The Efecct of Creep

401

Transcript of The Efecct of Creep

Page 1: The Efecct of Creep
Page 2: The Efecct of Creep

William Andrew is an imprint of ElsevierLinacre House, Jordan Hill, Oxford OX2 8DP, UK30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

First edition 2009

Copyright © 2009 Elsevier Inc. All rights reserved

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any meanselectronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher

Permissions may be sought directly from Elsevier's Science & Technology RightsDepartment in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865853333;email: [email protected]. Alternatively visit the Science and Technology website atwww.elsevierdirect.corn/rights for further information

Notice

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of productsliability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained inthe material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnosesand drug dosages should be made

British Library Cataloguing in Publication DataA catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication DataMcKeen, Laurence W.

The effect of creep and other time related factors on plastics and elastomers / Laurence W. McKeen.--2nd ed.p.cm.

Includes bibliographical references and index.ISBN 978-0-8155-1585-21. Plastics-Thermal properties. 2. Plastics--Testing.3. Elastomers-Thermal properties. 4. Elastomers-Testing. I. Title.TA455.P5M3445 2009620.1 '92333--dc22

2008053872

ISBN: 978-0-81-551585-2

For information on all Elsevier publicationsvisit our website at elsevierdirect.com

Printed and bound in United States ofAmerica

09 10 11 12 11 10 9 8 7 6 5 4 3 2 I

Working together to growlibraries in developing countries

www.elsevier.com I www.bookaid.org I www.sabre.org

ELSEYIER ~,~?n~tt,~IS Sabre foundation

Page 3: The Efecct of Creep

This book is an update to the first edition, publishedin 1991. A lot has changed in the field since thatfirst edition, and a lot has not changed. There arenew plastic materials. There has been a huge turnoverin ownership of the plastic producing companies.There has been a lot of consolidation, which of coursemeans discontinued products. Thus this update ismuch more extensive than the usual "next edition."

It has been reorganized from a polymer chemis­try point of view. Plastics of similar polymer typesare grouped into nine chapters. Each of these chap­ters includes an introduction with a brief explana­tion of the chemistry of the polymers used in theplastics.

An extensive first chapter had been added. It is anintroductory chapter that summarizes the chemistryof making polymers, the formulation of plastics,creep testing and test methods, creep measures andcharts, theory, and plastic selection.

Most plastic products and parts are expected to beused under periodic or constant stress and at temper­atures other than room temperature. Chapters 2-10are a databank that serves as an evaluation of thecreep of plastics. Over 600 uniform graphs for morethan 45 generic families of plastics are contained inthese chapters. The following types of graphs may beincluded:

(1) Isochronous Stress-Strain Curves at VariousTimes and Temperatures

(2) Creep Strain or Creep Deformationversus Time at Various Stress Levels andTemperatures

(3) Various Modulus Measures (Tensile, Com­pressive, Flexural) versus Time at VariousTemperatures

(4) Hoop Stress versus Time at VariousTemperatures

(5) Stress Cracking and Other Plastics Failureversus Time.

(6) Creep Rupture versus Time

Preface

The data in each chapter is generally organized byproduct. The unreinforced products are at the front ofthe chapter. Next are the reinforced grades in order ofincreasing reinforcement levels. Generally glass rein­forcement is presented before mineral and carbonreinforcement. Comparisons of products or genericproducts are found at the end of each chapter.

Within each product usually isochronous plots arefirst, followed by creep strain. Subsequent to thoseare modulus plots. Creep rupture and hoop stressplots are usually at the end.

Chapter 11 contains Poisson's ratio numbers intabular form.

The appendices include a list of trade names, withplastics sold under those names. The manufacturer(at the time of this writing) is also listed. A list ofconversion factors for stress measures is included.

Some data from the first edition has been removed.Removed data include those of discontinued prod­ucts, and the data on mechanical property changes asa function of thermal or environmental aging. Thethermal and environmental aging data may becomepart of a new book in this series. Product names andmanufacturers have been updated.

Acknowledgments

This book is an update to an "authorless" work bythe same title. It was published in 1991. Of course itwas not really "authorless," This was one of the firstbooks published by the cofounder of William AndrewPublishing, William Woishnis. Bill Woishnis and hisstaff assembled this book and it was originally offeredin loose leaf and binder form. His support and feed­back on content are greatly appreciated

A number of teachers have greatly impacted myeducation and deserve special thanks. Ms. AnnaKruse was my high school chemistry teacher (LymanHall High School, Wallingford, CT) who not onlywas a great educator but also motivated this particularyoung student to study chemistry beyond the class­room. That included writing articles for an educational

xix

Page 4: The Efecct of Creep

xx

chemistry magazine while in high school and afterschool projects, one that eventually led to the 1969International Science Fair. The many outstandingchemistry teachers at Rensselaer Polytechnic Insti­tute (RPI) provided the best and most thoroughundergraduate chemistry education in the country.RPI continues to do so in nearly all the fields of sci­ence and engineering. Finally, my major professor atthe University of Wisconsin, Professor James W.Taylor, was a great educator and ultimately devel­oped my teaching abilities.

I am especially appreciative of the confidence,support, and patience of my friend Sina Ebnesajjad.He was also the primary proofreader of the manu­script. I would not have been given the opportunity todo this work had it not been for the support of MartinScrivener, President of William Andrew.

PREFACE

My family has been particularly supportive throughthe long hours of writing and research from myhome office. My wife, Linda, has been behind thiswork 100%.

My daughter Lindsey graduated from RensselaerPolytechnic Institute with a Bachelor of Science inBiomedical Engineering. She continues there work­ing on a PhD in Biology. We talked often about poly­mers, plastics, and materials, as she had studied thosesubjects. My sons, Michael, a senior managementmajor at James Madison University, and Steve, aneducation major at La Salle University, were alwayssupportive.

Larry McKeenWilmington, Delaware

December 2008

Page 5: The Efecct of Creep

1 Introduction to Plastics and Elastomers

1.1 Introduction 1.2 Types of Stress

1.2.2 Shear Stress

Figure 1.1. Illustration of tensile stress and com­pressive stress.

Shear stress (r) is also expressed as the force perunit area, as shown in Equation 1.2. The shear force

When the applied force is directed away from thepart, as shown in Fig. 1.1, it is a tensile force induc­ing a tensile stress. When the force is applied towardsthe part, it is a compressive force inducing a com­pressive stress.

(1.1)

Compressive Stress

F0"=-

A

Tensile Stress

1.2.1 Tensile and CompressiveStress

Creep is the time-dependent change in the dimen­sions of a plastic article when it is subjected to a con­stant stress. Stress can be applied in a number ofways. Normal stress (0") is the ratio of the appliedforce (F) over the cross-sectional area (A), as shownin Equation 1.1:

In an earlier book in this series, The Effect ofTemperature and Other Factors on Plastics and Elas­tomersl the general mechanical properties of plasticswere discussed. These mechanical properties as afunction of temperature, humidity, and other factorsare presented in graphs or tables. That work includeshundreds of graphs of stress versus strain, modulusversus temperature, impact strength versus tempera­ture, etc. However, when one starts designing productsmade of plastics, these graphs do not supply all thenecessary information. This is because these graphsshow the results of relatively short-term tests. Theirvalue in design is in the initial selection of materialsin terms of stiffness, strength, etc. Designs based onshort-term data obtained from a short-term test wouldnot predict accurately the long-term behavior of plas­tics. This is partly because plastics are viscoelasticmaterials. Viscoelastic by definition means possess­ing properties that are both solid-like and liquid-like.More precisely with reference to plastics, viscoelas­tic means that measurements such as modulus, impactstrength, and coefficient of friction are sensitive notonly to straining rate, temperature, humidity, etc., butalso to elapsed time and loading history. The manu­facturing method used for the plastic product can alsocreate changes in the structure of the material, whichhave a pronounced effect on properties.

The rest of this chapter first deals with the types ofstress and provides a short introduction to creep.Then the chemistry of plastics is discussed andbecause plastics are polymeric materials the focus ismore on polymer chemistry. The discussion includespolymerization chemistry and the different typesof polymers and how they differ from each other.As plastics are rarely "neat," reinforcements, fillers,and additives are reviewed. This is followed by adetailed look at creep, including creep-specific testsand creep graphs. The discussion takes a look atwhat happens at the microscopic level when plasticsexhibit creep. Section 1.4. is taken from The Effectof Temperature and Other Factors on Plastics andElastomers book, but it has been refocused on creepproperties.

1

Page 6: The Efecct of Creep

2 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

Figure 1.2. Illustration of shear stress.

is applied parallel to the cross-sectional area "A" asshown in Fig. 1.2.

Figure 1.3. Illustration of torsional stress.

Fr=-

A(1.2)

modulus of rigidity (material dependent), and L is thelength.

T= ()KGL

(1.4)

In this equation, T is the torque and c is the distancefrom the center of the shaft or rod. K is a torsionalconstant that depends on the geometry of the shaft,rod, or beam. The torque (n is further defined byEquation 1.4, in which ()is the angle of twist, G is the

Torsional stress (r) occurs when a part such as arod or shaft is twisted as in Fig. 1.3. This is also ashear stress, but the stress is variable and depends onhow far the point of interest is from the center of theshaft. The equation describing this stress is shown inEquation 1.3:

1.2.3 Torsional Stress

Tcr=-

K(1.3)

The torsional constant (K) is dependent upon geom­etry, and the formulas for several geometries are shownin Fig. 1.4. Additional formulas for the torsionalconstant have been published."

1.2.4 Flexural or Bending StressBending stress or flexural stress commonly occurs

in two instances, as shown in Fig. 1.5. One is called asimple, supported structural beam bending and theother is called cantilever beam bending. For the sim­ple, supported structural beam, the upper surface ofthe bending beam is in compression and the bottomsurface is in tension. The neutral axis (NA) is a regionof zero stress. The bending stress (0-) is defined byEquation 1.5, where M is the bending moment (which

Figure 1.4. Torsional constants for rods or beams of common geometries.

Page 7: The Efecct of Creep

1: INTRODUCTION TO PLASTICS AND ELASTOMERS 3

Cantilever beam bending

Figure 1.6. Illustration of hoop stress.

where P is the internal pressure, t is the wall thick­ness, and r is the radius of the cylinder. The SI unitfor P is pascal (Pa), while t and r are in meters (m).

If the pipe is closed at the ends, any force appliedon them by the internal pressure will induce an axialor longitudinal stress ((JI) on the same pipe wall. Thelongitudinal stress, under the same conditions as inFig. 1.6, is given by Equation 1.7:

Simple supported beam bending

Figure 1.5. Illustration of flexural or bending stress.

(J(J =_h

I 2(1.7)

(1.8)

where (JI is the longitudinal stress, (Jh is the hoopstress, and Tc is the tangential shear stress (from mate­rial flowing through the pipe).

Failure by fracture in cylindrical vessels is domi­nated by hoop stress in the absence of other externalloads because it is the largest principal stress. Failureby yielding is affected by an equivalent stress that

where P is the internal pressure in the tube or cylin­der, a is the internal radius of the tube or cylinder, bis the external radius of the tube or cylinder, and r isthe radius to the point in tube where the radial stressis calculated.

Often the stresses in a pipe are combined into ameasure called the equivalent stress, which is deter­mined using the Von Mises equivalent stress formulashown in Equation 1.9:

There could also be a radial stress especially whenthe pipe walls are thick, but thin-walled sections oftenhave negligibly small radial stress ((Jr)' The stress inthe radial direction at a point in the tube or cylinderwall is shown in Equation 1.8:

(1.5)

(1.6)Pr(Jh =-

t

is calculated by multiplying a force by the distancebetween the point of interest and the force), e is thedistance from the neutral axis (NA in Fig. 1.5), and Iis the moment of inertia. The cantilevered beam con­figuration, which is also shown in Fig. 1.5, has a sim­ilar formula. The formulas for M, e, and I can becomplex, depending on the exact configuration andbeam shape, but many have been published.'

Me(J=-

I

1.2.5 Hoop StressHoop stress ((Jh) is the mechanical stress defined

for rotationally symmetric objects such as pipe ortubing. The real world view of hoop stress is the ten­sion applied to the iron bands, or hoops, of a woodenbarrel. It is the result of forces acting circumferen­tially. Figure 1.6 shows stresses caused by the pres­sure (P) inside a cylindrical vessel. The hoop stress isindicated on the right in Fig. 1.6, which shows a seg­ment of the pipe.

The classic equation for hoop stress created by aninternal pressure on a thin-wall cylindrical pressurevessel is given in Equation 1.6:

Page 8: The Efecct of Creep

4 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

includes hoop stress and longitudinal stress. Theequivalent stress can also include tangential shearstress and radial stress when present.

1.3 Basic Concepts of Creep

As noted earlier, creep is the time-dependent changein the dimensions of a plastic article when it is sub­jected to a constant stress. Metals also possess creepproperties, but at room temperature the creep behav­ior of metals is usually negligible. Therefore, metaldesign procedures are simpler because the modulusmay be considered to be constant (except at high tem­peratures). However, the modulus of a plastic is notconstant. Provided its variation is known, the creepbehavior of plastics can be compensated for by usingaccurate and well-established design procedures or bymodification of the plastics' composition with rein­forcing fillers. For metals, the objective of the designmethod is usually to determine stress values that willnot cause fracture. However, for plastics it is more likelythat excessive deformation will be the limiting factorin the selection of working stresses. This book looksspecifically at the deformation behavior of plastics.

Creep is the time-dependent change in the dimen­sions of a plastic article when it is subjected to stress.This is shown schematically in Fig. 1.7. A given load

Figure 1.7. Illustration of creep.

is shown on a plastic plaque supported at the ends.The weight or load along with gravity supplies a con­stant stress on the plastic plaque. After 10 hours inthis condition there is very little deflection or saggingof the plastic plaque. However, after 100 hours thedeflection, or strain, has increased. It is deflectedeven further after 1000 hours. If one plots the deflec­tion versus time, a plot like the first part (A to B) ofthe plot shown in Fig. 1.8 might be obtained. If thestress (or weight) is removed at point B, the strain ordeflection recovers partially very rapidly to point C.This part is called the elastic recovery. After point C,there is a slow viscous recovery to some final point D.The plaque is no longer flat and the remaining deflec­tion is permanent. Creep is the permanent deforma­tion resulting from prolonged application of stressbelow the elastic limit. The creep illustrated on theleft in Fig. 1.7 is in flexure so it is called flexure creep.The creep measured by the method on the right inFig. 1.7 is called tensile creep. If the force squeezeson the plastic plaque, then the creep measure wouldbe compressive creep.

Creep and other creep-related properties (dis­cussed later) are among the most important mechani­cal characteristics of plastics. Plastics that havesignificant time sensitivity at the temperature of usewill have limited value for structural applications orapplications demanding dimensional stability.

Page 9: The Efecct of Creep

1: INTRODUCTION TO PLASTICS AND ELASTOMERS 5

o

1000

. .

Permanent Deflection

10010

· ................ -- -- -: ------ ---. . . - :- - ---- ------ ------. ~ - .· . .· . .· .

· .................. --_ _-_ : : .

· B· .-- -- -- -- -- -- ..-- :........... c' -- -- .. Remove Stress" -- -- : ----..· .

........... _-- _-_ __ - __ _--- .. --_ -_ _--_ _--· .· .· .................... _-_. __ __ : _-_.. _-_ -_ _-_ : _-_ -i-···--_···· . .

A : ; .· .

........... -.. --- --. -- ~ .. --. ---.. - - -- ----:- --- --.. - - ~ - .· .· .· .

................................... ; C ; ; .

9

8

7

6

-:. 5!..5 4f-tn

3

2

1

01

Time (Hours)

Figure 1.8. Illustration of elastic recovery, viscous recovery, and permanent deflection or creep.

1.3.1 Categories, Stages, orRegions of Creep

When one does a tensile creep experiment such asthat shown in Fig. 1.7 and the data are graphed, a plotlike that shown in Fig. 1.9 may be obtained. Thecreep data in this plot can be subdivided into threecategories (also called stages or regions): primary,steady state, and tertiary creep. These occur sequen­tially as shown in Fig. 1.9. Initially, when the stress isapplied, there is an initial strain that is an elastic com­ponent to the strain. For that portion, if the stress isremoved the material returns to its original shape anddimensions. Considering that the slope of the curvegives the strain rate, the three categories correspondto a decreasing strain rate (primary), an approximatelyconstant strain rate (steady state), and an increasingstrain rate (tertiary).

The first stage of creep shown in Fig. 1.9 is namedthe primary creep region but it is also known as thetransient creep stage. Primary creep strain is oftenless than 1% of the sum of the elastic, steady-state,and primary strains. The second stage of creep shownin Fig. 1.9 is the steady-state region or secondarycreep. This region is so named because the strain rateis constant.

When the amount of strain is high, creep fractureor rupture will occur. This is called the tertiary region

and is also known as the accelerating creep stage.The high strains in this region will cause necking orother failure in the material. Necking will cause anincrease in the local stress of the component that fur­ther accelerates the strain. The importance of the ter­tiary region for normal operation and creep designcriteria is minimal, as plastic parts are designed toavoid this region because failure is imminent. InFig. 1.9, the time scale ofthe tertiary region is greatlyexpanded for the purpose of clarity. Considering thesmall amount of time in addition to the fact that thetertiary region develops a plastic instability similar tonecking, operating in the tertiary region is not feasi­ble. Therefore, it is a conservative estimate to approx­imate the end of the serviceable life of any componentto coincide with the end of the steady-state creepregion.

Whether these regions have any significance otherthan as arbitrary divisions of the curve is an arguablepoint. However, this region concept is commonly dis­cussed in the literature, and creep data that exhibit atrue straight line over a substantial region of the creepcurve are rarely found. In the past many of the analy­ses made of stress problems for creep have beenbased on an assumption that the entire creep curvecould be represented by a straight line, that is, a con­stant rate of creep. While this may be an adequateway of treating design problems involving creep at

Page 10: The Efecct of Creep

6 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

Fracture

100010010

...........: -: ---: ., , ,, , ,

, ,, ,

1

·_·1·············1························1························T························r···············...Initial Strain : : ~ ~. , . .

, . ,, ,, ,, ,

0+--.......-l~ ......."O"'T"'~- ....................-...............,r----r---..........................'T'""-...---...............TTT'-........---.-"""'T'""..-+0.1

~o::: 60c.CDeo

1 1, , ' 3rd Stage 1c. 1 : : : I:

80 "S" i~""""""":""""""" '2nd Sta~e"""""""""'" .: ~i'" tert~ai);"" .

~ I secondary Creep creep~ ,

E 1 ., 1..;f ..r ~ ; ~.. ... ... . . .

Gi ' ' :~ 1 'enl

~ 40 ..~ .. I. L .....~c

.~-UJ 20

Time (Hours)

Figure 1.9. Strain versus time creep behavior.

Increasing Stress, ...or Temperature

..;.---, -

, , ,

............ , ~:/, .

: . : ., .:. : /:-_.---_.--- ~ -~~ ----_.------;- -_. --;,;_ : -

-:-

." -:- -. ~ --- -------, , ,, , ,, . ,, . ., . ,, ., ., ., .

25 .

20

-~0- 15cE-en

10

low stresses over long periods of time, it is hardlyadequate for many present-day problems, whichoften involve high stresses, high temperatures, andshort times.

The curve shown in Fig. 1.9 was measured at oneamount of stress, determined by the weight used inFig. 1.7. Families of these curves are often generatedat different amounts of stress and at different tem­peratures. Increasing the amount of stress logicallyincreases the magnitude of creep measured. Increas­ing the temperature has a similar effect. The qualita­tive effect of increasing the stress and temperatureon the strain versus time creep curves are shown inFig. 1.10.

1.3.2 Measures of CreepThis section covers the various ways to plot multi­

point creep data and the ways the data are obtained.

5 ----_.. ------:-. -------_ -:- _. -----_ ~ _ .

o+-_........"'""!---....................'"T""........................,..-'"T'"""'l........rn-rt­10°

1.3.2.1 Stress, Strain, and Time

The most common method of displaying the inter­dependence of stress, strain, and time is by means ofcreep curves. Ideally, the interdependence of stress,strain,and time for a particularplastic material at a spe­cific temperature is represented by a three-dimensionalplot such as that shown in Fig. 1.11.

Time (hrs)

Figure 1.10. The effect of temperature and stresson strain versus time creep behavior.

In practice, it is most common to have the strain­time data (at a given stress), as these can be obtainedfrom the relatively simple experiments described inSection 1.3 and Fig. 1.7. By collecting a series of

Page 11: The Efecct of Creep

1: INTRODUCTION TO PLASTICS AND ELASTOMERS 7

Figure 1.11. Hypothetical stress-strain-time plot fora typical plastic material.

Figure 1.13. A plane at constant stress slices thestress-strain-time plot.

the strain-time curves at different stress levels, thethree-dimensional plot can be constructed. Three­dimensional plots are hard to work with visually orpractically, so the three-dimension plot is representedby a series of two-dimensional plots of this data.

Some of the measured curves that were used toconstruct the three-dimensional plot are shown inFig. 1.12.The curves at low stress are not shown. Therelationship of these curves to the three-dimensionalplot is indicated by the planar slices shown inFig. 1.13.

If the three-dimensional plot is sliced by a series ofplanes that correspond to constant time, as shown inFig. 1.14, a plot known as an isochronous creep plotis obtained. An isochronous plot of the data used toconstruct Fig. 1.11 is given in Fig. 1.15. Isochronousplots are commonly available from manufacturersof engineering plastics and are very familiar to engi­neers. These useful plots can be obtained by experi­ment relatively easily by performing a series ofmini-creep and recovery tests on a plastic. These mini­creep and recovery tests are less time consuming and

6+---...........--~-----'------J---"-----!--_ ........._-~---t

: 33 MPa

5432

j 30 MPa4 : : , / : .

: i : / / :

: : / :· : . / .: 27 MPa

....... _ _ __ _:_ .. _. _ __ _ ~ _ _ _ . _~"";" y'" _. _ _~. ;.,<1: _ .~ •••••••••••••

:,-,- .,- : .: 24MPa.". ,,,, ;.

2 _ --. _. _ :.-_ _ -_ -_ '. . -_.. -.,;;-- -~ _. _.. ;; .•.'.: ;,.;_~~ .. --:- .."" ": .,," .

" »>" ..... : 21 MPa- -- , .""~.,.,,,, .- .....- :

1 };~~{i.~~~;if~~~~;J~~~~f~i[~ii:;i~~i~~~;~~~:~j:~ :::O-l------.----;----.------i---.......---....,..---.....----r-------4-

1

-~o-3c

.~-en

5 _.. _ _ -:- _ _ ~. -_ _ -. ~ _. _ _ -· . .· . .· . .· . .

Log Time (hrs)

Figure 1.12. Measured creep plots used to construct Fig. 1.11.

Page 12: The Efecct of Creep

8 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

Figure 1.14. A plane at constant time slices thestress-strain-time plot.

require less specimen preparation than creep curves.To do this, a stress is applied to a plastic test plaqueand the strain is recorded after a time t (often at100 seconds). The stress is then removed and theplastic plaque is allowed to recover, generally for aperiod of 4t. Next a larger stress is applied to thesame test specimen and after recording the strain attime t, this stress is removed and the material isallowed to recover in the same manner. This proce­dure is repeated until enough points have been

obtained for the isochronous graph to be plotted.Additional times may be run, but they are typicallyincreased by an order of magnitude, so usually onlyone or two curves are measured by this method.

When the plane is at constant strain as shown inFig. 1.16, the plots shown in Fig. 1.17 are obtained.These plots are called isometric curves. Isometriccurves are an indication of the relaxation of stressin the material when the strain is kept constant. Iso­metric data is often used as a good approximationof stress relaxation in a plastic, as stress relaxation isa less common experimental procedure than creeptesting.

Isometric and isochronous plots are the most com­mon graphical representations of creep data. Theycan be measured in flexure, tension, or compression.They are also measured at a specific temperature,so it is common to have families of these curves atdifferent temperatures.

1.3.2.2 Creep Modulus

The elastic modulus is equal to stress divided bystrain, as shown in Equation 1.10. However, whencreep has occurred there is an amount of strain thatgets added to the denominator of the equation; themodulus so calculated is called the apparent creepmodulus, as shown in Equation 1.11.

6.05.55.04.54.03.53.02.52.01.51.00.5

100 hr 1000 hr .... 10000 hr ._10hr/ I .' ......... ::.: '-'';'''---:100000hr

il.r<l/~T;:L.~·~·J<I·~·I[rII. : / /'/

.., :. ~~~ ~ 1(.'" ./(.:.<.. ~ ~ : ; ~ .. -- ~ ; : ; .

....... ~;~~~1".~~ t 1. l J ; t ; : ' ~ .'/: /'; ; ; '; ;;;;;

'1/ ; ;; : :::::, I • •• ..".".... I' ';' ~ ';' ';' ~ ';' ~ ';' ';' ~ ';' ~ .

I. •• •• ., ,.. .. " .. ,... . . ,.. . , ... . ... . .. ., . ., ._ __ .'....•..•• l ••••••••• ••••• __ ' .. _ l ...••• • • • ••••••.•.. 1 •••••••••••••• __ ••••• ••••••••• 1 •••••• '_._._ •••• 1_ •••, . . . . , , . . . . ,.. ."., ..., ..,., ..

, . ,. ,, ..., .,

O+-----r-...-"'T'"---.-.,..-""T""--r-...--r-......--.,r--......----r---.-....-----r-...-"'T'"---.-.,..-""T""........-+0.0

35

30

25

ca 20Q.

:E-1/11/1 15G)..-tn

10

5

Strain (%)

Figure 1.15. Isochronous creep plot obtained from Fig.1.11.

Page 13: The Efecct of Creep

I: INTRODUCTION TO PLASTICS AND ELASTOMERS 9

Figure 1.16. A plane at constant strain slices thestress-strain-time plot.

Elastic modulus = Stress/Strain(with no creep) (1.10)

Fig. 1.17) curve, then this is a relaxation modulus.The creep modulus curve may be obtained from con­stant stress curves (Fig. 1.12) by dividing the constantcreep stress by the strain at various times.

Both the creep and the relaxation modulus willdecrease as time increases, as shown in Fig. 1.18. Theplot is usually shown using log-log scales. The creepmodulus is sometime called apparent modulus orapparent creep modulus. The reason "apparent" isused is to be more explicit about how the calculationof creep or relaxation modulus is done.

Figure 1.19 shows the apparent modulus versustime plot for a plastic material at various tempera­tures at a given stress level. This figure does not coveras wide a range in time as Fig. 1.18. As the tempera­ture goes up, one would expect the creep part of thedeflections to be larger (and the modulus to be lower)and this is shown in the figure. This figure is one ofseveral common ways to plot the effects of creep.

Apparent creep modulus =Stress/(Strain+ Creep) (1.11)

A plot of the apparent creep modulus (often short­ened to just creep modulus) versus time is a commonway to show creep performance. A generic creepmodulus versus time plot is shown in Fig. 1.18. If thedata are obtained from an isometric (constant strain,

1.3.2.3 Creep Strength and RuptureStrength

Creep strength and rupture strength are commonlyused when designing or using pipes or tubing. Rup­ture strength is defined as the stress, at specified envi­ronmental conditions (temperature, humidity, andsometimes chemical environment), required to produce

354--......-.L-----'-----"---'---l--.......--4--......- ....-""-----l"-----"-.......- ........--+

1.5% 2.0%: 2.5% 3.0% 3.5% 4.0%;.." , :, , ,:

..... , :,", ' ~,..... ' , , : "

" ! , ,: '~"' ..~ , :, ' .,1 00 / Str ' ,.....,..,

• 10 am: : :-.. :' :" : " ".. _.. _ : _._ - ~ _ ~ _._.-_._.. ; --~ --_._.. _.. ; _.-'). _.. _.. ; -_.-_.-_., -; _.- _.. -_ -

: :.....":'": :...... ,: ':',: : ..... : ,. , :. . , :, .,: : : ..... "i,

: :..... >'.....

..... , :. , " ..

.l····_·········:··············I·'·~·······-I'·~-····· .....

: ..... :: ..... :: .....: :": :", ,": : "

· ..... ... . . . .. .. ~ .. - -; -. - --- -:-. - -.. -· . .· . .· . .· . .· . .· .· .

30

-ca11.

!.tiltilCD~-U)

25

5.04.54.03.53.0

Log Time (hrs)

2.52.01.520+--.......-i----.---r-........--r--.......--;--.......-;--.....---..,-........---r-.....,....--+

1.0

Figure 1.17. Isometric plot obtained from Fig. 1.11.

Page 14: The Efecct of Creep

10 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

that exceeds the design limits. The accumulated creepstrain is the sum ofthe permanent creep strain (shownin Fig. 1.5, also called permanent deflection) plusthe recoverable creep strain. The creep failure defor­mation can be defined by the design engineer as thepoint at which the part ceases to function as intended.Stress rupture is often defined as the onset of the thirdstage of creep (see Fig. 1.9). Creep rupture extendsthe creep process through stage 3 to the limiting con­dition where the stressed part actually breaks intotwo parts. Many engineers often use stress ruptureinterchangeably with creep rupture. Figure 1.20 illus­trates these differences.

Figure 1.21 shows a plot of creep rupture enve­lopes at several temperatures. These plots are verycommon for materials that are use in pipes. Creeprupture analysis generates time-to-failure data fordifferent constant stress levels. These data can be usedto predict the life of a component and can be used indesign calculations.

Over a long period of time at constant load, mostpolymers will creep leading eventually to failure.Aggressive environments, such as humid, oxidizing,or acidic atmospheres, generally accelerate failure asshown in Fig. 1.22.

It is important to keep in mind that creep mea­sures on pipes generate a time-to-failure curve understatic stress conditions. A pipe usually has materialflowing through it that can also have an effect on creep.

, , , ,· -. -----. -:- --. --. ----:- ----------: -. -- ----- ~ ------. ---

, , , ,, , , ,, , , ,, , , ,, . , ,· ........................, __ ., . . ,· . .· . .· . .· . ., , . ,, , . ,.......... , , _-,- ._------, , . ,· , , ,· . .· . .· . .· . .

· ----- ------- :- .. -.. - : ~ .--------.· . .· . .· . .· . .· . .· .• •• 0 •••••••••••••••• __ • __ ., _· . .· . .· . .· . .· . .· . .· . , .------_ -_._--,.-. __ ----_._-, . , ., . , ., . . .· . , ., • , I

• I , ,· ' ~ .I I , I

• I , I, , . ,, , . .· , . ,· ..· .____ 0 __,' __ -------,---_ ••• _--· .

102+-.................mr-.........,-rn....,...........T"TTT'rl'lf"---r""T'T".........---r"""T"T...........

10°

rupture in a fixed amount of time usually given inhours.

Creep failure occurs when the accumulated creepstrain results in a deformation of the machine part

Time (Hours)

Figure 1.18. Typical variation of creep or relaxationmodulus with a wide range of time.

4+---........- ........---'----'--'-.................1-----........--'---'----'-..........................1----........- .................---1..................."-'+

-- -:--..

...

3 ~·,.,·_· ·.:..:·~·:..:·:...··················f···················· .'(is ---a.!.

--.............

... .. -... -:..........

/I)

.2 -: .~ 2 r:::~~·':':~~··························· [ ~:. ~ .::.:.~ ~. ~.~ T~· ,....~.;.; ~;~~~.

:E '-._"'- .. - .......... _--- ...:_--'--- .......... ------.-.. 140°C............-.. -.- - -.. ~ -.. -.--.- --.. -..~ -:-:r~., --.--.; :. :.:.,- ~ :.:.-,: .. --.---.. -.- -

- ... _--._-_ .. -160°C

-c~IIIC.c. 1

<C

1000100100+---~- _ _.__._........."T"T_;_---.---r--"'"T""""'"T""".................r-i----r---.--.--.-...,..............-r+

1

Time (Hours)

Figure 1.19. Apparent modulus versus time plot at various temperatures for a typical plastic material.

Page 15: The Efecct of Creep

1: INTRODUCTION TO PLASTICS AND ELASTOMERS 11

20+-_.......--l..........................a+-_........--'---l..................."-!-__--"--'-.................o.J..._--'- ......_ ........"""+

- -- - -.

Creep Rupture Envelope* Creep Rupture• Stress Rupture

......... _-.;a_ --- ---

'.'.'.'.Increasing Stress·············· ..····..~·· ..····....····..···..·....··

........................................................................................· .· .· .

5 ...

,,

15

-'#.- 10.S:l!-en

100001000100

Time (hrs)

10O+--"""T'"---.---.....................,r--......."""T'"--.-.............."'I"T""----.-........,......,--.-...-r-o,...--"""T'"---.---..................-.+

1

Figure 1.20. Graphical explanation of creep rupture, stress rupture, and creep rupture envelope.

This was mentioned in the discussion on hoop stressand equivalent stress in Section 1.2.5.

Many time-to-fail type plots run out to 50 years ormore. Creep experiments have not been run for thatlength of time. Long-term creep is generally pre­dicted by tests that are carried out at elevated tem­perature. Then, the long-term data is predicted usingtime-temperature superposition techniques. Time­temperature superposition is well established (ISO1167 Standard) and is used extensively in the assess­ment of the long-term (50-year) design stress of plas­tic pipes. The superposition technique starts out bymeasuring creep rupture curves at several tempera­tures above the temperature for the long-term plot.An example of this stress/time-to-failure data isshown in Fig. 1.23.

Starting from the highest temperature curve, T5 inthe figure, the curve is shifted to the right until mostof it fits over the next highest temperature, T4. Thenthe combined T5 + T4 curve is shifted to fit over theT3 curve. This is all done "by eye" and the process isshown in Fig. 1.24.

The final master curve, shown in Fig. 1.25, canthen be used to establish the failure stress of the plas­tic pipe material in the environment at the servicetemperature and at the desired life of the component.

Creep strength is defined as the stress at specifiedenvironmental conditions that produces a steady

10.1 10°Time (hrs)

....:... ... ....

: ............. ';..

..<,.;.... ' ....... ,: •".' , , :......: 60°C

. ..... . ~ .. ::~"".~: ..:.".'~ _._._. -~. ---_...~. -_.--~-, -~ ..

• ,·"···,···~·,_·_~.,.~,.,'~:c.. .., .., ." .10 ~ ......._ .................,....,..........,..,.,........-.....~ ...............................~

10'"

20

IiD.:E-I/)I/)CD..-en

15

Figure 1.21. Creep rupture stress (envelopes)versus time plot of a typical polycarbonate at varioustemperatures.

Page 16: The Efecct of Creep

12 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

60 +----"---'-........................- .......................w.l--...................................-----................-I----'-........................~---- ........................."""t

50 ~"""=~;;::::~;;~;l~~~;.~~~; 0 ~:J, ;~ .~ L.· .,~ ~,r .---

40 ~ ~ ~ .'.: .. ~ ~ ~~.~~:-:::-,.+-~ .:.;;:.:.:::~~~.~

~ ~ :',: ~., " ... " ,: : ,\ :, . , "....... _._ _._ _._ -. _._ _ _.. _.. _.. ,_ -.. -.._._.. _.. _ _ .: : : \ : :~ . ~ \~ :· ..· . . .\

................... ; ; ; ;~ ; .· , . . , .~ ~ ~ ~ " ~: : . , " :: : In Aggres~ve Environme~t '. :

10 ; ; ; ; \ ; .

IIIIIIe-en 30­ceIIIC.

: 20

O+----.---.-.................,..----.---.-...................r-_--.-.....................,.----.--.-..................,.----._"""T""'O""T'T"rTT"""---........."""T"""I"'T"T'"...r10°

Time to Fail (Hours)

Figure 1.22. Typical creep rupture curves in air and aggressive environments.

Increasing Temperature

-. T2

\.\.

T4

T3........

T5

"

.........

-- .... --- ..----.-.. -. -----..... .. ..- - - .. .. - .. T1.......... .. - - .................

.......... .. ...............--

Log Time

Figure 1.23. Typical creep rupture curves for a plastic pipe at various temperatures.

creep rate, such as 1%,2%, or 5%. A plot ofthe creepstrength of a polyethylene pipe at 20°C is shown inFig. 1.26. In this case the creep strength is shown inareas due to the uncertainty for limited experimentaldata. Creep strength values are determined from iso­metric plots such as that shown in Fig. 1.17. An alter­nate term is creep limit. As a rule, creep strength isexpressed as the creep rupture strength (i.e., the stressthat causes rupture after 10,000 or 100,000 hours).

1.3.2.4 Environmental Stress Cracking

Environmental stress cracking (ESC) is a commoncause of plastic product failure. ESC may be definedas the acceleration of stress cracking by contact witha liquid or vapor without chemical degradation of theplastic. An illustration of the simplest tests will helpdefine ESC better.

There are many tests for ESC4 and they are sum­marized in the following sections.

Page 17: The Efecct of Creep

1: INTRODUCTION TO PLASTICS AND ELASTOMERS 13

,.\

"-.. - --- .....- .... -- ..-..-...................... .. ..-

............... ......... ..... ..

"""'" ...... -. "'" ' -,, .. ,....., ," '\ ''\ \ \

\ ," \ \,

.. \ \

\ ~ \ ~ \ -----1.~\, --- .\

TS' T4+TS T3+T4+TS T2+T3+T4+TS

Log Time

Figure 1.24. Creep rupture curve shifts at various temperatures used to produce a long-term master curve.

10 Year Failure Stress (at)

Log Time (Years) 10 Years

Figure 1.25. Typical creep rupture master curve used to assess the long-term failure stress of a material.

1.3.2.4.1 Single Cantilever Test

This simple test is a single cantilever beam test andis illustrated in Fig. 1.27. This test requires essen­tially no investment. As shown in Fig. 1.27, a strip ofthe plastic material is clamped to the edge of a sturdybench. The test fluid is applied to the upper surfaceof the test plaque. Viscous non-volatile fluids suchas oils and greases can be smeared onto the surface.Volatile test fluids need to be applied continuously.A weight is applied to the end to provide a constantstress. As a control, it is recommended for the testto be run concurrently in the absence of the fluid.The area under the test fluid is examined periodicallyfor the formation of cracks or other defects. Details

on this test will be provided later in the ESC testingsection.

The mechanism of stress cracking is purely physi­cal. The interactions between the fluid, the stress, andthe plastic polymer include:

(1) local yielding,

(2) fluid absorption,

(3) plasticization,

(4) craze initiation,

(5) crack growth, and

(6) fracture.

Page 18: The Efecct of Creep

14 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

25

20 -

15

:

5 ----.1Creepl Strength

I

iIi

--- ---J...----..-- -- -J~Rup~r~ ..str~tb.L---.- --- - --.I ! ! I

I I i! i I

I I--·...·-...·----·-···---r·......··-···---··-··------i

Time (Hours)

Figure 1.26. Comparison of creep strength and creep rupture for a polyethylene pipe measured at 20°C.

Test Fluid

Figure 1.27. Single cantilever beam ESC test underconstant stress.

These occur without irreversible chemical changesin the polymer(s) in the plastic material. ESC is dif­ferentiated from stress corrosion cracking (Scq,which by definition must involve stress and polymerdegradation.

It is important to note that the fluid only acceler­ates the mechanism as stress cracking will eventuallyoccur in the absence of an active fluid. It will eventu­ally occur in air.

The maximum applied stress (0-) is given by thefollowing equation:

where F is the applied load in newtons, w is the beamwidth in mm, L is the effective beam length in mm,and t is the beam thickness in mm.

The maximum applied stress ordinarily should beas high as possible. It should exceed the expected ser­vice stress. If this is not known, a reasonable startingpoint (20 Nzmrrr') should be applied. A dry controlshould always be run at the same time. If the vaporpressure of the contact fluid is high enough that evap­oration occurs, then the fluid must be periodically orcontinuously replenished. The surface in contact withthe fluid and the control surface should be comparedperiodically using a magnifying glass.

1.3.2.4.2 Three Point Bending Test

The three point bending test imparts a deflection tothe middle of a test plaque or beam. Two commondevices are shown in Figs. 1.28 and 1.29. Figure 1.28shows a device that can impart a variable deflectionby means of a screw adjustment. The device in Fig.1.29 is deflected by a pin. The pin can be machined todifferent diameters allowing for different strain levels.The test device can be placed in the test fluid.

The maximum surface strain (emax) can be calcu­lating using Equation 1.13:

6FL0-=--

wt 2(1.12) (6<5t)

emax = L x 100% (1.13)

Page 19: The Efecct of Creep

1: INTRODUCTION TO PLASTICS AND ELASTOMERS 15

Figure 1.28. Three point bending ESC test devicewith variable imparted strain.

Plastic Test Plaque

Figure 1.29. Three point bending ESC test device.

where ~ is the midpoint deflection in mm, L is theeffective beam length in mm, and t is the materialthickness in mm.

Strains are typically less than or equal to 1%. Theresults are usually plotted as applied strain versustime until cracking is visible, as shown in Fig. 1.30.

1.3.2.4.3 Tensile Creep Rupture Test

The tensile creep rupture test is preferred as themost direct method of quantifying ESC performance.It involves the application of a tensile stress and the

recording of time to rupture. In this test the change inlength (strain response) of a material subjected to aconstant tensile stress is monitored. The test employsa Rapra tensile creep machine, a diagram of which isshown in Fig. 1.31. The change in length is measuredusing a Moire fringe extensometer (not shown).

The test is usually run in air and the fluid/gas ofinterest. Typical data obtained by this test are shownin Fig. 1.32. The break of the strain versus time curvesat a given stress level is assumed to be the initiationof ESC. For transparent plastics this point coincideswith the appearance of visible crazing.

.,.\

\\

~, ............. \ ; ; .

, :, :~ :, :

"...... .............................: 'l!r.,.- ; ; ......... .. ...... .

0.75

1.00 +-...-.........__'--"'-'-........"""""'__..o...-.....................................o.+-_ __'_..o...-........................~_ .........__'__'_......""""'+

~o~ 0.50

'e-UJ

0.25. : '"":6.......... :

_.. _-_. __. __. __._._-_. __. __ .~._ .. _.. __._.. _.. _-_. __ _.. ; _-~.:-:-.~ ;.:,.. ; _ _--_. __ _----_.---

: : : ......: : .........· .· .· .

100100.10.00+--........--.--......,...."T""T""T"T"1--..--................"T"""T...........-r----.-..--T'"'""'I..............-r--........--.--......,...."T""T"......,-+

0.01 1

Time (hrs)

Figure 1.30. Three point bending ESC test of a plastic in contact with tri-n-butyl phosphate.

Page 20: The Efecct of Creep

16 THEEFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

1.3.2.4.4 ESC Performance Expectations

Based on the evidence of published data and theincidence of ESC, the following generalizationsabout ESC performance may be mader'

Figure 1.31. Rapra tensile creep machine.

(1) Amorphous thermoplastics or thermoplas­tics in their amorphous state are considerablymore prone to ESC than either semi­crystalline thermoplastics or thermosets.

(2) Fluids with modest hydrogen bonding aremost likely to be severe or moderate ESCagents. These include organic fluids classi­fied as aromatic hydrocarbons, halogenatedhydrocarbons, ethers, ketones, aldehydes,esters, and nitrogen- and sulfur-containingcompounds. Non-hydrogen bonded fluidssuch as aliphatic hydrocarbons and highlyhydrogen bonded fluids such as water andalcohols tend to be milder ESC agents.

(3) Fluids with a high molar volume are less likelyto be severe stress cracking agents. Such fluidstend to have high viscosity and high boilingpoints. Thus, low viscosity silicone oil is moreaggressive than silicone grease.

2.0 +---'----'----'- ...o.l-----"-"-- .-.... ---____. ----'--"-- ...-......r

In Test Fluid-- InAir

. ....... ·1············:····························:·········,,,

, 2 MPa . "'. ............................. : 1'..... . : ;./ .

: : ;JI: 1 MPa

/:

0.5 .

,,,,1.5 ················/··4 MPa·;······,,

~o~ 1.0

'f-th

100010010.0 +--"""T"""---r---r"............-.-.~-......,-......- ........"""T""'.......i---.-...............,....................-r-i-----r-...--.................~

0.1 10

Time (hrs)

Figure 1.32. Typical tensile creep curves of a polymer in air and in contact with an ESC fluid.

Page 21: The Efecct of Creep

1: INTRODUCTION TO PLASTICS AND ELASTOMERS

(4) Fluids are most aggressive at temperaturesnear their boiling point. Thus, nitrogen is astress cracking agent for many plastics at itsboiling point (-196°C).

(5) Amorphous plastics are most susceptible toESC at temperatures that approach theirglass transition temperature, Tg• (A simpli­fied definition of the glass transition tem­perature is the temperature at which anamorphous plastic becomes brittle on cool­ing, or soft on heating.) As the Tg of mostamorphous plastics is well above their rec­ommended maximum service temperature,this means that in practice the resistance ofa plastic to ESC reduces with increasingservice temperature.

(6) Low molecular weight grades have reducedESC resistance.

