plasma; Coulomb potential is screened ∼λD but energetic

particles penetrate the Debye sphere.

miércoles 23 de octubre de 2013

Page 15: The elementary processes and the plasma equilibrium - UPMplasmalab.aero.upm.es/~lcl/PlasmaPresentations/... · 2020. 9. 9. · dQ AB dt = Q˙ AB = σ o × Γ A = σ o × (n A v A)

A rough estimation, …

Master Universitario en Ingeniería Aeroespacial. E.T.S.I. Aeronáuticos. U.P.M.

The electron momentum exchange,

for θ = π/2 we might estimate, ∆p = mvo

This is an order of magnitude estimation, but similar to the result of the thorough analysis by Spitzer involving the Coulomb logarithm Λ (between 0.1 - 20.0)

νei =π ne e4

(4πo)2 m2e v

3o and using the thermal speed,

vo =kBTe/me

νei =π ne e4

(4πo)2√me (kBTe)3/2we obtain,

νei =π ne e4

(4πo)2√me (kBTe)3/2

lnΛ Λ = λD/ro

σo(vo) = π r2o

∆p |Fe|× Tint ∼e2

4πo r2o× ro

vo

r0 ∼ e2

4πome v2oνei = ne σo(vo) vo

F.F. Chen. Introduction to Plasma Physics and Control. Fusion. Chap. 5, sec. 5.6.2. Plenum Press (1984) and A. Piel. Plasma Physics. Chap. 4, sec. 4.2.5, Springer (2010)-

miércoles 23 de octubre de 2013

Page 16: The elementary processes and the plasma equilibrium - UPMplasmalab.aero.upm.es/~lcl/PlasmaPresentations/... · 2020. 9. 9. · dQ AB dt = Q˙ AB = σ o × Γ A = σ o × (n A v A)

The plasma is in local equilibrium when all collisional processes for charge production are balanced by of particle recombination, but not the radiative processes.

A plasma (or any other statistical population of particles) is in thermodynamic equilibrium when the rates of collisional and radiative processes are balanced by their reverse reactions.

The plasma is in partial equilibrium when only a small number of elementary processes are balanced.

• Optically thick, a photon cannot leave the plasma region • The system has a blackbody radiation spectrum.• The physical properties are constant in time and uniform in space.

• Electromagnetic radiation is emitted, photons leave the plasma region • All particles are in equilibrium at the same temperature.

• Multithermal equilibrium states; kBTe >> kBTi ≈ kBTa

The hierarchy of equilibrium states, …

Master Universitario en Ingeniería Aeroespacial. E.T.S.I. Aeronáuticos. U.P.M.

miércoles 23 de octubre de 2013