The Effect of Temperature on Selectivity in HPLC€¦ · The Use of Temperature in HPLC Temperature...

39
The Effect of Temperature on Selectivity in HPLC Brian Jones , Jody Clark, Dale Felix and Stephanie J. Marin Selerity Technologies, Inc. 2484 W. Custer Road Salt Lake City, UT 84104 www.selerity.com

Transcript of The Effect of Temperature on Selectivity in HPLC€¦ · The Use of Temperature in HPLC Temperature...

The Effect of Temperature on Selectivity in HPLC

Brian Jones, Jody Clark, Dale Felix and Stephanie J. Marin

Selerity Technologies, Inc.2484 W. Custer Road

Salt Lake City, UT 84104

www.selerity.com

The Use of Temperature in HPLC

Temperature is considered to be the overlooked or forgotten optimization parameter in HPLC by many of the experts.

“Although nearly all of the physical parameters that play a role in liquid chromatographic separation are a function of temperature, temperature has not yet been adequately explored as a parameter to tune separation and shorten analysis times in LC .” *

* Nebojsa M. Djordjevic, Patrick W.J. Fowler, Fabice Houdiere J. Microcolumn Separations 11(6) (1999) 403-413

Typical Retentive Behavior

• Retention uniformly decreases with temperature

• Linear van’t Hoff plots – log k vs. 1/T• A 1% methanol increase is equivalent to

~4°C temperature increase

Change in Retention with Temperature

k1’ / k2’ = exp(∆H(T2 – T1) / (RT1T2)

• Effect of temperature on retention factor depends on enthalpy of the solute. The larger the enthalpy, the greater the change in k’

F. FF. Houdiere, P.W.J. Fowler, N.M. Djordjevic, Anal. Chem., 69, 2589-2593 (1997)

Analyte Families Giving Reversed Retention with Increasing Temperature

• Polyethers• Reverse retention due to apparent decreasing

polarity due to hydrogen bond strength reduction

• Some dipeptides• Decreasing polarity with conformational change

Factors Affecting Retention That Are Influenced by Temperature

• Hydrogen bonding• Solvation sphere around analytes• Hydration extent of column surface• Functional group interaction• Ordering, shape and hydration transitions

– Conformation changes• Dielectric constant of mobile phase

Temperature Affects Hydrogen Bonding

• Increasing temperature-– Increases intermolecular distance– Weakens hydrogen bonds

O

Si

O

OO

Si

O

OHO

H

H

O H

H O

H

O

Si

O

OO

Si

O

OHO

H

OH

HH O

H

Column Surface Hydration

OSi

OSi

OSi

OSi

OSi

OSi

OSi

OSi

O OH O O O OH O O

SiOH

OHSiHO Si

HO

OH HO SiOH

HO

H

HO

HH

OH

H

OH

H

OH

H

OH

H

O H

HO

H

HO

H H

OH

H

OH

H

OH

Functional Group ConformationOctadecyl ordering at low temperatures

O

Si

O

Si

O

Si

O

Si

O

Si

O

Si

O

Si

O

Si

O

O

OH

O

O

O

OH

O

O

O

O

O

O

O

O

O

Si

Si

Si

Si

Si

Si

Me

Me

Me

Me

Me

Me

Me

Me

Me

Me

Me

Me

Functional Group ConformationOctadecyl disorder at higher temperatures

O

Si

O

Si

O

Si

O

Si

O

Si

O

Si

O

Si

O

Si

O

O

OH

O

O

O

OH

O

O

O

O

O

O

O

O

O

Si

Si

Si

Si

Si

Si

Me

Me

Me

Me

Me

Me

Me

Me

Me

Me

Me

Me

Functional Group Phase Transitions

• N-Isopropylacrylamide coated silica

OHN

O NHO NH O NH

OHN

Analyte Conformational Changes

• Heteroduplex and homoduplex oligonucleotides separable by HPLC with temperature gradients– Axial or spatial gradients– Temperature programming of the entire

column

From R.E. Gerber and R.G. Hatch in US Patent 6,486,309

Solvent Polarity as a Function of Temperature

Data from Y. Yang et al. J. Chromatogr. A 810 (1998) 149.