1.3.2.5 Summary of Creep Standard TestsStandard plastics tests are generally specified pri­

marily by two standards organizations. ASTM Inter­national, originally known as the American Societyfor Testing and Materials (ASTM) is one organiza­tion; its standards are the well-known ASTM stan­dards. The second organization is the InternationalOrganization for Standardization (ISO) that is alsowell known. These organizations do not specify justplastics tests, but they both develop technical stan­dards in whatever fields need them. They are bothwell accepted, but unfortunately they do not alwaysagree exactly. While there is often one-to-one corre­lation of ASTM and ISO standards, they may differ inprocedure and conditions, which may lead to slightlydifferent measures. These standard tests are listed inTable 1.1.

ASTM D2990-01 Standard Test Methods for Ten­sile, Compressive, and Flexural Creep and Creep­Rupture of Plastics describes the measurement ofcreep and creep-rupture properties of plastics underspecified environmental conditions, primarily tem­perature and humidity.The method is a good referenceas it describes the test apparatus and calculations, andincludes a background discussion on basic concepts.It is similar to the three parts of ISO 899.

ISO 899-1:2003 Plastics-Determination ofcreepbehavior-Part 1: Tensile creep specifies a methodfor determining the tensile creep of plastics in theform of standard test specimens under specified con­ditions such as those of pretreatment, temperature,

17

and humidity. The method is suitable for use withrigid and semi-rigid non-reinforced, filled, and fiber­reinforced plastics. The test sample is dumbbell shapedand is molded directly or machined from sheets ormolded articles.

ISO 899-2:2003 Plastics-Determination ofcreepbehavior-Part 2: Flexural creep by three-point load­ing specifies a method for determining the flexuralcreep of plastics in the form of standard test speci­mens under specified conditions such as those of pre­treatment, temperature, and humidity. It uses thesimple, freely supported beam loaded at the mid-spanconfiguration shown in Fig. 1.7. The method is suit­able for use with rigid and semi-rigid non-reinforced,filled, and fiber-reinforced plastics. The test sample isdumbbell shaped and is molded directly or machinedfrom sheets or molded articles.

ISO 3384:2005Rubber, vulcanizedor thermoplastic­Determination of stress relaxation in compression atambient and at elevated temperatures specifies twomethods for determining stress relaxation in com­pression, using cylindrical or ring test pieces. It alsodescribes the determination of stress relaxation inliquid environments. ASTM test D2991-84 Recom­mended Practice for Testing Stress-Relaxation ofPlastics was similar but has been withdrawn and isnot maintained by ASTM any longer, although it isstill occasionally referenced.

ISO6914:2004Rubber, vulcanizedor thermoplastic­Determination ofageing characteristics by measure­ment of stress relaxation describes three methods formeasuring stress relaxation under tension of the rub­ber vulcanizate. One method is for measurementunder continuous strain conditions and two for mea­surement under intermittent strain conditions.

ASTM D5592-94(2002)el Standard Guide forMaterial Properties Needed in Engineering DesignUsing Plastics is a guide that covers the essentialmaterial properties needed for designing with plas­tics. It is intended only as a convenient resource forengineering design. ISO and ASTM standard meth­ods for the relevant material properties are listed inthis guide for the benefit of design engineers. It alsonotes that for some of the desired properties no ASTMor ISO standards exist.

ISO 1167 is focused on testing of pipes underinternal pressure. ISO 1167-1:2006 Thermoplasticspipes, fittings and assemblies for the conveyance offluids-Determination of the resistance to internalpressure-Part 1: General method specifies a generaltest method for determining the resistance to theinternal hydrostatic pressure at a given temperature

Page 22: The Efecct of Creep

18 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

Table 1.1. Standard Tests

Measurement ASTM ISO

Flexural creep ASTM 02990 ISO 899-2

Tensile creep ASTM 02990 ISO 899-1

Compressive creep ASTM 02990

Creep rupture ASTM 02990

Flexural creep - ISO 6602modulus

Stress relaxation in ASTM 02991* ISO 3384compression

Stress relaxation in ISO 6914tension

Thermoplastic pipes ISO 1167resistance tointernal pressure

Poisson's ratio ASTM E132 -

Standard Guide for ASTM 05592Material PropertiesNeeded in Engineer-ing Oesign

Environmental ISO 22088stress cracking

'Withdrawn but often still referenced.

of thermoplastic pipes, fittings, and piping systemsfor the transport of fluids. The method accommodateswater-in-water, water-in-air, and water-in-liquid tests.

ISO 1167-2:2006 Thermoplastics pipes, fittingsand assemblies for the conveyance offluids-Deter­mination of the resistance to internal pressure-Part2: Preparation ofpipe test pieces specifies the dimen­sions and method for preparation of extruded orinjection-molded tubular test pieces. ISO 1167­3:2007 Thermoplastics pipes, fittings and assembliesfor the conveyance of fluids-Determination of theresistance to internal pressure-Part 3: Preparationof components specifies the procedure for the prepa­ration of components. ISO I 167-4:2007 Thermoplas­tics pipes, fittings and assemblies for the conveyanceoffluids-Determination of the resistance to internalpressure-Part 4: Preparation ofassemblies specifiesthe procedure for the preparation of test assemblies.

ISO 22088-1:2006 Plastics-Determination ofresistance to environmental stress cracking (ESC)­Part I: Generalguidance. ISO 22088-2:2006Plastics­Determination of resistance to environmental stresscracking (ESC)-Part 2: Constant tensile load method.ISO 22088-3:2006 Plastics-Determination of resis­tance to environmental stress cracking (ESC)-Part 3:

Bent strip method. ISO 22088-4:2006 Plastics­Determination of resistance to environmental stresscracking (ESC)-Part 4: Ball or pin impressionmethod. ISO 22088-5:2006 Plastics-Determinationofresistance to environmental stress cracking (ESC)­Part 5: Constant tensile deformation method. ISO22088-6:2006 Plastics-Determination ofresistanceto environmental stress cracking (ESC)-Part 6: Slowstrain rate method.

ASTM DI693-08 Standard Test Methodfor Envi­ronmental Stress-Cracking ofEthylene Plastics.

ASTM D256I Standard Test Method for Environ­mental Stress-Crack Resistance of Blow-MoldedPolyethylene Containers.

1.4 Plastics and Polymers

A basic understanding of plastics and polymerchemistry will make the discussion of creep mecha­nisms in the next section easier to understand and itwill also provide a basis for the introduction of theplastic families in later chapters.

The most basic component of plastic and elastomermaterials is polymers. The word polymer is derived

Page 23: The Efecct of Creep

1: INTRODUCTION TO PLASTICS AND ELASTOMERS

from the Greek term for "many parts." Polymers arelarge molecules composed ofmany repeat units calledmonomers, which have been chemically bonded intolong chains. Since World War II, the chemical indus­try has developed a large quantity of synthetic poly­mers to satisfy the materials needs for a diverse rangeof products, including paints, coatings, fibers, films,elastomers, and structural plastics. Literally thou­sands of materials can be called "plastics," althoughthe term today is typically reserved for polymericmaterials, excluding fibers, which can be molded orformed into solid or semi-solid objects.

1.4.1 PolymerizationPolymerization is the process of chemically bond­

ing monomer building blocks to form large mole­cules. Commercial polymer molecules are usuallythousands of repeat units long. Polymerization canproceed by one of several methods. The two mostcommon methods are addition and condensationpolymerization.

In addition polymerization, a chain reaction addsnew monomer units to the growing polymer moleculeone at a time through double or triple bonds in themonomer. Each new monomer unit creates an activesite for the next attachment. The net result is shownin Fig. 1.33. Many of the plastics discussed in laterchapters of this book are formed in this manner. Someof the plastics made by addition polymerizationinclude polyethylene, polyvinyl chloride (PVC),acrylics, polystyrene, and polyoxymethylene (acetal).

The other common method is condensation polym­erization, in which the reaction between the monomerunits and the growing polymer chain end groupreleases a small molecule, often water, as shown inFig. 1.34. This reversible reaction will reach equilib­rium and halt unless this small molecular by-productis removed. Polyesters and polyamides are amongthe plastics made by this process.

Understanding the polymerization process thatis used to make a particular plastic gives insight into

19

the nature of the plastic. For example, plastics madeby condensation polymerization, in which water isreleased, can degrade when exposed to water at hightemperature. Polyesters such as polyethylene tere­phthalate (PET) can degrade by a process calledhydrolysis, when exposed to acidic, basic, or evensome neutral environments, severing the polymerchains. The polymer's properties are degraded as aresult.

1.4.2 CopolymersA copolymer is a polymer formed when two (or

more) different types of monomers are linked in thesame polymer chain, as opposed to a homopolymerwhere only one monomer is used. If exactly threemonomers are used, it is called a terpolymer.

Monomers are only occasionally symmetric; themolecular arrangement is the same no matter whichend of the monomer molecule you are looking at. Thearrangement of the monomers in a copolymer can behead-to-tail, head-to-head, or tail-to-tail. As a copo­lymer consists of at least two types of repeating units,copolymers can be classified based on how theseunits are arranged along the chain. These classifica­tions include:

• Alternating copolymer

• Random copolymer (statistical copolymer)

• Block copolymer

• Graft copolymer:

When the two monomers are arranged in an alter­nating fashion, the polymer is called an alternatingcopolymer:

-A-B-A-B-A-B-A-B-A-B-A-B-A-B-A-B-A-B-

Alternating Copolymer

In the following examples A and B are differentmonomers. Keep in mind that A and B do not have to

m

H R(\ /C=C +n

/ \H H

H R2\ /C=C ~

/ \H H

H R] H R2

I I I IC-C-C-C

I I I IH H H H

n+m

Figure 1.33. Addition polymerization.

Page 24: The Efecct of Creep

20 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

o 0II II

HO-C-RI-C-OH +

Figure 1.34. Condensation polymerization.

be present in a I: I ratio. In a random copolymer, thetwo monomers may follow in any order:

-A-A-B-A-B-B-A-B-A-A-B-B-B-A-B-A-A-

Random Copolymer

High-impact polystyrene (HIPS) is a graft copoly­mer. It has a polystyrene backbone with chains ofpolybutadiene grafted onto the backbone. The poly­styrene backbone gives the material its strength, butthe rubbery polybutadiene chains give it resilience tomake it less brittle.

Figure 1.35. Linear, branched, and crosslinkedpolymers.

CrosslinkedPolymer

BranchedPolymer

LinearPolymer

1.4.4 Molecular WeightA polymer's molecular weight is the sum of the

atomic weights of the individual atoms that comprise

1.4.3 Linear, Branched, andCrosslinked Polymers

Some polymers are linear, a long chain of con­nected monomers. Polyethylene, PVC, nylon 66, andpolymethyl methacrylate are some examples of com­merciallinear polymers found in this book. Branchedpolymers can be visualized as a linear polymer withside chains of the same polymer attached to the mainchain. While the branches may in tum be branched,they do not connect to another polymer chain. Theends of the branches are not connected to anything. Acrosslinked polymer, sometimes called a networkpolymer, is one in which the different chains areconnected. Essentially the branches are connected todifferent polymer chains at the ends. These threepolymer structures are shown in Fig. 1.35.

I IB BI IB BI IB BI IB BI I

~~~~~~~~~~~~~~~~~~~-

IBIB

IB

IBI

Branched/Grafted Copolymer

Block Copolymer

Block Copolymer

-A-A-A-A-A-A-B-B-B-B-B-B-B-A-A-A-A-A-

In a block copolymer, all monomers of one typeare grouped together and all monomers of the othertype are grouped together. A block copolymer can bethought of as two homopolymers joined together atthe ends:

A polymer that consists of large grouped blocks ofeach of the monomers is also considered a blockcopolymer:

When chains of a polymer made of monomer Baregrafted onto a polymer chain of monomer A we havea graft copolymer:

Page 25: The Efecct of Creep

1: INTRODUCTION TO PLASTICS AND ELASTOMERS

a molecule. It indicates the average length of the bulkresin's polymer chains. All polymer molecules of aparticular grade do not have the exact same molecularweight. There is a range or distribution of molecularweights. The average molecular weight can be deter­mined by several means, but this subject is beyondthe scope of this book. Low molecular weight poly­ethylene chains have backbones as small as 1,000carbon atoms long. Ultrahigh molecular weight poly­ethylene chains can have 500,000 carbon atoms alongtheir length. Many plastics are available in a variety ofchain lengths, or different molecular weight grades.These resins can also be classified indirectly by a vis­cosity value, rather than molecular weight. Within aresin family, such as polycarbonate, higher molecularweight grades have higher melt viscosities. For exam­ple, in the viscosity test for polycarbonate, the meltflow rate ranges from approximately 4 g/IO min forthe highest molecular weight, standard grades tomore than 60 gil0 min for the lowest molecularweight, high-flow, specialty grades.

Selecting the correct molecular weight for yourinjection molding application generally involves abalance between filling ease and material perfor­mance. If your application has thin-walled sections, alower molecular weight/lower viscosity grade offersbetter flow. For normal wall thicknesses, these resinsalso offer faster mold cycle times and fewer molded-instresses. The stiffer flowing, high molecular weightresins offer the ultimate material performance, beingtougher and more resistant to chemical and environ­mental attack.

1.4.5 Thermosets versusThermoplastics

A plastic falls into one of two broad categoriesdepending on its response to heat: thermoplastics orthermosets. Thermoplastics soften and melt whenheated and harden when cooled. Because of this behav­ior, these resins can be injection molded, extruded, orformed by other molding techniques. This behavioralso allows production scrap runners and trimmingsto be reground and reused.

Unlike thermoplastics, thermosets react chemicallyto form crosslinks, as described earlier, which limitchain movement. This network of polymer chainstends to degrade, rather than soften, when exposed toexcessive heat. Until recently, thermosets could notbe remelted and reused after initial curing. Recentadvances in recycling have provided new methodsfor remelting and reusing thermoset materials.

21

1.4.6 Crystalline versusAmorphous

Thermoplastics are further classified by their crys­tallinity, or the degree of order within the polymer'soverall structure. As a crystalline resin cools from themelt, polymer chains fold or align into highly orderedcrystalline structures as shown in Fig. 1.36.

Some plastics can be completely amorphous orcrystalline. Often plastics specifications will reportthe percentage of it is crystallinity (e.g., 73% crystal­linity). Generally, polymer chains with bulky sidegroups cannot form crystalline regions. The degree ofcrystallinity depends upon both the polymer and theprocessing technique. Some polymers such as poly­ethylene crystallize quickly and reach high levels ofcrystallinity. Others, such as PET polyester, requireslow cooling to crystallize. If cooled quickly, PETpolyester remains amorphous in the final product.

Crystalline and amorphous plastics have severalcharacteristic differences. Amorphous polymers donot have a sharp melting point, but do have what iscalled a glass transition temperature (T ). The glasstransition temperature is the temperature at which apolymer changes from hard and brittle to soft and pli­able. The force required to generate flow in amor­phous materials diminishes slowly as the temperaturerises above the glass transition temperature. In crys­talline resins, the force requirements diminish quicklyas the material is heated above its crystalline melttemperature. Because of these easier flow character­istics, crystalline resins have an advantage in fillingthin-walled sections of a mold. Crystalline resinsgenerally have superior chemical resistance, greaterstability at elevated temperatures, and better creep

tAmorphous Regions

Figure 1.36. Plastics with crystalline and amorphousregions.

Page 26: The Efecct of Creep

22 THEEFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

resistance. Amorphous plastics typically have betterimpact strength, less mold shrinkage, and less final partwarping than crystalline materials. End use require­ments usually dictate whether an amorphous or crys­talline resin is preferred.

1.4.7 BlendsPolymers can often be blended. Occasionally,

blended polymers have properties that exceed thoseof either of the constituents. For instance, blends ofpolycarbonate resin and PET polyester, originallycreated to improve the chemical resistance of poly­carbonate, actually have fatigue resistance and lowtemperature impact resistance superior to either ofthe individual polymers.

Sometimes a material is needed that has some ofthe properties of one polymer and some of the prop­erties of another. Instead of going back to the lab andtrying to synthesize a brand new polymer with all therequired properties, two polymers can be meltedtogether to form a blend, which will hopefully havesome properties of both.

Two polymers that do actually mix well are poly­styrene and polyphenylene oxide. A few other exam­ples of polymer pairs that will blend are:

• PET with polybutylene terephthalate

• Polymethyl methacrylate with polyvinylidenefluoride.

Phase-separated mixtures are obtained when onetries to mix most polymers. But strangely enough,the phase-separated materials often turn out to berather useful. They are called immiscible blends.

Polystyrene and polybutadiene are immiscible.When polystyrene is mixed with a small amount ofpolybutadiene, the two polymers do not blend. Thepolybutadiene separates from the polystyrene intolittle spherical blobs. Figure 1.37 illustrates the pic­ture that would be seen if this mixture is viewed undera high power microscope.

Multiphase polymer blends are of major economicimportance in the polymer industry. The most com­mon examples involve the impact modification of athermoplastic by the microdispersion of a rubber intoa brittle polymer matrix. Most commercial blendsconsist of two polymers combined with small amountsof a third, compatibilizing polymer-typically ablock or graft copolymer.

Multiphase polymer blends can be easier to pro­cess than a single polymer with similar properties.

Polybutadiene Phase

Figure 1.37. Immiscible blend of polystyrene andpolybutadiene.

The possible blends from a given set of polymersoffer many more physical properties than the indi­vidual polymers. This approach has shown some suc­cess but becomes cumbersome when more than a fewcomponents are involved.

Blending two or more polymers offers yet anothermethod of tailoring resins to a specific application.Because blends are only physical mixtures, the result­ing polymer usually has physical and mechanicalproperties that lie somewhere between the values ofits constituent materials. For instance, an automotivebumper made from a blend of polycarbonate resinand thermoplastic polyurethane elastomer gains rigid­ity from the polycarbonate resin and retains most ofthe flexibility and paintability of the polyurethaneelastomer. For business machine housings, a blendof polycarbonate and acrylonitrile-butadiene-styrene(ABS) resins offers the enhanced performance ofpolycarbonate flame retardance and UV stability at alower cost.

Additional information on the subject of polymerblends is available in the literature.V'"

1.4.8 ElastomersElastomers are a class of polymeric materials that

can be repeatedly stretched to over twice the originallength with little or no permanent deformation.Elastomers can be made of either thermoplastic orthermoset materials and generally are tested and cat­egorized differently than rigid materials. They arecommonly selected according to their hardness andenergy absorption characteristics, properties rarelyconsidered in rigid thermoplastics. Elastomers are

Page 27: The Efecct of Creep

l: INTRODUCTION TO PLASTICS AND ELASTOMERS

found in numerous applications such as automotivebumpers and industrial hoses.

1.4.9 AdditivesAdditives encompass a wide range of substances

that aid processing or add value to the final productf-'"Found in virtually all plastics, most additives areincorporated into a resin family by the supplier aspart of a proprietary package. For example, you canchoose standard polycarbonate resin grades withadditives for improved internal mold release, UV sta­bilization, and flame retardance; or nylon grades withadditives to improve impact performance.

Additives often determine the success or failure ofa resin or system in a particular application. Manycommon additives are discussed in the following sec­tions. Except for reinforcement fillers, most additivesare added in very small amounts.

1.4.9.1 Fillers, Reinforcement,Composites

Reinforcing fillers can be added in large amounts.Some plastics may contain as much as 60% reinforc­ing fillers. Often, fibrous materials, such as glassor carbon fibers, are added to resins to create rein­forced grades with enhanced properties. For example,adding 30% short glass fibers by weight to nylon 6improves creep resistance and increases stiffness by300%. These glass-reinforced plastics usually suffersome loss of impact strength and ultimate elongation,and are more prone to warping because of the rela­tively large difference in mold shrinkage between theflow and cross flow directions.

Plastics with non-fibrous fillers such as glassspheres or mineral powders generally exhibit higherstiffness characteristics than unfilled resins, but notas high as fiber-reinforcedgrades. Resins with particu­late fillers are less likely to warp and show a decreasein mold shrinkage. Particulate fillers typically reduceshrinkage by a percentage roughly equal to the vol­ume percentage of filler in the polymer, an advantagein tight tolerance molding.

Often reinforced plastics are called composites.The plastic material containing the reinforcement isoften referred to as the matrix. One can envision anumber of ways in which different reinforcing mate­rials might be arranged in a composite. Many of thesearrangements are shown in Fig. 1.38.

Reinforcing fillers can have a strong influence oncreep properties.

23

1.4.9.2 Combustion Modifiers, Fireand Flame Retardants, and SmokeSuppressants

Combustion modifiers are added to polymers tohelp retard the resulting parts from burning. Gener­ally required for electrical and medical housing appli­cations, combustion modifiers and their amounts varywith the inherent flammability of the base polymer.Polymers designed for these applications are oftenrated using an Underwriters Laboratories rating sys­tem. Use these ratings for comparison purposes only,as they may not accurately represent the hazard pres­ent under actual fire conditions.

1.4.9.3 Release Agents, Lubricants,Slip and Antiblocking Agents

External release agents are lubricants, liquids orpowders, which coat a mold cavity to facilitate partremoval. Internal release agents can accomplish thesame purpose. The composition of the release agentis rarely disclosed, but frequently they are fine fluo­ropolymer powders, called micropowders, siliconeresins, or waxes.

1.4.9.4 Catalysts

Catalysts-substances that initiate or change therate of a chemical reaction-do not undergo a perma­nent change in composition or become part of themolecular structure of the final product. Occasionallyused to describe a setting agent, hardener, curingagent, promoter, etc., they are added in minute quan­tities, typically less than 1%.

1.4.9.5 Impact Modifiers and Tougheners

Many plastics do not have sufficient impact resis­tance for the use for which they are intended. Ratherthan change to a different type of plastic, they can beimpact-modified in order to fulfill the performance inuse requirements. Addition of modifiers called impactmodifiers or tougheners can significantly improveimpact resistance. This is one of the most importantadditives. There are many suppliers and chemicaltypes of these modifiers.

General-purpose impact modification is a very lowlevel of impact modification. It improves room tem­perature impact strength but does not take intoaccount any requirements for low temperature (belowO°e) impact strength. For most of these types of

Page 28: The Efecct of Creep

24 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

Random Direction

Fiber Composite

Random Direction

Platelet Composite

Particulate Composite

Figure 1.38. Several types of composite materials.

applications only low levels of impact modifier willbe required (<10%).

Low temperature impact strength is required forapplications that require a certain level of low tem­perature flexibility and resistance to break, which isthe case for many applications in the appliance area.For this purpose, modifier levels between 5% and15% of mostly reactive modifiers will be necessary.Reactive modifiers can bond chemically to the basepolymer.

Super tough impact strength may be required forapplications that should not lead to a failure of thepart even if hit at low temperatures (-30°C to -40°C)under high speed. This requirement can only be ful­filled with high levels (20-25%) of reactive impactmodifier with low glass transition temperature.

Figure 1.39 shows the effect of one toughener onthe izod performance of a common nylon 6 plastic.The toughener used in this graph is DuPont'sFusabond®NMN-493D. The graph shows the impro­vement in notched izod performance versus tempera­ture with differing levels of toughener additive. Asshown in this figure, the performance can be dramat­ically improved.

Aligned Direction

Fiber Composite

Aligned Direction

Platelet Composite

Laminate Composite

1.4.9.6 UV Stabilizers

Sunshine and its UV radiation have a deterioratingeffect on many polymers. UV stabilizers play animportant role in plastics for external uses by coun­teracting the effects of the sun. UV stabilizers areused in plastic items such as greenhouse film, outdoorfurniture, and automotive plastic parts. The amountsadded are very small, generally less than 1%.

1.4.9.7 Antistatic Agents

Antistatic additives are capable of modifying theproperties of plastics in such a way that they becomeantistatic, conductive, and/or improve electromag­netic interference (EMI) shielding. Carbon fibers,conductive carbon powders, and other electricallyconductive materials are used for this purpose.

1.4.9.8 Plasticizers

Plasticizers are added to help maintain flexibilityin a plastic. Various phthalates are commonly usedfor this purpose. As they are small molecules, they

Page 29: The Efecct of Creep

1: INTRODUCTION TO PLASTICS AND ELASTOMERS 25

302010o-10-20-30

................ ~ : : ~. ~."_. 20% .

. ................. ~ ~................ ...............•..... . -:- : .

:: :: __ ;... .15%.............. _.~ _.. ~._.. .....• -._._.~_.;,,;. .. ~ .. -- ~ .. _._.- - - - - --_ ..

,. ..""..,., io""'"

................ ~ ~ ~ _.., : ; .: : :.,: : :: : ''': : :, , ;,... , , ,

................ : .' .,...: : : ; .: :.,: : : :

.~;>r~.:.~I~:.:J~.·~.·_£ ..:~~rL.~T:~:·;;..::::;:;·-=;·;;t~:;:··::: ..:~;:F ..·;;;:;..·;;;::..·;:;;::..·;;;::..:·::;;~:;;::·~::;::·~:::f:·:::;:::·::::::·:F:. ·00/;····

. . . . . ,. . , . . .O+----.----r--...--""T"""-""'"T'"-----,r---.......--r-----.---r--...,....-"""T"-----.,...--+-40

1000

900

800-E 700-..,-- 600oCllQ.

E 500"CQ)

400s:u-0Z 300"C0

200.!::!

100

Temperature (Oe)

Figure 1.39. Notched izod performance of BASF Ultramid® B-3 nylon 6 modified with various levels ofFusabond'" N NM-493D toughener.

may extract or leach out of the plastic causing a lossof flexibility with time.

adhere better to the polymer matrix, and the proper­ties of the final mixture (e.g., elongation, flexibility)will be enhanced.

1.4.9.9 Pigments, Extenders, Dyes, Mica

Pigments are added to give color to a plastic, butthey may also affect the physical properties. Extend­ers are usually cheap materials that are added toreduce the cost of plastic resins. Dyes are colorantsthat are chemically different from pigments. Mica isa special pigment that is added to impart sparkle ormetallic appearance.

1.4.9.10 Coupling Agents

The purpose of adding fillers is to lower the costof the polymer, make it tougher or stiffer, or make itflame retardant so that it does not bum when it isignited. Often the addition of the filler will reduce theelongation at break, the flexibility, and in many casesthe toughness of the polymer because the fillers areadded at very high levels. One reason for the degradation of properties is that the fillers in most casesare not compatible with the polymers. The additionof coupling agents can improve the compatibility ofthe filler with the polymer. As aresult the polymerwill be more compatible with the filler, the filler will

1.4.9.11 Thermal Stabilizers

One of the limiting factors in the use of plastics athigh temperatures is their tendency to not onlybecome softer but also to thermally degrade. Thermaldegradation can present an upper limit to the servicetemperature of plastics. Thermal degradation canoccur at temperatures much lower than those at whichmechanical failure is likely to occur. Plastics can beprotected from thermal degradation by incorporatingstabilizers into them. Stabilizers can work in a varietyof ways but a discussion of these mechanisms isbeyond the purpose of this book.

There are other additives used in plastics, but theones discussed above are the most common.

1.5 Mechanisms of Creepin Plastics

The mechanisms of creep in plastic materials arestill generalized and somewhat speculative. This is

Page 30: The Efecct of Creep

26 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

because there has been little published experimentalor theoretical work in this area. For metals, there hasbeen a little experimental work and much more theo­retical and modeling study. Therefore, the discussionof mechanisms here is based on a chemists view ofwhat might reasonably occur at the microscopic ormolecular level.

The creep mechanisms for three classes of plasticswill be considered:

(I) Linear polymers

(2) Branched or crosslinked polymers

(3) Reinforced plastics.

1.5.1 Linear PolymersA linear polymer may be considered to be a col­

lection of linear chain-like molecules, as shown inFig. 1.35. In a solid plastic, a collection of these lin­ear chains may be arranged in a completely randommanner-looped, coiled, and entangled with oneanother. The binding forces holding the atoms of thepolymer chains together are strong primary atomicbonds. The discreet polymer chains are attracted toeach another by weaker molecular bonds. Theseweaker bonds may include van der Waals' forces,ionic attractions, dipole interactions, etc., but thoseconcepts are beyond the scope of this book. But theredefinitely is attraction between neighboring polymerchains. Creep in a material such as this involves rup­ture or interchange of these molecular bonds underthe action of stress, such that the molecules as awhole or segments of the molecules slide past oneanother, untwist, uncoil, unravel, or untangle, depend­ing on the molecular structure and the nature of thestress applied. Not all bonds between one segmentand its neighbors are broken or interchanged atonce. Instead, the ruptures or interchanges occur insequence, one action leading to the next. In addition,the higher the temperature, less energy is required tocause these molecular changes. Creep in plastic mate­rials can be very dependent on temperature and isalways greater at higher temperatures.

A linear polymer may be made less flexible andmore creep resistant by the presence of bulky atomsor side groups of atoms attached periodically alongthe chain as in PVC where a large chlorine atomreplaces one of every four hydrogen atoms. One canimagine that it is easier to untangle a pile of strings orropes if those strings do not have bulky side groupssuch as knots.

Figure 1.36 shows a representation of a possiblestructure of semi-crystalline plastics. Each line repre­sents a polymer chain. Sections of these polymerchains align with sections of other molecules or evenwith other sections of the same molecule. These side­by-side aligned regions are called crystallites. Crys­tallization in polymer structures tends to increasestrength and creep resistance.

The presence of plasticizers and other additives ina plastic can profoundly affect the creep properties.The effect of plasticizers is to separate the polymermolecules so that the strength of the secondary bondforces between the polymer chains is reduced. Thisprovides a greater degree of mobility in the polymerchains, the tendency to crystallize is greatly reduced,and an increased tendency to creep is found.

1.5.2 Branched or CrosslinkedPolymers

Thermosetting polymers such as phenol-formalde­hyde are much more rigid and resistant to creep thanlinear polymers because of the three-dimensionalnetwork formed by strong primary bonds makingup the crosslinks as shown in Fig. 1.35. The smallamount of creep that does occur in these types ofpolymers is probably the result of the relative move­ments of those segments of the network that are notrigidly held by primary bonds but by secondary bonds.Usually there are not many segments held by the sec­ondary molecular bonds. This mobility is exhaustedby relatively small creep strains in tension, and failureby brittle fracture follows as the strain increases.

By reducing the density or number of crosslinks ofsome polymers, a balance may be struck betweensome of the desirable features of three-dimensionalnetwork polymers (e.g., less creep) and some of theundesirable features, such as a tendency for brittleness.Small amounts crosslinking leaves portions of thechains bound to each other by weak secondary forces,but ties them together at other points by strong primarybonds. This results in a behavior that is similar to thatof the three-dimensional network polymer exceptthat the extent of the mobile regions is greater, result­ing in greater flexibility and less creep resistance.

1.5.3 Reinforced PlasticsThe creep of reinforced plastics is very prima­

rily influenced by the creep characteristics of the

Page 31: The Efecct of Creep

1: INTRODUCTION TO PLASTICS AND ELASTOMERS 27

1.6 Poisson's Ratio

Other additives such as pigments and couplingagents can improve creep performance by providinga small amount of reinforcement.

The Poisson's ratio in viscoelastic materials suchas elastomers and many plastics is time dependent inthe context of transient tests such as creep and stressrelaxation.

When a sample of plastic is stretched in one direc­tion, it tends to get thinner in the other two directions.If it is compressed, it would get thicker in the othertwo directions. Figure lAO shows a three-dimensionalpicture of the shape change in tension and the corre­sponding compression shape change is shown in analternate two-dimensional view. Poisson's ratio, v,named after Simeon Poisson, is the ratio of transversecontraction strain (etran) to longitudinal (or axial)extension strain (eaxial) in the direction of the stretch­ing or compressing force, as shown in Equation 1.14.Tensile deformation is considered positive and com­pressive deformation is considered negative. Thedefinition of Poisson's ratio contains a minus signso that normal materials have a positive ratio. For aperfectly incompressible material that is deformedelastically at small strains, the Poisson's ratio wouldbe exactly 0.5. Most practical engineering materialshave v between 0.0 and 0.5. The theory of isotropicelasticity permits Poisson's ratios in the range from-1 to 1/2.

(1.14)eV=- trans

eaxial

There could be a difference in properties depend­ing upon whether or not there is some organization tothe filler such as that shown in the composites dis­cussed previously in Fig. 1.38. For fillers with a highdegree of alignment, one would expect differentproperties in the direction of the alignment versusperpendicular to the alignment. Alignment can occurduring molding operations particularly for fibrousfillers, as alignment can take place during flow ofthese plastics into a mold.

(1) Gradual straightening of segments of rein­forcing fibers, which requires simultaneouscreep of the resin binding the fibers in theirinitial configuration.

(2) Creep of the resin in regions in which it ishighly stressed in transferring stress fromfiber to fiber.

(3) Gradual rupture of the bond between resinand fibers with ensuing slip of the releasedportion of fibers relative to the resin andother fibers.

(4) In late stages, the reinforcing fibers ruptureperiodically, randomly, and at an increasingrate as they become subjected to higherstresses for a longer time than they are ableto withstand.

reinforcing material. The chief function of the plasticresin is to bind the reinforcing fibers together. Thismakes it possible for the reinforced plastic to func­tion as a unit rather than as a collection of individualfibers. The polymer/plastic resin serves to distributethe stresses among the individual reinforcing fibers.The actions that are probably involved in the creep ofreinforced plastics are:

1.5.4 AdditivesAdditives, besides reinforcing agents, such as those

discussed in Section 104.9 can have an influence oncreep performance. Additives that are organic smallmolecules such as plasticizers, some flame retardants,UV stabilizers, and release agents generally increasethe amount of creep deformation, all else being equal.These small molecules act like lubricants betweenthe polymer chains in the plastics allowing them toslip past each other more easily.

1.7 Using Creep Data in PlasticProduct Design

The analysis of stress in plastic design is muchmore complex than design in metals. 11 The design ofsprings, beams, plates, cylinders, etc., made of met­als used at temperatures well below their melt pointsis based on classical equations. Those classical equa­tions are derived using the relation:

Stress =Modulus x Strain

Page 32: The Efecct of Creep

28 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

yCOMPRESSIVE

FORCE

1I-

II II II II

~I- - --

COMPRESSIVEFORCE

------------+xTension Measurement Compression Measurement

Figure 1.40. Specimens subject to tension or compression for determination of Poisson's ratio.

The classical equations were all derived assuming:

• the strains are small;

• the strains are independent of loading rate orhistory and are immediately reversible;

• the modulus is constant;

• the material is isotropic, that is, the materialbehaves in the same way in tension and com­pression.

This chapter has shown that for plastics, modulusand deformations are dependent on such factorsas the time under load and temperature. While theassumptions listed above may sometimes be justifiedfor plastics, the classical equations cannot be usedindiscriminately. Each use must be considered on acase-by-case basis. Factors such as mode of deforma­tion, service temperature, fabrication method, andenvironment must be considered.

Several analytical approaches have been used toallow for creep and some of these approaches givevery accurateresults.The drawbackis that the methodscan be quite complex, involving Laplace transformsor numerical methods. These were certainly notattractive to design engineers before the year 2000.However, computer software developments havemade the use of these methods more practical.

1.7.1 Pseudo Elastic DesignMethod

The Pseudo Elastic Design Method has beenwidely accepted.Appropriatevaluesof time-dependentproperties, such as modulus, are substituted into theclassical equations. This approach can give sufficientaccuracy in most cases if the value chosen for themodulus takes into account the service life of the com­ponent and the limiting strain of the plastic. Thelimiting strain for the material is not just a simplevalue that applies for all plastics or even for one plas­tic in all applications. It is often arbitrarily chosen,although several methods have been suggested forarriving at a suitable value. One method uses a stress­strain plot. The initial tangent modulus is determinedas shown in Fig. 1.41. A secant modulus is plottedwith a slope that is 85% of the initial tangent modu­lus. The strain at which the secant modulus line inter­sects (at point "A") the stress-strain curve is definedas the limiting strain. The tangent modulus, alsoknown asYoung's modulus or the modulus of elastic­ity, and the secant modulus-strain curves are oftenavailable from plastics manufacturers. However, formany plastics (particularly crystalline ones) this istoo restrictive. In most practical situations the limit­ing strain is decided in consultations between thedesigner and the material manufacturers.

Page 33: The Efecct of Creep

1: INTRODUCTION TO PLASTICS AND ELASTOMERS 29

Once the limiting strain is known, design methodsbased on the creep curves are quite straightforwardand the approach is illustrated in examples in theliterature.12

1.7.2 Finite Element AnalysisComplex structure systems are often too compli­

cated to simply derive relationships between appliedloads, deflections, and internal stresses using classi­cal equations of stress analysis or the Pseudo ElasticDesign Method. A computational/numerical com­puter tool calledfinite element analysis can be appliedto model the physical response of a structure to stress,deformation, or temperature.

The finite element method was first introduced inthe 1950s. It has been continually developed andimproved. Although it is a complex technique, thefundamental principles are relatively uncomplicated.

Consider a molded part of complex shape. It isassembled with other parts. One wants to learnwhether the design will function the way it needs tofunction. One wants to know what are the loads,deflections, stresses, and strains the part will experi­ence. This information will help determine whetherthe part may fail and perhaps when. Finite elementanalysis software can help do this.

The first step of any finite element analysis is todivide the actual geometry of the structure using acollection of discrete portions called finite elements.The elements are joined together by shared nodes. Amodel idealization is shown in Fig. 1.42. The collec­tion of nodes and finite elements is known as themesh. In order to prevent unlimited rigid body motion,there may also be restraints, which are fixed in posi­tion and cannot move. Loads can be applied to any ofthe elements.

In a stress analysis problem, the finite elementanalysis software calculates the loads and displace­ments of the nodes, and from this information, thestresses and strains in the elements may be calcu­lated. When dealing with metals, the stress-strainrelations are linear unless the metals are at hightemperature. When using plastics, the finite elementanalysis software requires the plastic's modulus ofelasticity. The value of the modulus of elasticity forplastics is constant only over a very small part of thestress-strain curve. The software must consider thatthe modulus of elasticity changes with strain. Notonly does it change with strain, but it also changeswith time due to creep. So to find answers to creepproblems using finite element analysis, the softwaremust have what is called a creep model. The modeldetermines strain in terms that drive creep, stress,

20 +----~-~--~---1----I---:--.l--~---J,.----+---~

. . ....... _-.-_ -.-_ .. .Stress-Strain Curve atGiven Temperature

· . , ,; ;-_ ;._--_. __._-;-- ., . . ... .· .· .· .· .

Limiting Strain

Slope is Tangent Modulus, also . , : ... Slope is Secant ModulusCalled Young's Mo~u!us ~ , ( •••f ---+- at the Given StrainOr MfdUIUSof ~Iastlclty ~ , " : ••••••~: : :

15 ·····f· ··· .. ·····f·· ·········f ~.,.~ >< .: : : ,': A

: ',: ..... I ., ,.' ," .

...........; ; '. ~ ~ ..«.~ [ :..i ~ l [ i ., . ,,' . , ., • 10" , •: : ; : :. . .. .

5 ··············:>/,-::(········.···········.········i·.····......;/ ': I

...... : I.... :

1098764321Or--i---......;.----i----i--......E::.;---T------1,....-----i---....;...--~

o 5

Strain (%)

Figure 1.41. Determination of limiting strain by the secant modulus method.

Page 34: The Efecct of Creep

30 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

Figure 1.42. Finite element analysis model idealization.

temperature, and time. The kind of data usually usedby these models is strain versus time curves at vari­ous stress levels and temperatures. The details of howthis is done is beyond the scope of this book, but isthe subject of others. 13,14,15

1.8 Summary

The rest of this book consists of property data onmany plastics and elastomers. Chapters 2-10 containmultipoint data in the form of plots. The plastics aregrouped by the basic chemical structures of the plas­tics. Each of these chapters contains a short introduc­tion that describes the basic chemical structures ofthe plastics in that chapter. The figures that followcontain the multipoint data. Where possible thegraphs will be in groups. All the creep graphs for"neat" plastics will come first where available, fol­lowed by the graphs for impact-modified plastics andthen filled plastics. In general these will be groupedby filler type, with a progression to higher filler con­tent. Generally the graphs for glass fiber will be pre­sented first, followed by the graphs for other fillers,such as carbon fiber, glass beads, etc. Many manufac­turers often make similar plastic products. The prop­erties of a similar product from two manufacturerswill have similar creep behavior. For instance, a clearpolybutylene terephthalate resin with 30% glass fiberwill have similar creep properties whether it is madeby Ticona, Lanxess, or DuPont.

References

1. McKeen, L.W. (2008) The Effect of Tempera­ture and Other Factors on Plastics and Elasto­mers, Plastics Design Library, William AndrewPublishing.

2. Pilkey, Walter D. (2005) Formulas for Stress,Strain, and Structural Matrices (2nd Edition).(pp. 63-76). John Wiley & Sons. Online versionavailable at: http://www.knovel.comlknoveI2/Toc.jsp?BookID=1429&VerticalID=O

3. Pilkey, Walter D. (2005) Formulas for Stress,Strain, and Structural Matrices (2nd Edition).(pp. 46-53, 547-555). John Wiley & Sons. On­line version available at: http://www.knovel.comlknoveI2/Toc.j sp?BookID=1429&VerticalID=O

4. Wright, D.C. (1996) Environmental StressCracking ofPlastics. (pp. 13-19). Rapra. Onlineversion available at: http://www.knovel.comlknoveI2/Toc.jsp?BookID=409&VerticalID=O

5. Wright, D.C. (1996) Environmental Stress Crack­ing ofPlastics. (pp. 9-10). Rapra. Online versionavailable at: http://www.knovel.comlknoveI2/Toc.jsp?BookID=409&VerticalID=O

6. Utracki, L.A. (2002) Polymer Blends Handbook,Volumes 1-2. Springer-Verlag. Online versionavailable at: http://www.knovel.comlknoveI2/Toc.jsp?BookID=1117&VerticalID=O

7. Utracki,L.A.(1998)CommerciaIPolymerBlends.Springer-Verlag. Online version available at:

Page 35: The Efecct of Creep

1: INTRODUCTION TO PLASTICS AND ELASTOMERS

http://www.knove1.com/knoveI2/Toc.jsp?BookID=878&VerticalID=O

8. Utracki, L.A. (1994). Encyclopaedic Dic­tionary of Commercial Polymer Blends.ChemTec Publishing. Online version avail­able at: http://www.knovel.com/knoveI2/Toc.jsp?BookID=285&VerticalID=O

9. Flick, E.W. (1993) Plastics Additives-AnIndustrial Guide (2nd Edition). William An­drew PublishingINoyes. Online version avail­able at: http://www.knovel.comlknoveI2/Toc.jsp?BookID=353&VerticalID=O

10. Pritchard, G. (1998) lastics Additives-An A-ZReference. Springer-Verlag. Online versionavailable at: http://www.knovel.com/knoveI2/Toc.jsp?BookID=335&VerticalID=O

11. Krishnamachari, S.L, Broutman, L.J. (1993) Ap­plied Stress Analysis ofPlastics: An EngineeringApproach (1st Edition), Springer.

31

12. Crawford, R.I. (1998) Plastics Engineering (3rdEdition). (pp. 54-6l). Elsevier. Online versionavailable at: http://www.knovel.com/knoveI2/Toc.jsp?BookID=439&VerticalID=O

13. Zienkiewicz, O.c., Taylor, RL. (2000) Fi­nite Element Method (5th Edition), VolumeI-The Basis. Elsevier. Online version avail­able at: http://www.knovel.com/knoveI2/Toc.jsp?BookID=509&VerticalID=O

14. Zienkiewicz, O.C., Taylor, RL. (2000) FiniteElement Method (5th Edition), Volume 2­Solid Mechanics. Elsevier. Online version avail­able at: http://www.knovel.com/knoveI2/Toc.jsp?BookID=510&VerticalID=0

15. Zienkiewicz, O.C., Taylor, RL. (2005) Finite El­ement Method for Solid and Structural Mechan­ics (6th Edition). Elsevier. Online version avail­able at: http://www.knovel.com/knoveI2/Toc.jsp?BookID=1885&VerticaIID=0

Page 36: The Efecct of Creep

2.1 Background

This chapter on styrenic plastics covers a broadclass of polymeric materials of which styrene is animportant part. Styrene, also known as vinyl benzene,is an organic compound with the chemical formulaC6HsCH=CH2. Its structure is shown in Fig. 2.1.

Styrene is used as a monomer to make plastics suchas polystyrene, ABS, styrene-acrylonitrile (SAN), andthe other polymers discussed in this chapter.

2.1.1 PolystyrenePolystyrene is the simplest plastic based on styrene.

Its structure is shown in Fig. 2.2.Pure solid polystyrene is a colorless, hard plastic

with limited flexibility. Polystyrene can be transpar­ent or can be made in various colors. It is economicaland is used for producing plastic model assemblykits, plastic cutlery, CD "jewel" cases, and manyother objects where a fairly rigid, economical plasticis desired.

Polystyrene's most common use, however, is asexpanded polystyrene (EPS). EPS is produced from amixture of about 5-10% gaseous blowing agent (mostcommonly pentane or carbon dioxide) and 90-95%polystyrene by weight. The solid plastic beads areexpanded into foam by the use of heat (usually steam).The heating is carried out in a large vessel holding200-2,000 liters. An agitator is used to keep the beadsfrom fusing together. The expanded beads are lighterthan the unexpanded beads, so they are forced to thetop of the vessel and removed. This expansion processlowers the density of the beads to 3% of their originalvalue and yields a smooth-skinned, closed cell struc­ture. Then the pre-expanded beads are usually "aged"for at least 24 hours in mesh storage silos. Thisallows air to diffuse into the beads, cooling them and

Figure 2.1. Chemical structure of styrene.

2 Styrenic Plastics

CH-CHz

n

Figure 2.2. Chemical structure of polystyrene.

making them harder. These expanded beads areexcellent for detailed molding. Extruded polystyrene(XPS), which is different from EPS, is commonlyknown by the trade name Styrofoaml'". All thesefoams are not of interest in this book.

One of the most important plastics is high impactpolystyrene (HIPS). This is a polystyrene matrix thatis imbedded with an impact modifier, which is basi­cally a rubber-like polymer such as polybutadiene.This is shown in Fig. 2.3.

2.1.2 Acrylonitrile-Styrene­Acrylate (ASA)

ASA is the acronym for acrylate rubber modifiedstyrene acrylonitrile copolymer. ASA is a terpolymerthat can be produced either by a reaction process of

Figure 2.3. The structure of high impactpolystyrene.

33

Page 37: The Efecct of Creep

34 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

all three monomers or by a graft process. ASA isusually made by introducing a grafted acrylic esterelastomer during the copolymerization of styrene andacrylonitrile, known as SAN. SAN is described inthe next section of this chapter. The finely dividedelastomer powder is uniformly distributed and graftedonto the SAN molecular chains. The outstandingweatherability of ASA is due to the acrylic ester elas­tomer. ASA polymers are amorphous plastics, whichhave mechanical properties similar to those of theABS resins described in Section 2.1.4. However, theproperties of ASA are far less affected by outdoorweathering.

ASA resins are available in natural, off-white, anda broad range of standard and custom-matched col­ors. ASA resins can be compounded with other poly­mers to make alloys and compounds that benefit fromASA's weather resistance. ASA is used in many prod­ucts including lawn and garden equipment, sportinggoods, automotive exterior parts, safety helmets, andbuilding materials.

2.1.3 Styrene-Acrylonitrile (SAN)Styrene and acrylonitrile monomers can be copo­

lymerized to form a random, amorphous copolymerthat has good weatherability, stress crack resistance,and barrierproperties.The copolymer is called styrene­acrylonitrile or SAN. The SAN copolymer generallycontains 70-80% styrene and 20-30% acrylonitrile.It is a simple random copolymer. This monomercombination provides higher strength, rigidity, andchemical resistance than polystyrene, but it is notquite as clear as crystal polystyrene and its appear­ance tends to discolor more quickly. The generalstructure is shown in Fig. 2.4.

SAN is used for household goods and tableware, incosmetics packaging, sanitary and toiletry articles aswell as for writing materials and office supplies.

NIIIC

ICH~ CH2--CH

n

Figure 2.4. Chemical structure of styrene­acrylonitrile.

2. 1.4 Acrylonitrile-Sutadiene­Styrene (ASS)

Acrylonitrile-butadiene-styrene (ABS) is a com­mon thermoplastic used to make light, rigid, moldedproducts such as pipes, automotive body parts, wheelcovers, enclosures, and protective head gear.

SAN copolymers have been available since the1940s and while their increased toughness over sty­rene made them suitable for many applications, theirlimitations led to the introduction of a rubber, butadi­ene, as a third monomer producing the range of mate­rials popularly referred to as ABS plastics. Thesebecame available in the 1950s and the availability ofthese plastics and the ease of processing led to ABSbecoming one of the most popular of the engineeringpolymers.

The chemical structures of the monomers areshown in the Fig. 2.5. The proportions of the mono­mers typically range from 15% to 35% acrylonitrile,5% to 30% butadiene, and 40% to 60% styrene.It can be found as a graft copolymer, in whichthe SAN polymer is formed in a polymerization sys­tem in the presence of the polybutadiene rubberlatex; the final product is a complex mixture con­sisting of SAN copolymer, a graft polymer of SANand polybutadiene, and some free polybutadienerubber.

2.1.5 Methyl Methacrylate­Acrylonitrile-Sutadiene-Styrene(MASS)

Methyl methacrylate-aerylonitrile-butadiene­styrene (MABS) is a new modification of ABS. It issometimes called transparent ABS, a copolymer ofmethyl methacrylate, acrylonitrile, butadiene, andstyrene. The key properties of MABS are excellenttransparency, high impact strength, and good chemi­cal resistance. This is an exceptional combination ofproperties for an impact-modified thermoplastic.MABS can be used to create particularly brilliantvisual effects such as very deep colors and pearly orsparkle effects. It is easy to process and can also beprinted upon.

2. 1.6 Styrene-Maleic Anhydride(SMA)

The copolymerization of styrene with maleic anhy­dride creates a copolymer called styrene-maleic

Page 38: The Efecct of Creep

2: STYRENIC PLASTICS 35

Acrylonitrile

~CH,V 'CH,

Styrene Butadiene

Figure 2.5. Chemical structures of ASS raw materials.

Maleic Anhydride

+

Styrene SMA Polymer

Figure 2.6. The production of styrene-maleic anhydride.

anhydride (SMA). This reaction is shown in Fig. 2.6.SMA has a higher glass transition temperature thanpolystyrene and is chemically reactive because ofactive functional groups. Thus, SMA polymers areoften used in blends or composites where interac­tion or reaction of the maleic anhydride group pro­vides for desirable interfacial effects. The reactionof the anhydride with primary amines is particularlypotent.