% Methanol or Acetonitrile in Water at 25°C

20

30

40

50

60

70

80

90

25 75 125 175 225

Acetonitrile/Water

Methanol/Water

Pure Water(at 50 bar)D

iele

ctric

Con

stan

t, ε

0 20 40 60 80 100

Pure Water Temperature, °C

High Temperature LiquidChromatography Advantages

•The advantages of using temperature to optimize separations in HPLC are well documented in the literature. •The major advantages are

– Increased speed – Higher efficiencies and resolution– Ability to tune selectivity with temperature– Decreased organic solvent usage

• Use less organic in solvent ratio• Perform isocratic separations and recycle solvent

Increased Diffusivity

• Increasing the temperature increases the enthalpy of solute transfer from mobile phase to stationary phase*

– Improves efficiency, particularly for large analytes

– Allows operation at higher flow rates without penalty

*F.D. Antia and Cs. Horvath, J. Chromatogr. 435 (1988) 1-15.

*B. Yan, J. Zhao, J.S. Brown, J. Blackwell, P. W. Carr, Anal. Chem. 72 (2000) 1253-1262

Decreased Viscosity

• As the temperature increases the viscosity of the eluent decreases thus lowering the system back pressure– Perform analysis at higher flow rates

without over-pressurizing the pump– Use smaller size packing materials in

columns increasing efficiency

Temperature and Elution Strength

• Increasing temperature 4 to 5 ºC is comparable to increasing the methanol or acetonitrile concentration by 1% in a reversed phase system

• Viscosity is reduced 1 to 2 % per ºC increase– Result – a significant reduction in back pressure

P = ηµL/dp2

T. Greibrokk, et al,, Chapter 8 in ACS Symp. Ser., 748 (ed. Parcher and Chester), 2000, page 121

Elution Strength Illustration: Separation of Steroids Using Water as the Mobile Phase

Flow Rate: 6.0 mL/minMobile Phase: WaterTemperature: 200°C

Flow Rate: 3.0 mL/minMobile Phase: 25:75 acetonitrile:waterTemperature: 50°C

Elution Order:UracilAndrostadienedioneAndrostenedioneEpitestosterone

Column: ZirChrom PBD, 3 µm 100 X 4.6 mmDetection: UV 254 nm

2.0Minutes

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.80

100

200

300

400

500

600

700

mV

Prototype C18 Silica Column Separation of Steroids

Seconds0 10 20 30 40 50 60 70 80 90 100 110 120

AU

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Elution Order:UracilAndrostadienedioneAndrostenedioneEpitestosterone

Flow Rate: 4.0 mL/minMobile Phase: 5:95 acetonitrile:waterTemperature: 200°C

Column: 3 µm, 100A,50 X 2.1 mmDetection: UV 254 nm

Efficiency with High Speed• Temperature effect on plate height

12

14

16

18

20

22

24

26

0 0.5 1 1.5 2 2.5Linear Velocity (cm/s)

Hei

ght

(mic

ron

s)

25 ºC80 ºC120 ºC150 ºC

Historical Obstacles in the Pathway of Extended Range HPLC

•Most commonly listed reasons why temperature has not been utilized as an optimization tool in reversed phase

– Poor temperature stability of silica based columns – Lack of adequate column heating system– Mobile phase composition is easily adjusted and

provides the flexibility to handle a wide range of samples

Mobile Phase Pre-heating

Separation of Barbiturates

Minutes0 2 4 6 8 10 12 14

mV

10

20

30

40

Barbital

Butabarbital

SecobarbitalCarbromal

Preheater Off

Preheater On

Stable Column Phases

– Silica (Selerity Blaze C8)

– Zirconia* (ZirChrom PBD, DiamondBond, CARB)

– Carbon (Thermo Hypercarb)

– Polymeric (Jordi, Hamilton with SS fittings)

* Not recommended for temperature programmed conditions because of severe column bleed

Blank Runs with Thermal GradientsThermo Hypersil-Keystone Hypercarb 40 to 200°C at 15°/min hold 5 minSelerity Blaze C8 40 to 100°C at 15°/min hold 5 minHamilton PRP-1 40 to 150°C at 15°/min hold 5 minZirchrom DiamondBond 40 to 200°C at 15°/min hold 5 minZirchrom CARB 40 to 200°C at 15°/min hold 5 minZirchrom PBD 40 to 150°C at 15°/min hold 5 min

Minutes0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0

0

200

400

600

800

1000

1200

1400

50:50 Acetonitrile:Water at 254 nm

Abs

orba

nce

Polaratherm ™ DesignTemperatures from sub-zero to 200 °CForced air circulationIsothermal and thermal gradient operationIntegrated solvent preheatingEffluent temperature controlFlammable vapor sensorCompatible with any HPLC system