2.1.7 Styrenic Block Copolymers(SBCs)

Styrenic block copolymer (SBC) is a commerciallyimportant thermoplastic elastomer. The polymer ismade ofthree separate polymeric blocks (see Section1.4.2 for an explanation of block copolymers). At oneend is a hard polystyrene block, in the middle a longpolybutadiene (or other elastomeric) block, followedby a second hard block of polystyrene. These blocksare immiscible, so they form discrete domains ofpolystyrene within a polybutadiene matrix. The sepa­rate domains are chemically connected. This is shownin Fig. 2.7, where one might notice that the structurelooks a lot like HIPS, except that the continuousphase and the hard discrete phase are switched inSBC and the domains are connected. One additionalproperty of interest is that some SBCs blend wellwith general-purpose polystyrene, allowing customi­zation of properties.

Figure 2.7. The "microscopic" structure of styrenicblock copolymers.

2.1.8 BlendsWhile the number of styrenic blends might seem

limitless, compatibility and morphology limit blendtypes. Styrenic blends are numerous but most arelimited to only a couple of types. The most importantblend is ABS and polycarbonate (PC). Next in impor­tance is ABS and polyamide (PA) (or nylon). Polysty­rene and polyethylene are often used in expandablefoams. Polystyrene and polyphenylene ether (PPE orPPO) are commercially important blends, which arecovered in a later chapter. The other classes of thestyrenic blends are not major product lines but canbe very important in some applications.

Page 39: The Efecct of Creep

36 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

2.2 Polystyrene (PS)

2.2.1 BASF Polystyrol143 E-Medium Strength, Easy FlowingGeneral-Purpose Grade PS Resin

321

- : : .· .· .· .· .· .· .· .· .· .· .· .· .· .· .· .· .· .· .· .· .

5 ..

O+--...,....-"""T'""-.....,...---,.----.---+o

15

Strain (%)

Figure 2.8. Isochronous stress-strain at 23°C of Polystyrol 143 E.

2500 +-_""--...o...-.........................._-.....---'-................................_...o...-................................~~----''''--- .............................''''-+

2000

Iia.~II)

~ 1500'1::lo::EQ,CIleo 1000

103

Time (hrs)

500 +--.....--"""T"'""..................."T"T'T----.-----.........."""T"""I........TT"""-"""T"'""--r-...,....I"""'T""".........,r--_r--.,........,....................~101

Figure 2.9. Creep modulus versus time at 23°C of Polystyrol 143 E.

Page 40: The Efecct of Creep

2: STYRENIC PLASTICS 37

2.2.2 BASF Polystyrene 454 C-Impact Resistant PS Resin

432

Strain (%)

1

. -: ~ : - .· . .· . .· . .· . .· . .· . .· . .· . .

.. _ .· . .· . .· . .· . .· . .· . .· . .· . .· . ..... ·····.'·············,··············r··············· . .· . .· . .· . .· . .· . .· . .· . .

2

O+--....----j--_._-;----..--;--.,......-+o

5

1

6

7

-I'llD.

!.4

i(;)3

1.51.00.5

· ..............................................

Strain (%)

o+-.....-......,......,.......,---..--.---.-....,.."""T'"-.-....--..-.....-+0.0

2 ;. ; .

5

1 -: , .· .· .· .· .· .· .· .· .

6

7

-I'llD.!.4III

2!(;)3

Figure 2.10. Isochronous stress-strain at 23°C ofPolystyrene 454 C.

Figure 2.11. Isochronous stress-strain at 40°C ofPolystyrene 454 C.

...s:o

4

3

-I'llD.::iii-

1 ..... ; ; ; ; ; .

10 128642o+-....--r--.-"""T"--.-~---..--,,--.--,....- ......-i--1-

oStrain (%)

Figure 2.12. Isochronous stress-strain at 60°C of Polystyrene 454 C.

Page 41: The Efecct of Creep

38 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

2500+--........---'-...............................----'----'..........................~--'--- .................................7_-.........---'-.........................."'T

2000

!/)

-3 1500-g::EQ.G)

eo 1000

•• _ •• _. _. _. _ •• _. _ ••• __ •••• _ •• _. - ••~. ~~_'"' __~_ - _0 _ •••• ~ •••• _. _ ••••••• _ •• •••••••• - _. - _. - _ ••••• _ ••• - - -- _ •••••

· .. ............. _-----_ -_._---_. __ __ _--_ .

103

Time (hrs)

500+--........-,.........,..-.-...............,...--.......__.___._.....................,r---...,......---.----.-..................-r--........................,.......,r-T""'lr-Tt"

101

Figure 2.13. Creep modulus versus time at 23°C of Polystyrene 454 C.

1500+-_.........._ ............................~ ..............................""'"'-l~_ .........---'----'- ..........a....a..I-__"""--......................................"'""+

Ii 10000.::E-!/).2::I't'o::EQ.G) 500eo

~1J:)~· ..;-..:-- -- - -- -- - --, - -- - -- - - -- --- _.. - - - - - -- -- - -- - - - - -- -- - -- - -- - --- - -- -- --- - --

· .-. --------. - -.. -------; -------. -------.. -. -.. ---. -- ~ ---. ----. -------· .· ..· ..· .· .· ..· ..· ..· ..· .... .... .... .... .... .... .... ..

O+--........___.,.........,..-.-...............,...--.......__.___._....................,r---...,......---.----.-..................-r--.......................,.......,r-T""'lr-Tt"

101 103

Time (hrs)

Figure 2.14. Creep modulus versus time at 40°C of Polystyrene 454 C.

Page 42: The Efecct of Creep

2: STYRENIC PLASTICS 39

600 +-_-'----'----"-..........'-'-'...........-----"-~ .....................o...o.JI--""'---....................................~- ..........----'----"--'-........."-'-t

500

Ii 400a.:E-III.2 300:::l'tJo::iQ.CD 200CD..o

100

- __ __ -_ _-_ .

.s'~19.s­

.s-~..... &.. . 7A

_· · · · · · .

~19 ''7,()is'.s- ~

~

~ 4t,().................. ~ ....

------_ ------_ ; --------_ ..

............................; ; ~.. ~:=...J

0+--........____.,......,........"T""T""T"T'1--......................................""'T'"-,......,-...............................~- ........----.,......,.....,.."T""T"...._.+

101 103

Time (hrs)

Figure 2.15. Creep modulus versus time at 60DC of Polystyrene 454 C.

2.2.3 BASF Polystyrene 168 N-High Molecular Weight, Heat ResistantPS Resin

30 MPa

20MPa, .·:········"-·'····15 MPa

10 MPa

Failure Boundary

...................... ',' ~ ., . ,, . ,

6 .. -_.. -_ _ --.:._ _. -_. _ - ~_ _. -_. _ _.. _. -;. -_. _ -' .:. _ _ ~ .., . . . ,. . , . ., .. ,. " .., ,., ,

, ,

5 : ; ; : ' .., ", ", ", ,., ,., ., ,

, ,................................................................................................................._-_ ._4~~c

.~ 3-(/J2

Time (hrs)

Figure 2.16. Creep strain curves of Polystyrene 168 N at 20DC.

Page 43: The Efecct of Creep

40 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

2.2.4 BASF Polystyrene 456 F-Heat Resistant, Impact Resistant PS Resin

40°C

...............:-_ __ : .. .. .

· . ............... __ ' __ .· . .· . .· . .· . .· .· .· .· .· .

· ...... _------ ;- __ : .· .· .· .· .· .· .· .· .· .· .· .· .· .· .· ,· .· .· .· .· .· .

20 .

IIIIII

~tn 15

Time (hrs)

Figure 2.17. Creep rupture curves of Polystyrene 456 F at various temperatures.

2.2.5 Generic Products and Direct Comparison of PS Resins

14 MPa

16 MPa

17 MPa

102

Time (min)

· . .- _----.,----- -_ " _--_.. _---_ __ ._-------_ , __ ._-: : . : 15 MPa· .

O+--......-..,.....'I'"""T'""'I'""T'"...,-r-"""'T'""--.-.....................r-----..--.........."""'T'""...........-r--......."""'T'"".........................,----..---.........-+10°

5 .

20 :.. ------ : ------ ..; .· . .· . .· . .· . .· . .· .· .· .· .15

c';b 10U)

-~o-

Figure 2.18. Creep curves of HIPS resins at 20°C.

Page 44: The Efecct of Creep

2: STYRENIC PLASTICS 41

168N

:'165H .. ···· ..

: 143 E

.158 K· .-_._----_ _--_ _,_ .· .· .· .· .· .· .· .· .

10 +-....,......................,..,...j--.........""T""'I".......;.--.-...............""T'"--.-...-...............,r-....-.................,...--.-......................,-.......-...............+10.2

20 ; ; ; .· . , ., . , ., . , ., . , ., , , ., I • •

, , . ., , . . ,15 --_ ~ -" --- -- _. ~. --_ -_. _.0 ~ -_. ~_. -- _._._. _.-_.-:- -----t , • • ,

, , . . ., , . . .· , . . .· , . , .· , . . .• • I I •· , , , .

35

Ii 30D.::&-II)II) 25f-t/)

Time (hrs)

Figure 2.19. Creep rupture curves of several BASF general-purpose PS resins.

........ ········ ..244°6·262°C

~--+---- 280°C

169°C Melting Temperature

---------. -- - ~ -----. -------. ----- \ -. -------· .· .· .· .· .· .· .· .· .O-t--.......-.......-.,........""T""'I"TTT---.---.-...-...............rr--.......-.....-.....................-r---.----............................,...-.......--.-..,....,r-+-10°

35

30

25

Ii 20D.::&-II)II) 15CD..-t/)

10

5

Time (hrs)

Figure 2.20. Creep rupture curves of several general-purpose PS resins as a function of the melting point.

Page 45: The Efecct of Creep

42 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

1 - n-heptane2 • olive oil/oleic acid 1:13 - methanol4 - battery acid5 - Nekanil W-extra solution6 - distilled water7 - air

-----:-------+--2

5 ..

20 : -: , ., . ,, . ,, . ., . .. ,

.-. 15 ------- .. ---.---- .C'IIQ.::E-II)e10 r~~~~:':":':~~~ ........~·..UJ

o-l--.--......................~----=::::::;::;:;::::;::;:;:;=::::::;...!.. .......................~----.----.-- ...........~-......-r-.--L10.1 101

Time (hrs)

Figure 2.21. Creep rupture curves in stress cracking testing of HIPS resins by various agents.

2.3 Acrylonitrile-Styrene-Acrylate (ASA)

2.3.1 BASF Luran® S 757 R-Rigid, High Hardness ASA Resin

65234

Strain (Ufo)

1

· . . . ............................................................· ...· . .· , .· . .· . .· , ,· . . . ...............................................,. .· . . . .· . . .· . . .· . . .· ..· ..· ............................ : : .· . . . .· . . . .· . . . .· . . . .· . . . ,· . . . .· . . . .· . . . .

18

16

14

12

ca 100..:t-III 8~...tn

6

4

2

00542 3

Strain (Ufo)

, . ................. : : ., ., ., ., ., ., ., .. .

1

. . . .·'.-···········.···········1···········(···········

, . ,. ....-. - ~ .

o-t-.........-r--"""T'"""---r-...--"""T'"---,..---r--~-+o

5 .

20

15

III

~ 10...tn

-III0..:t-

Figure 2.22. Isochronous stress-strain at 23°C ofLuran® S 757 R.

Figure 2.23. Isochronous stress-strain at 40°C ofLuran® S 757 R.

Page 46: The Efecct of Creep

2: STYRENIC PLASTICS 43

201510

Strain (%)

......................................... .. .

5

· . .-,- ~ ~ .· . .· . .· . .· . .· . .· . .· . .

.......... .; .; ; .· . .· . .· . .· . .· . .· . .· . .· . .

· .· . .. - , .· . .· . .· .· .· .· .· .· .

2

o+-O--r-.........--;-.........-r-.......;.-r-.........-r-;--..-r-.........+o

1

5

6

7

8 ....

~,,<:) .

<:)'-' :~, .... ~ ..... -

1 234 5 6 7 8

Strain (%)

. .. .,. . , .2

o+----i-.....;...-.;......--j.-....;....-.j.---i--+o

10

8

-ftlQ.::E 6 ...-IIIIIIl!!...en

4

Figure 2.24. Isochronous stress-strain at 60°C ofLuran®S 757 R.

Figure 2.25. Isochronous stress-strain at 80°C ofLuran® S 757 R.

3000+-_.......--.......................~---~ ...............................,J.--'--......................................L---..............................................4

2500

-ftlQ.::E 2000-C/)

.a:::J

,;Jo

::E 1500Q,Q)

e(J

1000

Stress' - 5- MPa-: . - -. -. -- ~ . . . . . - ",' . - .

•••••••••••••• - - • - - - • - - - - - - - f - - - - • - • - • - •••••••••••••••••• ~ •• - • - - • - •••••••••••••••, ,, ,, ., ., ., ., ., ,, ., ., .. .

Page 47: The Efecct of Creep

44 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

2000

-l'll~:E 1500-III..2~

"Co::::liE 1000CoQ)eo

500

........... --. : -.-. -- ~ --- -..:--. -- - --. -.. -.· . .· . .· . .· . .. .. .

................... __ : ···f······ __ ········_-_·········· .· .· .· .· .· .· .· .· .· .· .· .103

Time (hrs)

Figure 2.27. Creep modulus versus time at 40°C of Luran® S 757 R.

SIre:S,s ~ <Il1A ..... ~ .._..._. . ..... _. .

q :

.............................. __ .;--_ .. _-_ --.--_ _-----_ ..

10 MPa .·· .... · .. ·· .. ···· .......... ·'· .. · ..7 .. --: <41Aq

... -.. -. -. --- -. -. ---. --- ~ . -.. -.. -. ----. -. --. -. - .· .· .· .· .· .· .· .· .

1000

-l'll~ 800::::liE-III~

~600"C

0::::liECoQ)Q) 400..o

200 · .. ----. -. -. ---. -. ----. ---. ---~ - - ~ -------. ---. --- . ----. -. ----- " - - .· .· .· .· .· .· .· .· .

1200 - --- --4 MPa ; _ _

6MPa :

Page 48: The Efecct of Creep

2: STYRENIC PLASTICS 45

800 ~-~---,- .................................----,----,................................,J.----'----"""--"""''''''''''''''''''''~-"''''--'''''''''''''''''''''''''''''''''''''''"t

700

600

CiQ. 500:E-111.a 400="tlo:E 300c.GIeo 200

100 : : ;::;.. :;:;..~~~~~~~~~

103

Time (hrs)

Figure 2.29. Creep modulus versus time at 80°C of Luran® S 757 R.

2.3.2 BASF Luran@S778T-Genera/-Purpose,Toughened,HighHeatGrade ASA Resin

Figure 2.30. Isochronous stress-strain at 23°C ofLuran® S 778 T.

1082o+-.....,..-r--"""T"""---'''''-'''''''''''''''-'''''''""''T""-'''--+

o

15+-.......-r-~ ............,...,..L.-.-'--....,+_......--+--'----+

10

111

~..UJ

-IIIQ.

:E-

4 6

Strain (%)

Figure 2.31. Isochronous stress-strain at 60°C ofLuran® S 778 T.

542 3

Strain (%)

, ., . ,................ : ,. ., , ,, . ,, . ,, . ,, . ,· ,· ,, ,· ,· ,· ,, ,

, ,, ,

1

. , . ... ··,············,···········t···········.············

, , . ...........................................................

o+-.....,..-.---.......--.-....-.....,..--r--"""T"""---.-+o

15

5 .

20

-IIIQ.

:E-111

m10....UJ

Page 49: The Efecct of Creep

46 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

2000

IiQ.

~In

-§ 1500't:Io:::Ec.G)

eo 1000

500+--.........-....---.-....,.....,..........,...;...----r-....-............-T..,...,...;r...--..--"""T"""""T'"""T"""T'"......,..;......-"""'T'""---r---.-"""T"""I"""T"'l,..:;:t..101 103

Time (hrs)

Figure 2.32. Creep modulus versus time at 23°C of Luran® S 778 T.

. ,........................... -;- ---- -------.--- · · · i · · · · · · · · · · · · · -- - -- - -- -· - - --· ·:- --· . ,· . ,· . ,· . ,· . ,, . ,

, . ,, . ,, . ,

1200

1000

-CIS0.:Ii!-/I)::2:;

600"C0:Ii!Q.Q)

e 400o

200

Time (hrs)

Figure 2.33. Creep modulus versus time at 60°C of Luran® S 778 T.

Page 50: The Efecct of Creep

2: STYRENIC PLASTICS 47

2.3.3 BASF Luran@S776S-Toughened,Elastomer-ModifiedASAResin

155 10

Strain (%)

o+-.....--..--.--..--,---.-...........-.....-T'"'"'""..--.--..........-t-o

15

5 : ; .

-CllQ.

!..10

~..tn

54

..................................· .· .· .· .· .· .· .· .· .· .· .

2 3Strain (%)

1

. . .. .

o~........,....,...,-r-.r-T"""...,.. ...............T'"T"..............,."""T"""l-r-..-+o

25

20

5 .

-CllQ.

!.15

~..tn 10

Figure 2.34. Isochronous stress-strain at 23°e and50% relative humidity of Luran®S 778 T.

Figure 2.35. Isochronous stress-strain at 700 e ofLuran® S 778 T.

2.4 Styrene-Acrylonitrile (SAN)

2.4.1 BASFLurarP 378 P-Easy Flow, EnhancedChemicalResistantSANResin

652 3 4

Strain (%)

1

· .· .. . , . .".". .., - •• '." •••••••• ~ •••••• - - ••••••• - ••• f' ••••••

, . , . .· .· .

o+-......--r--""T"""-.--r--r-"""T""---r........-+o

5 . . ~ ; ~ : ~ .

15

20

-Clla.::i-IIIf 10..tn

1.50.5 1.0

Strain (%)

o+-.................-r-...;.....T""""""'O--..--.-...;-.....-.................-+0.0

50 .

40

60+-.........................+-.........--,.....,.......+-"'-T................-+

10 '" .

-caa.!.. 30III

~U) 20

Figure 2.36. Isochronous stress-strain at 23°e ofLuran®378 P.

Figure 2.37. Isochronous stress-strain at 40 0 e ofLuran®378 P.

Page 51: The Efecct of Creep

48 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

10 12468

Strain (%)

2

. .,. . ~ ; ; : ; .

..... ; ; ; ; ; ; .. . . . .. . . , .. . . .. . . ... ... ... .

2

o+-.....--;-.....--;-.......-j---r--i---r--i---T--i--1­o

6

1

7

...s:o

8 ....

5 10 15Strain (%)

· ... ·············.···················f···················· .· .· .· .

o+-..--......---r-;...........--r-.....-..--;..-,........................-+o

15

5

IVa.!.10

~-en

Figure 2.38. Isochronous stress-strain at 60°C ofLuran® 378 P.

Figure 2.39. Isochronous stress-strain at 80°C ofLuran® 378 P.

. ...... -. -. - --. --- ~ .. ------- -. ----- ----. ~ -- -. - -. -- ~ . --. ---- -. ----· . .· . .· . .· . .· . .· . .· . .· . .

1000

3500 ........

3000 , ..-CllQ.

~ 2500CIl.a:::J'1:l:i 2000Q.GI5 1500

103

Time (hrs)

Figure 2.40. Creep modulus versus time at 23°C of Luran® 378 P.

Page 52: The Efecct of Creep

2: STYRENIC PLASTICS 49

C;S 2000C.~-tn~ 1500"Co~c.CD 1000eo

500

........... _--_ _-_ __ -----_ .

................ -.-. --- ; ------ ~ ., ., ., ., .· ,· .· ,· ,· ,· , ............ -_._-_._-----_._-,-_ _-, _----_ _-_.,,_ .

04--.......----.__.......................;.--or---r-"""T"'""................-i-----.--..............................r--......----r-..............."'"""'""'.....I­

101 103

Time (hrs)

Figure 2.41. Creep modulus versus time at 40°C of Luran® 378 P.

2000;--........----"---'-........................--....-.................................0..1----'----'........--'-.......~'---"""'-- .......................................

1500

-caC.~-tn~ 1000"Co~c.CDeo 500

o;--.............,...-.-..................;.--__.............,.....................-r--_._--.-.....,.....................;-..-_---r_....-..........-.+101 103

Time (hrs)

Figure 2.42. Creep modulus versus time at 60°C of Luran® 378 P.

Page 53: The Efecct of Creep

50 THE EFFECT OF CREEP AND OTHER nME RELATED FACTORS ON PLASTICS AND ELASTOMERS

1500 -f-_........._ ................................-l--_........---o.---o..................o..a..l .........---'----'-.......................__..........................................."""'T

· . ....................... --;_ _- -;-_ - - _-_ _-.. -_ ., . ,, . ,, . ,, . ,, , ,· , ,· , ,, . ,

, .· .· .· .Stre: :

'88 ""< : '41,oq:

.. .. .. .. .. .. .. .. .. ~ -: ----------.. -- ............................. ; .. _---_ ...

III.2

::::s't:Jo:Ec.G) 500eo

Ii 1000D.:E-

O+---....---._-...........~--or---.--.- ................'"T"""----.--,..---,.......................r---.....---.--..........,I'"'T"""r.......101

103

Time (hrs)

Figure 2.43. Creep modulus versus time at 80°C of Luran® 378 P.

2.4.2 BASF Luran@378PG7-35%GlassFiberFilled,EnhancedChemicalResistant SAN Resin

1.50.5 1.0

Strain (%)

. : ; _----, ,, ,. ., ., ,

......................................................., .

o+-....-..............-r.....,...-r-"""T'"""......-,-..............---.--+0.0

40

10 ...

:g! 20u;

30-IIIQ.::l!-

0.5 1.0 1.5

Strain (%)

, ....................................................... ,

o+-...--.................---i-.....,...-r-"""T'"""......-.;.-..............---.---f-0.0

50

10 ...

40

-IIIQ.

!.30

iu; 20

Figure 2.44. Isochronous stress-strain at 23°C ofLuran® 378 P G7.

Figure 2.45. Isochronous stress-strain at 40°C ofLuran® 378 P G7.

Page 54: The Efecct of Creep

2: STYRENIC PLASTICS 51

432

Strain (%)

1

. . .. . '" - ~ .

o+--..----..,r-----..--r--.--"T"""-..----+o

30 +--"----r-:-+-r-........r-+-----,__---!--........--r-+

20

25

5

'illQ.

~ 15III

~...(J)

10

2.5 3.0

_. J ••••••••••••••••••••••••••••••. . .

0+r-...........,................T"T""..................r-T""1..,.....,..,.....,"T'"T""T"'T-.+0.0 0.5 1.0 1.5 2.0

Strain (%)

10 ...

30

40

'illQ.

~=20e...(J)

Figure 2.46. Isochronous stress-strain at 60°C ofLuran" 378 P G7.

Figure 2.47. Isochronous stress-strain at 80°C ofl.uran'" 378 P G7.

11000 +----'-----'...................................1--_.........---'---'--'-..................__""'---'--'-....................10.4-_---'_....0..-....................................+

, ,.................... __ __ ., ,, ,

, ......... _-_ _-.--.,--_ __ ._----_ -_ _-_ .

........ _-_ __.. _-_._--:--_ .. _-_ _---_ .

5000 +--....,...--...--...""'"T"""T""T"T"T"1r---.......---.-""'"T""........,.......,I"'T'T--..--""T"""................""T"T"TT'"----.-....-...--.....,..........+101

8000

7000

6000

10000

CiS 9000D.:=E-

103

Time (hrs)

Figure 2.48. Creep modulus versus time at 23°C of l.uran'" 378 P G7.

Page 55: The Efecct of Creep

52 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

. . ......... _----------- , , .

4000+---.....----.---.-....."T""'T'"T"T"f--.....-.................................,...---r"-.,...........................r--...,...........--.-...,....I'""T'"'l~

101

9000 .

8000

5000

-ftSD.::i-t/) 7000.2~

't:Jo::iQ. 6000CI)

eo

103

Time (hrs)

Figure 2.49. Creep modulus versus time at 40°C of Luran®378 P G7.

4000-ftSD.

~t/)

.2~

't:J0 3000::iQ.CI)CI)...0

2000

103

Time (hrs)

Figure 2.50. Creep modulus versus time at 60°C of Luran®378 P G7.

Page 56: The Efecct of Creep

2: STYRENIC PLASTICS 53

3000CiD.

~111.a:::l'tl0 2000:iQ.Q)Q)..0

1000 ••••••• •••••••••••••••••••••••••••••• __ •••••••••••••••••••••••••••••••••••••••••••• J •• __ •••••••••· . .· . .· . .· . .· . .· . .· . .· . .· . .103

Time (hrs)

Figure 2.51. Creep modulus versus time at 80°C of Luran® 378 P G7.

2.4.3 Generic Products and DirectComparison of SAN Resins

BASF Luran'" 388 S-high strength, enhancedchemical resistant SAN resin

BASF Luran'" 378 P-easy flow, enhancedchemical resistant SAN resinBASF Luranf 368 R-general-purpose SANresinBASF Luranf 358 N-easy flow, injectionmolding SAN resin

70

60

::l 50 ; : .! : :.. . .en : :.!! : :'iii ; :c ; :~ 40 . .

. ........ __ __ __ __ __ --..

30+----.----.-""T'"T"T"TT-rT----.----.-......."T"TT-rT----.---.-........"T'T'O..;----.---.-......."'T"T'O..;-----.---.-.................;-................................r-+10.1 102

Time (hrs)

Figure 2.52. Tensile creep strength versus time of several BASF Luran® SAN grades at 23°C.

Page 57: The Efecct of Creep

54 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

0.6tr============================================:::::::..........-t-- Thermocomp® BF-1004 - 20% Glass Fiber Filled, 23°C, 34.5 MPa- - Thermocomp® BF-1006 - 30% Glass Fiber Filled, 23°C, 34.5 MPa

0.5 ----- Thermocomp®BF-1006FR - 30% Glass Fiber Filled, Fire Resistant, 23°C, 17.2 MPa

0.4 •...............................

-~0- 0.3c'Ii......(J)

0.2

•...................................................................................................................

--------------~--------------------------------------- - - -----------------------------0.1 .

10000.0

10 100

Time (hrs)

Figure 2.53. Tensile creep strain versus time of several SABIC Innovative Plastics Therrnocompf SAN gradesat 23°C.

........ - _------_ _-_. __ __ : __ . __ ., ,, ,, ,

.............................: L~~'~an;;;®IDR 33~588~NJ' --"""'-'4~=======

30 --_.- _.. ---- _ : __ _._. _.-_.-------:-------------------- _._--- .. - ~-- _._------ -----_._.- _._ .. _.-, , ., , ,, , ., , ,, , ,

, ,, ,, .

25

5 ; ; ; .· . ,· . .· . .· . ., . .· . .· . .· . .0+--.......---...........,........""T'""'T""T"T".---.....---..--.."""T'""T""T'"T"T'T--...--...........,...................-rr----.....--.....-...,.............."T'"T'"..r

10° 102

Time (hrs)

Figure 2.54. Stress cracking resistance of several BASF t.urarr" SAN grades in a 1:1 mixture of olive oil andoleic acid at 23°C.

Page 58: The Efecct of Creep

2: STYRENIC PLASTICS 55

2.5 Acrylonitrile-Butadiene-Styrene (ABS)

2.5.1 INEOS Lustran@ASS446-General-PurposeASSResin

25 +--"---'--'....................~-'""-- ..........................o.o.l---'----'-........................."""'"'-+---'----'-..................................I------r

27 MPa

20 ; ; ; ; .· . , ,· . . .., ... ... '.. ... .. .

15 ----------------.-

c'iii.::: 10en · ................................................................... -. · .--_ __ -----,--_ .· .· .· .· .

25MPa

5 ; ; ; ; ... ... .., .· .· .· .· .· .

10

Time (hrs)

Figure 2.55. Creep strain versus time at 23°C of t.ustran'" ASS 446.

3.0 +-_-'---o.---'--'-......... '-'-I-_----'_""'--........-'-'.........04--_.........---'----'-............................_---'-_.............................~

.. .... · .. ; .......... · .. ·10 MPa .... ·~~~~ ..~ ~ ~ ~ , ..............••

2.0 ··············----···---····r······--··---···---······---r···························· _.- -_ __ _-_.· .· .· .· .· .· .· .· .· .· .

1.0 .

2.5 : : ·20 MPa .

-~o- 1.5c.~-U)

100010010.0 +--"""'T"""---,.----..-r-I"""'T"'l.....,...----.--r--.........."""'T""'l........r--~~ ................................,...----..-.........,..-.-.................r

0.1 10

Time (hrs)

Figure 2.56. Creep strain versus time at 40°C of tustran" ASS 446.

Page 59: The Efecct of Creep

56 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

6MPa

10 MPa· ,....................................... _---------------- --_._----_ , --------_ ..

4 , ; .· ,· ,· ,· ,· ,· ,· ., ,, ., ., .

3 ..

1 . ; .

c'iijb 2en

~o-

10001001O+--.....,...---,,........,..........,...,..........r-------..---.......................,--~.....,........,......,....,.-.-."""'T"--....- ........""T'""I"'.._r0.1 10

Time (hrs)

Figure 2.57. Creep strain versus time at 60°C of tustran'" ASS 446.

8+---'----"---"-'-........"'""""""------..........................................- ................---"....................o..a..I--"'--..................................'+

1000100101

5 ; ; ; ., . ., , ., . ., , ,, , .· , .· , ,

1 r ..

2

7 -_.. ----------. - --------- ~ --. --------- ~ -. --------- ~ -_ --_., . .· . .· , .· ,· ,· ,

6 -. _ _.. _. -_. _. -_. _. -- ~ _. ---_ _ :. _. ----_ ---_._ : -----------_ -. ------

-';f!.-4cE..en 3

Time (hrs)

Figure 2.58. Creep strain versus time at BO°C of tustran'" ASS 446.

Page 60: The Efecct of Creep

2: STYRENIC PLASTICS 57

2.5.2 Toray Resin Company ToyolaC;® 1aD-High Impact, General-PurposeABSResin

1.5 ,'. -, -. -, ------------.. , - ',-- ------ ------ -----.. -

14.7 MPa

-~o-; 1.0.~...en

.:.:..:.:.:.~;.;.;..;.;.:~--:~ --. --. -- --. -- --. -- --. -- .. _ -- .

9.8 MPa

0.5 - .. ----.. --. -- , -., -.. --.. -- :-- ---- -- ---- --. --. -- --. --. --·7.4 MPa--'

4.9 MPa

1000100100.0+---.....---.-___._--.-..........."""'T"""-r---~~---r___._"""T"'""r"""T"""r_r_--....----.----.--.-"""T"""T""'T"".._+

1

Time (hrs)

Figure 2.59. Creep strain versus time at 23°C of Toyolac@ 100.

2.5.3 SABIC Innovative Plastics CycolaC;® G36D-High Heat, High ImpactABSResin

· . . . .3.0 ; _. . __ .. _ ~ .. _ ; _ _ _-;. -.. - :.26 MPa

· , . ,· . . ,· . . .· . . ., . . ,· . . .· . . .

2.0 ;.. -- : : ' -- ; --. -- ..· " ., .. ,· ,. .· .. .· ., .· .. ., .. ,

, . . .2.5 - ~ ; .. _-_ -_._--_ ;._----- _._ ; ; _-· , . . ., . . . ., . . . .· , , . .· . . . .· . . . .· , , .· . . .· . . .

.5 1.5e...tn

. . . ................•......................•...~22~i;;MP~

1.0 : ~:::::

0.5 ···············f···············-·-··-·i···--··········....-.. ;.- ..-..... -...... : ·······~·6·Mp·~, ,

101

Time (hrs)

Figure 2.60. Creep strain versus time at 23°C of Cycolac'" G360.

Page 61: The Efecct of Creep

58 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

2.5.4 SABIC Innovative Plastics CycolacfB> X37-High Heat, InjectionMolding ABS Resin

· .., . . ,...................................................................................., .· . .· . .· . .· . .· .· .· .· .· ................ ; ; ; ; ; .· . . . .· . . . .· . . . .· . . . .· . . . ,· . . . .· , . . .· . . . .· ..: : : : : 18 MPa

: : :, . . , .· .. ............... '[". _ : : ~ ~.14 MPa

: : : ~ ~10MPa...............; ; ;.............. :·· .. ·.. ·········· .. ·).. 6·Mp·~

I

3.0

2.5

2.0

~~c 1.5'E-tIJ

1.0

0.5

0.0

. ......... _" __ : _ : 26 MPa

101

Time (hrs)

Figure 2.61. Creep strain versus time at 23°C of Cycolac@X37.

2.5.5 Dow Plastics Magnum™ 104D-High Impact ABS Resin

2.01.50.5 1.0

Strain (%)

- .. - .;- - . - - - . - ~ - - - :- .· .· .· .· .· .

o+--,r-T"'...........r"""'T""...........r-T"'..........,r"""T"" ...........r-T"'''T'''''''r-T'''...........r-+0.0

6

8

IIIe-tIJ

2.01.51.0

Strain (%)

0.5

2

4 ., ..: ; : ..· . .· . .· . .· . .· .· .· .

o+--,r-T"'...........r"""'T""...........r-T"'..........,r-T"'...........r-T"'...;....,r-T"'..............-+0.0

12

16

14 ..

_10IIIQ.:::t"; 8

e-tIJ 6

Figure 2.62. Isochronous stress-strain at 23°C ofMaqnurn" 1040.

Figure 2.63. Isochronous stress-strain at 50°C ofMaqnurn" 1040.

Page 62: The Efecct of Creep

2: STYRENIC PLASTICS 59

3.0 +-.o....-........,..............r,-.........-+---........+-...................--"'7"T

2.5

2.0

-"'D.!..1.5IIIIIIe-en

1.0

0.5 .

1.51.00.50.0 +-_.___.___.___.__...,..-...-...-...-...--r-...-...-...-...-+-

0.0Strain (%)

Figure 2.64. Isochronous stress-strain at ao°c of Maqnurn" 1040.

1750 +----"--"--...........................~- .........----'..................................4__-.........---"---"...........................~- .........---'----'-........."-&..~

III

3 1250'tJo::EQ.II)

eo 1000

-"'D.::E-

1500 SIre. .. ~.s .""7 .

•/' Ai''v!,oq

. . .- -. - -.. -..-.. ----- . ----. --. --- . ----. -. ~ ---.. --. --. -.. -. -.. -.. -. -- --. --. -

102

Time (hrs)

750 +----r-,............................T----r----.---.--r""T""T"'T"T'"r----r-~~ ........."'r'""T"......,r__--.--......................................10°

Figure 2.65. Creep modulus versus time at 23°C of Magnum™ 1040.

Page 63: The Efecct of Creep

60 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

1500+--..........-'--.........................+--..........--'--'---'-...................'--.........---"---"--'-....................-~- .........--'---'---'-.........""""+

102

Time (hrs)

.... & : ~ .fr", : :

'-U',s . .~ I :

7~ :· ~q :

· ............................. ; : SIre

· . ss": : .... 10: ; !J4Pq· .· .· .· .· .· .· .· .· .500 +----....-....-......................,..--........---.---.,........"'T""'T.......r---....----.---........."T""'T"~r__-...,....___.____._ ........T""T'".._.+

10°

1250

Ul

~ 1000'l:Jo:EQ.Q)

eo 750

Figure 2.66. Creep modulus versus time at 50°C of Maqnurn" 1040.

1000 +-----'--'--.........................+--..........--'--'............................'--.........---"---"--'-....................-~- .........--'---'---'-.........""""'+

Ul.a::::l

'l:Jo:EQ.Q)Q)...o

750 .

500

250

102

Time (hrs)

O+--.......-.....-.,.....,....................----.-...,....""T"""................"T'T'"--....-..............""T"""r-T'".......--..,....___._..............."T""'T"........+

10°

Figure 2.67. Creep modulus versus time at ao°c of Maqnurn" 1040.

Page 64: The Efecct of Creep

2: STYRENIC PLASTICS 61

2.5.6 Direct Comparison of ASS Resins

8+-_---a._..........-"---.........................__"--............................................__........---'----a........................... - ........-&....-&...-I.................+

-- Toyolac" Parel TP-10 - General Purpose,Antistatic Grade7 ... - - .Toyolac™ Parel TP-44 - Heat Resistant, Antistatic Grade

••• - Toyolac™ 501 - Antistatic

100010010

Time (hrs)

· .... __ .. __ _-_ _----_ - ---.- _------· .· .· .· .· .· .· .· .1

O+--.......- .....................-T'""T""T"TT'""-----,.....--.--.-......................,.--........-...-...-.-........."T"T'"r----.----.---..........................+0.1

.. _ __ .. __ _ .••.•... : . __ .. __ _ .. .. _ : . _ __ .. __ __ .. __ _. : _ t _ _ _ .. " _ .. _ . _.· . ~· .· .· .· .· . /_.. - - _.- . _.. _.- - - _ _ ; .. - _ _.- - - _ - - _.. _.- - - _. f - _ - _.. _.. - _.0( .'. - • - - ~ - • _. _./.. _ ••••••••• _. - - - - - - _.

, .', ,/· . ./: : ...... :: :,., ,......:

2 ; ; ~., u-:" .

5 ; ; ; , .: : :'· . .· . .· .

· .6 -- __ : : --_ -_ : _-_. __ __ ..· . .· . .· . .· . .· . .· . .· . .

1 .

-?fe.-4c'j!-(J) 3

Figure 2.68. Creep strain versus time at 23°C and at a stress of 9.8 MPa of several Toray Resin CompanyToyolac®antistatic ABS resins.

35+--.............................................---"----'---'-......................-1---"---.............................."'"""----'----'-..........................-1---"'"--.........................""'+

. .......... ",' ~ . - - .

30 : -: :- , .· . , ,, . . ., . , ,, , , ., . , ., . . ., . . .· , , ., . . .· . .· . .· . .

15 : :- : .· . .· . .· . .· .· .· .· .· .· .· .· .· .10+--................................TTT'---.----.......,...."T""T".......-r---....-.................."T"T'"rTT'"-.....,....-.........................-TT---.--.,.....,I""'T'".......'*10°

IiQ.:E 25-IIIIIIe-(J)

l!! 20~-Q.~

0:::

Time (hrs)

Figure 2.69. Creep rupture versus time at 23°C and at a stress of 9.8 MPa of SABIC Innovative PlasticsCycolac'" ABS resin.

Page 65: The Efecct of Creep

62 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

2.6 Methyl Methacrylate-Acrylonitrile-Butadiene-Styrene (MABS)

2.6.1 SASFTerluX® 2802 TR MAS5-Standard Injection Molding MASS Resin

Strain (%)

. .. - . - . - .. ~ .

0.5 1.0 1.5 2.0

Strain (%)

. . . : ~ :- .. .. .

oT-r"""T""".............;-'r"""T".........I"""'T'"........"""T""""'r"""T-r-'r"""T"......-+0.0

8

2 ...

6-asD.

!.:gl!! 4-UJ

5 643

- : ; : .· .· .· .· .· .· .· .· .· .· .· .· .· .- - - ~ .

2

- - :. ~ : .. -" - .· .· .· .· .· .· .· .· .· .· .· .· .· .· .1

2

o...,....T""T'""I"T""'........T"T"".......""T"T'"T""T'""......-r........"T""T'""r""T"""'""T""T"+

o

6 ....

8

c;­D.

!.IIIIIIl!! 4-UJ

Figure 2.70. Isochronous stress-strain at 23°C ofTerluX® 2802 TR.

Figure 2.71. Isochronous stress-strain at 40°C ofTerlux® 2802 TR.

8-f-.......-!T-.......-+.-"""--+---'r--+-..........-+-..........-+-..........r+

10 12 148642

· . . . . .. "',' , , .· . . . . .· . . . .· , , , ,· . . . ., , . . .· . . . .· . . . .., ... _. -: : -.. -. :- : : ~ .· , , , . .· . . . . .· . . . . .· , , . . .· . . . . .· . . . . .· . , . . ., . . . . .O+-.....-"'T""".....--r-.........-r-.........-r--r--r--r--r-"""T"""-+

o

1

2

-ClID.

!..41/11/1eUi3

7

5

6

Strain (%)

Figure 2.72. Isochronous stress-strain at 60°C of Terlux'" 2802 TR.

Page 66: The Efecct of Creep

2: STYRENIC PLASTICS 63

1000+--.........---'---'-..................~- .........---'----'-......................o.+-----'-----'---'-...............................----'--............................."""+

750

.................................................,..,.~~s:

500III..2::::I"Co:Ec.CDeo 250

-Clla..:E-

0+--"""T"'"".......-..-..,...............-r--"""T"""---.-............................-r-----.-----r---.-"""T"'""r-T"""r"'TT""----.-----,r-"""""'T-..-..............-f"101

103

Time (hrs)

Figure 2.73. Creep modulus versus time at 60°C of TerluX® 2802 TR.

2.7 Styrene-Maleic Anhydride (SMA)

2.7.1 NOVA Chemicals Dylarf<® 480P16-16% Glass Fiber Filled, High HeatSMA Resin

0.5+-_....o...-....................................I--_""--....o...-...................~-----''''---"''-- ..........................----'-----'............................"'''+

0.4 , : : .· . .· . .· . .· . .· .· .· .

· .------ ·---r·····--_···· __· __····_-_····.· __················· .

I:.~

en 0.2

0.3 _-_ _-_ __ _-_ __ -- ---- ------- _.

0.1 ---- --- ;.--- : : -.. -_ .· . .· . .· .· .

10001001010.0 +--~"""T""".........., ....................r--~~ ...........................-r-----r-..........,............,.........,I"'T'T'"----.-----r---.-....,....,.........-.+

0.1

Time (hrs)

Figure 2.74. Flexural creep strain versus time at 23°C of Dylar\(®480P16.

Page 67: The Efecct of Creep

64 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

0.10 +-_""----_"'---_"----'o......---J ..........._---"-_........._--1-_........._ ........._....a...-_""----_~___+

15105

-_.. _ -._-----:--_ ---_._-_ ;------, ', ', ,, ', ,

------- - . -- -------- ------ . ----. ---- ~ - . -- ------ - ----- ---:- ----- -. ---. --- ~ ., , ,, , ,, , ,, , ,, , '

, ,... --.. - -.. ---. -. --- ---. -. -- ~ --- ---.. ----. ---. -- . -. -. - '.. -.. ----.. ----- --.. - .. ---. -_ - ., , ,

, , ,, , ,, , ,, , ,

, ,._---_ _-----------------------_ ------------_ .. _-- _-_._----.---------_ --_._-_.. _-_._ -_., , ,, , ,, , ,, , ,, , '

, , ,._-----------------_ .. _-----------_.,-------_ .. _------ --_ _--, _-_ _-_._-_._--_ ; .. _---, , ,, , ,, , ,, , ,, , '

, , '..................... -_ - -- -._.. _-_.. _-_.. -------_ .. _-_ _ _--_._-_._--_ _--_._----,--_._-, , ', , ,, ,, ,

. ----- --. - . -. -. ----.. -. --.. - ~ -----. ---:- --. ---. -. - : .. ---., , ,, , ,, , ,, , ,

, ,................................... " --- .. ---_.. _--_ _--_ - -----, ,, ,, ,, ,, ,

0.00 +--......--or---.-----.r------,----r--.....-.....,..--.---r--....,....-........-......--.....--r---+o

0.02

0.01

0.08

0.09

~ 0.07o-~ 0.06og 0.05.......~ 0.04Cll

CL , ,~ 0.03 ----------------------------------- ~ ----------------_. .. .. .. .. .. -..( -----------------_ --~ ------

o : : :, ,

Load (MPa)

Figure 2.75. Tensile creep strain versus stress at 23°C of DylarKID 480P16.

2.7.2 NOVA Chemicals DylarJiB> SMA Resins

100010010

.-- Dylark® 238F20 - 20% Glass Fiber Filled, High Heat- - Dylark® 378F20 - 20% Glass Fiber Filled, High Heat

All at Stress = 13,8 MPa 66°C

.~.: ~:

.'. .'.:

~ 66°C'- - - - -- - - - ---... -- - -..-------- ;-...... -- -,-

;... -23°C. , '.

: 23°C:.... - - - - - - - - - - - - - - - - - - - - -:

.'. ~ .'.

. .0.01

0.1

0.3

-f!.- 05c: .

l!U) 0.4

0.6

0.7

0.8

0.9

1.0

0.2

Time (hrs)

Figure 2.76. Creep strain versus stress at 23°C of other DylarKID resins.

Page 68: The Efecct of Creep

2: STYRENIC PLASTICS 65

2.8 Styrenic Block Copolymer (SBC)

2.8.1 SASF StyroluJlB> 656C-High Flow sse Resin

Strain (%)

161412

J • • • • • • • ' ••••••• ~ •••••• J •••••••· . . ., . . .· . . ., . . ., . . .· . . ,· . . .· . . .· . . ., . . .· . . .· ..

6 8 10

Strain (%)

42

. . .. .

o+-........,.........--r......-r-...,......-r-......,.....,..--r--r--r-....-+o

5 .

1

4

-IIIQ.

!.3111111!-U)

2

2.52.01.51.00.5

................................. : ., . . .· . . .· ..· ..· ..· ..· ..· ..

..................: ; ;. .· . .· . .· . .

o+r.........."""T""'1I'""'T'""T'""T'""T'""T......-T""T'"""-r-r-T""T""T'"'T""'T"........-r+0.0

..........................................................· . . .· . . .· . . .· . . .· . . .· . . .· . . .2 .. . : : ; ~ .

1

7

6

8

'CisQ.~-

Figure 2.77. Isochronous stress-strain at 23°C ofStyroluX®656C.

Figure 2.78. Isochronous stress-strain at 40°C ofStyroluX®656C.

1.0

-IIIQ.

!.111

~-U)0.5 . ...........................................

0.0 +-........,i---T--i-......-i--r-;--.,......;.~-i-...,......;-...--+

o 2 4 6 8 10 12 14 16

Strain (%)

Figure 2.79. Isochronous stress-strain at 60°C of StyroluX®656C.

Page 69: The Efecct of Creep

66 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

Stress.::: 2MPa '.... : -.. -.. -. -- --.. -.. -. --. --.. - ~ .. -.. -. --. ----.. - -.

, , ,................ __ _-_ _-_ __ __ _------_., , ,, , ,, , ,, , ,, , ,, , ,, , ,, , ,.......................... _., __ .. _--_ __ ._--_ ;--_._-_ ., , ,, , ,. , ,, . ,, . ,, . ,. . ,

, ....................................................................... __ ._---_._-, ., ., ., ., ., ,, ,

0+-----.--...--...--..............T"'l'"""----.r--"'"T'""""""T"""...................,.--...--"""T'""""T'""""T"""T""'T'"T'"T"'I--"'"T'"""---.-~"""T'""'T""T""T"T'i-

101

1600

1400

1200

-IV!i 1000-!II::::I 800::::I.,0

::E600Q.

CllCll..0 400

200

103

Time (hrs)

Figure 2.80. Creep modulus versus time at 23°C of StyroluX® 656C.

1200+----'-----..........................-1---.......-----.....................................4-----'----'---'...........................1----'----'----'---'-........."""'+

1000

Ii 800 ..0.:E-

600

400

200

0+-----.--...--...--..............T"'l'"""----.r--"""T""""""T"""...................,.--...--"""T'""""T'""""T"""T""'T'"T'"T"'I--"'"T'"""~~"""T'""'T""T""T"T'i-

101 103

Time (hrs)

Figure 2.81. Creep modulus versus time at 40°C of Styrolux'" 656C.

Page 70: The Efecct of Creep

2: STYRENIC PLASTICS 67

400 +----'----'---"-.............................----'--.......................................--"----'-....o...-.....................-I---.........---'---"--'-'...........-'-t-

300

IiQ.

~lfj

.:! 200:::s"Co::Ec.G)G)...o 100

&1/,(5).so

.so""0

'S7 ~,t:)'S C;;............. ~,t:)' .

C;;

O+--"""T"""---.-~ ...........,......."TT"----.--,.........,........."T""T".......--..--............,........, .................,...--.........---.-.....,.....................-.+10

1103

Time (hrs)

Figure 2.82. Creep modulus versus time at 60°C of Styrolux® 656C.

2.9 Styrenic Blends

2.9.1 Bayer MaterialScience AG BayblentP T85-General-Purpose,Injection Molding ABS/PC Resin

432

Strain (%)

1o-f----.-.....;...-.,........--..,.-"""T"""-.------.--+

o

25 +-----'--+--....,.""T"!---r---'--r-+----"--r-+

20

5

15Iil:I.

!.lfjlfj

l!! 10-UJ

Figure 2.84. Isochronous stress-strain at 40°C ofBayblend®T85.

6543

· . .· . .-- , .· . .

21

. - ,- -,- - .. ~ .. . . . .

o-f-.........-i-"""T""--i----.----;'---.---..,r--,........';"'-.....-+o

30

10

25

5

Ii 20l:I.

!.lfj

~ 15-UJ

Strain (%)

Figure 2.83. Isochronous stress-strain at 23°C ofBayblend'" T85.

Page 71: The Efecct of Creep

68 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

431o+--..-----..,i-----.-.....;...-........--i--..----+

o

14 +--'''------If-----a.---,.-+'''7''"""............,...+--"--7--+

10

2 ..

4 ....

12

~ 6-t/)Ii 8 .c.::i!:-

2

Strain (%)

Figure 2.86. Isochronous stress-strain at 80°C ofBayblend@T85.

431

· .. . . ~ ~ .· . .· . .· . .· . .· .· .· .· .· .· .· .· .· .· .· .· .· ... . :- .; ~ .

O+-........---j--..----;.-"""T"""-;----.--+o

20 +----'-----+--'-r--r~,....-r._--::o+

5 ...

15

Iic.!.10

~-t/)

2

Strain (%)

Figure 2.85. Isochronous stress-strain at 60°C ofBayblend@T85.

10000100010500 +--__r____r__.___r_.........r"T'T--.----""T"""",.......,............~---r----r--.---r- .........r"T'T--.----........,.......,............+

1

-IIID. 1500::i-en.2~'tJ0::iQ.Q)

1000Q)~

0

100

Time (hrs)

Figure 2.87. Tensile creep modulus versus time at 23°C of Bayblend@T85.

Page 72: The Efecct of Creep

2: STYRENIC PLASTICS 69

2000+-_..........---'---o..................~ __...............-'--.................~_ ..........---'---'.................~ __"---...................................'+

10000100010500+--........_---.-...............,...,..,--....-....-......................,.,--........_---.-...............,...,..,--....-....-......................+

1

'iU 1500D.

!!III..2::s't:Io:ECoQ) 1000fo

100

Time (hrs)

Figure 2.88. Tensile creep modulus versus time at 40°C of Bayblend@ T85.

10000100010

· ... _-----_. __ __ . __ .. __ __ " __ .· .· .· .· ... --.. ----. -------------.---:- . - -.. -.. - -. -. --. --~ . --. -------- : ----. --.· . .· . .· . .· . .500+--........_---.-...............,...,..,--....-....-......................,.,--........__........T""T'",...,..,--..--....-....-...............+

1

600

700

1400

'iU 1300D.

!! 1200III

~ 1100't:Ii 1000CoQ) 900fo 800

1700+-_ _ 01--_ ---o.---&. ........a__ _--''-- '''+

1600....l~-=---··················· .: , .· .· .· .1500 --. -- --. --; -- --. --.

100

Time (hrs)

Figure 2.89. Tensile creep modulus versus time at 60°C of Bayblend@ T85.

Page 73: The Efecct of Creep

70 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

100001000

· ,----- .- .;_ , _-_ .

.------_. __.. __ .~'JIII5.::--"':

10

.........: -.. -. ---.. -.. -----. ~ -. - -. ----.. -:. --.. -.. -.. -.. -.. -.. - ., , ,, , ,, , ,· ,· ,, ,

................... ----.. -..:- .. ---. --. --.. -. --. --. --.. -. ~ - -.. -.. - ~ -----. ------. -. -..· . ,· . ,· . ,· . ,· . ,· . ,

1100

1000

900

Ii 800e,::i- 700In..2::::l"'C 6000::iQ.CD 500CD...0

400

300

2001 100

Time (hrs)

Figure 2.90. Tensile creep modulus versus time at 80°C of Bayblend" T85.

2.9.2 SABIC Innovative Plastics Cycoloy C1000-High Flow, Low HeatABS/PC Resin

2.5+-_........----'............................a..o..l'--_..a.-.........................................._----' ..a.-..........................'-+-_........----'----'.................""""+

28 MPa

............. : "23 MPa' .

2.0 ---.----.;---------- .. ---.---- .. ---···f---·-------···----·---·---··:···················. . ., . ,, . ,, , ,, . ,, . ,, , ,, ,, ,, ,, ,, ,

cf!en 1.0 L~~~==~~.:.:.:.:=~:.:.;.;.~~-=-_t",..,.--,-: ..-r:.. -:-:..":"':"':···················.········ 18 MPa .

1.5 ; ; ..-. : :f!.-

13 MPa

0.5 -- -- --_. __ ; -_._-_.. _-_._----_ .8MPa

100010010.0+--........---...--.---.-"T""T"T"T"1r--......-.....................................,..----.....-......-......-,....,...'T"'T""r-r-----.----...--........."T""T...........

0.1 10

Time (hrs)

Figure 2.91. Tensile creep strain versus time at 23°C of Cycoloy C1000.

Page 74: The Efecct of Creep

2: STYRENIC PLASTICS 71

10 MPa

20MPa

15 MPa....------_ --",. __ --

• •••••• 1 •••• • •••••••• 1 __ ••••••••••••. .

5 .

25 MPa6 .

1 '- .

cl! 3-en

_4~Cl-

5 MPa

10001001O-t----.--.....-.........................r-r-----..-............................TT-----.-...._...._.,.....,.""T""T.,...,..---....--r--r-..............""Tt"0.1 10

Time (hrs)

Figure 2.92. Tensile creep strain versus time at 60°C of Cycoloy C1000.

10001001O-t----.--............................'I"T'"----....--r-..............."'"T"'l.....,.--..............--.-"""'T"".,....,....,..,..,r---......---...................,....,.......+0.1

6 ; ; ; 13 MPa ., , ., , ., , ., , ., , .~Cl

- 5.S:l!en 4

8 , ; ., ., ., ,, ,

2

3

, ,9 ---.-- ------- ; ---.--- .. ---.--; ------- -_.----- ----- -.. --..

7 ; ·······i······ . .. ,, ., .

10

Time (hrs)

Figure 2.93. Tensile creep strain versus time at 90°C of Cycoloy C1000.

Page 75: The Efecct of Creep

72 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

2.9.3 Bayer MaterialScience AG BayblencfB> T88-2N-10% Glass FiberFilled ABS/PC Resin

2.52.01.5

· .-_ ---_ ..· .· .· .· .· .· .· .· .· .· .· .

1.0

- - - - . - '" . . . . . . . . . . .. - - - ~ .· .· .· .· .· .· .· .

· .. . .· . .· . .· .· .· .

0.5o+-r.........-r-;....,..."T'""'T""T""T-,--,r-r-T'""T'"..................""T'""r-r-..........+0.0

25 .

5

20

-C'CI0..

!-15III

~-en10

2.52.01.51.00.5o...,....-,--,I"""'T"'"T""T'"................,-r-..........T'""T" ..................."""T""......."T'""'T"+0.0

40

30

10

Strain (%) Strain (%)

Figure 2.94. Isochronous stress-strain at 23°C ofBayblend@T88-2N.

Figure 2.96. Isochronous stress-strain at 60°C ofBayblend@ T88-2N.

2.52.01.51.00.5

. .. ' .· .· .

o+-r""T'""'T-r-;.....r..................,...................-r-I"""'T"'"..........-r-r..............-+0.0

c;-e,

!-10IIIIIIe-en

15 ..

5 ....

2.52.01.5

: ~'i::>~

<:>~

.... ; '?::.- .

1.0

· .· .· , .. ." ~ ," .· . .· .· .· .· .· .· .. .. . ", ~ .

0.50T-T""T'""'T.......,r--r-.............,............""T'""'T~1"""'T"'" ..........-r-r................-+0.0

25

10

5 ..

30

III

~ 15-en

c;- 200..::E-

Strain (%) Strain (%)

Figure 2.95. Isochronous stress-strain at 40°C ofBayblend'" T88-2N.

Figure 2.97. Isochronous stress-strain at 90°C ofBayblendf T88-2N.

Page 76: The Efecct of Creep

2: STYRENIC PLASTICS 73

100001000101500+-----.--....................................r---.......~~...,... ........T"T"1--......-.....,.......,...................""TT"--r--"'"T"'"""'"T"'"".,...,.."T""T"..-r

1

4000+--........---<..................................I---.........---'----'-..................a..&..lo--..&...-..............................................----<'--...................................."-t"

3500

2000

1/1~

~

"o:E 2500CoC1l~o

-C'llD.:::IE 3000-

100

Time (hrs)

Figure 2.98. Tensile creep modulus versus time at 23°C of Bayblend@T88-2N.

4000 +-----'--"--..........................04---........---I.---Io...........................--"'O"'-.............................................--"--..................................""-t"

100001000

.................. -. ------- ~ -. -.. --------. -- -- --. ----. - - - .

10

...................... _ .

•.• -.. -.. -.. -. --.. ----. --. - A:' . -.. - -.. -. ----••..•••••• ~ ••• -. --.. -.. -. - .. - ... -.. -••• :- ••••.· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .1500 +--.....,....--.........---.-..................r--"'"T"'""--.---.--.-T""T'"T"T'T--..--...,...-.-................"T"T'"---.r--...,.......,....~"T"T'"r+1

2000

3500

1/1~

~

"o::E 2500CoC1leo

IiD.:E 3000-

100

Time (hrs)

Figure 2.99. Tensile creep modulus versus time at 40°C of Bayblend" T88-2N.

Page 77: The Efecct of Creep

74 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

3500 +-_.........~ .................................... .........---a.---o....................~ __...a...-..........................................o.+-__'---'--'-................."+

100001000

............. ~ ----. --.. -- ;. ----.. --. --. - .. .. .

10

. -. - : --~ .. --. --.. ----. ------ : ----------.. --· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .1000 +--"""T"""~---'-"""T"""""""'rTT--"---""""''''''''-'''''''''''''T""T'''I~-""''T"""~---''""''T"""'''''''''rTT--''---''''''''''''''''-'''''''''''''T""T'''I+1

1500

3000

III=='tJo

:::E 2000Q.Q)

eo

Iia..:::E 2500-

100

Time (hrs)

Figure 2.100. Tensile creep modulus versus time at 60°C of Bayblend@T88-2N.

2500+-_..........--0---'-'-..................__""---'-............................0.+-_--0_"""'-.........................-1--_..........--0--0..................""'""+

10000100010500+--.....,....--..........."""'T'""'T""T"T"T"lr---...,......"""'T'".....,...................."'TT'"---.....--...,.........,......,...,...,........,I"T"""-"""'T'"----,...................."'T""T..........

1

Iia..!.III

-S 1500'tJo:::EQ,Q)

Eo 1000

2000

100

Time (hrs)

Figure 2.101. Tensile creep modulus versus time at 90°C of Bayblend@T88-2N.

Page 78: The Efecct of Creep

2: STYRENIC PLASTICS 75

2.9.4 Bayer MaterialScience AG BayblencP T88-4N-20% Glass FiberFilled ABS/PC Resin

2.52.01.0 1.5

Strain (%)

. .................................................

0.5

. . . .······.············.···········l···········r··········.

o~"'"T'"""I....,.....,j--r-T'""'T"".,...;-"'T""T"'"T'"""I-;-r-T""T'""'T"",...........-T~0.0

30

10

1.251.00

........ ; .; ., ., ,, ,, ,, ,, ,, ,, ,, ,

0.50 0.75

Strain (%)

0.25o+O"'"T'"""l'""T"""j--r-T'""'T"".,...;-"'T""T.......--;-...,'""T""".........y....,....,...,....-+0.00

, ,

40 ,·"""".~,.10.hr .........: - ....~/1~, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,

100 hr.

10 """. ".:" ..........:" .... " ... ;" ... ", , ,, , ,, , ,

;. : :, ,, ,, ,, ,, ,, ,

30caQ.

!..I/)I/)

~ 20t/)

Figure 2.102. Isochronous stress-strain at 23°C ofBayblend@T88-4N.

Figure 2.104. Isochronous stress-strain at 60°C ofBayblend@T88-4N.

•• • • • • J ••••••• _ ••••••••••••••••••••••· . .· . .· . ., . .· . ., . .· , .· , .· . .· . .· , .· . .· . .· . .· . .· , ,, . .· . .

. . ' ~ -. - .

o+..-~.....;-T"T'"'..--r;""T"T .......-j-T-..........;-.""T"T"T'"j-'T"T".....-+0.0 0.5 1.0 1.5 2.0 2.5 3.0

Strain (%)

20

-IVQ.:E-I/)I/)

e..t/)

10

1.ooo hr" .. ;." 100 hr .....;" .... ".

, ., .

.............: ; : .· . .· . .· . .

o+r'T"T"'...................;-................;.~ .......j-r-."'T"T"-j-T-.......+0.00 0.25 0.50 0.75 1.00 1.25 1.50

Strain (%)

40

30

10

caQ.

!..:I 20e..t/)

Figure 2.103. Isochronous stress-strain at 40°C ofBayblend@T88-4N.

Figure 2.105. Isochronous stress-strain at 90°C ofBayblend@ T88-4N.

Page 79: The Efecct of Creep

76 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

10000100010

· , ,............................: - -. ----. - ~ -.. ---.. -:- ---· , .· , ,· , .· , .· , .· , ., . .· . .· , ., , ., . ., . .

"~"""""""""""""":"""""""'10 MPa·····

~======-t--.:.====+===~~~ 20 MPa

4000+--.......---,.---.-............,..,r"TT----.,...-..,......,......,..............-r---r----.----r-...................,..;..----.-..,......,......,..............~1

4500

111.2~

"o::E 5000Q.CI)

eU

-ClSD.::E 5500-

100

Time (hrs)

Figure 2.106. Tensile creep modulus versus time at 23°C of Bayblend®T88-4N.

6000+-_-"----"--'--'-.......loooIooo4-_----''--...o...-..........-"-.........4--_-'---'---'-.....................o..l-_----'_...o...-...........................~

Ii 5000D.::E-111

-§ 4500

"o::E

~ 4000a-U

3500

............................: __ .

· , ,.. --.---- ----- ---.--- - ···,········--····------····--·-r·····

100001000103000+----.--................................---.---..--..__......,..,..;.--or---r-__..................i--_-......-.........,...............~

1 100

Time (hrs)

Figure 2.107. Tensile creep modulus versus time at 40°C of Bayblenct® T88-4N.

Page 80: The Efecct of Creep

2: STYRENIC PLASTICS 77

5500 t~::====;==:::=""""'T- ..........---,---a."""""""""':--"--"""""""""''''''''''''''''''l

10000100010

, ,, , ,.. _-_ __ _-_ _-----_. __ __ -----, , ,, , ,, , ,, , ,, , ,, , ,, , ,

1500+--.......---...........""'"T'"""T""'T"'T"T'"r---.......---r---r-.-............,.--..--....,...-.-"'T"""'I..........,..,..----.r--~~ ................r+1

2000

4500

5000

en~ 3500"0o~ 3000Q)

eo 2500

Ii~ 4000-

100

Time (hrs)

Figure 2.108. Tensile creep modulus versus time at 60°C of Bayblend®T88-4N.

4000+-_........---'....................................~- ..........---'----'-.........................--..o...-........................................----' ................................'+

10000100010

, ,.............. _-_ __ '._-_. __ ._-------_. __ . __ " ., ,, ,, ,· ., .· .· ,, ,, ,, ,

1000+--.........---.---r....,................,.--..--.......~ ...............,r-r--.........---.---r......................,.--.....-....-.......................,r+1

1500

en~ 2500"0o::EQ.Q) 2000!o

3500 ----

Ii 3000ll.::E-

100

Time (hrs)

Figure 2.109. Tensile creep modulus versus time at 90°C of Bayblend®T88-4N.

Page 81: The Efecct of Creep

78 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

2.9.5 BASF TerblencfB> N NM-19-UV-Stabilized ABS/PA6 Resin

1,000 hr. ) 100 hr : .

, ,, ,

: ~, ~~~

.. --: ... ,~~, .: ......

, .· , . ...........................................· , . .· . . ., . . .· . . .· . . .· . . .· . . .· . . .· . . .· . . .· . . .· . . .· . . ., . . .· . . .· . . .

o-f-,.......-.-"'T""T'.,...,..,...,..T'"'I"'".......'I'""T""............,I""'O""'l........-r-r-rT-.-+0.00 0.25 0.50 0.75 1.00 1.25 1.50

Strain (%)

30

10

40

-cuQ.:it-=202!-en

1.251.00

, ,..... __ ., ,, ,, ,, ,, ,, ,, ,· ,· ,, ,· ., ,, ,, ,

0.50 0.75

Strain (%)

0.25O+-o..............T""'T"""T"""'l"""T""",....,..........-.--,,.....,............,...,"""T"""..........-+0.00

10 -: :- ; -: ., . . .· , . .· . . .· . . .· . . .· . . .· . . .· . . .· . . .· . . .· . . .· . . .· . . .· . . ,

40 : 10 ·Rf· - ....

IIIIII2! 20-en

30 -: '-cuQ.:it-

Figure 2.110. Isochronous stress-strain at 23°Cand 50% relative humidity of Terblend® N NM-19.

Figure 2.111. Isochronous stress-strain at 40°C ofTerblend" N NM-19.

1200 +---""'---'--""'--""'--.....................-...---""'---'--""'--""'--.....................-...---""'---'--""'--""'--..................+

, ,.... __ __ __ . __ ._------_. __ ._------_ -.., ,, ,

400 ..

1000 .

III

.a 600~

~o:EQ,II)

2!o

Ii' 800Q.:it-

200

100001000100O+---.......--....-.......-.......-........""T""'I'~--.......--....-.......-.......- ........""T""'I'~--.......--....-.......-.......- ........""T""'I'+

10

Time (hrs)

Figure 2.112. Tensile creep modulus versus time at 23°C and 25% relative humidity of Terblendf N NM-19.

Page 82: The Efecct of Creep

2: STYRENIC PLASTICS 79

1200+---""'"------''-"--..................~L__ _ ___"_...........___'____'_.....................a...I_--...........-"""'--.........................................'+

1000

Ii 800D.

!.CIl

.2 600~'t'o::liEQ.CD 4002!o

200

100001000100O+---.....-____r-~ ........."""T"""r_T""1r__-----r-.....,....--r......,.......-...-r__r_i_--.....,....--r-......-"""T""""T"""'<"'"T""'O+

10

Time (hrs)

Figure 2.113. Tensile creep modulus versus time at 60°C of Terblendf N NM-19.

2.9.6 BASF TerblencP' N NG-02-8% Glass Fiber Filled ABS/PA6 Resin

1510Strain (%)

5

.............. .: ; .· .· .· .· .· .· .· .

................:- ; .· .· .· .· .· .· .· .· .

16

14

12

10-CllQ.

::liE 8-CIlCIlCD..

6-tn4

2

00

Figure 2.115. Isochronous stress-strain at 60°C ofTerblend® N NG-02.

20155

. .-.. - : -.. -.. ~ ;. -.· . .· . .· . .· . .· . .· . .· .· .· .· .· .· .· .· .· .· .· .· .

5

o+-".....................,.-r--r-r.....-,.......--.-..,.....,,....,..........................-+o

15 ..

-CllQ.

!, 10CIlCIl2!-tn

10Strain (%)

Figure 2.114. Isochronous stress-strain at 23°Cand 25% relative humidity of Terblend® N NG-02.

Page 83: The Efecct of Creep

80 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

2000-t---........-"----..................................'-4-----'--........--'---'-""""--.........-'4------'--........---O---O................."""'+

1500

'iiie,

~III

'3 1000"Co:iii:CoGI2!o 500

100001000100O-t----.--....-................................r-r---.........--.-"""T'""""T'"........T""'T"......,..-----..-.........---.---."""T'"...-.......-r

10

Time (hrs)

Figure 2.116. Tensile creep modulus versus time at 23°C and 25% relative humidity of Terblend® N NG-02.

2000-t---........-"----""""--""""--.................'-4---........- ............................................&..I-------"---'----'---'--'-.........'""-'+

1500

'iiic,

~III

'3 1000"Co:iii:CoGI2!o 500

100001000100O-t----.--..--................"T"""'Ir-T'""r-r---.........- ........................................-r'-----.-......---.---.,.................r-r+

10

Time (hrs)

Figure 2.117. Tensile creep modulus versus time at 60°C of Terblend® N NG-02.

Page 84: The Efecct of Creep

2: STYRENIC PLASTICS 81

2.9.7 BASF Luran S KR 2861-1-High Heat ASA/PC Resin

30 +---~,-- ........_--+---t---!T--...L.-:-+ 15+--'----+---'---!r--""-r----'!--........,..--+

431O+--.....--,---r--r---r---r-----..--+

o 2

Strain (%)

Figure 2.119. Isochronous stress-strain at 800 e ofLuran S KR 2861-1.

10

5 .

UlUl~-CI)

-C'lla.:i!-

432

Strain (%)

1o+--~-r-----'-~-"""""-""T"""-""""'-+-

o

25

20

5 ..

Figure 2.118. Isochronous stress-strain at 23°e ofLuran S KR 2861-1.

-C'lla.~15UlUl~-CI)

10

Page 85: The Efecct of Creep

3 Polyether Plastics

3.1 Background

This chapter covers polymers in which the mostimportant linking group is the ether moiety, whichis -0-.

Figure 3.2. Chemical structures of polyoxymethylenecopolymer monomers.

Figure 3.1. Chemical structure of acetalhomopolymer.

1,3-Dioxolane

o/ \

HzC-CHz

Ethylene OxideTrioxane

circled in Fig. 3.3. All polyacetals are subject to oxi­dative and acidic degradation, which leads to molec­ular weight reduction. However, degradation of thecopolymer ceases when one of the randomly distrib­uted oxyethylene linkages is reached. These groupsoffer stability to oxidative, thermal, acidic, and alka­line attack. The raw copolymer is hydrolyzed to anoxyethylene end cap to provide thermally stablepolyacetal copolymer.

The copolymer is also more stable than thehomopolymer in an alkaline environment. Its oxyeth­ylene end cap is stable in the presence of strong bases.The acetate end cap of the homopolymer, however, isreadily hydrolyzed in the presence of alkalis, causingsignificant polymer degradation.

The homopolymer is more crystalline than thecopolymer.The homopolymer provides better mechan­ical properties, except for elongation. The oxyethylenegroups of the copolymer provide improved long-termchemical and environmental stability. The copoly­mer's chemical stability results in better retention ofmechanical properties over an extended product life.

Acetal polymers have been particularly successfulin replacing cast and stamped metal parts due to theirtoughness, abrasion resistance, and ability to with­stand prolonged stresses with minimal creep. Polyac­etals are inherently self-lubricating. Their lubricityallows the incorporation of polyacetal in a variety ofmetal-to-polymer and polymer-to-polymer interface

83

3.1.2 Polyoxymethylene Copolymer(POM-Co or Acetal Copolymer)

The Celanese route for the production of polyacetalyields a more stable copolymer product by the reac­tion of trioxane, a cyclic trimer of formaldehyde, anda cyclic ether, such as ethylene oxide or 1,3-dioxolane.The structures of these monomers are shown in Fig.3.2. The polymer structure is given in Fig. 3.3.

The improved thermal and chemical stability ofthe copolymer versus the homopolymer is a result ofrandomly distributed oxyethylene groups, which is

3.1.1 Polyoxymethylene (POM orAcetal Homopolymer)

Acetal polymers, also known as polyoxymethyl­ene (PaM) or polyacetal, are formaldehyde-basedthermoplastics that have been commercially availablesince the 1960s. Polyformaldehyde is thermally unsta­ble. It decomposes on heating to yield formaldehydegas. Two methods of stabilizing polyformaldehydefor use as an engineering polymer were developedand introduced by DuPont in 1959 and Celanese(now Ticona) in 1962.

DuPont's method for making polyacetal yields ahomopolymer through the condensation reaction ofpolyformaldehydeand aceticacid (or aceticanhydride).The acetic acid puts acetate groups (CH3COO-),which provide thermal protection against decomposi­tion to formaldehyde, at the ends of the polymer, asshown in Fig. 3.1.

Further stabilization of acetal polymers alsoincludes the addition of antioxidants and acid scaven­gers. Polyacetals are subject to oxidative and acidicdegradation, which leads to molecular weight decline.Once the chain of the homopolymer is ruptured bysuch an attack, the exposed polyformaldehyde endsmay decompose to formaldehyde and acetic acid.

Page 86: The Efecct of Creep

84 THEEFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

Figure 3.3. Chemical structure of acetal copolymer.

applications such as bearings, gears, and switch plung­ers. These properties have permitted the material tomeet a wide range of market requirements.

The properties of polyacetals can be summarizedas follows:

• Excellent wear resistance

• Very good strength, stiffness

• Good heat resistance

• Excellent chemical resistance

• Opaque

• Moderate to high price

• Somewhat restricted processing

3.1.3 Modified PolyphenyleneEtherlPolyphenylene Oxides(PPEor PPO)

structural foam molding grades. PPE can also bealloyed with polyamide (nylon) plastics to provideincreased resistance to organic chemicals and betterhigh-temperature performance.

End uses include automotive electrical applica­tions, water pump impellers, HVAC equipment, solarheating systems, packaging, and circuit breakers.

Graphs of the creep properties of the polyether­based plastics are illustrated in the following sections.

3.2 Acetals-Polyoxymethylene(POM) Homopolymer

3.2.1 DuPont EngineeringPolymers Delrin@ 100,500,900-Unfilled High, Medium,and Low Viscosity POM Resins

2.52.01.51.00.5

_. :". -/-_ i: _ ~ ~ .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .o~"'"T"""'lr-r-1--r"T""'T~-r-r-T""~.....-T"'"T"""'l,...;-......-"T""'T+

0.0

: I. .: : : ( 'b

15 : ; / 69· ..: / .~. ..0.

: /~':

:/ ~ :ir§~ :

· /~~' :........ ..:. : /- .. ~ ) .

: : /: :j : :

/: : :/ : : :

/ : :. .

-IIID.~10

1/1

~-en

o

Polyphenylene ether plastics are also referred toas polyphenylene oxide (PPO). The structure of thepolymer is shown in Fig. 3.4.

PPE materials are always blended or alloyed withother plastics, so they are called modified PPE orPPO. PPE is compatible with polystyrene (PS) and isusually blended with HIPS over a wide range ofratios. Because both PPE and PS plastics are hydro­phobic, the alloys have very low water absorptionrates and high dimensional stability. They exhibitexcellent dielectric properties over a wide range offrequencies and temperatures. PPEIPS alloys are sup­plied in flame-retardant, filled and reinforced, and

n Strain (%)

Figure 3.4. Chemical structure of polyphenyleneether/polyphenylene oxides.

Figure 3.5. Isochronous flexural stress-strain at23°C of Delrin® 100, 500, 900.

Page 87: The Efecct of Creep

3: POLYETHER PLASTICS 85

2.52.00.5 1.0 1.5Strain (%)

o+-r....-..--r-T""""..............,r""""""........ "'T"""T.................T""'T'"..........,....,-+0.0

15-f--"-'-'.........+--o-.........."""'"""!L...L.........."""""+......................"-!-....................-+

10 _ ...... _--

-CISD.::E-I/)I/)CD...-en

5

2.52.01.0 1.5Strain (%)

0.5o+-r...,....,..--r-;-,................,r""""""........~ .................,......;............,....,-+0.0

5 .

10

-CISD.::E-

Figure 3.6. Isochronous flexural stress-strain at45°e of Delrin® 100, 500, 900.

Figure 3.7. Isochronous flexural stress-strain at85°e of Delrin® 100, 500, 900.

12 -t-'--'-.......o.....f..................'--'--+-................~"-&.. ..................-+

2.01.5

. . .. .'. . _.. _.. ~ - .. - - .· ,· ,· ,, ,· ,· ,· ,, ,· ,· ,· ,, ,

0.5o-t-...........-.,.....,--r-"'T"""'l..........,-........--.-...-,I"""""""..,............-+0.0

8

10 ' ,.. , .

-CISD.::E 6-

1.0Strain (%)

Figure 3.8. Isochronous flexural stress-strain at 1000e of Delrin® 100, 500, 900.

Page 88: The Efecct of Creep

86 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

100 ..-:=-~~~ .............................~ ..............................~--,- .................~---,- ....................~---,- ....................~--,- ...................."""t908070

60

10 +-.....,............,......."'"'T"-............................-.....,............,............,.-............................-.....,............,............,.-............................-.....,............,..........-.r10.2

Time (hrs)

Figure 3.9. Tensile stress relaxation under constant strain at 23°C of Delrin® 100, 500, 900.

3.2.2 DuPont Engineering Polymers Delrin@ 100ST Ne01o-Super Tough,High Viscosity POM Resin

2.01.51.0

Strain (%)

0.5O~ ...............-.,.....;................,.........-r-T'"'""T................,I""'"""'"......-T'"'""T-+0.0

1

. ~.: ~/-C:/ ~': S;),~/ s;),. ~/". ~, ;~,

I: ': /4 ~ ./.~ !.' / ..· /., .: :, I':

; /., ;; / :,' / ;~ I ,~ / ~

................... /. ,.. ;.. / ; .

: / " /' ;: / ,.

:/ " r .• # , •

l. , / :.. .. . . .. t: .; t . '/ : ~ .

/ ',,' .; / : :

/ .: :, :;' :

/ , ,: ;/ '/: : .<;/' : ~ : .

/ , . . ./''I: : ;,i,' ~ ~ ~, . . .· . .· . .

Figure 3.11. Isochronous stress-strain at 40°C ofDelrin® 100ST NC010.

155o+-......................,.......,-.........................---r--r-.................r"""""T.....,....-r-+

o

-C'Ile,

!.101/11/1e-tJ)

10

Strain (%)

Figure 3.10. Isochronous stress-strain at 23°C ofDelrin® 100ST NC01O.

Page 89: The Efecct of Creep

3: POLYETHER PLASTICS 87

432

Strain (%)

1

5 +--""---!------'-"""'*-.......,--+-~ .......__:_T: '!-.I ~:' ~ /-c -c- • S::>'

: C)I s::>,: ss /:" ~,: C::::>,: I ': "/

....:.-' ' :/ .

'I ' i

I : /:o , 0

I : " / :: , ,I :, / 0

.. -- --.. --. .. -- 1 !: /.'.. -- .. -- .:---- .

I ,':/ :

I " ~: I ' /:. ".: I , / :.-- -- -- , .f .;-'. / ~ -- -- -- .-- .

/"" 0.. / :I ~ , :

1,';/ :'0 0

1'/: :1 ----. i,?--' ~-- -- -- -- -- -- -- .~ .

1,/": ~'/' 0 0

;' ~ :o •

o •o •O+--..,.....--r--......---"T"'""'-"""---"T"'""'-"""---+

o

4 ----------

IIIIII~2-CJ)

432

Strain (%)

1

4... !-.'!-.'-c: , -c , -c- /C) ~,~,

...... ,:2'&/, " '

, ~ / 0

: , ':' :4 .--.. ---_..... : .--.----. --! .:-- -1-- -- .... -- .:.. --.-- .-- -- ..

: , ':' :: , : :I :

, 0

, " l :, '/': :'0 0

--.... ----... :. J ... !. i--· .:-- ---- -- -- -- -- .:..... --. ---- ../ : i ~ ~

f. : ': :,:' /: :, ;- i ~ ~....... _.,.;t/.._ _ ~ _ ~ _. _.., ' ~ : :,/0 0 0" : : :, ,i : : :

": : :1 ' '/: : :... ~? :.._ :- : _ _._ ..

''I: : :1~ : : :

o 0 0

o 0 0

o 0 0

o 0 0

o 0 0

5+--""---!---r-"-r-"-:---:.........-:--+--.......-+

O+--..,.....--r--..,.....-"T"'""'-"""---"T"'""'-"""---+o

IIIIII~2-CJ)

Figure 3.12. Isochronous stress-strain at 60°C ofDelrin® 100ST NC010.

Figure 3.13. Isochronous stress-strain at 80°C ofDelrin® 100ST NC01O.

1000+-__........._....1...----1-.---1-......................&..1-__----''------''_"''----..........................-1--__......... _ ......... ---'----'-..................-'+

..- ---::....

..... '. oS.......... 10 A: ... {res

..... '~Pq '. ~ :::: S : :... • • •II.1P : :...... - ~ ,;,,: ':...: - ~~·Z" _ ------. _.._ -_." -.; _ -_ .

..... o.',:..... ..... ..... ..... ..... .....

•• 0

..... -. -.. -. -.. - - ~ ..'":. ~. -- . ~ -.. - - - ":"..~- :. ~ - ~ -~ - .. - - - - - . - - - .. - -. - - .. - ....... - ..: ------ :---- --'--:-- --

250

500

750

-C'llD.::E-

O+---.......--..--.......-.......-........."""T"""-i----.--......-"""T""""""T"""..........,.........TT"--.....,....--r-~~-.- ..........-r+10°

Time (hrs)

Figure 3.14. Tensile creep modulus versus time at 23°C of Delrin® 100 NC010 ST.

Page 90: The Efecct of Creep

88 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

1000 +---""---___'_"--.................&....I..I~----'- .........---'"---'---'-...................--.........- ........--'-..........................+

250

-.;..-

---. ---•••••••••• 6QoC - ~ - - _

.-.-..~.~.~.:..:.~ ~~;o~~.~ --.~.: .~:.~.:.: .:..'....-...."'.' v ;: ~'~''-~' •• ·1·~· ~':''-~'''''''~'~'~'~ ."":.."":..~ ..~----~-------- ----'"'""!---- ---------

- .- - - _ 40°C ~

...................... _~---.. ..~ _._~ _--_ _ _--_._._._ .

<3°: :..................... . . .C ~ : .. ,. ,, ,, ,

750

III

.2 500:::I

'1::lo:2Q.CDeo

O+---~_-.__ ........."""T"""........,r__---........---.----.-....................,..--........-......-....................................+10°

Time (hrs)

Figure 3.15. Tensile creep modulus at 5 MPa stress versus time of Delrin® 100 NC010 ST at varioustemperatures.

3.2.3 DuPont Engineering Polymers Delrin@510GR NCOOD-10% GlassFiber Filled, Medium Viscosity POM Resin

3.02.52.01.51.00.5o+r-"T""T"....,...................,r"""""........."'T""'""T""T"....,...................,r""""".........+0.0

Strain (%)

/: , ~ : / :

30 : : ~ <:;:)~ /. -:- ..

:: " I: ::: / : :: : /?if :: : :1 ~0: :: : ).~" :. '~ ,

: : /~~ ~ :......... : "I;" ~(l)ftj ; : .

:/' /;'J: :i: /~ : :

III I:' ' ......<:;:) : :III , / N : :e ," ~. . ,- I, :; : : :en I' " . . ,

10 .. · .... ·1,·:;/. ........·.. 1. .. ·.... ··........ ·1 ........ ·

I~/

~?~' :, '

ca 2011.:2-

~ I' •

~/: ~': : /~ 's:::>" ~", ~ :21 :~, : ~/40 , !:)~ ..

: : I:: ~~/':: : 1 ~ :/ :: : I ' : , : :: (:" r : :: .,.': :: I:, :/ : :

30 .........:..... r:·'....·/.. ·......;.... ·....:........ ·. I;' " . ., ,: /: I, :/': I I ~: 1 : /:

........ 1';'-/ : ~ : : ..

1::/: :I' , ' .

~: ( : :~,/ : : ., , . . . .

10 .t ..: : ~ : : ..,'1

o+r-"T""T"....,...................,r"""""........."'T""'""T""T"....,...................,r""""".........+0.0 0.5 1.0 1.5 2.0 2.5 3.0

Strain (%)

l2 20e-en

-IV11.:2-

Figure 3.16. Isochronous stress-strain at 23°C ofDelrin® 510GR NCOOO.

Figure 3.17. Isochronous stress-strain at 40°C ofDelrin® 510GR NCOOO.

Page 91: The Efecct of Creep

3: POLYETHER PLASTICS 89

5000+---.........-"'---.........................-'-'''-1---........- ...................................................&...1------'--........--'----'-.......................0.+

....... __ . __ ._---_ .

Stress _ : :...................... . - 10 MPa···································:-············ .4500

1500+---....--.........................-.........."'T""T------..--~-_r__.,........, ........."'T""T-r----.---.--................-.-.............+10°

2000

4000 ..

Ii'D.

!!. 3500II)

.2::::I"C~ 3000

c.CD5 2500

Time (hrs)

Figure 3.18. Tensile creep modulus versus time of Delrin® 510GR NCOOO at 23°C.

2500+---.........-....o...-..................................~-_----''--___._"'__ .........'--'-........~ __........_ .........---'----'-.....................o.+

Ii' 2000D.:it-II)

::::I::::I

"Co:itc.CD 1500eo

. ............................................................................. -.-- ... _-_.. .

1000+----.--........................-.-..............,.--__.----.-.....-.....-.................,.---.......-....---..--........."T"""T-.+10°

Time (hrs)

Figure 3.19. Tensile creep modulus versus time of Delrin® 510GR NCOOO at 60°C.

Page 92: The Efecct of Creep

90 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

1750

Ii0.

~111

-§ 1500't'o::EQ.Qleo 1250

... _-_ __ .. .. .

1000+---......----r-,........,,.........""T'""'T"""T""T----.--~_....-.- ...................,---.....----.-......-........."""T"""lr--r+10°

Log Time (hrs)

Figure 3.20. Tensile creep modulus versus time of Delrin® 510GR NCOOO at 90°C.

3.2.4 DuPont Engineering Polymers Delrin@520MPNC010-20% Teflon@PTFE Filled, Medium Viscosity POM Resin

541

.. .. : : ; :. .· . . .· . . .· . . .· . . .· . . .· . . .· . . .· . . .· . . .· . . .· . . ,· . . .· . . .· . . .o..,.,..,.'I"'r'T'O"TTT"......."TT'T"......-r........"TTT"I"TT'I'"TT'T"I'TTT...,...,"TTT".......+

o

5 ...

20

111111e 10-tJ)

15-C'Cl0.::E-

2 3

Strain (%)

Figure 3.22. Isochronous stress-strain at 60°C ofDelrin® 520MP NC010.

542 3

Strain (%)

1

....: : ; :. .

o+r-r'l"'r'T'O"TTT"I'TTT""""'......-r'l"'r'T'O"TTT"I"TT'I'"TT'T"I'TTT"""""TTT"'I"'r'T'O+

o

15

5 .....

-C'Cl0.!.10

111111e-tJ)

Figure 3.21. Isochronous stress-strain at 23°C ofDelrin® 520MP NC010.

Page 93: The Efecct of Creep

3: POLYETHER PLASTICS 91

1500+--_........_-'----'---'-........---............ '----'_""""-"""--.................-1-__.........._ ........--'---'-...................""""+

1250

II)

~ 1000"Co::ic.CDeo 750

500 +----r--...,......---.----.--r-"T""'T"""T""T---.-----.-..--..--..................,....--"""'T'""-"""T'"""---r"---r""""'T'""........;;;;;:.+

10°

Time (hrs)

Figure 3.23. Tensile creep modulus versus time of Delrin® 520MP NC010 at 23°C.

1250+---........--'----'---'-........---............ '----'_""""-""""-.................-1-__.........._-'----'----'-..................""""'+

.. --.10Mfa ---------------:- --------_. _ ---. ---------------

, ,----- ----~- ----Si"-es~; -5-M~~-- ----_ -- T------- ----------------_ ----1000

Cic,;§.II)

..2:::J

"C0::ic.CDCD..0 500 -----------. -- '15-' ------------- -------------- .

: MPa

;<OMp: a

250 +----r--...,......---.----.--r-"T""'T"""T""T---.-----.-..--..--..................,....--"""'T'""-"""T'"""---r"---r""""'T'""............+10°

Time (hrs)

Figure 3.24. Tensile creep modulus versus time of Delrin® 520MP NC010 at 60°C.

Page 94: The Efecct of Creep

92 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

3.3 Acetal Copolymer-Polyoxymethylene Copolymer (POM-Co)

3.3.1 Ticona Hostaform@ C 9021-Standard Injection Molding GradePOM-Co Resin

...... ....... :sfr,": ~-1.,... ......

........ "': .: ......

............

Stress=5 MPa

2.0

0.5 C==F;;.:.:..:..:;,.:..;.;.;.T-··· ·····:······· .. ···· ..·.. -: : .

1.5

c"j!en 1.0

0.0 +----.--.....~ .........rr---r-.........................r-........."""T'"""........."'T'TTr--..................,.........."T'T'T1....-"""T'"""...,.................T'TT'f-......._.................,........

10.1

Time (hrs)

Figure 3.25. Tensile creep curves at 23°C of Hostatorrn" C 9021.

0.5% Compression

· ............. - __ _- _-_ -_ _ .

......... _-_ ---- _ _- _-_ _- ---· .· .

15 ~.. ,...,.,._.......,,;.;.;,.:..:...:..:...~~=1

Iia.~IIIIII2!en 10CI)

>"ii)III2!c.IS 5o

0+---...-----.....-...--...........................r---..-----r-..--........."""T'"""...-T""1r------.....----.----.,........,--r-""T"""'I-r+

101

Time (hrs)

Figure 3.26. Time compression stress curves at 20°C of Hostatorrn'" C 9021.

Page 95: The Efecct of Creep

3: POLYETHER PLASTICS 93

._ .... __.. '... _ ... _--_._...

. .---~-----:

... -00°0 ·1····· j' .

· .· .· .· ... .-. -. -. --.- -. - - ~ .. _. . - ~ --- --- - - ... . . .. . , .

, . . .· . .· . .

. .50 :.. ---. --. -------;---------- -----~ --------- ; Projected ; --. ---

250

III

.= 150:::I'tlo::Ec.Q) 100eo

ii' 200Il.::E-

O+-.....,....~"'T'T'TTTT"""---y.....,.... ................,-.,........,........"T'TT'rr-"""T""""T""'T".....-rTnr----.-.....,............TT'l1"-..............-rTTT'lr--r-........'I"'TT"'*10.2

Time (hrs)

Figure 3.27. Flexural creep modulus of Hostatorrn" C 9021 at various temperatures (measured with anouter-fiber stress of 10 MPa).

3.3.2 Ticona Celcon@M270™-LowMolecularWeight,HighFlowPOM-Co Resin

ii'Il.

~III:::I:::I'tl0

103::EC.Q)Q)...

0iii...:::I><

~LL

,23°C. - - - - - . - . -... -~ --. --..... - .

38°C49°C

66°C82°C

102

+-~---'-""T""T"T'T'T";---'---'-""""'""T'T"I"';---'~"""T"""""""",,"';----"''''''''''''''''''''' ..........-..r--'''''''''''''''''''''''''''TTT'"-''''''''''''''''''''''T'"T''T~10.1 102

Time (hrs)

Figure 3.28. Flexural creep modulus in three point bending of Celcon" M270 and M90 at various temperatures.

Page 96: The Efecct of Creep

94 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

3.3.3 Ticona Celcon@ M90™-Medium Viscosity POM-Co Resin

. . . . . ... .

0.5 1.0 1.5 2.0 2.5 3.0 3.5

Strain (%)

o.f..,........................T"T"l..............................."T""T'",...,..,-.-r.......r-r-r....-.-+0.0

20 : ~~.

: "

15

5 ...

=10e-en

-CllQ.:E-

Figure 3.30. Isochronous stress-strain curves forCelcon®M90 at 40°C.

. ... . . . ,.................. ,; , ., . . . . .· . . . . .· . . . . .· . . , . .· . . . . .· . . . . .· . . . . .· . . . . .· . . . . .· . . , . .· . . . . .· . . . . .· -. . , . .· . . . . .

5 ..

o+r-.......r-rr........"I"'T"'........"'I"T".......""""'T"T""T'"'I'""T"I-.-r.......r-r-r....-.-+0.0

20

IIIIII~ 10-en

15-CllQ.:E-

0.5 1.0 1.5 2.0 2.5 3.0 3.5

Strain (%)

Figure 3.29. Isochronous stress-strain curves forCelcon'" M90 at 23°C.

2400 ~_ ........---'..........---'-....................l--_........---'-............................-....+._---''--..........................................._---'-_.............................."''''''"''+

· . ..- : -----.. --. ---. --. ---.. -. ~ ---. --. --.. ---. -. ---.. -----. ~ --.. -------. ----.. -- ---..· .

. .· . ........................... _-;-_. __ ; .· . .· . .· . .· .· .· .· .

· ......... __ ._-_ .. __ ._-_._ __ _._-_. __ . __.. _ _----_ .. _-· .

800+--.........--.--.........................,;---~ ...................................,...;..---.;--_~ .................;--........-,.........,.........""'I"""T~

10°

1000

2000

2200

Ii~ 1800

III

-3 1600't:1o~ 1400Q)

eo 1200

102

Time (hrs)

Figure 3.31. Tensile creep modulus versus time of Celcon" M90 at 23°C.

Page 97: The Efecct of Creep

3: POLYETHER PLASTICS 95

2400+-_.........---1.....................................__..&...-....................................0.+-_----"_..&...-.........................-1--_.........----"--'-.................."""+

- •• - - - - •• - •••• - •• - • - - • - - - - • - f • - - • - • - - - - - - - • - - - - - - - - - - - - - • ~ - - - - • - - • - •• - •••••••••••••••••:••••• - - • - •• - - - - • - - •· , ,· , ,· , ,· , ,· . ,, . ,

.............................................................._--_._---, ., ,, ,, ,, ,

600+--........---.---........."T""T'""l"'T"I--..--"""'T""""""T""""T""'T...,....TT"""----,.-..--.........................r--"""T"'""---.----.-"""T"'"",....,...,....,..f-

10°

800

2200 , .

2000

1000

en.a:::J

'8 1400:EC-Cll 1200eo

Ii 1800D.

!.1600

102

Time (hrs)

Figure 3.32. Tensile creep modulus versus time of Celconf M90 at 40°C.

3.3.4 Ticona Hostetorm" C 2521-5tiff Flow POM-Co Resin

100+-....................................- .........................I--...........................u.I-----"..........................- ............................~ .....................................- ................"'"""'"'t

-IIID.:E-enenCll

10..-fI)-cClliU.~:::JtTW

1+-........""T'"""I""T"T"l"T'I'T""---.............,............r--"""T"'"".,..;.,...........,...---,.........T"T"'t"TTT1-.........,r'""'T""'l..........,.-.......................l"T'I'T""-............,..........-.t-10.1

Time (hrs)

Figure 3.33. Creep strength of pipes made of Hostatorm" C 2521 with water inside and outside at varioustemperatures.

Page 98: The Efecct of Creep

96 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

3.3.5 BASF Ultraform@ N2320 003-High Molecular Weight POM-Co Resin

35+-.......-+-.......-+-.......-+-.......-+---'--....

- - , Projected

~ :~ <: ~: ~,... :2 r§> -§>

30 : : ~ ~ ~. ~ .

: ' : ~~~: ~ ~~/. ./

25 : : ; / : .: : :./:: : :/ :: : /: :, : / : : .

:/, (

.' /...: ; ; .

/: : :, , .

: /: : ::/ ::··z··········:···········;···········;···········, , . ,

/ : : : :I: : : :

5 .. t·····~··········~···········:--·········:···········

I'I

10

UlUl 15e-(J)

Ii 20D.::E-

54321o-f----..-"'T"'""---..-"'T"'"".....,..-.,.-.....,..-.,.-.....,..-....

oStrain (%)

Figure 3.34. Isochronous stress-strain of Ultraforrn'" N2320 003 at 23°C.

30MPa

4 : -: : .· .

10 MPa......... __ .. _----_._-: .

20MPa

· ,~ , : : : .· . , ,· . , .· . , .· . , ,· , ,· , ,· , ,· , ,· . .· , .· . .· . ,

.......•.•.. ~~~~~~~

1

-~ 3-c'i!-(J)

g.2eo

Time (hrs)

Figure 3.35. Tensile creep strain versus time of ultratorrn" N2320 003 at 23°C.

Page 99: The Efecct of Creep

3: POLYETHER PLASTICS 97

, ,.. _----_ _ _----_._._-_ _._-----_ _._------------, ,, ,, ,

0+--.....---......................"""T"-........- ............................y--....--.....,........-"T"""I'........""T"""---.----..............,...........T"T'f-10°

500

2000

Ul.a~

"o:E 1000c.CI)

eo

IiQ.:E 1500-

102

Time (hrs)

Figure 3.36. Tensile creep modulus versus time of ultratorrn'" N2320 003 at 23°C.

3.3.6 BASF Ultraform@ H432D-High Molecular Weight, Extrusion GradePOM-Co Resin

100+--"--..........................o.I---_'--..........................o.I---_'--..........................o.I---~'-- .......................,I__~'--- .........................+

IiQ.:E-UlUl

~ 10en...cCI)

iV.~~

trW

= ---

1+--...-.........-r-r.......-r-----..--..........-r-r.......-r-----..--.................."'T"T"'I-r-----..--.................."'T"T"'IT-----......-.........""T""T~

10°

Time (hrs)

Figure 3.37. Creep strength of pipes made of Hostatorm'" H4320 with water inside and outside at varioustemperatures.

Page 100: The Efecct of Creep

98 THE EFFECT OF CREEP AND OTHER llME RELATED FACTORS ON PLASTICS AND ELASTOMERS

3.3.7 Ticona Celcon@TX90PLUS-High-lmpact-ModifiedPOM-CoResin

765432

. . . .................................. L ••••••••••••••••

1O+-.....-...;-....--i-...,....-j-...,....-j--r--j-"""'T"""-j-........-+

o

5 ....

10

tiltile-tJ)

-III0.:E-

7654321o+-.....--r-...,...."""T'"......."""T'"....,..--r~---r---.r--r--......-+

o

15

-III0.!..10til

~-tJ)

Strain (%)

Figure 3.38. Isochronous stress-strain of Celcon'"TX90PLUS at 23°C.

Strain (%)

Figure 3.39. Isochronous stress-strain of Celcon'"TX90PLUS at 40°C.

1600-f--........----'............................o..a..l--..a....-...................................a.+-----"-..a....-.......................J-----'----"--'-................"""'+

· . ."""'---""-"",'-"--""----"'---"""'-"---" __.. __ __ -_ .· . .· . .· .· .· .· .

•• •••••• __ ••••••••••••••• l •••••••••••••••••••••••••••• J ••••••••••••• ••••••••••· .· .400

1400 .

1200Ci'0.

~ 1000til..2~

't:Jo 800 .:itc.Gl

~ 600o

200+--.........---.---......,............T'T"1--....-..................................-r-----..-....-.........--r-l........r--...,....---,.....,............-r-....-r10° 102

Time (hrs)

Figure 3.40. Creep modulus versus time of Celcon'" TX90PLUS at 23°C.

Page 101: The Efecct of Creep

3: POLYETHER PLASTICS 99

3.3.8 Ticona Hostetormt' S 9063-Elastomer-Modified POM-Co Resin

Stress=25 MPa

4 : -: .· .· .· .· .· .

3

c'j;b 2C/)

20 MPa

10 MPa..............................: : .

· .5 MPa

O+---..------..-..........,.......................,...,.-----.----.----.---.-...,......,,...,....,r-r---.......--.....-.....-.,........,--.-..-.+10°

Time (hrs)

Figure 3.41. Creep strain versus time at 23°C of Hostatorm" S 9063.

3.3.9 BASF Ultraform@N2200G43-20%GlassFiberFilledPOM-CoResin

Strain (%)

2.01.51.0

Strain (%)

0.5O+--....................--r-..........................,...................---.-"'T"""'l---.-..........-+0.0

35······

25

30

5

10

lia. 20!..

111111

l!:! 15..C/)

1.51.00.5

· .- -- : .· .· .· .· .· .· .

O+-..--..........----..--i-.........-r-...............-i-..........----..---.--+0.0

25

35 ..

5

10

30 ,.

lia.!.. 20

111111Gl

b 15C/)

Figure 3.42. Isochronous stress-strain curves forUltraforrn" N2200 G43 at 23°C.

Figure 3.43. Isochronous stress-strain curves forUltratorrn'" N2200 G43 at 40°C.

Page 102: The Efecct of Creep

100 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

1.00.80.4 0.6

Strain (%)

. ,-_ .

0.2O-f----r-~---r-_r_--.-_r_--.r---.----..,r---+

0.0

10

-ellQ.:E-IIIIIICI)..-CIJ

5

. . . . . .- ... -," •••••• ',' •.•. - - ~ .. - ... - I ••••••• " •••. - - "," - - .5

15 . -_ - : -_..:.. _. - ~ ; _.. ~ _ -.: ... . .., . ." . ... . ., ", ", ", ", ,

, ,, ., ., .

0+-~~......-r-,.......,j--,"""';---.---;'---..-i---.---i-4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Strain (%)

-ellQ.

:E 10-IIIIII2!-CIJ

Figure 3.44. Isochronous stress-strain curves forUltratorrn'" N2200 G43 at 80°C.

Figure 3.45. Isochronous stress-strain curves foruttratorrn'" N2200 G43 at 100°C.

1.00.8

. __ __ ., . ,, . ,, . ,, . ,, . ,, . ,· . . ,........................... , " .· . . .· . . .· . . .· . . .· . . .

0.2

, .,· . . ............................... ; .. . . .· . . ., . ,, . ,, . ,, . ,

•••••••••• •••••••••••••• ••••••••••• 1 .· . . .· . . .· . . .· , . ,, , . ,, , . ,, , . ,

••••••••••••••••••••••••••'._----_ ••••••••••••• 1,. •••••••••••· , . .· , . ,· . . .· . . .· , . .· . . ., . ,

...........: : __ . __.; : .· , . .· . . .· , . .· . . .· . . .· , . .

...........: ," ; : .· . . .· .,· "· "· "· .,

O+----r-~---r-_r_--.-_r_---..,r---.----..,r---+

0.0

10

9

8

7

- 6ellQ.:E 5-IIIIIICI) 4..-CIJ

3

2

1

0.4 0.6

Strain (%)

Figure 3.46. Isochronous stress-strain curves for ultratorrn? N2200 G43 at 120°C.

Page 103: The Efecct of Creep

3: POLYETHER PLASTICS 101

...................: _----_ .

. ...................... __ ._-_. __ _----_ __ ._-_. __ _-.-_ .. ., ., .

3500

3000+---..,.....-.--..,.......,.............."'T""'T"T"""--..,.....-.--..........,......................"T"""--........-.--..........,......................+101

III.2:::J

'1:l

~ 4000c.Q)

eo

Ii~ 4500-

Time (hrs)

Figure 3.47. Creep modulus versus time curves for ultratorm'" N2200 G43 at 23°C.

3.3.10 BASF Ultraform@N2200G53-25%GlassFiberFilledPOM-CoResin

2.01.50.5 1.0

Strain (%)

........: : :- .. , .· , ,· , .· , ,· , ,· . .· , ,· , ,, , ., , ,, . ,, . ., . ,, . ,o+-........................-ir--r-....-............,....,......,...............,....--.-..........-+

0.0

10 ....

40

30 , , ..~ "III ::D. ::::E ::--- ::. .

, ., ,, .

IIIIIIe 20..en

Figure 3.49. Isochronous stress-strain curves forultratorrn" N2200 G53 at 40°C.

. (.......................................

o+-...........--.--........;r--r---..............,..-i-...................-"T"""+0.0

40

50

10 ....

-IIID.!, 30III

f..en20

0.5 1.0 1.5

Strain (%)

Figure 3.48. Isochronous stress-strain curves forUltraforrn'" N2200 G53 at 23°C.

Page 104: The Efecct of Creep

102 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

1.000.750.50

Strain (%)

• ••••••• J .. .. .

0.25

... -: -.. ~ ~ .· .· .· .

o+-.......................;--r.....................;.-.........--r.........;.....,....................-+0.00

20 +-..........-'-~--"-_ .........-+-.......--"--j--!r-'-"""'T.......'--+

5 ........

15

-l'll11.

!..10IIIIIIQ)...-(/)

2.01.51.0

Strain (%)

•••••••• J .. .

· ...............................................

0.5

· . ..................................... /' .· .· .· .· .· .· .

o-r-,........."""T""".,.......;.--r-...........--r--j-........."""T""".,.......;.__...........--r-+

0.0

25 :- : ; .· . .· . .· . .· . .· . .· . .· .· .

35

10 .

5 ; : ; .· .· .· .

30 -.. -," ~ ~ _ .

-l'll11.

!.. 20IIIIIIf(i) 15

Figure 3.50. Isochronous stress-strain curves forultratorrn'" N2200 G53 at 60°C.

Figure 3.52. Isochronous stress-strain curves forultratorrn'" N2200 G53 at 100°C.

0.3 0.40.2

Strain (%)

0.1o-f-...................,,.....""T"'""T'"""'I'"""T"'-r-..............,....,--r.........-r-+0.0

8 -. -_. -: ~

2 ..

III

~ 4-(/)

6 .-l'll11.:E-

1.50.5 1.0

Strain (%)

. ...............................................

. .......................... ------_. ----_ .. - .

o+-..,..........-_.......,r--r-r--..--.---i-__--r--r-"""T"""+

0.0

25 .

5 .....

20

-l'll11.

!..15IIIIIIQ)...-(/)

10

Figure 3.51. Isochronous stress-strain curves forUltratorrn'" N2200 G53 at BO°C.

Figure 3.53. Isochronous stress-strain curves forultratorrn'" N2200 G53 at 120°C.

Page 105: The Efecct of Creep

3: POLYETHER PLASTICS 103

7500 +-__........._....o...-......................................&..l-__----''--.........._.a....-.a....-.......--....-I--__........._"'"''---'---'-.................-'+

7000 . . .

6500CiQ.

!. 6000III:::l:::l'0~ 5500

Q.CI)

~ 5000

4500

4000 +---"""T"""-......---r---.-"""T"""....-.-""T""T------,r-----.-..--..--..................-r---"""'T"""-....----.----.---r-~-+

101

Time (hrs)

Figure 3.54. Creep modulus versus time curves for ultratorm" N2200 G53 at 23°C.

6500 +-_"""'==::::'-_""O"'-........................................&..l-__----''--.........._..a...-..a...-.......--....-I--__........._"'"''---'---'-.................-'+

. __ __ ._--_ .

5500

3500

6000 ....

3000 +---.......--..--..........................."""T'"""""T""--"""T"""-......-"""T""""""T"""......-:'"'..........TT"--.....,....--r---.---.--r-T""'T'"-r+101

CiQ.

!. 5000III:::l:::l'0~ 4500

Q.CI)

5 4000

Time (hrs)

Figure 3.55. Creep modulus versus time curves for ultratorrn'" N2200 G53 at 40°C.

Page 106: The Efecct of Creep

104 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

3.3.11 Ticona Celcon@GC25A-25%Coupled-GlassFiberFilledPOM-Co Resin