Diesel Range Aromatics -Columns

• Partisil Amino-Cyano (PAC) column– 5µm, 250 x 4.6 mm

• All stainless steel hardware• Hexane mobile phase

Retention Data for PAC Column Isothermal Conditions

Analyte0°C 30°C 60°C 100°C

toluene 4.56 4.23 3.89 3.54tetralin 4.59 4.29 4.00 3.69thiophene 5.02 4.46 4.08 3.69naphthalene 6.81 5.69 4.99 4.32acenaphthene 7.49 5.89 4.92 4.47benzothiophene 7.81 5.82 5.22 4.49dibenzothiophene 11.25 8.38 6.73 5.47anthracene 12.14 9.04 7.30 5.86

Retention Time

3

4

5

6

7

8

9

10

11

12

13

0 2 4 6 8 10

Compound #

Ret

entio

n (M

inut

es)

30°

60°

100°

Retention Data for PAC Column Isothermal Conditions

β-Carotene and Isomers at 24 ºC

ACN/THF 90:10Isocratic1 mL/minColumn: Genesis C18

β-Carotene and Isomers at 10 ºC

β-Carotene and Isomers at 0 ºC

Separation of Carotenoid Mixture at 15°C

Column: Jones Chromatography Genesis C18, 150 x 4.6 mmMobile Phase:1.25% THF in acetonitrileFlow Rate: 1.0 mL/minDetection: UV 450 nmTemperature: 15°C, isothermal

70 minute run time0

minutes

AU

30 40 50 60 7010 20

0

2

4

6

8

10

12

Lycopene

β-carotene

Zeaxanthin

Lutein

Separation of Carotenoid Mixture at 25°C

Column: Jones Chromatography Genesis C18, 150 x 4.6 mmMobile Phase:1.25% THF in acetonitrileFlow Rate: 1.0 mL/minDetection: UV 450 nmTemperature: 25°C, isothermal

0minutes

15 20 25 30 455 10

AU

0

2

4

6

8

10

12

35 40

18

16

14

Lycopene

β-carotene

Zeaxanthin

Lutein

Separation of Carotenoid Mixture at 35°C

Column: Jones Chromatography Genesis C18, 150 x 4.6 mmMobile Phase: 1.25% THF in acetonitrileFlow Rate: 1.0 mL/minDetection: UV 450 nmTemperature: 35°C, isothermal

AU

0

5

10

15

20

25

0 5 10 15 20 25 30

Lycopene

β-carotene

Zeaxanthin

Lutein

minutes

0

2

4

6

8

10

12

0 5 10 15 20 25 30

mAU

minutes

Lycopene

β-carotene

Zeaxanthin

Lutein

Separation of Carotenoid Mixture Using a Temperature Program

Column: Jones Chromatography Genesis C18, 150 x 4.6 mm

Mobile Phase:1.25% THF in acetonitrile

Flow Rate: 1.0 mL/min

Detection: UV 450 nm

Temperature Program: hold at 15°C for five minutes, ramp to 35°C over two minutes, hold 15 minutes.

Separation of Analgesics on a Selerity BlazeTM C8 Using a Thermal Gradient

Column: Selerity Blaze C8, 3 µm 100 x 4.6 mmMobile Phase: 40:60 acetonitrile:water with 0.1%TFAFlow Rate: 1.5 mL/minDetection: UV 220 nmTemperature Program: hold at 50°C for one minute, ramp to 100°C at 30°C/min, hold six min.

Elution Order:AcetaminophenCaffeineSalicylamideAspirinSalicylic acidIbuprofenNaproxen

Minutes0 1 2 3 4 5 6 7 8 9

mV

0

100

200

300

400

500

Analgesics Using a Hypercarb Column and a Thermal Gradient

Column: Thermo Electron Hypercarb, 7 µm, 100 x 4.6 mmMobile Phase: 35:65 acetonitrile:water with 0.1% TFAFlow Rate: 4.0 mL/minDetection: UV 220 nmTemperature Program: thermal gradient from 125° to 200°C at 30°/min, hold five min.

Elution Order:CaffeineAspirinSalicylic AcidIbuprofenPhenacetinAcetaminophenNaproxen

Minutes0 1 2 3 4 5 6 7

mV

0

25

50

75

100

125

150

175

Conclusions

• Temperature is powerful but under-used tool for selectivity tuning.

• Increasing the temperature reduces the amount of organic modifier needed and generally speeds elution.

• Temperature adjustment can be a fast way to optimize a separation.

• Shorter analysis times with better efficiency usually result from higher temperatures.

The authors thank Thermo Electron and Hamilton Company for providing columns for this work.Appreciation is also given to Craft Technologies for the carotenoid data.

Acknowledgements

Turn up the Heat!

Selerity Technologies Booth 2204