.. -.. - ' - - ~ .· .· .· .· .· .· .· .· .

· .......... - .

...............................................· .

..................................................

5

o+-...--or--...................;.---r---.--...........-j-...,.........-...---r-+0.0

10

:I 20e-en

15

cv 250..:E-

35

40

30

0.5 1.0 1.5

Strain (%)

Figure 3.56. Isochronous stress-strain curves for Celcon'" GC25A at 40°C.

8000 +-_.........----"---'-.........................+,_---'_...a...-..........................I--_.........--'-............................&+-_--'-~ ..........--'-..................

.. ---.. -----. -. -. --.. --. -. --: .. -.. -. -. --- ~ ---. -. -.. - _. '· .· .· .

7000 --

4000

Ii0..~ 6000I/)

.a~

't:lo:E 5000c.Gleo

3000+--.......---.---r.........,.......,......;.---.....--......-........."""T"""........;.--.........-....-.......................-i-----.--...............................,......f­100 102

Time (hrs)

Figure 3.57. Creep modulus versus time curves for Celcon'" GC25A at 40°C.

Page 107: The Efecct of Creep

3: POLYETHER PLASTICS 105

3.3.12 Ticona Hostetorm" C 9021 GV113O-26% Glass Fiber Filled,Molding Grade POM-Co Resin

9000+-..........................."-'4----..............................- .............."'"""""I---'--..................__..........................."-'4----..............................- ..............'"'"""r

7000

8000C 9021 GV 1/30......... __ __.. _---_ __ __.: .. . . ,. .. .

.............••.•.•..... _ ! .· .· .· .· .--_.. . .. _- _-_ - _-_ -_ _-_. . _ .

· : : : . Projected· :: -.:...· ,. , -----.. -.••••••.••:•..... --... --.. - ~ ... -•••• •••.. :... -... -... -. ---A:' .. ---.. -•.• --•. i .... - . - ... - .... -:... - - .. - .-:-.- ....· . .· . .· . .· . .· . .

" ..• •••• - ••• - • - •• - .1••• _ •• _ ••••• _ •• _ ~ ••• ••••••• __ __ .'. • • _ •••••• __ •• ~ •••• _ • _ ••• _ • _ •• _ _ •• __ •••••••, . . . , ,

, . , . . ,· . . . . .: : :: Projected

· : ~ ~ : , , ~ : .: : : : : ;- - --· . , . . .· , . . . .· . , . . .· . , . . ,

••••••••••••••••••••••••••••••••• J •••••••••••••••• '•••••••••••••••••••••••••••••••••• l •••••••••••••••• •••••• • • • • • • • • , ••· . , , . ... ".· ..· ., ,.· , .................+ + : 20°C·:········ C 9021:···············+···············

...~.: .. :: : ao°c·:················ ~ : .

2000

1000

III.a="8 4000::EQ.G) 3000eo

Ii 6000Q.

!.5000

O-r-"""'T""""'T""T"T'TT..,...--.-"""'T"""........-rrr----.........."'T"'I"'.......,r--..,.....,r-T'"'I"""""'rr--r-"'T""T"T'TT..,...--.--r-........-rrr---.........."T'"T"'rT'T'rf-

10.2

Time (hrs)

Figure 3.58. Flexural creep modulus versus time curves for Hostaform'" C 9021 GV1/30 and unfilledHostatorm" C 9021 at 20°C and 80°C.

9000+---'---...---'-.................~_---'_...a...- ..........................I--_......................................'O'+-_---'-_.......................... '"'""'--+

C 9021 GV 1/30: ·Strain==o.2%········· ~ .• 0 .

......... .Strain==o.~% i········· . .; Strain==1 00 :............................ ;.................. ..' % ; .· .· .· .· .

............................ ; ~ ~._~

. .· .· .· .· .· .· . .· : ~ ', .· .· .· .· .· .: Strain==o.2% .. ~ ~ .• 0 : C 9021 :

1000 +--"""'T"""~--.--r-T""T""r"O'T"----..--......- .........-r-.......or---"'"T"'""---.-.....,..................."T'T'"-~-or-- ........""T""'I'.....-.+10.1 101

Time (hrs)

Figure 3.59. Relaxation modulus versus time curves for Hostatorm" C 9021 GV1/30 and unfilled Hostatorrn'"C 9021 at 23°C.

Page 108: The Efecct of Creep

106 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

3.3.13 Ticona Celcon@GB25-25%GlassBeadFilledPOM-CoResin

IiQ.

~III:::sos"C0

103::IEc..G)G)...oiii...:::s><G)

u:::

23°C

38°C···········49°C

66°C82°C

104102+-..................................;.-~ ........."T"T'T....;----..............................;---.-....,....,...............;.-......-....................;----r--.-........~

10.1 102

Time (hrs)

Figure 3.60. Flexural creep modulus in three point bending versus time curves for Celcon® GB25 at varioustemperatures.

3.3.14 BASF Ultraform@ N2720 M21~ 10%Mineral Filled POM-Co Resin

15

o-f-r-T""T""r'"T"".........-r-r........r-r-r................T""T"""........."'T"T'"T""T""r+

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Strain (%)

5 : ; ; : .

-IIIQ.

~10IIIe...t/)

31 2

Strain (%)

· ....................................................

. . ........................................................

••••••••••••• ' •••••••••••••••••••••••••••••••• J ••••••••· .· .· .· .· .· .· .· .· .· .· .

5 ...

0-t-..-................"'T"T'"rr-r........................,..,............................T"T"T-r+o

25

20

-IIIQ.

~15IIIIIIe...t/)

10

Figure 3.61. Isochronous stress-strain curves forUltrarorm" N2720 M210 at 23°C.

Figure 3.62. Isochronous stress-strain curves forultratorrn" N2720 M210 at 60°C.

Page 109: The Efecct of Creep

3: POLYETHER PLASTICS 107

8+-..............""""""!1......&................-+...&.-.......-+-+7-'''""'"''"::1'''''-''''-+

· .. __ .· .· .· .· .· .· .· .· .· .••••••••• oJ __ ••••· .· .

5 .

-"'D.::E4-IIIIIIeCi)3

7

2 _. _. -_. -: _.. _. _.. .; ~ _.· . .· . .· . .· . .· . .· . .· . .

6

2.01.50.5O+-,......,.........-.-.,......,........--r-~,......,. ........-.-......,.......--r-~....-+

0.0

1 .-- -_. _.. _.. -;- .. _. -_. -_. -_. ~ .. _ ~ _.. _..· . .· . .· . .· . .· . .· . .· . .· . .1.0

Strain (%)

Figure 3.63. Isochronous stress-strain curves for Ultraforrn'" N2720 M210 at 120°C.

2500 +-__........_.0....-...................................."""'-__........_""""'-........................................&...1-__---'-_.........---'----'-................-'+

.- .. _-_ __ ..'. __ _----_ .

1000 +---~-......_ ................................,....---.--..........................-........TT"--........- ........---.-----r:::ooo-........;:~

101

III..2

::::I

"o::Ec.Q) 1500eo

Ii 2000D.::E-

Time (hrs)

Figure 3.64. Creep modulus versus time curves for ultratorm" N2720 M210 at 23°C.

Page 110: The Efecct of Creep

108 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

3.3.15 BASF Ultraform@N2720M63-30%MineraIFilledPOM-CoResin

2.01.50.5 1.0

Strain (%)

..... .; ~ - . - - .. -;. .

O~""""''''''''''''''''''''''''''''""T"'""''''''''"""T"""'T"'''"''''''''''''''''''T"""'I''''''''''""T"'""'''-+0.0

5 ----

15

IV 10a.:::E-I/)~..en

1.5 2.00.5 1.0

Strain (%)

o~r"""T""..,.......,.......;_ .........I"""'T'".........i---r-....-........._i_........."""T"""...._+0.0

5 --- - --.----,-------.------0----

20

25----------

IVa.~15I/)

la.....en10

Figure 3.65. Isochronous stress-strain curves forUltraforrn" N2720 M63 at 23°C.

Figure 3.67. Isochronous stress-strain curves forUltraforrn'" N2720 M63 at 60°C.

1.000.750.50

Strain (%)

0.25

, , ,................................. : ., , .· ,· ,· ,· ,· ,· ,· ,........:- ~ : .

, ,, ,, ,, ,, ,, ,, ,, ,

•••••••••••••• '. • • • •• •• •• • J • • • • • • • • • • • • • • ~ ••••••••••••••, , ,, , ,, ,, ,, ,, ,, ,, ,, ,. .

2

o+-.........-r-.......-,..................,........,---r"""T"'""........"""T'""'T""",........,.-r-......-+

0.00

1

5

7

6

-C'Cla.~4I/)I/)

eCi)3

2.52.01.0 1.5

Strain (%)

0.5o+-o-r-T""'T'""T""'T.,....,r-T'""T""'T".........-r-r--r-........""T'""'lr-T'""T""'T"-r+

0.0

20--------

15IVa.:::E-I/)I/)

l!! 10..en

Figure 3.66. Isochronous stress-strain curves forultratorm" N2720 M63 at 40°C.

Figure 3.68. Isochronous stress-strain curves forUltraforrn'" N2720 M63 at 100°C.

Page 111: The Efecct of Creep

3: POLYETHER PLASTICS 109

4000 +-_00:::::::.........-.0....-..........................................----'--....&..--0...-0..............................----"--.........---'----'---'-.............""""'+

, ,... __ . __ . __ _----.---_. __ . __ -.------_ ., ., ., ., ., ., ,, ,, ,, ,, ,

1500

1000 +----.--....--T""-T""-.-.,...,.......,.------,.-----.-..--..--...................,....--"""'T"""-"'"T'"""--.---.-"""'T""""'T"""T-.+101

III

-5 2500'0o:Ec.Q) 2000 ' --eo

Ci 3000a.:E-

Time (hrs)

Figure 3.69. Creep modulus versus time curves for ultratorm" N2720 M63 at 23°C.

3500 +---........- ........---'----"-.................--'-1----'------'--'---'--................-1------'--........---'----'----'-..........--'-+

.... __ :. __ _------_ __ _--_._-:. __ . __ __ __ ._-_ .3000

1500

1000 +----.--...,....-T""---r'"-.-"T""'T......;.---.-----.-....-....-................-j---"""'T"""-"'"T'"""--.---.-........"'T"""T--r+101

-C'Ga.~ 2500III.2:s'0o:E 2000c.Q)

eo

Time (hrs)

Figure 3.70. Creep modulus versus time curves for Ultraforrn'" N2720 M63 at 40°C.

Page 112: The Efecct of Creep

110 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

· ,-------_. __ ._------_._-.-_ _-_. __ ._-------------------_._-------_ _--_ - __ ..· ,· .· ,· .· ,.----------~--,

, ,------_ _--_ __ __ . __ ._------------------------------_._----_ .. _-_._----_ .. _--_ ., ,, ,, ,· ,· ,· ,, ,, ,, ,· ,

3.3.16 Comparison of Products and Generic Charts

1+--- --"- -"-.............__---a._---'-_'-- 4,---'------'---..&-..&-...---.........""+0.9 .-- --.-------:-- --- _----------:._------------------------------ .. ---_.- . ,0.8 =="."'" -........ . -- --. -- -- -- --. --, -- --. -- --..

.... ~ .'..'. ~.~:: --~,~,,-; :::.~.':"- : : .

0.7 ...... . . . __ . ~.~ ~~t~~>~ ~ ..~.~.::: ~~.~._ . . . __0.6 •••• ~-:'':':'':: '':'i .: -.:..... _

...... - --I/) 0.5 -- -- ~ ':'1'" r •••- .•,~.;.: ••~. :=:~~-'-'':':''::':':'

~ , " .., , ......~ 0.4 ' ,'tJo::E'tJ 0.3.~C'llE..o 0.2Z

- Glass Coupled Grades- - Unfilled Grades••• Impact Modified Grades

0.1 +---_r_-_r_.........................,....,.......,r----~-_r___r__r__r_,....,.."'T""T------,.----r-~~ ...........,...,r+10°

Time (hrs)

Figure 3.71. Normalized creep modulus versus time curves for general types of Celcon® grades.

40

35

30

_ 25C'llD.::E-:2 20e....tnQ.oo

::I: 15

~ -- . ... .,.r-,

........... .................... .."

K... ., .

<,.........

"':-- ..... ;,,;, .,. .,.

""~ ..........r-,

........... .........

00 •

~ ............ ,oro'

'- ~6bt....... &et....... :..........

:""

Time (hrs)

Figure 3.72. Hoop stress versus time curve for Celcon® unfilled grade with 9.0 melt flow.

Page 113: The Efecct of Creep

3: POLYETHER PLASTICS 111

3.4 Modified Polyphenylene Ether/Polyphenylene Oxide (PPE or PPO)

3.4.1 SABIC Innovative Plastics Noryl@ GTX964W PPE+PS+PA Resin

---_.. :- ----_ .16 MPa

......... -.-_ .. _-_._--_... _--'....o 0

20 0 0 •• . .. - - - - - - - - _ - - _. - . - i - - - - - - _. - - - - - - . - - - - _ .. -,- - _. - - _. - _ .. _ ": --o • •o • •

o • •

o •

• 0

• 0

• 0

• 0

• 0

• 0o 0

1.5

c.~

u; 1.0

~..-

100010010

. .. ,--------_ :---_ .. _--_ .o 0

o 0

o 0

o 0

o 0

o 0· .• 0o 0

• 0· .· .10.1

0.0 +----.,.......,........................,r--.................................."l""rT"--.--.-...................,.,....-,....-"T""'""I.....................-----.,.......,.......................r0.01

0.5 ; ; .o 0

o 0

o 0

o 0

o 0

o 0

o 0

o 0

o 0

o 0

o •

Time (hrs)

Figure 3.73. Creep strain versus time at 23°C of Noryl® GTX964W.

3.0 +- ......................................JI-----'----'-............................._ ...................................."'O+-_""--~ .................."'------'.............................."""""'+

············· .. ······;··23°C -7 MPa....

o 100°C - 5.5 MPa...............: ; .o 0

0.5 , .

2.0 ---- ---------- A •• _~------_._----_ •••••••••: ••••••••••••••••••••••• :•••••••••••••••••••••• :- ••••••••••••••••••••••

, , , ,, , , ,, , . ,, . . ,· . . ,· . . ,· . . ., , . .· . . .

o • •

1.0

2.5 --.. ----.--- .. ,1--.--.---.----.------- ----. - - - - - ••••••.•••...••...•••... --- .. ---- -_._-_ .. _-

-~..- 15c ..~u;

10001001010.10.0 +----.,.......,..........................,r--...........................................--.--.-.................."TT"""-,....-"T""'""I..................ror----.,.......,.........................

0.01

Time (hrs)

Figure 3.74. Creep strain versus time at various temperatures and stress of Noryl® GTX964W.

Page 114: The Efecct of Creep

112 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

3.4.2 SABle Innovative Plastics Noryl@ 731-General-Purpose Grade,UL94 HB-Rated PPE+PS Resin

12 +--"--...............................'"'---"--...............................'"'---"--.............................""'-----....-..............................""'--------....-....................~

15 MP10 MP5MP

1000

.20MPa

1

, ,, ,

....: __ ._------_ : _-------_ _;------_ ., , ., . .· . ., . .· .· ., ., ., .

0.1

4 .. -- ~-- ..

8 _. ---_.. -_ .. --_. _.. ~. _.. _ : _.. ------_ _ : _.. --_. --_ or" -_._.-_ --" ," ," ," ." ." ." ." ." .· .. . -. - ~ ---------. -. -.- . ------. -

25MPa10 ' .

~o- 6

Time (hrs)

Figure 3.75. Creep strain versus time at 60°C of Noryl® 731.

7MPa· ....... --_ _-- __ _--_.--_ __ -_ _-_.. --_ _--_ ----

· .1.5 : ·;·······················~······················:············1 0 MPa'

· , . ., , . ., , . .· , . ., , . ., , . ., , , ., . , .· , . .· , , ,, , ,, . ,· . ,· . ,-~o

- 1.0c'j!-(J)

10001001010.10.0 +--.--.......-r"""T""T"'T'T"1-r-----,..---.........""'\"""T........r-----.----,...........,...,..........r----.----.-..-..,...,.......-T'Ir-----.---.-.-.........~

0.01

Time (hrs)

Figure 3.76. Creep strain versus time at 80°C of Noryl® 731.

Page 115: The Efecct of Creep

3: POLYETHER PLASTICS 113

3.4.3 SABIC Innovative Plastics Noryl@ GFN1-10% Glass-Reinforced,UL94 HB-Rated PPE+PS Resin

[====--l-------+-----~---~1:8 MPa

1.5 .

-.';fl.-; 1.oL_-..~..-r:.. ::-:-:-:-:.. :-:-:- : ; ..~ . .-en

0.5 .12 MPa

100010010

Time (hrs)

1O.O+--~ ............................'T'T"""-......--""'T""""......................~----.-~.....,.....T""'T"""r""'r"T"1r--~----.,.........."'"T"""'I"..........,..f-

0.1

Figure 3.77. Creep strain versus time at 23°C of Noryl® GFN1.

3.4.4 SABIC Innovative Plastics Noryl@GFN2-20%Glass-Reinforced,UL94 HB-Rated PPE+PS Resin

100010010

Time (hrs)

1

55 MPa

: :

45 MPa--------,.... :

:35 MPa -:

25 MPa

:

: 20 MPa

:15 MPa:

0.00.1

0.5

2.0

-.~e- 1.0c'f;n

1.5

Figure 3.78. Creep strain versus time at 23°C of Noryl® GFN2.

Page 116: The Efecct of Creep

4.1 Background

Polyesters are formed by a condensation reactionthat is very similar to the reaction used to make poly­amide or nylons. A diacid and dialcohol are reactedto form the polyester with the elimination of water asshown in Fig. 4.1.

While the actual commercial route to make the poly­esters may be more involved, the end result is the samepolymeric structure. The diacid is usually aromatic.Polyester resins can be formulated to be brittle and hard,tough and resilient, or soft and flexible. In combinationwith reinforcements such as glass fibers, they offer out­standing strength, a high strength-to-weight ratio,chemical resistance, and other excellent mechanicalproperties.The three dominant materials in this plasticsfamily are polycarbonate (PC), polyethylene terephtha­late (PET), and polybutylene terephthalate (PBT).Thermoplastic polyesters are similar in properties tonylon 6 and nylon 66, but have lower water absorptionand higher dimensional stability than the nylons.

4.1.1 Polycarbonate (PC)Theoretically, PC is formed from the reaction of

bis-phenol A and carbonic acid. The structures ofthese two monomers are given in Fig. 4.2.

Commercially, different routes are used, but thePC polymer with the structure shown in Fig. 4.3 isthe result.

The performance properties of PC include:

• Very high impact resistance and is virtuallyunbreakable and remains tough at low tempera­tures

4 Polyesters

• "Clear as glass" clarity

• High heat Resistance

• Dimensional stability

• Resistant to ultraviolet light, allowing exterioruse

• Flame retardant properties

Applications include glazing, safety shields, lenses,casings and housings, light fittings, kitchenware(microwaveable), medical apparatus (sterilizable),and CDs (the discs).

4.1.2 Polybutylene Terephthalate(PST)

PBT is a semi-crystalline, white or off-white poly­ester similar in both composition and properties topolyethylene terephthalate (PET). It has somewhatlower strength and stiffness than PET, is a little softerbut has higher impact strength and similar chemicalresistance. As it crystallizes more rapidly than PET, ittends to be preferred for industrial scale molding. Itsstructure is shown in Fig. 4.4.

The performance properties of PBT include:

• Good mechanical properties

• Good thermal properties

• Good electrical properties

• Dimensional stability

• Excellent chemical resistance

• Flame retardancy

+ HO-R'-OH >

o 0II IIC-R-C-O-R'-O

n

Figure 4.1. The formation of polyester by the condensation reaction of a diacid and dialcohol.

115

Page 117: The Efecct of Creep

116 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

-o-C~

HO f_~ ?---v--~ OH

CH3

DialcoholSis-Phenol A

2.2-bis(4-hydroxy[henyl) propane

DiacidCarbonic Acid

Figure 4.2. Chemical structures of monomers used to make polycarbonate polyester.

~C~Oo-O-+--Qr-o-gCH3

n

Figure 4.3. Chemical structure of polycarbonate polyester.

o 0

~-o-~--O-CH2-CH2-CH2-CH2-0n

Figure 4.4. Chemical structure of polybutylene terephthalate polyester.

4.1.3 Polyethylene Terephthalate(PET)

PET is the most common thermoplastic polyesterand is often called just "polyester," which causesconfusion with the other polyesters discussed in thischapter. PET exists both as an amorphous (transpar­ent) and as a semi-crystalline (opaque and white)thermoplastic material. Semi-crystalline PET hasgood strength, ductility, stiffness, and hardness.

n

Figure 4.5. Chemical structure of polyethyleneterephthalate polyester.

Amorphous PET has better ductility but less stiffnessand hardness.

It absorbs very little water. Its structure is shown inFig. 4.5.

PET has good barrier properties against oxygenand carbon dioxide. Therefore, it is utilized in bottlesfor mineral water. Other applications include foodtrays for oven use, roasting bags, audio/video tapesas well as mechanical components.

4. 1.4 Liquid Crystalline Polymers(LCPs)

LCPs are a relatively unique class of partially crys­talline aromatic polyesters based on 4-hydroxyben­zoic acid and related monomers shown in Fig. 4.6.LCPs are capable of forming regions of highlyordered structure while in the liquid phase. However,the degree of order is somewhat less than that of aregular solid crystal. Typically,LCPs have outstanding

Page 118: The Efecct of Creep

4: POLYESTERS

HO

HBA4-hydroxybenzoic acid

BP4-(4-hydroxyphenyl)phenol

OH

HNA6-hydroxynaphthalene-2-carboxylic acid

HQbenzene-l A-diol(hydroquinone)

117

o 0

HO--g~g--OH

TAbenzene-l A-dicarboxylic acid

(terephthalic acid)

HO""" ~OC

©l/OHCIIo

IAbenzene-I,3-dicarboxylic acid

(isophthalic acid)

NDANaphthalene-2,6-dicarboxylic acid

Figure 4.6. Chemical structures of monomers used to make liquid crystalline polymer polyesters.

As an example, the structure of Ticona Vectra®

A950 LCP is shown in Fig. 4.7.mechanical properties at high temperatures, excellentchemical resistance, inherent flame retardancy, andgood weatherability. LCPs corne in a variety of formsfrom sinterable high-temperature to injection mold­able compounds.

LCPs are exceptionally inert. They resist stresscracking in the presence of most chemicals at ele­vated temperatures, including aromatic or haloge­nated hydrocarbons, strong acids, bases, ketones, andother aggressive industrial substances. Hydrolyticstability in boiling water is excellent. Environmentsthat deteriorate these polymers are high-temperaturestearn, concentrated sulfuric acid, and boiling causticmaterials.

oIIJOOrC

o---©-n-o

o

Figure 4.7. Chemical structure of Ticona Vectra®A950 LCP.

n

Page 119: The Efecct of Creep

118 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

n

Figure 4.8. Chemical structure of polycyclohexylene-dimethylene terephthalate polyester.

Figure 4.9. Chemical structure of polyphthalate carbonate polyester.

4.1.5 Polycyclohexylene­dimethylene Terephthalate (PCT)

PCT is a high-temperature polyester that possessesthe chemical resistance, processability, and dimen­sional stability of PET and PBT polyesters. However,the aliphatic cyclic ring shown in Fig. 4.8 impartsadded heat resistance. This puts it between the com­mon polyesters and the LCP polyesters described inthe previous section. At present, only DuPont makesthis plastic under the trade name Thermx'".

This material has found use in automotive, electri­cal, and houseware applications.

4.1.6 Polyphthalate Carbonate(PPC)

Amorphous PPC copolymer is another high-tem­perature polycarbonate. It provides excellent impactresistance, optical clarity, and abrasion resistance.The plastic offers ultraviolet protection as well. It islightweight, impact-resistant, and can be reused aftermultiple exposures to sterilization. Its structure isshown in Fig. 4.9

4. 1.7 PolytrimethyleneTerephthalate (PIT)

PTT is a semi-crystalline polyester polymer thathas many of the same property advantages as PBT and

PET. However, compared to PBT, compounds com­posed of PTT exhibit better tensile strengths, flexuralstrengths, and stiffness. They also have excellent flowand surface finish. PTT can also be more cost-effec­tive than PBT. PTT may have more uniform shrinkageand better dimensional stability in some applications.PTT, like PBT, has excellent resistance to a broadrange of chemicals at room temperature, includingaliphatic hydrocarbons, gasoline, carbon tetrachlo­ride, perchloroethylene, oils, fats, alcohols, glycols,esters, ethers, and dilute acids and bases. Strong basesmay attack PTT and many polyester resins.

The two monomer units used in producing thispolymer are 1,3-propanediol and terephthalic acidand its structure is shown in Fig. 4.10.

4.1.8 Polyester Blends and AlloysThere numerous polyester blends and alloys. Often

the different polyesters are blended.

n

Figure 4.10. Chemical structure of polytrimethyleneterephthalate polyester.

Page 120: The Efecct of Creep

4: POLYESTERS 119

4.2 Polycarbonate (PC)

4.2.1 SABIC Innovative Plastics Lexan@ 101-General-Purpose PC Resin

1.5 -----------------------,----------.-.----.-.--. -... --

~o~ 1.0

'E-UJ

21 MPa

0.5 -----------------------'---.- .. ----------------~-----------------------:--------.- ... ----- ---7 MPa

0.0 +----.----.-"""T"""I..........I"T'f""-..--........""T""T'",...,..-rj--....,..............-,............,............;----.---.-...................I"T'f""-......-.....-T'"..........,......-t-10-1

Time (hrs)

Figure 4.11. Creep strain versus time at 45°C of Lexan® 101.

4.2.2 SABIC Innovative Plastics Lexan@141R-MediumViscosity,Easy Release PC Resin

4.0 +-_----'_................................................"--_---'-_..o..--............................~ ----'--""'---..o..--........-'-''"''"''+

3.5 --------------- ----------------:- --------------------------------------; -. ----. ---. -. stress'" 40 Mpa, ,, ,

3.0

.......... . __ ..: __ _. _.. -} . 25 M_~~ ., ,, ,

35MPa

~ ::: u::::::::::::::::::::::'::::::::::::::::::::::::::::::::::::::'::::::::::::::::::::::::30 M~::::c ' ,'E~ :UJ 1.5

20 MPa

1.0 ------------------- . -. -.. -. ------------;- --- - ... __ __ _-15 MPa

0.5 :- __ -_._-_ __ .. _-_ ; .. __ _-_ ., ,, ,, ,

0.0 +--~-....,...........,.............- .........""T""T'"-r------.--......._....,................................,-----.--...--.......-.......-r"""T"""l.....-t-10°

Time (hrs)

Figure 4.12. Creep strain versus time at 23°C of Lexan® 141R.

Page 121: The Efecct of Creep

120 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

00ctJ\::>

~, 0, . , , : ~..§

1.5 ~._ ~ ~ -----------~-----------.--_.~----.--.-- 0 0 .

~ ~ : : ~ -<..0~'< :., ..., ..,. .,.. ..

" ,

:: : 60°C .---_ __ .~_ _ .. __ _~ _ ~ : _ ,...~_--:- .

: : : : : ----:-. , .. ., . . . , -- .: : : . --: .

.............L :::..::..:::..:..:::..::..:::..:: ~ =-..: ..=.; ~ : ., ., ,, ,

-~o- 1.0

r:::::.~-tn

0.5 --- _. - _.~ -_._. -_. -_ -~ _.~ _ _ _.. _ :. _ : _ _.. :_- _. _.. _ --

0.0 +---r-"""T'"""........rrrr-,.........~"I"TT'lrr--"""'T"""~ ........."T'I'T""---.r---T""'T""T"T'TTTr--"""T"'""......-T".......TTT"""~---r-"T""T"'l"'TTT'l-~r"""T""I""r'T'O .....

10-4

Time (hrs)

Figure 4.13. Creep strain versus time at various temperatures and a stress of 15 MPa of Lexan® 141R.

4.2.3 SABIC Innovative Plastics Thermocomp@DF-1006-30%GlassFiberFilled PC Resin

0.6

0.5

0.4

-~o- 0.3r:::::

.~-tn0.2

0.1

I

Stress=6 9 MPa:

:

:

...20 7 MPa

: ,

',' ; 34.5 MPa

0.010°

Time (hrs)

Figure 4.14. Creep strain versus time at 23°C of Thermocornp't DF-1006.

Page 122: The Efecct of Creep

4: POLYESTERS 121

0.8 +-__....L..-_'---....L..-"'O"'-....................+-__....L..-_'---....L..-"'O"'-....................+-__....L..-_'---....L..-"'O"'-...................+

...................................... ,. Stress = 20.7 MPa0.7 ~ _._ _._ _-- _.-_.-_._.

0.6 ~.i _~~ :"':"':"':' ~~~~~j , ~_________ '0.5 ~ ; ; .

, ,, ,, ,, ,, ,, ,

.......................................; ······;·······················34.5 MPa·····, ,, ,, ,

, ,, ,......... __ - __ ., ,, ,, ,, ,, ,, ,, ,

0.2 .

0.0 +---_.__-.___.___.__...................~---.---.---.---.-- ...................~---.---.---.---.-- ...................+10°

0.1 -- --.--.-- --:-----------.---- --····--···············r-·--····-----················· ., ,, ,, ,, ,. ,. ,, .

Time (hrs)

Figure 4.15. Creep strain versus time at 70°C of Therrnocornp'" DF-1006.

4.2.4 SABIC Innovative Plastics LUbricomp@DFL-4036-30%GlassFiber,15% PTFE PC Resin

0.6

0.5

0.4

-~co- 0.3cf!..

(JJ

0.2

0.1

Stress= 6 9 MPa:

t

...MPa20 7

: ,

; 34.5 MPa','

Time (hrs)

Figure 4.16. Creep strain versus time at 23°C of t.ubrlcomp" DFL-4036.

Page 123: The Efecct of Creep

122 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

:, Stress = 13.8 MPa: -:;

::-.,.

:20.7 MPa:

','

, 34 5 MPa:

::.'. ;

::

0.1

0.2

0.5

0.010°

0.6

0.7

_ 0.4~o-c.f! 0.3en

Time (hrs)

Figure 4.17. Creep strain versus time at 70°C of tubrlcomp" DFL-4036.

3.0 +-__......._ ......._1.-.................................__........_ ........_.....-....-.................&...1-__---''-----'_...................-.........''''+

20.7 MPa

2.0 .

2.5 ';" Stress =13.8 MPa· ..

~o'"-'" 1.5.5e-tn

0.5 , .

0.0+---........- ........---.....-......,.....,........,..,...---....---..-..-..............-.-....,..-----.....-----.-................................-r10°

Time (hrs)

Figure 4.18. Creep strain versus time at 120°C of Luorlcomp" DFL-4036.

Page 124: The Efecct of Creep

4: POLYESTERS 123

4.3 Polybutylene Terephthalate (PST)

4.3.1 Ticona CelaneJCB> 25OD-General-Purpose, Nucleated, Easy Flow PSTResin

2.52.01.5

---_ .· .· .· .· .· .· .· .· .· .· .· .· .· .· .· .

1.00.5o+-,-"'T""'T""'T""T'"'T""'T""'T""'T""T""'T'""'T""'T""'T""T'"'T""'T""'T""'T""T""'T'""'T""'T"~0.0

~CICICI

20 : : ~ \'..: .

15-ellD.

~1/11/1~ 10-tn

5 : : : .; .. , . .. . . .· .· .· .

Strain (%)

Figure 4.19. Isochronous stress-strain curves at 23°C of Celanex® 2500.

4.3.2 DuPont Engineering Polymers crestin" S600F10 NCO1o-MediumViscosity, Lubricated PST Resin

25+---'---!--------+----'---!--..........--+

432

Strain (%)

o-F---.---r----.--r-.........-r---..---+o

5

20· .... ·.......... ·

15-;-D.

!.l:l~ 10tJ)

5 .

o-t-r-.............,...............T""""..........T""""..........T'T"".........T'T""...........+

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Strain (%)

20

25

Figure 4.20. Isochronous stress-strain curves at23°C of Crastin® S600F10 NC010.

Figure 4.21. Isochronous stress-strain curves at60°C of Crastin® S600F10 NC010.

Page 125: The Efecct of Creep

124 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

4.3.3 Evonik Industries Vestodur@2000-Unreinforced,MediumViscosityPBTResin

. .............;...

. . .. .. ..............•...

. .. . .. .. . i . . .

. . . . . . . . . .. ..•...

. . .. .. .........•...

.... -.-' .

....... . \ .

I:.~-en

................................................................................' - ! .

........ ....................................•. ~... . .

... .....................................•. .. ~... . .............•...

. - !.. . ... - - - .. ; .

.. - - ~ .

0.1 +--......---.-.....-~ .........-r--.....--r-...,........,,....,..,........r---....-......-..........-r-r......,r---......-.....-........""T""T".,.,,,-+

10° 102

Time (hrs)

Figure 4.22. Tensile creep strain versus time at 23°C and 50% relative humidity of Vestodur" 2000.

I:.~-en

10

1

:.. 10 MPa'.

..7 5 MPa:

., ; ; 5 MPa:

:

2 5 MPa,-

', ;

~ :; ;

: :'; ; ;

,. : :

: :

:

102

Time (hrs)

Figure 4.23. Tensile creep strain versus time at 100°C of Vestodur® 2000.

Page 126: The Efecct of Creep

4: POLYESTERS 125

102+--............,.........................."T'T""-.....,..-........,,........,..""T""'T""T"T"I---r--..........,......r"""T'"T'"T"'t~- ............,...............................+10° 102

Time (hrs)

Figure 4.24. Tensile creep modulus curves at 23°C and 50% relative humidity of Vestodur'" 2000.

: : 2.5 MPa:

12.5 MPa: 5 MPa

: :

- .- -.- -.

: :

::: :

:

:

102

Time (hrs)

Figure 4.25. Tensile creep modulus curves at 100°C of vestodur'" 2000.

Page 127: The Efecct of Creep

126 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

4.3.4 Evonik Industries Vestodur@ HI19-Unreinforced,Easy Mold Release PST Resin

//.... ................ ........ /....

............

...................... /.....

.... ........- .....~ .... ...-'.......... ....-- ............

//....- ............

........_.... .... ...................................",. .~ ... :;;

...,. .~ ;,.. / .

..?>W\P3:2.5 W\P3:

....·iN\P3: .-'

102

Time (hrs)

--Measured- - Projected

--_ _-------------_.;_. __ . __ __ ..... ............•...

2

......

3 b......--~···~·····~·· ..~ ~ ------ .

...............

Figure 4.26. Tensile creep strain versus time at 1000 e of vestodur" H119.

103 +-_---'-_""---............................._----'-_""---.........................'-1-_---'-_..&...-.........................'-1-_---'-_..&...-.........................'+

--Measured- - Projected

4MPa-------

---------12 MPa

101+-----.--or--........................'T"""----.--or--........................,'T"""---,.-..--.,.....,,......,...........,..,...---,.-..--.,.....,,......,............r+10° 102

Time (hrs)

Figure 4.27. Tensile creep modulus at 23°e and 50% relative humidity of Vestodur® H119.

Page 128: The Efecct of Creep

4: POLYESTERS 127

-- Projected- - Measured

.... _----_._--_ .. _-_ _-_ . ....... ~ ..- ..2!::!P:r .- -"4 MP- - - -...... a ............................5MP-a- __ -

7.5MP; - __ -

101 +--""'"T'"..............................."'T"T'"r---.........---.----.-""T"""T'""'T"".....-T--or--""T"""""T"""........"'T"T"TT""---.-.............................+10° 102

Time (hrs)

Figure 4.28. Tensile creep modulus at 100°C of Vestodur'" H119.

4.3.5 BASF Ultradu,-@ B452D-Medium Viscosity, Rapid Freezing PBT Resin

2015

..... ~~ .()()~

,\, :

5

. ,.................................................

· , ,· , ,........................................ ; .· , ,· , ,· , ,· , ,· , ,· , ,· . ,· . ,· . ,, . ,, , ., . ,, . ., , .o+--.....................-;.........,.....,""'"T'"...;--.,..............-.....,.........,.....,""'"T'"+

o

5 ...

25+-....................a.....+...............................-+-....................a.....+...............................+

20

:ge 10..tn

15 , -: .- .,C'G ::0.. ::::E .,-

10

Strain (%)

Figure 4.30. Isochronous stress-strain of Ultradur®84520 at 60°C.

12102

· .. . " ~ ., . . .· . . .· . . .· . . ., , . .· . . .· . . .· . . .. .. "." ",' - ~ ~ .· . . . ., . , . .· , , . .· . . . ... ... ... ,

......: :. - - - ~ : : .· . . . ,· . . . .· . . . .· . . . .· . . . .· . . . ,· . . . .

30

10

5

35

40

Ci 250..::E-:g 20e..tn

15

468

Strain (%)

Figure 4.29. Isochronous stress-strain of Ultradur'"84520 at 23°C and 50% relative humidity.

Page 129: The Efecct of Creep

128 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

1510

Strain (%)

5o+-...-..--.--.--i--..........-.....-"""';r--"'--'--'-""'--;--+

o

15

5 ; : , .

-C'lla.~101/1

f-tJ)

Figure 4.31. Isochronous stress-strain of ultraour" 84520 at 100°C.

4.3.6 DuPont Engineering Polymers creeun" ST820 NCO1o-Super Tough,Lubricated PST Resin

2.52.01.0 1.5

Strain (%)

0.5

••••••• '••••••••••••• ••••••••••• 1 ••••••••••• ••••••••••• _., . . .· . .· . .· . .· . .· . .· . .

· . .... . . .. ' , ~ .· . ,, . ,, . ,, , ,, , ,, ,· . . ... .. .· . . .· . . .· . . ., , ,, , ,, , .· . .

o+-r..........,...,r-r-..........,..............-r-..............,...............-.-+0.0

10

9

8

7

- 6C'lla.

::E 5-1/11/1Gl 4..-tJ)

3

2

1

Figure 4.32. Isochronous stress-strain of Crastln'" ST820 NC010 at 23°C.

Page 130: The Efecct of Creep

4: POLYESTERS 129

4.3.7 DuPont Engineering Polymers creetin" SK601-10% Glass FiberReinforced, Lubricated PST Resin

3.02.52.01.0 1.50.5

.....10 hr: --~--JilO: 100hr-.....;...~V.

Strain (%)

o+r-....,....,r-r-r""T"""l"""T""T""......."'T""T.........,.......,-r-T"T""'O"".,........,r-r-r+0.0

5

25 .

10

30

3.53.02.5

......................................... . .. . .

0.5 1.0 1.5 2.0

Strain (%)

" .. .

--···,········.········1·-----· . .

....... - .· ..· .· .· .· .

· .· ..· .. ,.......... -.... ·······1········.········,········,··· .· .· .· .

5

o+r-.........T'T"""'T"T"".........................,I""rT........"T"T"l........T'"T"P.........,-+0.0

40 .

10

15 ..... :.......:........ ;........: : ;........" ." .· .

45

60+'-'.........+-a-o...........JL...a...a...a...a..+..........'4"'""'7-"'+'''''T'-'-+-'-..o....o..:l.+

55

50

Ci' 35~

!.. 30til

Sl 25...-t/)20

Figure 4.33. Isochronous stress-strain curves at23°C of Crastin'" SK601.

Figure 4.34. Isochronous stress-strain curves at60°C of Crastin'" SK601.

4.3.8 Ticona Celanex@3210-18%GlassFiberReinforced,Flame Retardant PST Resin

-'," ~ .-0.8 .- .... -_ ... -.... _.. --.

: 800 e: rature::: 10.9 .. · ·;·Tel11pe... . , .. ..~~~~_ _ .

0.7 - - - . - ' ~. - - - - - - - . - ~ - - - - - - - - -, .

0.6

~o- 0.5l:

.~

en 0.4

1400 e

0.3 ---_.. ----.-- - -------------- --- , ---- ---------- , ..

0.2 - ------,-- ~ -----95°e

0.1 _______________ .. _ , _.. , 38°C --. .

500 1000

Time (hrs)

1500 2000

Figure 4.35. Flexural creep strain versus time curves at 3.4 MPa maximum stress and various temperatures ofCelanex'" 3210.

Page 131: The Efecct of Creep

130 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

~emperature::: 180°C5 : ~ .

· .

· ....................................................... ----- _-- __ .

4 ---- :.. _-_ _ ~ ---- ; ---- .· . .· .· .· .· .· .· .:i"o-3c'j!Cii

2 . • •• _ ••••• ••• •••••••• 1 ••••••••• ••••••••••••· .· .· .· .· .· .

1 : ; ~ 95°C..· . .· .

200015001000

Time (hrs)

500O+---.,.-....---.,.-....-~-....-.....,..-....-.....,..-_i_.....,..-...--.....,..-...-----i--...---....-...--....--+

o

Figure 4.36. Flexural creep strain versus time curves at 13.8 MPa maximum stress and various temperaturesof Celanexf 3210.

4.3.9 DuPont Engineering Polymers Crastin@SK603-20%GlassFiberReinforced, Lubricated PST Resin

2.01.50.5

....;. ~ :. .

. ..........:- .; :- .

o-r-..................,....-r.......,...................,,............,..................""T"""~....-...-+

0.0

20

10

-;-Q.

~401/1

fen 30

60 ..

70 : ~ ..

50

1.0Strain (%)

Figure 4.37. Isochronous stress-strain curves at 23°C of Crastin'" SK603.

Page 132: The Efecct of Creep

4: POLYESTERS 131

4.3.10 Ticona Celanex® 2300 GV/30-General-Purpose, 30% Glass FiberReinforced PST Resin

1.00.80.60.4

. , -_ _-· .· .· .· .· .· .· .· .· .· .· .· . .................................... .

0.2

........................................................· ..· ..· ..· ..· ..· .· .· .· .· .· .

o+--r---i----'-----,r----"""--;-"""'T"""---;-----r--+0.0

10 .....

IUQ.

!.. 30

~(;) 20

50

40

Strain (%)

Figure 4.38. Isochronous stress-strain curves at 23°C of Celanex® 2300 GV/30.

4.3.11 Ticona Celanex® 3300-30% Glass Fiber Reinforced,General-Purpose PST Resin

· ,

: : aooe -0.9 : ; Temperature.~. 1 , .· , .

140°C

· .· .· ,· ,'," ~ ;. --. - ., , ,, . ,, . ,, , ,, , ,

-

· , .• • • • • - •••••••••••••••••••••• '0" •••••••••••••••••••••••••••• ~ ••••••••••••••••••••••••••••• , •••••••••••••••••••••••••• " ••· , .· , .· . ,· . .

0.7 : ~ ~ ., , ,, , ,, , ,, , ,, , ,

0.8 .

0.6 : ~ ~ ., , .

~ : : :-; 0.5 . .

'j!(;) 0.4

95°C0.2 __ .! ••• __ ••••••••••••

· . .0.3 -_ :- _ --_ _ ~ ~ - _ _ .· . ,, , ,, , ,, ,, ,

0.1 : ~ , 38oe

0.0o 500 1000

Time (hrs)

1500 2000

Figure 4.39. Flexural creep strain versus time curves at 3.4 MPa maximum stress and various temperatures ofCelanex® 3300.

Page 133: The Efecct of Creep

132 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

3.0+-o 4-0--- 4-0 -l- .....a.... .....a.... ""'+

: :e:::~80°C-{ l1\pefa\Uf :

2.5 , __: ~ , e , ,, ,

: 140°C

· ,............................... _--_ _-_ _-- --_ _--

, .2.0 : __ .. ;. ····:·······_··-i--·_···_···~···········:············:- : ; .· , . . ,· , . . ,, ..

, .., .,· ,· ,· ,· ,

-~o-; 1.5.~-en

1.0 _.. -. ---'-' .. -.. --_. -!- -.------: ----_.. ---. ~ - _. ~ -:- - -:- ~ ~ - .· , . . .· . . . .· . . . ,· , . . ,, . . . ., .,, .,, ..,

5000450040003500300025002000150010005000.0+---r-......."T'""'"""'T"""..............;--.""'"T'""...........;....,~ ........""T""........"T""'T-;-................-;-.................-r......................-r........""T"""'''''"T'"...................-+

oTime (hrs)

Figure 4.40. Flexural creep strain versus time curves at 14 MPa maximum stress and various temperatures ofCelanex® 3300.

4.3.12 Evonik Industries vestodur" GF3D-30% Chopped Glass FiberPBTResin

~o-

10

1

.. .. .., ;

;

..'. ;

;

:.

.. .,

:.', :.. -,

~ :',

:

:.,. ;

::

:

75 MPa70MPa65MPa60MPa55MPa

102

Time (hrs)

Figure 4.41. Tensile creep strain versus time at 23°C and 50% relative humidity of Vestodur® GF30.

Page 134: The Efecct of Creep

4: POLYESTERS 133

-~o-

10

1 . .::

:

:

:: :

: ::

.

40 MPa

35 MPa

30MPa25MPa

102

Time (hrs)

Figure 4.42. Tensile creep strain versus time at 1000e of vestodur'" GF30.

-C'lID.:E-

:

: :

:

:

-,-

55 MPa

: :

75 MPa

::

102

Time (hrs)

Figure 4.43. Tensile creep modulus at 23°e and 50% relative humidity of vestodur" GF30.

Page 135: The Efecct of Creep

134 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

: : :

:

-,- -.:

35r~a25 MPa

VI

45 MPa:

:

102

Time (hrs)

Figure 4.44. Tensile creep modulus at 100°C of Vestodur'" GF30.

4.3.13 DuPont Engineering Polymers Crastin@SK605-30%GlassFiberReinforced, Lubricated PST Resin

60

Cia..!. 40I/)

~-en

20

...................................... , ., , ,, ,

....; ; ~ .

2.01.50.50+-.....-.........;.....,.....-.........;.....,.....-.........;.....,.....-.......4-0.0 1.0

Strain (%)

Figure 4.45. Isochronous stress-strain curves at 23°C of Crastin'" SK605.

Page 136: The Efecct of Creep

4: POLYESTERS 135

4.3.14 DuPont Engineering Polymers Crastin@TB05-30%GlassFiberReinforced,Toughened PBT Resin

2.52.01.0 1.5

Strain (%)

0.5o-f-r................;....,....,.............................,....,....,....,....,'1""~......-+

0.0

20

50 .

10

60

2.52.01.0 1.5

Strain (%)

................... ~ ... -. .

70

60

50

-;-40ll.

!.1/1:ll 30...-en

20

10

00.0 0.5

Figure 4.46. Isochronous stress-strain of Crastin"T80S NC010 at 23°C.

Figure 4.47. Isochronous stress-strain of Crastin"T80S NC010 at 80°C.

4.3.15 BASF Ultradur@B4300G6-StandardGrade,30%GlassFiberReinforced PBT Resin

o-f-r-...........;-..............;-.............;-.,......,.....-;-.............-j-........-.+0.0 0.5 1.0 1.5 2.0 2.5 3.0

Strain (%)

20

40

50

60 .

10

-;­ll.:z:-; 30

1/1e-en

2.00.5 1.0 1.5

Strain (%)

o+-."""T""".................."""T"""..................--.-.....................--.-...........+0.0

25 .

75

-;­ll.!. 50 ..

~-en

Figure 4.48. Isochronous stress-strain of Ultradur'"84300 G6 at 23°C and 50% relative humidity.

Figure 4.49. Isochronous stress-strain of Ultradur'"84300 G6 at 60°C and 6% relative humidity.

Page 137: The Efecct of Creep

136 THE EFFECT OF CREEP AND OTHER lIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

3.02.52.0

· .. .· .· .· .· .· .· .· .· .· .· .· .· .· .· .· .

0.5O+r"T""T".....,................r-t""'......."'T"I'............,."T""T".......T"'I"'" ........r+0.0

· . . . ~

: : : ~: ,,'<::' ~: : : ,,'<:'. ,,'-' \)\)40 : : ~..... .; "\ ..· . . .· . .· . .· . .· . .· .· .· .· .· .· .· .· .

•• p .· . . .· . . .· . . .· . . .· . . .· . . .· . . .· . . .· . . .· . . ., . . .· . . .· . . .· , . .10 : , : -: ; ..· , . . .· . . . .· . , . .· . . . .· . . . .· . . . .· . . . .· . . . .· . . . .· . . . .· . . . .· . . . .· . . . .· . . . .

30-caa.:E-IIIIII~ 20..

tJ)

1.0 1.5

Strain (%)

Figure 4.51. Isochronous stress-strain of ultracur'"84300 G6 at 140oe.

•••• ••••••••• •••••••••• 1 •••••••••· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .. . .••• p .

. . .· . . . .... ' : .· . . . .· . . . .· . . . .· . . . .· . . . .· . . . .· . . . .· . . . .· . . . ,· . . . ., . . . .· . . . .· . . . .· . . . .O+r"T""T".....,................,,......,......."'T"'I'............,...............r-t""'.......,-+

0.0

10 .....

40 .

30-caa.:E-

0.5 1.0 1.5 2.0 2.5 3.0

Strain (%)

Figure 4.50. Isochronous stress-strain of ultradur"84300 G6 at 100oe.

4.3.16 Evonik Industries Vestodur@ HI19-GF3O-30% Glass FiberReinforced PST Resin

1

--:::::::::::==-: --: :

: -: :::

:

:

40MPa37.5 MPa35MPa32.5 MPa30MPa27.5 MPa25MPa

22.5 MPa20MPa

102

Time (hrs)

Figure 4.52. Tensile creep strain versus time at 23°e and 50% relative humidity of vestodur" HI19-GF30.

Page 138: The Efecct of Creep

4: POLYESTERS 137

10+-_........---r.___'_.....................&.l-_---r._.....................................__"--~_ .................."""__-~---'- .............................._'+

--Measured- - Projected

-~o-c'i!-UJ

- - --L -~ -== :=:t= === ===F "- --- - - --t:: ==== ~ ====== == === =+ ---- - - --- - --

l = :::: ~~ :;: ;; ~~~~~ :-:-= == :±: = ::: ~~~ ;; ;:; - - - -1 : .;.:.:.:.:.: _._._.

25MPa22.5 MPa

20MPa17.5 MPa

15 MPa

0.1 +---r---.---.-.......'"'T'"T"TT""---.--,.......,--.-"T""T"TT'T--.....-...,......,......,..................,....--...,.....--.-.....,....................-t-10° 102

Time (hrs)

Figure 4.53. Tensile creep strain versus time at 100°C of vestodur'" HI19-GF30.

20MPa

. ,.......... __ ._-_._--_ _-_ _-_ _---_ -,.. _-_ _-_ _- --- .. -----: 40 MPa

,MPa

"............ ~

102 +----.--....-......._._......"T"""---.--....-............,....T""T"'lrT'""---.--.......................T""T"'lrT'""----..-.............................r+10° 102

Time (hrs)

Figure 4.54. Tensile creep modulus versus time at 23°C and 50% relative humidity of Vestodur" HI19-GF30.

Page 139: The Efecct of Creep

138 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

: r - - Projected l: -- Measured

I- ::======±:==-----~-------J.. 15 MPa

r -------t- -= ====~======= ± ---- ------ - --1 ' , : -----.......................... ":" : ; '25' MPa" '" .

· . .· . .· . .· . .· .· .· .· .· .· .· .· .· .· .· .· .· .· .· .· .· .· .· .· .· .· .· .· .· .· .· .0.1 +--__._--.---.__._"'r'""T'"~--..---.--.- ......."'T""T'"...;_--....-,......,,..........."'T"""'I'..........,i__-~--.-.....- .......................+10°

-CllDo;§.III::::l::::l"0o:::ECoQ)

~o.!'iiis:~

102

Time (hrs)

Figure 4.55. Tensile creep modulus versus time at 100°C of Vestodur" HI19-GF30.

4.3.17 DuPont Engineering Polymers Crastin@ SK609-50% Glass FiberReinforced, Lubricated PST Resin

2.01.5

10P hr

1.0

Strain (%)

• • •• _ • ~ _ ••••••••• _ •• J' • • • • • • • • • • • • •· .· .· .

0.5

. . ... ,_ , .

o+-..............,......,......;....,......,..............-;j-,-..,......,.............;.....,.............,......,...-I­0.0

20

-CllDo!..40III

~...th

1.00.8

~ .........'"'~ .

: ~": ",

0.4 0.6

Strain (%)

0.2

· . . .. : : .· , . .· . . .· , . .· . . .· . . .· . . .· . . ,· . . .· . . .· . . .· . . ,· . . .· , , .· . . .o+--....-r---.---r-~--r-..----r---..-+0.0

20 ......

80

IIIIII~ 40...th

60 ; : ; ....-.. . ..Cll . ..

Do : :::::E : ::"-" . ..· ..· ..· ..· ..· ... .

Figure 4.56. Isochronous stress-strain curves at23°C of Crastln'" SK609.

Figure 4.57. Isochronous stress-strain curves at60°C of Crastin® SK609.

Page 140: The Efecct of Creep

4: POLYESTERS 139

4.3.18 DuPont Engineering Polymers Crastin@T841FR-10%GlassFiberReinforced, Toughened, Fire Resistant PST Resin

5

25

30

10

c;- 20c.!.III! 15..en

· . ................................................· . .· .· .· .· , .• • • • • • ~ ••••••••••••• ',' ••••••••••••• t •••••••••••••· . .· .

· . ...........: -: : .· .· .5

25

35

30 ~ : ; .· .· .

10

71 2 3 456

Strain (%)

o+-.....-i--r--;.~-;-"""T""".;-.....-i--r--;.~-+

o432

Strain (%)

1o+---.--.;----r--j----.--j----._-+

o

Figure 4.58. Isochronous stress-strain of Crastin"T841 FR at 23°C.

Figure 4.59. Isochronous stress-strain of Crastin®T841 FR at 60°C.

4.3.19 DuPont Engineering Polymers Crastin@T843FR-20%GlassFiberReinforced, Toughened, Fire Resistant PST Resin

43

100 hr

2

Strain (%)

10 hr

................................... .. .. .

o+----r--j----.--j----.--j----.r---+o

40

10 ...

30-l'IlC.

!.::l~ 20en

43

.................... \ .· .

2

Strain (%)

1

· .· .. \ .· .· .

· .. . . . ~ '" .

O+---.---r----r--r----.-......---.--+o

40

10 ..

50

-l'IlC.

!. 30III

!..en20

Figure 4.60. Isochronous stress-strain of Crastin®T843FR at 23°C.

Figure 4.61. Isochronous stress-strain of Crastin'"T843FR at 60°C.

Page 141: The Efecct of Creep

140 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

4.3.20 DuPont Engineering Polymers Crastin@T845FR-30%GlassFiberReinforced, Toughened, Fire Resistant PST Resin

. ............................................

O+-----r---r----...--.,...---+o

40 .

50 ....

10 .....

1 2

Strain (%)

Figure 4.63. Isochronous stress-strain of Crastin'"T845FR at 60°C.

2

· .. . , ~ .

· .- .· .

O+-----r---j-----..---i----l­o

60

20

10

50

"iU 4011.

!.III

2! 30-en

1

Strain (%)

Figure 4.62. Isochronous stress-strain of Crastin®T845FR at 23°C.

4.3.21 Product Comparisons of PST ResinsTicona Celanex'" 3300-general-purpose, 30% glass fiber reinforced PBT resinTicona Celanex ® 3310-30% glass fiber reinforced, flame retardant PBT resin

4.0+---""'"----I----'---~ __-'-__..I______'---_----l.__---'-__-+

- CelaneX® 3300- - CelaneX® 3310 (with Fire Resistant Additive)

· .• l ••••••••••••••••••••••• ~ •••••••••••••••••••••••· .· .L..- ----' : :

· .· .· .

: : : ·; .. · 140°C.. ·

-------~-------~-------~-------:-------· . . ,

_______ ~ _ _ _ _ _ _ ~ ~ _······~·············95°C··_·

_______ ~ ~ : 38°C

. . . . . . . . . . . . . . . . . . . . . . . ; : i ; .· , , ., , . ., , . ,, . . ., , . ., . . ,· .

2.5 ' .

0.5

1.0

3.0 : ~ ; : ..:. ~800C"

: : : 1 ef(\per~t~e.: - - •

................ :.::~. :.>._.-..:-:.:-:.:-: :::.~ .--: .--------;---......~.~-:.:-.-. ..__.~--=-.~-~ _ __ .~-_._._-------------_ ~ ~ _---_ .· . . ,· . . .· . . .· . . ., . . .

~~ 20c .'f!en 1.5

50004000300020001000O.O+---.....-----r-----.---.,...--........---r---..-----r--..........---+

oTime (hrs)

Figure 4.64. Comparison of creep strain versus time of Celanex® 3300 and Celanexf 3310 at a stress of13.8 MPa showing the effect of a fire resistant additive.

Page 142: The Efecct of Creep

4: POLYESTERS

Ticona Celanex ® 2500-general-purpose, nucleated, easy flow PBT resinTicona Celanex '" 2300 GVIlO-general-purpose, 10% glass fiber reinforced PBT resinTicona Celanex'" 2300 GV/20-general-purpose, 20% glass fiber reinforced PBT resinTicona Celanex" 2300 GV/30-general-purpose, 30% glass fiber reinforced PBT resinTicona Celanex ® 2300 GV/40-genera1-purpose, 40% glass fiber reinforced PBT resin

141

:, ,

GV1/502300: -:

"

: : 2300 GV1/30: -,:: 2300 GV1/20

:: : : 2300 GV1/10

-, , 2500'

:

16000

14000

Ii 12000Q.

::E-1/1 10000.=~-e0 8000::iii:c.ellell

6000...0c;...~ 4000><ell

u:::2000

o10° 10'

Time (hrs)

10' 10'

Figure 4.65. Comparison of flexural creep modulus versus time of Celanex® resins with different levels of glassfiber reinforcement at 23°C and a stress of 10 MPa.

, , ,

" 2300 GV1/50-: :

:2300 GV1/30

: : -:

2300 GV1/20:

2300 GV1/10, .. :

: : 2500

16000

14000

Ii 12000Q.

~1/1 10000.=~'tl0 8000::iii:c.ellell

6000...0c;...~ 4000><ell

u:::2000

o10° 10'

Time (hrs)

10' 10'

Figure 4.66. Comparison of flexural creep modulus versus time of Celanex" resins with different levels of glassfiber reinforcement at BO°C and a stress of 5 MPa.

Page 143: The Efecct of Creep

142 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

4.4 Polyethylene Terephthalate (PET)

4.4.1 Ticona Impet@610R-13%GlassFiber/MineraIReinforced,RecycledPET Resin

;

,23°C;

60°C

; ;

;

Time (hrs)

Figure 4.67. Creep modulus versus time at a stress of 13.8 MPa of Impet® 61OR.

4.4.2 DuPont Engineering Polymers Rynite@415HP-Toughened,15% Glass Fiber Reinforced PET Resin

5 - ; , ; ; -.· . . ,· . .· . .· . .· . .· . .· . .· . .· . .

60°C

·········..··········:···············23"C··

· ............... ; __ .· .· .· .· .· .· ,· .· .· .· .

· .··,····················---r················ __ ····-.··· __ .· . .· . .· . .· . .· . .· . .· . .· . .· . .

· .••••••••••••••••••••••••••••••••••••••••••••••• j •••••••· .· .

2

1 ..

4 - ; _~ _ : _-_ .

Time (hrs)

Figure 4.68. Flexural creep strain versus time at a stress of 27.6 MPa of Rynite® 415HP.

Page 144: The Efecct of Creep

4: POLYESTERS 143

· .----·----·······-····.····························t···.-_.-· .· .· .· .· .· .

-- _---:._- .

. -----. --- - . --------:- ---. -- -.. - . -: ----. -------. ---- -- -. - ~ .· . .· . .· . .· . .· . .· . .· . .· . .O+--...............-.-.........""T""T'"...;---.----.-..............................;.--........----r---.-.....................;---...--...........-.-..............-t10°

500

3000

III..:!.g 2000o:EQ.CI) 1500eo­ce 1000C'llQ.Q.c(

-C'll

!i 2500-

102

Time (hrs)

Figure 4.69. Flexural creep modulus versus time at a stress of 27.6 MPa of Rynite® 415HP.

4.4.3 DuPont Engineering Polymers Rynite@FR515-FlameRetardant,15% Glass Fiber Reinforced, Higher Heat PET Resin

4.0+--.........---'----'-..................a..I-_---'-____'..........~ ................._ ____' ""'"-.........................JI--_""'"-.........-'--..................;.

......., .

. ···········,·····························i············ , .· . .· . .· . .· . .· . .· . .· . .

· .......................................................... . .· . .· . .· . .· . .· . .· . .· . ........................ . ..: ; : .· . .· . .· . .· . .· . .· . .

2.5 -- -.. ----- :- -.. -------- ;. . .. . . . . . . . . . . . . . . . . . . . . ; -.. ----..· . .· . .· . .· . .· . .· . .

0.5

0.0+--.......-...--.-....................,...-.....,..--...........-.-......,...r-TT-----.-~ .........."""T""'T""T"T"1r---..--......._ ........,....,....+10°

3.0 - --.-------- 0._0:.- _0 ~ :.... . .

3.5 -0.---- _- --;- ------ ~-- -.. __ .. -._ __ -: .· . .· . .· . .· . .· . .· . .

-?!-- 20.S .E-Uj 1.5

102

Time (hrs)

Figure 4.70. Flexural creep strain versus time at a stress of 27.6 MPa of Rynite® FR515.

Page 145: The Efecct of Creep

144 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

6000 +--_"--........--'-'.........&.1-_""'"---'--....................&.4-_-'--............................""'-4-_......................................0...0+._................................................

5000

-ftID.::i-; 4000

=='t'o::i 3000c.CI)

2!oC 2000

2!ftIC.C.ct 1000

.... __ J............ . __ ..: ; __ .. : - . __ .. . .· .· .· .. . ..... _ _------------ _-------------------_.,------- _--, .. _--_ _--

O+--or--"T""""l.........I"'T"'I'"...;--...---T-,....,.."r'"T"'I"TT""-........-r-........"'T""T"".......---r-..,....................T"'rT-..,...-..,...""T"""'I,......,........r10-1

Time (hrs)

Figure 4.71. Flexural creep modulus versus time at a stress of 27.6 MPa of Rynite@ FR515.

4.4.4 Ticona Impet@330R-30%GlassFiberReinforced,Recycled PET Resin

..

....................................... .. .-

·············~·125°C

103 +--or--"T""""l.......I"'T"'I'"..-r---T--r-........"'T""T""rTT'"-..,...-..,......,....,.............-r---.----.,.-..,..................,..----r---,.........""T""'I'........+10°

Time (hrs)

Figure 4.72. Creep modulus versus time at a stress of 27.6 MPa of Impet@ 330R.

Page 146: The Efecct of Creep

4: POLYESTERS 145

4.4.5 DuPont Engineering Polymers Rynite@ 53D-General-Purpose,30% Glass Fiber Reinforced PET Resin

1.00.8

· ... .· .· .· .· .· .· .· .· .· .

0.2

· .. . . -,- ~ - .

o+---r----r-or--"""T"""---r-r---.----r-...-+0.0

20

10 ....

Ci' 40D.:E-

50 ; , .· .· .· .· .· .· .

60

0.4 0.6Strain (%)

Figure 4.73. Isochronous stress-strain of Rynite® 530 at 23°C.

2.0+-----'--..........................01-----"--"--'-.........."""'"'-l_---'----'-..................""""'-1-_......................................."'"'-l-_.......................................

1.5 . -_.-_.-_.-_.-_ .. _. --- .:.. -_.-_.-_.-_.-- -_._.. -~. _.. _.. _.. _ _.. - _.. -_.. _. -_._ --:-_ .. -_.. _ .

-~o- 1.0c.~

en

0.5E=~~~ ..~ ~ .

0.0 +-----,.........,...........................r-----r---r--r-.,.....,....,I"'T'T'I-......-......--.-.I'""I'"T"T"TT---r---r-.........""I"'T'"I"'TT'"-.....-......-.,....,.................10.1

Time (hrs)

Figure 4.74. Flexural creep strain versus time at a stress of 27.6 MPa of Rynite® 530.

Page 147: The Efecct of Creep

146 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

..... 125°C.....

-._._-.- _------_1._----------_._-------_1. _ __ .1. • __ ••••••••••••__ •••••••••••••••• _, , . ,, , . ., , , .· , , .· , . .· . . ,

· .. -.. -.. ---- ----. -. ~ ------. --. - . -.. - ~ -.. --. -.. --- . -.. --. -_. -----.. - -.. -.. --. --:. --. - --. -. --.. --. -

" ." ... ... ... ...... . . . . . . . ~ -.. ~ -.. -- . - -. ---.. -. . .. . -.. -.. - : -------. - ." ." .. .. .

0+----..............................r--___..___..--.-T""T'"'lr-TTT-~~ .........,.......,......,.-....,....."""T""""T"""T""T"'O"'I""T'""-~""T'"'"'"" ...................

10.1

10000

9000

8000-ClSQ.

:E 7000-til.2 6000::::l't'0:E 5000c.CDCD 4000..0-c 3000~ClSc. 2000c.

<C

1000

Time (hrs)

Figure 4.75. Flexural creep modulus versus time at a stress of 27.6 MPa of Rynite® 530.

4.4.6 DuPont Engineering Polymers Rynite@ FR53O-FIame Retardant,30% Glass Fiber Reinforced PET Resin

1.5 __ .. __ : : .

;e-o- 10c .'j!-en

0.5 . . .. .. .

0.0 +--"""'T"""__'T___.."""'T"""..............,.--r__~~ .......T""T'"'I-;---"""'T"""__'T___.."""T"""..............,.--r__~""T'"'"'"" .......T""T'"'I+

10° 102

Time (hrs)

Figure 4.76. Flexural creep strain versus time at a stress of 27.6 MPa of Rynite® FR530.

Page 148: The Efecct of Creep

4: POLYESTERS 147

.... - ._-_ _--_ -: ---_ _ __ .. _--- _-_ - _- -_ _--

.......................:. - - -.. - -.. :.. -.. -. -.. - --.. - ;. -. -----. --. -.. - ~ ----. -. - ., . , ,· . , ,· , . .· . . ,· . . .I , • •

· ....................... : : :................ . ·125°C······ . . .· . . ., . . ., . , ,

0+--.--.........."""T""T...........;----.,.-.-.,........................;-~----r~"T""T'"T"T'T'1r--___.____._"""'T"""T""T'"'l"""T'f-~~~ .........~10.1

8000

1000

Ci 7000o,:E-; 6000~

~-g 5000

:Ego 4000foC 3000(I)..[ 2000Q.«

Time (hrs)

Figure 4.77. Flexural creep modulus versus time at a stress of 27.6 MPa of Rynite® FR530.

4.4.7 DuPont Engineering Polymers Rynite@935-LowWarp,35% Mica/Glass Fiber Reinforced PET Resin

1.0+-_........---"---'-............................__'---............o...-'-'-............4-_........---"---'-.............................__'---.............................~

0.8 : __ . __ ;-_. __ __ _-: __ _--_ .· . .· . .· . .· . .· . .· .· .· .· .· .· .0.6 : : .

e

I.! L~.:;.:.;.~--~"':"':"':":~~=~~~.Ui 0.4 --.:--.. --- ; --- :.. ---- -- .

0.2 ·····f····························.;···················.'.' .. '.'.· . .· . .· . .· . .: : : 23°C· . .· .

0.0 +--"""'T"""----r---.-"""'T"""T""T'",...,...;.--.--...............-.......T""T'"'l-i--"""'T"""~---.-"""'T"""T""T'",...,...;.--.-- ..........,.....,...............+10° 102

Time (hrs)

Figure 4.78. Flexural creep strain versus time of Rynite® 935 at a stress of 6.9 MPa.

Page 149: The Efecct of Creep

148 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

· . .· . .•••••••••••••••••••••••••••• j •••••••••••••••••••••••••••• j •••••••••••••••••••••••••••• j ••••••••••••••••••••••••••••· . .· . .· . .· . .· . .· . .· . .

· . ..--._-_ --_ __ .. ---_. __ ._-_._-_.__ ._-_ ------_._--_ - __ ._-.. _-_ .· . .· . .. .. .

· . ............... --_ -.-------_ .. _-------_ .. __ -.. _-_. __ . __ _-----_ -_ - .· . .· . .· . .· . .· . .· . .· . .

............................ ~ -. --.. ------ : - ---- :- . --- -.. --- .· . .· . .· . .· . .· . .· . .· ... . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . --. - . -.. ---------.. --. - -.. - --------- ~ -.. --. --. --- --. ---. ------

· ............................... --_._--- _-_._---_ _--_.· .· .· .· .· .· .· .

0+--.........___r~ ........."T""T'"......,--....-.........-.-...................,...---..,.-......-........"""T""'l........~- .......---r---.-....................-r10°

8000

7000

-:. 6000::E-en 5000~

~'tJ0

::E 4000Q.IDID.. 3000o...CID.. 2000ClIQ.Q.«

1000

102

Time (hrs)

Figure 4.79. Flexural creep modulus versus time at a stress of 6.9 MPa of Rynite® 935.

.10000+------'--"--..................--01--....................................14----'-----'.........--'-...........""""'-4--""---.................................'+

•••• _ ••••••••••••••• _ ••••••• '•••••••• __ • __ • __ • __ ._ •••• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • J ••••••• ••••••••• • • • • • • • _· . .· . .· . .· . .· . .· . .

•••••••••••••••••••••••••••••••••••••••••••••••••••••• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • J •••••••••••••••••••••· . .· . .· . .· . .

· . ..........................................................., _ __ ._--- _ -.. _._---_ .· . .· . .· . .· . .

~ •...•...•••••••••••••••••••••••••]•••••••••••••••••••••••••••· .· ~?~~J

O+--.........~__..,. ................T"TT--.--..........,..............T""T"l...,.--.........---r~ ........."T""T'"......,--or--....................................10°

1000

. .5000 ----_. _. ---_. _. -_. ----_. ----;_. ------.----------_. _. -_. --.; ------------_. _ ~ ---_. --_ _. _. --- fo

· . .· . .· . .· . .4000

8000

9000

-c 3000 : _. __ . . : ._ __ . __ . . _:_ _. . ._ .l!! . . .ClI : : :Q. . . .Q.«

en~ ..~ 6000 .--------------_. -----------;- -------------------_. -_ ; -_ ----_. -_. _ ~. -_. ------_ --------- fo'tJo::EQ.IDe(J

IiD.~ 7000

102

Time (hrs)

Figure 4.80. Flexural creep modulus versus time at a stress of 13.8 MPa of Rynite® 935.

Page 150: The Efecct of Creep

4: POLYESTERS 149

. -_.;-----_ _------;_ ., ,

_____________ • __ • __ • __ , ••• __ ••••••••••••••••• , •• •• __ • ••••• L •••••• __ • __ • __ •••••••• L •• _, . . .· . , ., . . ,, . , ,, . . ,· , . ,

, , ,----- __ _--, __ ,------_._--------_ , .. -----_. __ . __ ., ,, ,· ,· ,. , ,._--- - -._-;- .. __ ._-------_ ; -_ __ .. _;-_ ; _----_ ., . . ., .,, .., .,. ....................... ~ -.. -----. - ~ -- ., ,, .· .· .· .

0+--.--,.........,............"T"T"Tr--~~ ........."T""T"'.........-__.___._"""T"""........."TTT"-.............."T"""T""'T'"T"lr-rr-.......-.......-....................10-1

10000

9000

8000-C'lID.::E 7000-II).a 6000~'a0

::E 5000Q.GlGl 4000..0-c 3000Gl..C'lIQ.

2000Q.<C

1000

Time (hrs)

Figure 4.81. Flexural creep modulus versus time at a stress of 27.6 MPa of Rynite® 935.

4.4.8 DuPont Engineering Polymers Rynite@ 940-Low Warp,40% Mica/Glass Fiber Reinforced PET Resin

2.0+-_..........---'----'-....................I..l.o.l-_---'""--....0...-..........................-1--_..........---'----'-...................I..l.o.l-_---'""--....0...-...........................+

1.5 .. --.--.---------.------.-. --,- -.--------- -.. ----.-.--------- --------.- .--- -. -

~o- 10c ..~-(IJ

:, 23°C-~~_._. __ ._--------:. __ ._-_._.-. __ . __ _.:- .. -.. _---------_ _--:--_._--_ _------------_.

, ,

0.0+--.......---.----.-"""T'"""T'""'T"""r-T"'f""---...---.......-........................-r--"""T'"""---.----.-"""T'"""T'""'T"""r-T"'f""---...---.......-............................10° 102

Time (hrs)

Figure 4.82. Flexural creep strain versus time at a stress of 27.6 MPa of Rynite® 940.

Page 151: The Efecct of Creep

150 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

-. -----. --. --. -- ~ ------. --. --.. -.. -.. --: - -. .. . - ----. -.. - -.. ~ -.. -. ------.. --.... ... ... ... ... .__ ••••••••••••••••••••••••• __ ••• __ •• •• 1 ••••••••••••• • ••

· . .. l __ . t • •• •••• t ••••• __ • __ • __ •••• •• l ....••••...... __ .· . . ,· . . ,· . . ,· . , ., . . .· . , .

.. .. _-_ ;_ .. __ __ __ . __.;_ ----_ ······················r·················· __··.. ... ... ... ... .

...................... ; ; __ ; __ .· . .· . .· . .· . .

0+-----,..................."'T""T"T'T"T"r----.----.-.....,....T""T'"'lr-rTT----.----.-"""T"""'I.........TTT"-~~"T"""T" .........."'TT"""-...,..............-.......,....1'""T"T'"+10.1

10000

9000

8000Ii'D.::E 7000-til~ 6000~

"0::E 5000c.G)G) 4000..0-l: 3000G)..

C'Gc.2000c.«1000

Time (hrs)

Figure 4.83. Flexural creep modulus versus time at a stress of 27.6 MPa of Rynite® 940.

4.4.9 DuPont Engineering Polymers Rynite@ FR943-Flame Retardant,43% Mica/Glass Fiber Reinforced, Higher Heat, Low Warp PET Resin

2.0+-_.........----"---'-.............................__'--....a...-................................-...-_.........----"---'-............................._----''''---....a...-................................+

1.5 _- __ : --: - --.. --------: -- .

-~o- 10l: .

e-en

0.5 -- __ __ .

0.0+--"""'T"""---.---.-"""'T"""....,....,,...,..j------,...--...,..........._.......,..........~-"""'T"""---.---.-"""T"""....,....,I""T'T"-----,...--...,.... ..........."""'T""".......-+10° 102

Time (hrs)

Figure 4.84. Flexural creep strain versus time at various temperatures and at a stress of 27.6 MPa of Rynite® FR943.

Page 152: The Efecct of Creep

4: POLYESTERS 151

, , ,_··_------------------r---------_·_···-------,--_····· .. --- ----.-- .. -- -----.--· . , ., , . ,, , . ,· , , .

--. --.-.. - ~ . . . . . . . . . . . . . . . . . . . .. - --------. -- ' --.. -. -.. - -.., ", ", ", ", ,

, "....... _---------- ----_ ---.-----_ __ __ __ -.--_ __ ._-.. _-_.-, . . .· . . ., , , ,· . . .· . , .

...................... ;_ .. __ ;.................. .'. __ .. __ . __ :._------_ ." ," ," ," ,

...................... ; ; ; : ············60°C·····, . . .· . , ., , .

0+-~.__ ........."'T""T"........--___.,.___.,..........T""T""1"'T'T'I-~~"""T"""',......,.TTT'"-....,........,...."T""T .........r-rr--.......-.......-.........r-T"T"....

10-1

11000

10000

9000-IIID. 8000::E-C/) 7000~

~

" 60000::Ec. 5000ellell...0 4000..s::::ell 3000...IIIC.c. 2000«

1000

Time (hrs)

Figure 4.85. Flexural creep modulus versus time at various temperatures and at a stress of 27.6 MPa ofRynite® FR943.

4.4.10 DuPont Engineering Polymers FR946-Flame Retardant,46% Mica/Glass Fiber Reinforced, Higher Heat, Low Warp PET Resin

2.0+-_--'-----L---'o.--'-...................__'---"""'---""O"'-...................+-_--'-----L---'o.............................__'---"""'---...........................+

1.5 ---- -- ; ------ --.---- ; _ : _-_ -_ .

-~o- 1.0s::::

f!..en

125°C

0.5 ; : ; ·60°C· ., ,

:: 23°C

0.0 +--__.____.,.---.-__._T'""'T'""I'""T'T-~.__......__""T'"'"'"" .........T""T'"'I~---.----.,.---.-....,....T'""'T'""I'""T'T-~.--......--""T'"'"'"" .........T""T'"'I+10° 102

Time (hrs)

Figure 4.86. Flexural creep strain versus time at a stress of 27.6 MPa of Rynite® FR943.

Page 153: The Efecct of Creep

152 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

.--_ -,-. __ _-_._-_..

· .· .---_._----- .. __ -_._---_ .. __ . __ .. __ -----_. __ .. __ , .

· ........................ ~ ~ ~ : ., . , ,, , . .· , . .· , . .· , , ,

· . ....................... ; ; ; .· . .· . .· . .· . .· ....................... ~ :- : : ., , , ,, , , ,, , , ,, , , ,

· .••••••••• _ •• ••• t. •• • ................... • • _ .· . .· . .· . .· . .· . ., . . ............... _-_. __ .. _----_._-----._-_ _-_. __ __ ._-_ __.. __ ., . . ., . . ,, . . .· . . .· . . .· ..

_. 0 ••••••• -------_ •• _- _---_._-_ ••••••• _- .. -- •• _- •••••• .. •••••••• ••· . .· . .· . .· . .· . .· , , ,·--····-----·------·--r------·--··········· ···----·------··--····r··------·--·--········ ..··--·--· ..... -... ----., . , ,, . , ,, . . ., . . .· .

O+-~r__ ............................r--~~--.-..,...,..,""'"""'---.---.-"""T""'lr-T"t'......,.-_r__r_...,.....,. ..............,.--~~ ....................10-1

10000

9000

8000-l'ClD.::i 7000-C/)~ 6000~

~0::i 5000c.CDCD 4000..o-c 3000CD..l'ClC. 2000c.c:(

1000

Time (hrs)

Figure 4.87. Flexural creep modulus versus time at a stress of 27.6 MPa of Rynite® FR943.

4.4.11 DuPont Engineering Polymers Rynite@SST35-SuperTough,35% Glass Reinforced PET Resin

3.0+-_-'----a.--..-'-...................__'--.............o...-.....................+-_-'----a.--..-'-...................__'--.......................................+

..............................2.0 ;. ····i···························· .· .· .· .· .· .· .· .

1.0 ...

2.5 ' a ••••••••••••••••••••••••••••• '••••••••••••••••••••••••••••

-~o- 1.5c.~-U)

0.5 : ; : .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .0.0+--__~___._ __............_r--r--.......-""T'"'"'""...................;_---~---.--r- ..............;.-_r--.......-""T'"'"'""....-r-........+100 102

Time (hrs)

Figure 4.88. Flexural creep strain versus time at a stress of 27.6 MPa of Rynite® SST35.

Page 154: The Efecct of Creep

4: POLYESTERS 153

6000+--'---.............................._...._----a----a.........................I-----'-----".............................----'----'-...........................- ......................................"""""t-

..............., __ _-- -.. _--_..

· . . ,------ --., -- ------- ..----- .. ·········· __·_--.·_-· __········ __·····--r--······· __·· - .· . . ,, . , .· , . ., , , ., . , ., . , ., . . ., , , ., . , .· , . ,

, ,. --. -- -----. -.. -- ~ --- . --. -----. --------- -: .

, ,, ,, ,, ,, ,, ,, ,, ,· .

O+--....--........."""T""T"'T'T"O~----.,........, .........""T""'T""T"T'Tr-........----r--.-"T""T"".....-T1r---.---.---r-................,---.---.-"""T"""l............-t10.1

5000-ClIa.:E-; 4000:::J:::J'tJo:E 3000c.G)e(J~ 2000

fClIc.c.

<C 1000

Time (hrs)

Figure 4.89. Flexural creep modulus versus time at a stress of 27.6 MPa of Rynite® SST35.

4.4.12 DuPont Engineering Polymers Rynite@ 545-General-Purpose,45% Glass Fiber Reinforced PET Resin

1.5+--"--..............................'-4---"--..............................'-4---"--..............................'-4---'---..............................'-4---'---..............................-r

........ -.. ~ : ., ,, ,, ,, ,, ,, ,, ,

.......................: -

· . , ................................. __ _-.. _-_.; _; --------, ----_ .· . , .· . , .· , , ,· . , ., . . ., . . ., . . ., . . ., . . ., . , ,· . , ,· , , ,· . ,· . ,· , ,· , ,· , ,· ,, ,, .

1.0

-~0-c';.......en

0.5

0.0 +--....--....................,...,.,,,...--....--........."""T""T...,...,.,,,...--.-........."""T""T...,...,.,,,...--.-........."""T""T"'T'T"O~-.- ........."""T""T............10.1

Time (hrs)

Figure 4.90. Flexural creep strain versus time at a stress of 27.6 MPa of Rynite® 545.

Page 155: The Efecct of Creep

154 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

· .--·············,······.··--·.··········r··.·---------- .· .· .· .

· .•••• 1 ••••••••••••••••••••••••••••••••••••••••••• _--_·. __ •••••••••••••••••• __ .. __ ••••••••••••••••••••

•••••••••••••••••••••• J ••••••••••••••••••••••••••••••· .· .· .· .· .· .· .· .· .· .· . , ................... __ -_ _---_ .. __ .. ,-_ __ _------"._-_ -._---_.• • , I· . , ., . , ,· . , ,, , . .· . . ., . . ,· . , ,, , . ., , . ,

0+--....-.........................T"""'"---.---.......................r---r---.........."T""T'"1"'T'T'1-.........--r-r-........."'TT'f-.....................,....,........~

10.1

5000-CllD.::iE-; 4000:::J:::J

't:Jo

::iE 3000c.(I)

fo~ 2000

fCllc.c.« 1000

Time (hrs)

Figure 4.91. Flexural creep modulus versus time at a stress of 27.6 MPa of Rynite® 545.

4.4.13 DuPont Engineering Polymers Rynite@555-General-Purpose,55% Glass Fiber Reinforced PET Resin

0.4+-_........----'"---'-..................~- '---....o..-..........................-I---........----'"---'-..................~- '---....o..-...........................+

-

0.3 : : --. --. -- : -- .· . .· . .· : : 125°C

~02 ...~~ . L==~+:':';':';':":':';';":';';'-----:: :CIJ ::· .· .· .· .· .· .01 ' . .. . : ; ; ""'23°C

· . .· . .· .· .

0.0 +---r---r--r-r-.............-r-............-.....-.,.....,...............-r---r---r--r-r-.............-r-............-.....-.,.....,...............,.-r10° 102

Time (hrs)

Figure 4.92. Flexural creep strain versus time at a stress of 6.9 MPa of Rynite® 555.

Page 156: The Efecct of Creep

4: POLYESTERS 155

: :

: 125°C-: ::

::

.'. .0.- : :

'0' ; '0'

23°C:

: ::

: :

:

:0.010°

0.4

0.1

0.3

0.5

c'j!Ci) 0.2

~o-

102

Time (hrs)

Figure 4.93. Flexural creep strain versus time at a stress of 13.8 MPa of Rynite® 555.

1.0+--........---'......................................I---........---'----'-~ ........""""""--"'---........~~ ......."O'+_-----'-~ ..........................+

125°C0.8 --_. _ -: .. _ -_. -_.. -_. -_. -_ f····· .. · .. ···· .. _.. - _.. - _ : - .. _.. _ .

• • 0

• • 0

• • 0o •

o •o 0

• 0

• 0

0.6 --.----.--.---------'.-~o-c'j!Ci) 0.4 • 0 •-----------------------------,------ .. --------------_.··---f···········----------·--·····,··········--·--··· .

0.2 _ __ .. _.. _.:_. _.. _ _.. : .. _ __ . __ .. _ : . _.. _ __ ?_3~Q· .

0.0 +-----.--..--........."""'T""'I"'T"'l'T"""----.--..--........"""'T"".,...,..,.......- .......-..__.........,.....................-~-..__..__ ..............._+_

10° 102

Time (hrs)

Figure 4.94. Flexural creep strain versus time at a stress of 27.6 MPa of Rynite® 555.

Page 157: The Efecct of Creep

156 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

20000 +-_--'-............................................4--_.........---o.---o.....................o..a...I__"""----'-..............................."""-l-__'--................................."+

5000

-~ 15000

~III:::l:::l't'o:E 10000Q.Q)

eo..eeIIIQ.Q.«

· ... __ _-----_ __ . __ _---_ - ---_ .

· . ...................... __ __ . __ ._--------. __ .. __ _ - __ __ . __ .· . .· . .· . .: : 125°C

O+-----.--....-......,....,....T""T'"r;-----.-~~,.,...._r"T""T" ........-___.r--""T'"""""T'"""...................,..,..--.___-r--r-........"""T""'I.....r10° 102

Time (hrs)

Figure 4.95. Flexural creep modulus versus time at a stress of 6.9 MPa of Rynite® 555.

15000 +--..........----'----'".............................--"--...................................o.+--........----o............................o..a...I--"'---......................................'-t

12500

-IIIa.:E"";; 10000:::l:::l't'o:E 7500Q.Q)

eo..ceIIIQ.Q.«

5000

2500

· ..................... _-------_. __ . __ __ __ _------_ _---------· .· .· .· .· .· .· .· .· .· .......... __ .. _--_ - .

· . .• ••••••••••••••••••••••••••• '•••••••••••••••••••••••••••••' •••••••••••••••••••••••••••• 1 ••••••••••••••••••••••••••••

· . .---- __ . __ . __ _-- _- --,.- __ . __ .. , __ . __ ._--_ .

O+-----.--....-......"""'T""........,r;-----.-~~,.,...._r ................-___.-""T'"""""T'"""...................,..,..--.----r--r-.....................r10° 102

Time (hrs)

Figure 4.96. Flexural creep modulus versus time at a stress of 13.8 MPa of Rynite® 555.

Page 158: The Efecct of Creep

4: POLYESTERS 157

20000+--.........-"'--'-..................'-1----'----'-...........................0....1------'----'--"'-.........................."'-1---..........---'---'-.............-'-'-"'+

:: 15000:E-

··········----23°C·····

1/1.a~

"o:E 10000CoCI)

eo

, , ....................... __ - - __ __ ., ,, ,

O+--......-........"""T""""T'""'T'"........,..;..--"""T"'""---.-"""T""""T"""T"........,,...;...--"""T"""---..........."'T"""T"...........;--"""T""".....,..---.-........-T........~

10°

Time (hrs)

Figure 4.97. Flexural creep modulus versus time at a stress of 27.6 MPa of Rynite® 555.

4.5 Liquid Crystalline Polymer (LCP)

4.5.1 Ticona Vectra@A130-30%GlassFiberReinforced,StandardGradeLCP Resin

:

:23°C:

"

: :

80°C: : -

120°C

:;,;,;,;,;,;

:

:

:

::

100010.2

20000

- 10000:. 9000:E 8000-; 7000.a 6000~

'& 5000

~ 4000CI)

eo 3000

~~

~ 2000u:::

Time (hrs)

Figure 4.98. Flexural creep modulus versus time at various temperatures and 50 MPa stress of Vectra" A130.

Page 159: The Efecct of Creep

158 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

4.5.2 DuPont Engineering Polymers Zenite@ 6130 SK010-30% GlassFiber Reinforced LCP Resin

20+----''------1---.........----,1-----,..........,..........,,...+--,..-..........,...--1--........--+.----''---_+

0.60.50.4

· .-_ __ ._-, __ .. _-----_._--- __ .· .· .· .· .· .

0.20.1

. . .. --:- . ---------. -.. - ~ : ~ - ~ ., . , , ,, , , , ,, , , , ,, , , , ,, , , , ,- ' ~ -- ' - ./ ., , , , ,, , , . ,, . , . ,, , , . ,, , , , ,, . , . ,

--_.---_. -- _ - -- --- -----_. _.-----_.. -.. --------- . ---_ - ~. --_. -_.- . ---_.. ---.. _ .· , , . .· . . . ., . . . ., . . . .· , . .· . . ,......... _----- .- ,- - -- .- - , __ _--_ " --_ _--,._._--_._----_._---· , . .· . . .· , . ,· , . .· . .

2

4

6 . --_... -. _.. . - _. -----_.. --. ---_. ~ _. -. -----_... --_.. -:... -----_... ----_.. -: ------_... ---_. ----~ _. ---_.... -_... _..· , . ,· , . .· . . .· . . ,.. .

O+---.-----T"------.,---~--"""T""--......--___,-- ........--"T"""----..---_+0.0

· .~18 -------- ....... ----~----------.:t

16

14

_ 12Cllc..!!. 10I/)I/)e 8-en

0.3

Total Strain (%)

Figure 4.99. Isochronous stress-strain at 1000 e after annealing at 2500 e for 4 hours of Zenite® 6130 BK010.

20+----''------I---.........--r-.a..-.......,.........-,..-~-.......,......_-~...___-_+--+.----'...,...-_+

0.60.5

1).(,,<::>

- .... ---- .. (J--l.0 ------------------· '\:

0.40.20.1

.:.. . ~ : ~ ~ .· . , .· . , .· . , .· . , .· , , .. . ' - ~ ' ./ ., . , , ., , , , ,, . , , .· . , , .· . , , ,· , , , .O-F-----...---"""'T"--""T"'""--r----.---...,...--......----r---.----r-----...----+

0.0

2

4

· . .6 ; : ; :. ., , , ,, , , ,, . , ,, , , ,, , , ,

16

18

14

_ 12Clle,!!. 10I/)I/)

f 8-en

0.3

Total Strain (%)

Figure 4.100. Isochronous stress-strain at 1000 e as molded of Zenite® 6130 BK010.

Page 160: The Efecct of Creep

4: POLYESTERS 159

4.5.3 Ticona Vectra@ 8130-30% Glass Fiber Reinforced, High StiffnessLCP Resin

::

:230 C

:: ::

::. " ..

: 800 C.:

:::

:

: :::::

: ::

: :: : :: : : :: :

20000

30000

100010'2

IiQ.

!. 10000II) 9000j 8000'5 7000'g 6000

~ 5000

~ 4000~

o- 3000l!j

><~ 2000

Time (hrs)

Figure 4.101. Flexural creep modulus versus time at various temperatures and 50 MPa stress ot vectra" B130.

4.5.4 Ticona Vectra@ C130-30% Glass Fiber Reinforced, Heat ResistantLCP Resin

:

::: 230 C:

: : :" :

: :;

; 800 C:

~

: . ,1200 c

; ; ; ; -:

:: :

:: :

:: :: :

:::

100010,2

20000

- 10000~ 9000:E 8000;- 7000.:! 6000j

'g 5000

~ 4000CI)

2!o 3000

~j

~ 2000ii:

Time (hrs)

Figure 4.102. Flexural creep modulus versus time at various temperatures and 50 MPa stress of Vectra'" C130.

Page 161: The Efecct of Creep

160 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

4.5.5 Ticona Vectra@E130i-30%GlassFiberReinforced,EasyFlow,High Temperature LCP Resin

16000

14000

Ii' 12000Il.

~111 10000=='t:l0 8000:Ec.IIIIII

6000..o«i..= 4000><III

u:::2000

"- : :,

'23°C/4ii,

MPa:

: -23°C/30 MPa:

: :; ,

: ;

::

120°C/20 MPa 120°C/30 MPa ;

...../ ....

: ""

120°C/40 MPa;:

"" ""

,

""

Time (hrs)

Figure 4.103. Tensile creep modulus versus time at various temperatures and stress of Vectra® E130i.

4.5.6 Ticona Vectra@ H14D-40% Glass Fiber Reinforced, HighestTemperature LCP Resin

25000+--.........--'- ....................a..l-_...........__'___'_.....................~_ .........___"___'_................._'_I__ __'____'__'_................"""+

.. - .

.... : : :120°C/40 MPa ..: i ~~~ ..''''..'.:..:: ' ; '' : .. ..· ,

.................•......................<. .....................................•.. -.... . .• -.'- •.· .· ,.. - 'r' ................................•.............................................•...· ,· ,..... . ........•.............................................•..· ,.- - .. ~ ! ., ,

, .

....... - .

.... ......•••...... ._ •........................•........................................... 1 .

..................... ~ -.. .......• . ............................................•-..

.. : :.. : ":.: : :.~~.OC/30 MPa .. j : : 1. : : : : ", . ,

..... .......• ..........•.... . ..................................•..., , ,. . ................ . ..........23°C/30 MPa: ....................:

...................

.................................................................---;-:.~._ '- ., ., ................................................•................................................•, ,

............................................. ".- ~.

......................... - ..............•................................. - .

O+---.-......."""T""""T""'T'''T""T"'r-r---.---.-........................TT''""-""''T"""---.-~"''T'''''"O ........TT""-.......---.--.-...,....,...........-r

10°

20000

111.= 15000='t:lo:Ec.~ 10000 · ~ [ : j 12()Ocj3()MPa:.. ~· .() .. ·····120°C/20MPa: .........;"'i! :.... . :..=><£ 5000

102

Time (hrs)

Figure 4.104. Tensile creep modulus versus time at various temperatures and stress of Vectra® H140.

Page 162: The Efecct of Creep

4: POLYESTERS 161

4.6 Polyphthalate Carbonate (PPC)

4.6.1 SABIC Innovative Plastics Lexan@ PCC4701R PPC Resin

. . . Stress=23 MPa105 ; : ; ~

--~o-- 1.0coj!en

....................................... - .. .19 MPa

14 MPa

0.5 -- .

0.0 +--......-~ ....................""T'T""-....,...........................r_T""T""T""I"'T----.-----r---.-..................._r__-~ ................................._.+10.2 10°

Time (hrs)

Figure 4.105. Creep strain versus time at 23°C of Lexan® PCC4701 R.

4.7 Polyester Blends and Alloys

4.7.1 SABIC Innovative Plastics ValoX® 50B-PBT/PC Polyester Blend Resin

Stress=80 MPa

40MPa

50MPa

-- ---- -- ---- . -- . -- ,~--.:..;;; ....~. ........-~

1.5 .. _ : _ _.. _ ~_ _ -_ _.~ _ _ : .

--~o~ 1.0oj!-en

0.5 : __ ; - . . --; '30 MPa

Time (hrs)

Figure 4.106. Creep strain versus time at 23°C and various stress levels of Valox'" 508.

Page 163: The Efecct of Creep

162 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

2.5 +-_........................................-.JI--~'__"'-- ................~_---'-----'---'- ..........................._ .........................................~_.&...- .....................................

Stress=55 MPa

. ..... _----------------------------_.

-,- . -.. -.. - - - . -. -. --... -. ~ -.. --. --. --· .

2.0 --- _._-----_ ... _._ .... -:.---------- _.- -------_. ~_. ---.--- ---- .... _.- _.. ;..---_ .. ---- -.- .-----_ .. ------------- _.- _._ ...I , , ,

, . , ,, . . ., , , ,, , . ,, . . .· , . ,, . . .· . . ... .

1.5 : ;............... . ~ ~ 45 MPa· .· .· .

cf!en 1.0 .

-~o-

0.0 +--......_""T""""T"""O'.............,.-___._~"""'T'""'T""T"T"T"'I_r_--r--......- ..........-rr_r_r-.....,....---.-....,...T""T'",...,...,..r__-r--.,.......,....,...T""T"T-.+-10.2

Time (hrs)

Figure 4.107. Creep strain versus time at 60°C and various stress levels of Valox'" 508.

1.5+--""'--............................o.&.l'----''--..........................''"'-l-_..........---a.............................o.l-_..........................................-.JI--~'__ ..........................~

20 MPa

10 MPa

· .--_ _---_.. __ .. _-_._----_ _----_ -_ _.· .· .· .· .· .· ..' .· .· .· .

· ....... -... --. ----- ~ ------.. --. --.. --. --. -. ;.--.. --.. -. -.-. -. ---.. - -,--.. -------. --. ----- ---· . .· . .· . .· . .· . .· . .· . .· . .· . .· .

1.0 _-_ __ ._-: ;_.. _-_.· .· .

0.5

cf!-CIJ

0.0 +--...,......-r-"'T"""l,....,..,........,r-----..,r--........,I"""'T'""T""T'"r_r_r---.-~---.-""T""'T ........r-r--........"""'T'""""T'"""........,I"'T"T"r---...-......-..........-rrTT10.2

Time (hrs)

Figure 4.108. Creep strain versus time at 82°C and various stress levels of Valox" 508.

Page 164: The Efecct of Creep

4: POLYESTERS 163

2.5 .

2.0 .

-~o- 1.5.=~-tn

· .....................................................................· .· .· .· .· .· .· .· .· .· .

1.0 _ -_ .. -_.. -_ '.. -_ -_ _ ;.. -_ _ ~ _ _..'-_ .. _ _ -_ .. -_ _-10 MPa

· ,-_··········,·······················r················· ,-_ .· . ,· . ,· . ,· . .· . .· . ,· . ,· . .· . .· . .0.0 +-----,.....-........."'T""'T" .........,....----.----r.........T""T'"'lr-T'T'T----.----.-"""T"""I,......,.T'TT"-"""T""""""T"""...................rTT--.......-.......-....................10.2

0.5 .

Time (hrs)

Figure 4.109. Creep strain versus time at 121°C and various stress levels of Valox" 508.

4.7.2 DuPont Engineering Polymers Crastin@LW9020-20%GlassFiberReinforced PBTIASA Alloy

2.52.01.51.0

. . . ~ ' .· . .· . .· . .· . .· . .· . .· . .· . .· . .............................................

0.5

· . . ....................................................· . . .· . , ,, , , ,· ..· ..· ..· ..· .......' -. - ~ -.' - ' ., , , ,· ..· ..· ..· ..· ..· ..· ..· ..oT-r"""T"""l.......T"""I"'"................................,I"""T""T"""T'".........-r-r"""T"""l.....,..-+0.0

10

20

50 .... -- .....:........ c' -- .......:-- .... -----:.. ---- .....· , . .· ..· ..· ..· ..· .· .· .-coQ.

~40II)II)

een 30

!-.. : f:J '{;\<..70 __ .... __ ...:__ ...... __ ~ .. __ .. ~. __ . ,,~C'l .. --.--

· . .· . .· . .· .60

Strain (%)

Figure 4.110. Isochronous stress versus strain at 23°C of Crastin'" LW9020.

Page 165: The Efecct of Creep

164 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

4.7.3 DuPont Engineering Polymers cresttn" LW9030-30% Glass FiberReinforced PST/ASA Alloy

1.5

· .· .

............. : : .· .· .· .· .· .· .· .· .· .o-f-...............--.-~ ...................--..--r-.....---...............-+0.0

20 . ; ; .· .· .· .· .· .· .· .· .10

50 , , .· .· .· .-raQ.

!.401/1

~u; 30

60

70

0.5 1.0

Strain (%)

Figure 4.111. Isochronous stress versus strain at 23°C of Crastin" LW9030.

4.7.4 DuPont SASIC Innovative Plastics Xenoy@ 6370-30% Glass FiberFilled, Impact-Modified PST/PC Alloy

0.75 . . . ,................................................................................... -_ .

Stress=40 MPa

....................................................... .

. 35 MPa~MPa

======---J_---+-----:~=~MPa 20 MPa

.............;.;.;.;......~.. -i-~~~~~-~~ 050c .'fu;

0.25

0.00 +----.-........"""T"""T.........."TT"""----...........--.-r-T"T"TTT""-..--................."'T"TT"-~ ............................,.-"""T"'""..........,r-T""T"T'T"Tf-10.2

Time (hrs)

Figure 4.112. Creep strain versus time at 23°C and various stress levels of Xenoy® 6370.

Page 166: The Efecct of Creep

4: POLYESTERS 165

1.00+-_..&...-"""---................................_ .....................................L...I...I.JI-----'_..................'"-'-'-......._"""---..................................._ .........---o..............................

15 MPa

21 MPa

·········:.... ··········18 MPa

0.75 . . . . . . . . . . . . . . . . . . . . .. . ~...................... . : Stress;';24 M"Pa. ,, ,

-~o- 050c ..~-tn

12 MPa

0.00 +--or--.........,,....,...T"T'T-rr--~""T"'""T'"'T""T"T"I"'TT""--r-,...,..."'T""'T ........ '""1'"-...............-r-........."'T'T'f-...............,...,...'T'""T""~

10.2

Time (hrs)

Figure 4.113. Creep strain versus time at 60°C and various stress levels of Xenoy® 6370.

1.00+-_..&...-"""---................................_ ....................................L...I...I.JI-----'_..................'"-'-'-......._"""---..................................._ .........---o................................

0.75 , ,..... --- . ----. --. --.. -.. --. ---.. -.. --. --. ---- . -,---. ---. --. ------. ---. - ~ --..... --------. ------ -,- .. -..... -.. ------. ----

Stress=14 MPa

-~o- 0.50.5een

0.25.t:::~~~~~==::.: .

12 MPa

11MPa

0.00+--or--......................."T'""-..........,....................""T'"-""T"'""-r-...............rTT-,...,...............................,.-................,...,... ...............r10.2

Time (hrs)

Figure 4.114. Creep strain versus time at 90°C and various stress levels of Xenoy® 6370.

Page 167: The Efecct of Creep

5.1 Background

This chapter covers a series of plastics in whichthe imide group is an important part of the molecule.The imide group is formed by a condensation reactionof an aromatic anhydride group with an aromaticamine as shown in Fig. 5.1.

This group is thermally very stable. Aliphatic imi­des are possible, but their thermal stability is reduced,and thermal stability is one of the main reasons to usean imide type polymer.

5.1.1 Polyetherimide (PEl)PEl is an amorphous engineering thermoplastic.

Thermoplastic PEls provide the strength, heat resis­tance, and flame retardancy of traditional polyimideswith the ease of simple melt processing seen in stan­dard injection-molding resins such as polycarbonateandABS.

The key performance features of PEl resinsinclude:

• Excellent dimensional stability at high temper-atures under load

• Smooth as-molded surfaces

• Transparency, though slightly yellow

• Good optical properties

5 Polyimides

• Very high strength and modulus

• High continuous-use temperature

• Inherent ignition resistance without the use ofadditives

• Good electrical properties with low ion content

There are several different polymers that are used asPEl plastics. The structures of these polymers are shownin Figs. 5.2-5.6 with references to one of the productlines that utilize that polymer molecular structure.

The acid dianhydride used to make most of thePEls is 4,4'-bisphenol A dianhydride (BPADA), thestructure of which is shown in Fig. 5.7.

Some of the other monomers used in these PElsare shown in Fig. 5.8.

5. 1.2 Polyamide-Imide (PAl)PAIs are thermoplastic amorphous polymers that

have the following useful properties:

• Exceptional chemical resistance

• Outstanding mechanical strength

• Excellent thermal stability

• Performs from cryogenic temperatures up totemperatures of 260°C

• Excellent electrical properties

H\

+ N/

H

>

AnhydrideGroup

AmineGroup

Imide Group

Figure 5.1. Reaction of amine with anhydride to form an imide.

167

Page 168: The Efecct of Creep

168 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

Figure 5.2. Chemical structure of 4,4'-bisphenol A dianhydride (BPADA)-PPD polyetherimide(Ultern'" 5000 Series).

o o

o

o

o

o

n

Figure 5.3. Chemical structure of biphenol diamine PMDA polyetherimide (Aurum", Vespel®TP-8000 Series).

Figure 5.4. Chemical structure of BPADA-DDS polyetherimide (Ultern'" XH6050).

Figure 5.5. Chemical structure of BPADA-MPD polyetherimide (Ultem® 1000 Series).

Page 169: The Efecct of Creep

5: POLYIMIDES 169

Figure 5.6. Chemical structure of BPADA-PMDA-MPD copolyetherimide (Ultem'" 6000 Series).

o ~c c~ 0~ \/ fi

<MMC~M>a 0 0 ~o 0

Figure 5.7. Chemical structure of BPADA monomer.

Oxydianiline(ODA)

Diamino Diphenyl Sulfone(DDS)

Pyromellitic Dianhydride (PMDA)

Methylene Dianiline(MDA)

112N----O-NH2

y-om-Phenylene Diamine

(MPD)

Biphenol Diamine(BP Diamine)

o~

p-Phenylene Diamine(PPD)

Figure 5.8. Chemical structures of other monomers used to make polyimides.

Page 170: The Efecct of Creep

170 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

The monomers used to make PAl resins are shownin Fig. 5.9.

When these monomers are reacted carbon dioxide,rather than water, is generated. The closer the mono­mer ratio is to 1:1, the higher is the molecular weightof the polymer shown in Fig. 5.10.

5.1.3 Polyimide (PI)PIs are high-temperature engineering polymers

originally developed by the DuPont Company. PIs

exhibit an exceptional combination of thermalstability (>500°C), mechanical toughness, andchemical resistance. They have excellent dielec­tric properties and inherently low coefficient ofthermal expansion. They are formed from dia­mines and dianhydrides such as those shown inFig. 5.11.

Many other diamines and several other dianhy­drides may be chosen to tailor the final propertiesof a polymer whose structure is like that shown inFig. 5.12.

O=C=N----g--CH,-Q-N=C=O

4,4' -diphenyl methane diisocyanate (MOl)

o 0II II

HO/'C~C)o

~C~o

trimellitic anhydride (TMA)

Figure 5.9. Chemical structures of monomers used to make polyamide-imides.

n

Figure 5.10. Chemical structure of a typical polyamide-imide.

5.1.4 Imide Polymer BlendsPI-based resins, especially PEl and PAl polymers,

may also be combined with other polymers. ThePEl resins have produced a surprising number ofmiscible (one-phase) and compatible blends. Com­patible blends are phase-separated mixtures havingsufficient attraction between phases to provide somelevel of molecular adhesion, resulting in stablemorphology and giving rise to good mechanicalproperties.

PEl forms miscible blends with polyesters such aspolybutylene terephthalate (PBT) and polyethyleneterephthalate (PET). These blends have a single glasstransition temperature between that of the PEl andthe polyester. However, few of these are commercialproducts yet.

Blends of BPADA-based PIs are also misciblewith polyaryl ether ketones such as polyetherether­ketone (PEEK). As injection molded, many PEEK­PEl blends are transparent.

Page 171: The Efecct of Creep

5: POLYIMIDES 171

4,4'-diaminodiphenyl etherOxydianiline (ODA)

o 0\\ 1/o/CD'C\o\ ~ /

C C1/ \\o 0

Pyromellitic Dianhydride (PMDA)

Figure 5.11. Chemical structures of monomers used to make polyimides.

o

N

o

o

N-Q-0o

Figure 5.12. Chemical structure of a typical polyimide.

5.2 Polyetherimide (PEl)

5.2.1 SABle Innovative Plastics Ultem@ 100D-General-Purpose PEl Resin

10001001

:

~.:: ,

~- :-:

:

',' ;

: 20 MPa:

:: :

: 10 MPa

::

:0.0

0.1

0.5

1.5

2.5

2.0

e'fen 1.0

~o-

10

Time (hrs)

Figure 5.13. Creep strain versus time at 23°C of Ultem® 1000.

Page 172: The Efecct of Creep

172 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

10001001

: 45 MPa

: :,

..... 40 MPa

: :

~

:: : 30 MPa

::

'.' ~ ;

20 MPa

:

: , : 13 MPa:: : ::: :

0.00.1

2.0

0.5

2.5

1.5-~0-c.~

1.0..(J)

10

Time (hrs)

Figure 5.14. Creep strain versus time at 60°C of Ultem® 1000.

20MPa

15 MPa-. .

''--' --'.""" ; ,', .. ':' --", --"" ' ':'" -- -- '10 MPa ----. . .. .

1.0

-~0-.5III.....

(J)

0.5

100010010.0 +----.--....-.............-............----.--....-.............-...............---.--....-..............-............----r-...--.......................+

0.1 10

Time (hrs)

Figure 5.15. Creep strain versus time at 100°C of Ultem® 1000.

Page 173: The Efecct of Creep

5: POLYIMIDES 173

6+--.........---'--.&...................~--"'--- ............................................----'--...................................o..o..JI---""""'---'-...........................-'+30MPa

20MPa

25MPa

15 MPa

---- ---; -- --- --... ·····10 MPa-----

5 ------------ ---------------------- ----------------- ----------.----.

4 ---- ---------- ------------------.-.--.-- .. - ---.. -.-.--- .. ------------- -,---.-- --------

1 ------- -. ------------ ----

2

~o-3c.~-en

100010010+--__----r~ __"T""'T'"T'"T'T--..--.................................,..,....-........- ................""T'""'T""T'"T'"r__-.......---.-........................_.+

0.1 10

Time (hrs)

Figure 5.16. Creep strain versus time at 150°C of Ultem® 1000.

5.2.2 SABle Innovative Plastics Ultem@ 2200-20% Glass Fiber ReinforcedPEl Resin

10001001

.: :: :: : 80 MPa

:-~.- ."

:

: : 68 M~:

56 MPa.- ...:

44 MPa

32 MPa.- ...:

:

0.00.1

0.5

1.5

2.0

~o- 10c ..~-en

10

Time (hrs)

Figure 5.17. Creep strain versus time at 23°C of Ultem® 2200.

Page 174: The Efecct of Creep

174 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

0.9 .

, , ,

0.8 ; ···;·····························~···············45 MPa····· . .· .0.7 ~.... . : ; ; .

, , ,, , ,

25MPa

, , ,

0.6 - ~ ; : ·35 MPa····, ,

....................................... _-.. _--_ __ .. -_ _----_ __ - __ . __ . __ _-----· . ,, . ,· . ,, . ,, . .

100010010.0 +----,---r--r-,....,.."'T""'T""T'T'"--.--"""'T'"""""'T'""""T"'""............-r--""T"'""---.---...................-r---......- ...............r""'T'""T'""T'",.f-

0.1

, ,0.3 _.- -- ------- ---- _.- _.:.- _ -. _._. ---:-------_ -------- ._~. __ ._ -- _._-------.- .

, , ,, , ,, , ,, , ,, , ,

0.1 ~ : ~ ., , ., , ., , ., , ., , ,

0.2 ; : , ., . ,, . ,, . ,, . ,, . ,

10

Time (hrs)

Figure 5.18. Creep strain versus time at 60°C of Ultem® 2200.

10001001

: 45 MPa"

; :·40 MPa

: -:~ .'. ~ '35 MPa

; -~ : '30 MPa-

'25 MPa-',' ;

:" r

::

: :

~ .'. .:

·0.00.1

0.1

0.8

0.2

0.7

1.0

0.9

0.6

0.3

-?Ie- 0.5cetii 0.4

10

Time (hrs)

Figure 5.19. Creep Strain versus Time at 100°C of Ultem® 2200.

Page 175: The Efecct of Creep

5: POLYIMIDES 175

40MPa

35MPa

25MPa

1.5 -_ .

;i'o- 1.0c.~-UJ

100010010.0 +--""T"""---.----.--r-...............,..-----.-................"""T"""........T----.----.---.-..,.......,-r-T"T'T""----.--or--,......,....,...,....,...,..r

0.1 10

Time (hrs)

Figure 5.20. Creep Strain versus Time at 150°C of Ultem® 2200.

5.2.3 SABIC Innovative Plastics Uttem" 2400-40% Glass FiberReinforced PEl Resin

80MPa

1000

50MPa

40MPa

100

· .• ••••••••• __ ••••• __ • •••••••••••••••• __ L •• __ •••••· .. .

----_ _-----_ __ ._-------_._-_ __ . __ .. __ .· .

1

· .................................. - -- .. --.-------.··········---·------·r-·········--·--·--····· _.-· . .· .· .

0.0 +--""T"""---.----.--r-...............,..-----.-................"""T"""........T----.----.---.-..,.......,-r-T"T'T""----.--or--,......,....,...,....,...,..r0.1

0.2 , : , .. . .· . .· . .· . .· .

0.3 . ------_.- ---- _.. -_.- _.:- -_ --_.- .. - _.. --:-- -------_ _.. _ -~ _.. _ _ --_.- -.. _._ ..· . .· . .· . .· . .· . .

· . .0.9 : - "._.----- --- _.- ----:-.----- _._. _.- -----~- ----_._. . .· . .· . .· . .· . .· . .0.8 ~ ~........ . . : '70 -MPa· . .· . .

0.7 , .

0.1 ~ : ~ .· . .· . .· . .· . .· . .

0.6 -----.--.- -.. --~._ .. __ _-.----";!.- 0.5

c l~::::=:::=~;;;;;;;~~~~~~F~~~~~.~

en 0.4 L------+---------------t------

10

Time (hrs)

Figure 5.21. Creep strain versus time at 23°C of Ultem® 2400.

Page 176: The Efecct of Creep

176 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

10001001

:

'. '.' t

'75 MPa

:-, ~ 65 MPa:

::

: : : 55 MPa:...

45 MPa'.' :

: : 35 MPa

'. r

: :

::

.' .'. :

:0.00.1

0.1

0.2

0.3

0.6

0.8

0.9

1.0

0.7

-';!.- 05c ..~en 0.4

10

Time (hrs)

Figure 5.22. Creep strain versus time at 60°C of Ultem® 2400.

1.0 +-_ ___'__.a...._.............................~ _ ___'__.a...._.............................~----'--.a....- .............................~----'--.a....- ..........................+

· .0.9 _ -- _-- .. --.. ----- :------ ----------_ .. _-_.: __ . __ .. __ __ . __ . __ . __ __ .· .· .· .:: 70 MPa0.8- ; : ..

· . ........ __ __ ._----_._'\ __ __ _-, - , __ .· . .· . .· . .· . .· .

· ............................. : : '-50 MPa-'" - .

. .

· .0.6 ~ ; - : .· . .· . .· . .;e-

o- 05c ..~en 0.4

0.3 ':""'''''''''''''''''''''''' .: - -30 MPa-················ .. ··· .· .· .

100010010.0 +-----.--....--........-.-......"T"""'"----.--....--........-.-......"T"""'"----.--....--........-.-......"T"""'"----.--....--........-.-......+

0.1

0.2 :- : , .· . .· . .· . .· . .· . .0.1 ~ : : .· . .· . .· . .· . .· . .·10

Time (hrs)

Figure 5.23. Creep strain versus time at 100°C of Ultem® 2400.

Page 177: The Efecct of Creep

5: POLYIMIDES 177

1.2+-_..........----'---"..............................'--_............................-'-l..............J..I-_---''--.......................................'-I--_---'- ...................."'''''""'+

40MPa

30MPa

. -.. - - . - - - - - - - - -. ~ . - - - - - - . . . . . . . . - - - - .., ,, ,

...............................................

, ,.. __ __ , __ ----,---_ ., ,

1.1 .

0.8 . , .

1.0 .0.9 . . ; 50 MPa .

0.7 . .-?ft.- 0.6e.~

en 0.5L~~~~~;);;;~~~=j~~~~: , .

0.2

, ,...... - .. -.------------_ __ -------- -----_ ., , ,, , ,, ,, ,, , ,--- -----------_ __ ------_ , ----_ .

100010010.0+--.........---.----r~"'T""'T".......,r---""T"'""~.....,....""T"""' ...........,..,..-_r--.................................r-r-----.--.....-.........""T'""'T......-.+0.1

0.1 : ; ; ., , ,, , ,, , ,, , ,

10Time (hrs)

Figure 5.24. Creep strain versus time at 150°C of Ultern'" 2400.

5.2.4 DuPont Engineering Polymers vespet" TP-B054-Unfilled,Translucent PEl Resin

---­__ ------7---------:------------:--

1.5 ' ' ........ ~ ~. ··············~~60°C/34 MPa

c.~

en 1.0 , ,-_._- -.---- .. - -

0.0 +----..---.-""T'""'T"'T'T"I"TT"""--.r--T..................TTT'"--r--.........."T""T"'rTTT"-......... "T"""'T-"T"TT'TT'l,....-"""T"""-r-T'""'T'"'l........~~ ........."'I"""'T"............10.2

0.5 ; ',"'." .. ".'."'." .:. ---. - ~ ; ., ",, ",, ", ", ", ", ", ., ,, ,, ,, ,

101

Time (hrs)

Figure 5.25. Flexural creep strain versus time at various temperatures and stress levels of Vespel'" TP-8054.

Page 178: The Efecct of Creep

178 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

5.2.5 DuPont Engineering Polymers Vespel@ TP-813D-30% Carbon FiberFilled PEl Resin

0.5+-..............................~-"--'- .....................""----..............................~_ .............................""----...............................~_ .............................+

c'i!u; 0.2

23°C/48 MPa

, . . ... _ -_ -,... . -'" - ',' _ _ _ _ _.. , ~ _ _ _.

0.0 +---.-..................~- ........................rr---.-..................~- ........................rr---.-..................~- ........................rf-10.2

0.1 : :- , ; : .· . , , .· . . . .· . . . ,· . . . .· . . . ., . . . .· . , , ,· . , , ,· . . .· . , .· , , ., , . ,

101

Time (hrs)

Figure 5.26. Flexural creep strain versus time at various temperatures and stress levels of Vespel@TP-8130.

5.2.6 DuPont Engineering Polymers Vespel@ TP-8212-30% Glass FiberFilled PEl Resin

1.0+-..............................~_ ..........................""----..............................~_ ..........................""----..............................~_ .............................+

· .0.9 -_ _-: : : ; ; .· . . . .· . . . .· . . . .· . . . .0.8 :..... . . . .

· . , . ...................................... __ .· . , . .· . , . .· . . , .· . . . ... ,.

0.0 +---.---.-..........~- ........."""'T"""r"'T'TT.;---.---.-.................;--........."""'T"""r"'T'TT.;---.---.-.................;--........."""'T"""r............10.2

0.2 ; : , ; -; .· , . . .· , . . .· . . ., , . .0.1 : : ~ ; ; .

, , , . .· , , . ,, . . . ., , , . ., , , . .

0.3 ; : : ~ : .· . . . .· . . . .· . . . .· . . . .· . . . .

.-.~e.... 05c .'i!en 0.4

101

Time (hrs)

Figure 5.27. Flexural creep strain versus time at various temperatures and stress levels of Vespel@TP-8212.

Page 179: The Efecct of Creep

5: POLYIMIDES 179

5.2.7 DuPont Engineering Polymers Vespel@ TP-8311-10% Carbon FiberFilled PEl Resin

1.0+-...................................,..-.....................................-....................................,..-..................................----0......................................- .............................+

0.8 -: : , ; : .· . . , .· . . . .· . . . .· . , , .

· .,0.9 : : ; ; : .· . . . .· . . . ., . . . .· . . . ., . . , .

0.6 .. - -.. - ' - ~ - - - - - .· , , .· . . .· . . .· . . .· , , .· . . .. . . - -. - -,- - --.. - ~ - -- .· . , . .· . . . .· . , . .· . . , .· . . , .

0.7 ; ; ~ ; ; .· ."; 23°C/48 MPs : : .....;· .. .

............ _ ~ - : _. ~. _ ; _ - - -~ .. _ '"· . . . .· . . . .· , . , .· . . . .· . . , .0.3 : _ ;. _- : ~ : _.· . . . .· . . , .· . . . ., . , . .0.2 ; : ~ ··i··············· ~ """"· , . . .· , . . .· . . . ,· . . . ,

.-.?f!.-; 0.5'j!en 0.4

0.0 +----.-"""T"""........TTTT"-.................~~---.-"""T""" ........TTTT"-..............................~---.-"""T""" ........TTTT"-..............................*10.2

0.1 ; ; ~ ; ; .· . . , .· . . . .· . . . .· . . , .· . . , .101

Time (hrs)

Figure 5.28. Flexural creep strain versus time at 23°C and 48 MPa stress of Vespel@TP-8311.

5.2.8 DuPont Engineering Polymers Vespel@TP-8395-Graphite,PTFE-Filled PEl Resin

3.0+-...................................,..-.....................................-...................................,..-..................................-....................................,..-................................+

2.5 :23°C/48 MPs '"

~o-- 1.5c'i!en

...................: ~~ :=~~~ ~.. --r~ ~ ..1.0 :- : ~ ~ : .· , , , .· , . . .· , . . .

: : : : :60°C/34 MPa, . . .· . . .· . .

0.5 . ."\ ••••••••••••••••••• , •••••••••••••••••• -1" ••••••••••••• • • -- ••

0.0 +----.-"""T"""........TTTT"-.................~~---.-"""T""" ........TTTT"-................... ~......----.-"""T""" ........TTTT"-.................~*10.2 101

Time (hrs)

Figure 5.29. Flexural creep strain versus time at various temperatures and stress levels of Vespel@TP-8395.

Page 180: The Efecct of Creep

180 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

5.2.9 DuPont Engineering Polymers Vespel@TP-8549-30%CarbonFiberFilled, Improved Wear and Chemical Resistant PEl Resin

0.5+-........................................- ...............................&.1--........................................._ ..............................&.1-----'-..............................._ ..............................'+

0.4 : : , ; : .· , . . .· , . . .· . . . .., ..; : 23°C/48 MPa : .-/ ;· ~ .

0.3 , , .

c'j!(;) 0.2 · . . . ..................................... -- .

101

Time (hrs)

0.1 : : : ; ; .· . . , ., . . . .· , , . .· , . . ,· . . . .· . . . .· . , . .· . . . .· . . . ., . . . .· . , , .· . , , .0.0 +----.-"""T"""........TTTT-.................""T"T'T~---.-"""T""" ........TTTT-.................""T"T'T~---.-"""T""" .........TTTT-.................""T"T'T....10.2

Figure 5.30. Flexural creep strain versus time at 23°C and 48 MPa stress of Vespel'" TP-8549.

5.2.10 DuPont Engineering Polymers Vespel@TP-8792-15%CarbonFiber, 15% PTFE-Filled PEl Resin

1.0 +----'-...............................- ..............................&.1-----'-...............................- ...........-'-'........&.1-----'-...............................- ..............................'+

0.8 : : , ; : .· , , , ., , , , .· . , , ,, , , , ,

· ..0.9 . --_ : -- -:- .. - ~ ~ : .· . . , .· . . , .· . . . ,· . , , .· . , . ,

0.7 ; ; ; ; ; .· , , , ,· . , , ,· , , , ,· . , , ,

· . . ........ .. : ; ~ :;;..;.;-~ .. ~ ~:..~..~..~..~-

, . --- .

.. _ _ -_ .. - - -.- -_ _ _ _ _ _ ~ .· , , , ,· . . . .· . . . .· . . . ., . . . ~60°C/34 MPa.. . .

0.6 _ ~ :- .. _ ·····~···················;···················~23°C/48 MPa····.-. " "';je .: ::-; 0.5 ' , .

'j!en 0.4

0.2 : : , ; ; ., , , . ,, , , . ,, , , . ,· . , . ,

0.0+-............................TTTT-.......................~ ............................TTTT-.......................rr----.-.................TTTT-.......................rf-10.2

0.1 : ; ; ; ; .· , , , ,· , , , ,, , , . ,· , , , ,· , , , ,

101

Time (hrs)

Figure 5.31. Flexural creep strain versus time at various temperatures and stress levels of Vespel®TP-8792.

Page 181: The Efecct of Creep

5: POLYIMIDES 181

5.2.11 DuPont SABIC Innovative Plastics Ultem@CRS5001-EnhancedChemical Resistance PEl Copolymer Resin

14 MPa

21 MPa

..................... __ . __ -.. _----, ,..........................., _,.---_.-

1.5

2.0 : ,''''''' ., ,, ,

.5l!!en 1.0

0.5 .,."""""

100010010.0+--........---.---.-........T""T'",.....;..--.--......--""T""'"'"'lr"""T""".......-i--.......---.----,-.......r-T""",.,..,..---.-....--..........~.........r

0.1 10

Time (hrs)

Figure 5.32. Creep strain versus time at 23°C of Ultem® CRS5001 .

10001001

: :: :

:.'

::

30 MPa: -

~ ~

,...

20 MPa',' ~ ; -:

:15 MPa

: 10 MPa

: :: :

:0.0

0.1

0.5

1.5

2.5

2.0

e·fen 1.0

10

Time (hrs)

Figure 5.33. Creep strain versus time at 60°C of Ultem® CRS5001.

Page 182: The Efecct of Creep

182 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

1.5 . --- _. -_. _.. _.. _ _.. -.:.-_.. _ _.. _ ~ _ _. -_. _.. _.- 25 MPa .

~o- 10c ..~-tn

............................ ; ····:····························;···················15 MPa'

: : : -· . .· .· .

05 . . .. . _--_ __ _-_. __ _------_ _------_. __ . __ _-----_._- .

5MPa

100010010.0 +----.-----...--.--.-..............,i---......---.---.-.....-,...,...,,.....;.--....-.....-.....-T"""T""T""T'"rr-----.--....-...............,..,...,.f-

0.1 10

Time (hrs)

Figure 5.34. Creep strain versus time at 100°C of Ultem® CRS5001.

3.0 +-_--'-_..&...-...0...-.................0.+-__"---..................................0...0..1__........----"----'.......................+.-_......._"'---.......................'+

20 MPa

8MPa

17 MPa... : 14 MPa..

11 MPa. --. --. -. ---. --. - ~ . -.. -.. -. -.... -.... - - - - -

2.0 __ : ;.. .· .· .· .· .· .· .· .· .

1.04--_...,..,..~..~.~- -----_. ----_..'. -_.. -

2.5 --------- __ -.. -- ----

0.5t====~~~~~~C=

-~o- 1.5.5e-tn

100010010.0 +-----.--....-......................-r-----.--....-......................-r-----.--....-......................-r-----.--....-.....................+

0.1 10

Time (hrs)

Figure 5.35. Creep strain versus time at 150°C of Ultern'" CRS5001.

Page 183: The Efecct of Creep

5: POLYIMIDES 183

5.2.12 SABIC Innovative Plastics Ultem@XH6050-HighHeat,Transparent,Enhanced Flow PEl Copolymer Resin

1000

30 MPa

100101

-l :..:....;.,;,; ~ "'"""'"' --..... -~- ........,. .,...,.,...,. ~~~~==~~ c· .. : : ; .

· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .0.0 +-----......-..................."T"T"T"r-----.----.-"""T"""........."'T"T'1'"---r---r-.........""T""T"'r"TT""-..,........,..,........,I""'"T""".........rr--.....-............................+0.01 0.1

0.5 .

. .1.0 ;. _.. -'" _.. _.; -_ -:.. _ ~ .. _ -- _.· , . ,· , . .· , , ,

: : : : 20 MPa· . . .· . . ... ." ." .. .· . 15 MPa

Time (hrs)

Figure 5.36. Creep strain versus time at 23°C of Ultem® XH6050.

1.5 +-~I....-..oL.......L. ........................I------'-----'---'-..........""'-'+_.......................................~_""-- .............................&+--_"'---.....................~

· ..1.0 : ~ _ : --- ~1'5'MPa'"'''''' .· . .· . .· .-

~e

.~...(fJ "";10 MPa

0.5 .

10001001010.10.0 +-----.,..........,...................T"T"T1r-----.----.-"""T""".......-T~-"""T""""""T""" .................."'TT"""-....--...........r"""T"""r-T'T"'r-r-----.,..........,....................~

0.01

Time (hrs)

Figure 5.37. Creep strain versus time at 12TC of Ultern'" XH6050.

Page 184: The Efecct of Creep

184 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

1.5+--""----................"""-1--.........---'-.......................................-"--............................0+--..................................................-----"---'..............................

:9MPa

1.0

-~0-.SC'G..-en

0.5

· ,, , . .--_.. __ , ; ················-.········-----·--·--····1············----- .. -- .., , , ., , . ,· , , ,, , . ,· , , .· . , .· , , .· . , .· . , .· . , .· . , .· . , .· . , .· . , .· . .· . .· . .· . ,· . .· . .

..... -. - -: ---------------. ~ --. ----. .

L -~------7------~-----..-;::?· MPa

10001001010.10.0+--......-..,.....,...................;--......-.....-........"T""T""r-ri---.--............................;.---.-"""'"T"-.-T""T""r-T"T'1r-----..---.--.-"T""T"~

0.01

Time (hrs)

Figure 5.38. Creep strain versus time at 150°C of Ultem® XH6050.

5.2.13 Product Comparison Charts of PEl Resins

:Ultem® 2300, 30% Glass Fiber--

, - - Ultem® 2200, 20% Glass Fiber. . . . Ultem® 2100, 10% Glass Fiber_. - Ultem® 1000, unfilled

...

:

~ - - - - - - - - - - - - +- - - - - - - - - - - - - ""' - - - - - - - - - - - -.. ...

. . --. -. . -------. . . . --:- -. . . . ----. . --. . . -.- ~ e -~:--_.....

~ ~'Io'.z -' ~ ~ ... '." "-" .". "~ ~" .-.~ ~"

::

"","'_. - -_.-- - ---- --- - .~ ------- .. ~ .... ~ ...._-- .. ...........---.-----.--- .-- - ----- - -: :

"

:

4000

3500

-C. 3000::E-en 2500.:!:::J

"0:i 2000Q.Q)e 15000-cQ)..

1000C'GQ.Q.

«500

o1 10 100 1000

Time (hrs)

Figure 5.39. Apparent creep modulus versus time at 23°C and 48.3 MPa stress of glass fiber filled Ultem®PEl resins.

Page 185: The Efecct of Creep

-- Ultem® 2300, 30% Glass Fiber- - Ultem® 2200, 20% Glass Fiber----Ultem® 2100, 10% Glass Fiber_. - Ultem® 1000, unfilled

:

::

:.- '"

- - - - - - - - - - - - - -:- - - - - - - - - - - - - .;.. - - - - - - - - - - - -:

--. . . . -----. --. . . --. . --. --. . . . --. . -. . . . -. - -: . -------. . . . --. ---- -- .., -,-

--- -_.- ----- - ._. -- --- - --.- --.---.-. ---- . _-- --- ~~··--·-._4.s..;,,-.·_._._ • .t' ......

: ::.

5: POLYIMIDES

4500

4000

-~ 3500::i-11> 3000.:!:="C0::i 2500c.G)e 20000-s::::e

1500CISc.c.~

1000

5001 10 100 1000

185

Time (hrs)

Figure 5.40. Apparent creep modulus versus time at 23°C and 34.5 MPa stress of glass fiber filled Ultem®PEl resins.

-- Ultem® 2300, 30% Glass Fiberr - - Ultem® 2200, 20% Glass Fiber

----Ultem® 2100, 10% Glass Fiber

: - -- Ultem® 1000, unfilled-,-

: :

:

- - - - - - - - - - -- ,... -- -- '"".. '-------- - - - - - - - -: - - - - - - - -'. ,~ ~, .'. -~ ~- .-. ~ -- ~ ; .: . ---. . :-" -. . . . . -. . . . . :. . ------.'-.:':

., , .-~ ~ -- .'.- ........ ~ ~, .'. '.' ~ .-- -, ~- ---- ---_. - ---_._. ....,.. -- - ----.-.-. - .---.- ~ -.-'-.---...: -.-.--_.--"

::

4000

3500

'i 3000::i-11> 2500.:!:="C0::i 2000c.G)e 15000-ee 1000CISc.c.~

500

o1 10 100 1000

Time (hrs)

Figure 5.41. Apparent creep modulus versus time at 82°C and 34.5 MPa stress of glass fiber filled Ultem®PEl resins.

Page 186: The Efecct of Creep

186 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

100010010

-- Ultem® 2300, 30% Glass Fiber:s , - - Ultem® 2200, 20% Glass Fiber

----Ultem® 2100, 10% Glass Fiber--- Ultem® 1000, unfilled

..,

,

I- - - - - - - - - - - - - ~ :- - --- :-.. .e-,.- .,.

: ---- .:.. - - - - - - - - - - - ---------------- ~ ,~ ~ .- .. -,'; -. -. . -. . ----. . --. -. --:. --. . -----. --- ------ --.-----._..... .-.~.~.:~.~.;",:.._.~

~ ------ - ...----- - --- - ---- --.---- -- - ------ -------: ::

: :

Io1

4000

3500

-:. 3000:E-III 2500::::l::::l

"0:E 2000Q.CI)CI).. 15000-cCI).. 1000C'lIQ.Q.«

500

Time (hrs)

Figure 5.42. Apparent creep modulus versus time at 82°C and 23.6 MPa stress of glass fiber filled Ultem®PEl resins.

:

:TP-8395·.'. .'. ,.

: : :, ,TP-8054--- J-------::

.. : r····---------······.·, ,

:

: :: :.. .,. .. ..

:: :

'. .. ,

----- TP-831 1: : -- TP-8212. . , ---------- .....

TP-8130---------- ~ - - -.~. -,.- .. -, , ;

. , , , - -- TP-8549=:.:::.:=.:.==~.:=:=~ ..=.~-:- __.:;:-.. =-:-:..:=;.=:=~::~-=..:.-=. __-:-~ ..=..~~.:: ;= :, :-:, : ::: ':' :: :.=0 ...& ... _.-.- TP-8792. , , .

:0.0

10.2

2.5

0.5

1.0

2.0

3.0

~o- 1.5e.~

;n

101

Time (hrs)

Figure 5.43. Flexural creep strain versus time at 23°C and 48 MPa stress of glass fiber filled Ultem®PEl resins.

Page 187: The Efecct of Creep

5: POLYIMIDES 187

5.3 Polyamide-Imide (PAl)

5.3.1 Solvay Torlon@4203L-3%TitaniumDioxide,0.5%PTFEPAIResin

100010010

: :.'. ,

: :103.4 MPa: :

: ~ 68.9 MPa

\:

., .

:

::

.,. : 34.5 MPa:

::

:

:0.01

0.5

1.0

4.0

2.5

3.0

3.5

~o- 20.5 .l!!-tn 1.5

Time (hrs)

Figure 5.44. Creep strain versus time at 23°C of Torlon'" 4203L.

3.5 -- --- ---.---- ---:.. ---- ---- ------ ; ---- ---.-- -.. ---, ., ., ., ,, ,, ,

3.0 .

34.5 MPa

2.5 -.. -. -. - : -. -.. ------. -----.; -. ---. -.. -. - ., ,, ., ., ., ., .

--_ _--_._._ _--_._._--------------: -----_._-----_._-----------_ _----;-_ -----_ ., ,, ,, ,, ,, ,, .

1.0 ---- .

~o- 20c ..~-tn 1.5

1000100100.0 +---.....----.-----,..........~ ........""T""T------r--....--............................r-r----.------,...-..,.......,.......,........~

1

, ,0.5 ._-_ : ----- --- .. ; ------ ----------_ .

, ,, ,, ,, ., ., ., .

Time (hrs)

Figure 5.45. Creep strain versus time at 204°C of Torlon'" 4203L.

Page 188: The Efecct of Creep

188 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

5.3.2 Solvay Torlon@ 4301-12% Graphite. 3% PTFE PAl Resin

100010010

:: 103.4 MPa-

:

:: t

68 9 MPa:

,....

:,

34 5 MPa: :::... ;

0.01

0.5

1.0

3.0

;i'o- 1.5c.~

u;

2.0

2.5

Time (hrs)

Figure 5.46. Creep strain versus time at 23°C of Torlon® 4301.

3.0+-------""""--......................................0..1---..........- .........---'----'-........................o...\.-----'----'-----............................a.....o..+

2.5 ' .

2.0 .

-~o-; 1.5.~

u;1.0 :- ";3,;(5 i\ijpa··

0.5 --.. --.--.--~------.--. __ . _.- .. -.. _.-.--------- :--- _.- ----_._ ------- --_ _. __ .

Time (hrs)

Figure 5.47. Creep strain versus time at 204°C of Torlon® 4301.

Page 189: The Efecct of Creep

5: POLYIMIDES 189

5.3.3 Solvay Torlon@4375-12%Graphite,8%PTFEPAIResin

4 ; :.-- ----- .

103.4 MPa

3 .

, ··········68.9 MPa·······

1 .34.5 MPa

10010O+---......--..--...,.......,..............,...,"""T"""----.---.-----.----.-~T"""O"'_._r-----.-----.-~---+

1

Time (hrs)

Figure 5.48. Creep strain versus time at 23°C of Torlon® 4375.

5.3.4 Solvay Torlon@4275-20%Graphite,3%PTFEPAIResin

100010010

103.4 MPa

~' ,, ,

...•.......................................:...................................., .' . :

68.9 MPa: ::

:

34,5 MPa

::

o1

4

5

3

.EIIIb 2UJ

Time (hrs)

Figure 5.49. Creep strain versus time at 23°C of Torlon® 4275.

Page 190: The Efecct of Creep

190 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

5+---.........-....o...-........................................o...+.-----"----'--'--...........................-I----.........-..a...-...................................o.+

3 ""'" .

4 : ; .· .· .· .· .· .· ,· ,· ., .· .· ., .

-~o-c.;.::: 2en · ............. _--_._------_ _-----------------_ _----------_ -_ _-_ _-_ _-----_ _-_ .

34.5 MPa1 : ; .

100010010O+------~.....,.........,.... __........""'"T----.--.....-.--.............,...."T'""'T"-r---.....--.....- .....-..........-+

1

Time (hrs)

Figure 5.50. Creep strain versus time at 204°C of Torlon® 4275.

5.3.5 Solvay Torlon@ 5030-30% Glass Fiber, 1% PTFE PAl Resin

::: :

::: : 103.4 MPa: :, :

::

: 68.9 MPa

:

: :, .'.:

:34,5 MPa

: :

:

1.5

1.0

-~0-.5III..-en

0.5

0.01 10 100 1000

Time (hrs)

Figure 5.51. Creep strain versus time at 23°C of Torlon® 5030.

Page 191: The Efecct of Creep

5: POLYIMIDES 191

:::::

68.9 MPa

.'.34,S MPa

: :::

:: :: :

1.5

1.0

-~0-c.~-(J)

0.5

0.01 10 100 1000

Time (hrs)

Figure 5.52. Creep strain versus time at 204°C of Torlon® 5030.

5.3.6 Solvay Torlon@ 7130-30% Graphite, 1% PTFE PAl Resin

100010010

: :

, -s-

:: :

:

: :~ .'.:

: 103.4 MPa~:

,', ~:- : : 68 9 MPa

;

: 34,5 MPa-, ::

:

, ,',

:0.1

0.01

0.2

0.3

1.0

0.6

0.7

0.8

0.9

-"#.- 05c ..~

en 0.4

Time (hrs)

Figure 5.53. Creep strain versus time at 23°C of Torlon® 7130.

Page 192: The Efecct of Creep

192 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

1.0 +-__........._..a...-............................'-'-.........__---'-_..........___'____'_.....................~-----'''''-----'--''-- .............................+

0.8 , ; .· .· .

· .0.9 -_ .. -.- _._------_._------- _.- .--.--.--~---_._. _.- _.- _.- _._. _.- _.- ---------- .. -:---------- ---_._ _.- ---_._-.- _. __ .· .· .· .· .· .

34.5 MPa... _----_. __ . __ __ ._--.--_ -.-_ _---_ _--

· .-------_. __ ._--_._-_.__ .. __ _-_ , -_.__ ._-------_ - _-_ .· .0.3 ..

0.6 ---- --- _._------------------ _.- _._. _.- ~" -.. _---------------- _.- _._ '.

· .0.7 ; : 68.9 MPa ..

· .· .· .· .· .~o- 0.5c.~

en 0.4

0.2 --_._----------- _.- _._ ~.- ".----- _._----_ ; --.----- --------- .· .· .· .· .

1000100100.0 +---""T"'""-or---r--r-..,....,-.-'"'T'"---....--r----.----.--.-...............------.----.--,........,......-r-.-......-+

1

0.1 ; ; ..· .· .· .· .· .

Time (hrs)

Figure 5.54. Creep strain versus time at 204°C of Torlon® 7130.

5.4 Polyimide (PI)

5.4.1 DuPont Engineering Polymers veepet" SP1-Unfilled PI Resin

2.5+---........-""'"--...........................................-----'--........---'----'-.................~ __----'~---'-_'-- ...................~

2.0 :.. -- --. -- --.. ; -- -- .· .· .· .· .· .· .

1.5 -- .-:::lao-100°C, 17.2 MPa

100°C, 10.3 MPa

0.5 ---- -- --. -- --. --. -- .................. _;---_ _-----_ -

1000100100.0 +---"'"T"'""-....--r--r-""T"'""'l...........-r-----r---r----.----.--.-"'T""'T........-----.....----.--...-......-.-T""'T'"T

1

Time (hrs)

Figure 5.55. Creep strain versus time at various temperatures of Vespel® SP1.

Page 193: The Efecct of Creep

5: POLYIMIDES 193

3000+-__""""-_"--""""-""""-...........-'-1.....1--__........._-'--.-.....-.............................__.........._""""-........................................."-+

100010010

-----. - -. ---300· . ------------------------. ------.. -. -:.. -.. ---------------------------------e, 10.3 MPa ~

· ,

300°C,> 7.2 MPa :

, .. __ _.. _-_._.. _--_._----_ .. _-----_ ---_._-_.. _----- _----_ .. __ .. _------.-------_ .. _-_.. _.. __ --_., .· .· .· .· .· .· .· .· ,· ,

---------------100° -;--------------------------------------;--------------- ..... -.. -.-------------c, 10.3 MPa ~

100·e ' ~,17,2 MPa '

...... __ ._--------_ .. _----_ .. _-----_...... --- .. -------------------_.-

0+---.......--.--.......-.......-........""T'""'T-r---""T"'""-..--""T"""""T"""........."""T"""r-r---"""T"""-.......--....-...."'T"""l-....r+1

2500

Cile,:::IE-; 2000.:!:::J't'o

:::IE 1500Q.G)

eo~ 1000

eI'llQ.Q.« 500

Time (hrs)

Figure 5.56. Apparent creep modulus versus time at various temperatures and stress of Vespel@ SP1.

5.4.2 DuPont Engineering Polymers Vespel@ SP21-15% Graphite-FilledPI Resin

2.0+---.........-""----....................................."'-4-__--'-_.-....---'----'-................... ....&..I-__----' ---'-_'--...................~

._------_. __ ._-----.-_._ .. _------_._ ---- .

100·6,17.2 MPa

300°C, 10.3 MPa0.5 --- ------------------------- ..

1.5 --------- .. ----------------------------,---------------------------------------.-------------------------

~o- 1.0c'f...UJ

100·e, 10.3 MPa

1000100100.0+---.......--..--""T"""""T""".......-.....-r--........-""T"""---.----.--...."T"'""I".......-r------.----.---.,.........,......-r"""T"""~

1

Time (hrs)

Figure 5.57. Creep strain versus time at various temperatures of Vespel@ SP21.

Page 194: The Efecct of Creep

194 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

1000

____ • __ ••••••••••••• C"-:••.,..,••_.__

10010

300°C......... _ .',?~?MPa .

.... __ . __ __ ._-----_ .. __ ._-_ _-_ _----_ __ .--_._--_._--_. __ ._-----_ .. _-_._-_. __ --------- .· .· .· ,· .· .· .· .· ,

.......................... ~.~~.o.~: .!~'~ .~Pa .300°C'

,10.3 MPa

----_ __ '--_._--_. __ .. _----_. __ ' _---_. __ _----_.-_.. _-_.· .· ,· ,

r~~- ..,;,.:...:...c ~~.~~~' ..10.3 MPa , .

4000

3500

-:. 3000::i-1/1

2500::J::J

"0::i 2000Q.CPCP..

15000-cCP..1000CIS

Q.Q.

<C500

01

Time (hrs)

Figure 5.58. Apparent creep modulus versus time at various temperatures and stress of Vespel@ SP21.

5.4.3 DuPont Engineering Polymers veepet" SP22-40% Graphite-FilledPI Resin

1.00+-__........._""----....0-....0-..................""-1-__........._""""'---'---'-...................&..1-__---"-_.........---'----'-.................""'+

100°C, 17.2 MPa

0.75

-'#.- 050C • L_------.~

u;

0.25 300°C, 10.3 MPa !_ .. _ .

100°C, 10.3 MPa

1000100100.00+---.........-...-- .,......,.-.-.rT""---r--~"""T'"""""'T""" ......................,..----.--"""T'"""--.---.--r-........-r+

1

Time (hrs)

Figure 5.59. Creep strain versus time at various temperatures of Vespel@ SP22.

Page 195: The Efecct of Creep

5: POLYIMIDES 195

100010010

........... _-- : _------------ : .· .· .· .· .· .· .· .· .· .............. __ _- .. -- _-_ -_ __ _ _--· .· .· .· .· .· .· .· .· .· .O+----.--........---.---.~ ................._r_--"""T"""-""T'"""---r"~ .......""T'""",....,...r---""T'"""-......--.-..............."T"""T-r+

1

5000

-IIID.:iiE~ 4000..2::s

"Co:iiE 30000.aIeoC 2000

eIII0.0.« 1000

Time (hrs)

Figure 5.60. Apparent creep modulus versus time at various temperatures and stress of Vespel'" SP22.

Page 196: The Efecct of Creep

6.1 Background

High-molecular weight polyamides are commonlyknown as nylon. Polyamides are crystalline polymerstypically produced by the condensation of a diacidand a diamine. There are several types of polyamidesand each type is often described by a number, such asnylon 66 or polyamide 66 (PA 66). The numeric suf­fixes refer to the number of carbon atoms present inthe molecular structures of the amine and acid,respectively (or a single suffix if the amine and acidgroups are part of the same molecule).

The polyamide plastic materials discussed in thisbook and the monomers used to make them are givenin Table 6.1.

The general reaction is shown in Fig. 6.1.The -COOH acid group reacts with the -NH2

amine group to form the amide. A molecule of water

6 Polyamides (Nylons)

is given off as the nylon polymer is formed. Theproperties of the polymer are determined by the Rand R' groups in the monomers. In nylon 66, R' =6Cand R =4C alkanes, but one has to also include thetwo carboxyl carbons in the diacid to get the numberit designates to the chain.

The structures of these diamine monomers areshown in Fig. 6.2 and the structures of the diacidmonomers are shown in Fig. 6.3. Figure 6.4 showsthe aminoacid monomers. These structures show onlythe functional groups, the CH2 connecting groups areimplied at the bond intersections.

All polyamides tend to absorb moisture, which canaffect their properties. Properties are often reportedas DAM (dry as molded) or conditioned (usually atequilibrium in 50% relative humidity at 23°C). Theabsorbed water tends to act like a plasticizer and canhave a significant effect on the plastics properties.

Table 6.1. Monomers Used to Make Specific Polyamides/Nylons

Polyamide/Nylon Type Monomers Used

Nylon 6 Caprolactam

Nylon 11 Aminoundecanoic acid

Nylon 12 Aminolauric acid

Nylon 66 1,6-Hexamethylene diamine and adipic acid

Nylon 610 1,6-Hexamethylene diamine and sebacic acid

Nylon 612 1,6-Hexamethylene diamine and 1,12-dodecanedioic acid

Nylon 666 Copolymer based on nylon 6 and nylon 66

Nylon 46 1,4-Diaminobutane and adipic acid

Nylon amorphous Trimethyl hexamethylene diamine and terephthalic acid

Polyphthalamide Any diamine and isophthalic acid and/or terephthalic acid

Polyarylamide m-xylylenediamine and adipic acid

Semi-crystalline Polyamide bis(p-aminocyclohexyl)methane and dodecanedioic acid

HO 0\ I;C-R-C +

I; \o OH

:>

o 0II IIC-R-C-N-R'-N

I IH H

n

Figure 6.1. Generalized polyamide reaction.

197

Page 197: The Efecct of Creep

198 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

HI

H,-~N,-N H

I

H1,6-hexamethylene diamine

m-xylylenediamine

H2N~NH2

1,4-diaminobutane

bis(p-aminocyclohexyl)methane

Figure 6.2. Chemical structures of diamines used to make polyamides.

o

/0H

o

oo

Isophthalic Acid

oHO~OH

o

1,12-Dodecanediotic Acid

oHO~OH

oAdipic Acid

Terephthalic Acid

oHO~OH

o

Sebacic Acid

Figure 6.3. Chemical structures of diacids used to make polyamides.

Aminoundecanoic Acid

oH2N~OH

Aminolauric Acid

0 0I

H

Caprolactam

Figure 6.4. Chemical structures of aminoacids used to make polyamides.

6.1.1 Nylon 6Nylon 6 begins as pure caprolactam, which is a

ring structured molecule. This monomer is unique inthat the ring is opened and the molecule polymerizeswith itself. As caprolactam has six carbon atoms, thenylon that is produced is called nylon 6, which isnearly the same as nylon 66 described in Section 6.1.4.The structure of nylon 6 is shown in Fig. 6.5 with therepeating unit enclosed in brackets.

Some of the characteristics of nylon 6 are:

• Outstanding balance of mechanical properties.

• Outstanding toughness in equilibrium moisturecontent.

• Outstanding chemical resistance and oilresistance.

• Outstanding wear and abrasion resistance.

Page 198: The Efecct of Creep

6: POLYAMIDES

oII

/CN

IH

199

H 0I IIN'-.....~/C~

C NII Io H

n

Figure 6.5. Chemical structure of nylon 6.

• Almost all grades are self-extinguishing. Theflame-resistant grades are rated UL 94VO.

• Outstanding long-term heat-resistance (at along-term, continuous, maximum temperatureranging between 80°C and 150°C).

• Grades reinforced with glass fiber and othermaterials offer superior elastic modulus andstrength.

• Offers low gasoline permeability and outstand­ing gas barrier properties.

• Highest rate of water absorption and highestequilibrium water content (8% or more).

• Excellent surface finish even when reinforced.

• Poor chemical resistance to strong acids andbases.

6.1.2 Nylon 11Nylon 11 has only one monomer, aminounde­

canoic acid. It has the necessary amine group at oneend and the acid group at the other. It polymerizeswith itself to produce the polyamide containingeleven carbons between the nitrogen atoms of theamide groups. Its structure is shown in Fig. 6.6.

Some of the characteristics of nylon 11 are:

• Low water absorption for a nylon (2.5% atsaturation)

• Reasonable UV resistance

• Higher strength than many other polyamides

• Ability to accept high loading of fillers

• Better heat resistance than nylon 12

• More expensive than nylon 6 or nylon 6/6

• Relatively low impact strength

6.1.3 Nylon 12Nylon 12 has only one monomer, aminolauric acid.

It has the necessary amine group at one end and the

acid group at the other. It polymerizes with itself toproduce the polyamide containing twelve carbonsbetween the two nitrogen atoms of the two amidegroups. Its structure is shown in Fig. 6.7.

The properties of semi-crystalline polyamides aredetermined by the concentration of amide groups inthe macromolecules. Polyamide 12 has the lowestamide group concentration of all commercially avail­able polyamides, thereby substantially promoting itscharacteristics:

• Lowest moisture absorption (-2%): Parts showlargest dimensional stability under conditionsof changing humidity

• Exceptional impact and notched impact stren­gth, even at temperatures well below the freezingpoint

• Good to excellent resistance against greases,oils, fuels, hydraulic fluids, various solvents,salt solutions, and other chemicals

• Exceptional resistance to stress cracking

• Excellent abrasion resistance

• Low coefficient of sliding friction

• Noise and vibration damping properties

• Good fatigue resistance under high frequencycyclical loading condition

• High processability

• Expensive

• Lowest strength and heat resistance of anypolyamide unmodified generic polyamide

6.1.4 Nylon 66The structure of nylon 66 is shown in Fig. 6.8.Some of the characteristics of nylon 66 are:

• Outstanding balance of mechanical properties.

• Outstanding toughness in equilibrium moisturecontent.

Page 199: The Efecct of Creep

200 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

oII

/CNI

H

n

Figure 6.6. Chemical structure of nylon 11.

~NIH

oIIC

HI

N

n

Figure 6.7. Chemical structure of nylon 12.

~NI

H

o HII IC~/N~

C NII Io H

oIIC~

n

Figure 6.8. Chemical structure of nylon 66.

• Outstanding chemical resistance and oil resis­tance.

• Outstanding wear and abrasion resistance.

• Almost all grades are self-extinguishing. Theflame-resistant grades are rated UL 94VO.

• Outstanding long-term heat resistance (at along-term, continuous, maximum temperatureranging between 80°C and 150°C).

• Grades reinforced with glass fiber and othermaterials offer superior elastic modulus andstrength.

• Offers low gasoline permeability and outstand­ing gas barrier properties.

• High water absorption.

• Poor chemical resistance to strong acids andbases.

6.1.5 Nylon 610The structure of nylon 610 is given in Fig. 6.9.Some of the characteristics of nylon 610 are:

• Outstanding suppleness and impact strength atlow temperature

• Relatively low hygroscopic properties

• Outstanding flex fatigue properties

6.1.6 Nylon 612The structure of nylon 612 is given in Fig. 6.10.Some of the characteristics of nylon 612 are:

• High impact strength

• Very good resistance to greases, oils, fuels,hydraulic fluids, water, alkalis, and saline

• Very good stress cracking resistance, even whensubjected to chemical attack and when used tocover metal parts

• Low coefficients of sliding friction and highabrasion resistance, even when running dry

• High heat deflection temperature (melting pointnearly 40°C higher than nylon 12)

Page 200: The Efecct of Creep

6: POLYAMIDES

H 0I IIN~/C

NI

H

Figure 6.9. Chemical structure of nylon 610.

H 0

I IIN~/C

NI

H

Figure 6.10. Chemical structure of nylon 612.

• Good tensile and flexural strength

• Outstanding recovery at high wet strength

6.1.7 Nylon 666 or 66/6This is the name given to copolyamides made from

PA 6 and PA 66 building blocks. A precise structurecannot be drawn.

6.1.8 Amorphous NylonAmorphous nylon is designed to give no crystal­

linity to the polymer structure. One such amorphousnylon is shown in Fig. 6.11.

The tertiary butyl group attached to the amine mol­ecule is bulky and it disrupts the molecule's ability tocrystallize. This particular amorphous nylon is some­times designated as nylon 6-3-T. Amorphous poly­mers can have properties that differ significantly fromcrystalline types, one of which is optical transparency.

Some of the characteristics of amorphous nylon are:

• Crystal-clear, high optical transparency

• High mechanical stability

• High heat deflection temperature

• High impact strength

• Good chemical resistance compared with otherplastics

• Good electrical properties

• Low mold shrinkage

201

H

IN~

CIIo

n

H

IN~

CIIo

n

6.1.9 Nylon 46The structure of nylon 46 is given in Fig. 6.12.Some of the characteristics of nylon 46 are:

• Higher heat distortion temperature than nylon 6or nylon 6/6

• Higher crystallinity than nylon 6 or nylon 6/6

• Better chemical resistance, particularly to acidicsalts

• Similar moisture absorption to nylon 6/6, butdimensional increase is less

• High processing temperature

• Best mechanical properties at high temperatures

• Excellent resistance to wear and low friction

• Outstanding flow for easy processing

6.1.10 Polyphthalamide/High­Performance Polyamide (PPA)

As a member of the nylon family, it is a semi-crys­talline material made from a diacid and a diamine.However, the diacid portion contains at least 55%terephthalic acid (TPA) or isophthalic acid (IPA).TPA and IPA are aromatic components that serve toraise the melting point, glass transition temperature,and generally improve chemical resistance comparedwith standard aliphatic nylon polymers. The structureof the polymer depends on the ratio of the diacidingredient and the diamine used and varies from

Page 201: The Efecct of Creep

202 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

C I(5\c-1II~IIo 0

H

IN

n

Figure 6.11. Chemical structure of amorphous nylon.

H 0 H

I II IN~/C~ N~

N CI II

H 0

n

Figure 6.12. Chemical structure of nylon 46.

grade to grade. The polymer usually consists of mix­tures of blocks of two or more different segments,four of which are shown in Fig. 6.13.

Some of the characteristics of PPA are:

• Very high heat resistance

• Good chemical resistance

• Relatively low moisture absorption

• High strength or physical properties over abroad temperature range

• Not inherently flame retardant

• Requires good drying equipment

• High processing temperatures

6.1.11 Polyarylamide (PAA)Another partially aromatic high-performance poly­

amide is polyarylamide (PAA). The primary com­mercial polymer, PAMXD6, is formed by the reactionof m-xylylenediamine and adipic acid giving thestructure shown in Fig. 6.14. It is a semi-crystallinepolymer.

Some of the characteristics of PAA are:

• Very high rigidity

• High strength

• Very low creep

• Excellent surface finish even for a reinforcedproduct with a high glass fiber content

• Ease of processing

• Good dimensional stability

• Slow rate of water absorption

Graphs of multipoint properties of polyamides as afunction of temperature, moisture, and other factorsare illustrated in the following sections. Becausepolyamides absorb water, which affects the proper­ties, some of the data are dry, or better dry as molded.Some of the data are for conditioned specimens; thatis, they have reached equilibrium water absorption at50% relative humidity and 23°C.

6.1.12 Semi-crystalline Polyamide(PACM 12)

PACM 12 is a polyamide produced from bis(p­aminocyclohexyl)methane (54% trans-trans) anddodecanedioic acid. The structure is shown in Fig. 6.15.

PACM 12 combines the chemical resistance ofsemi-crystalline materials with the advantages of amor­phous, UV-resistant materials. The properties ofPACM 12 are:

• Crystal-clear, permanent transparency

Page 202: The Efecct of Creep

6: POLYAMIDES

HI

N~N"C IQ\-C

I II~IIH 0 0

6T Segment

H 0I II

~N,,~CN C

I IIH 0

66 Segment

x

y

,0N~N <,C~CI II II

H 0 0

61 Segment

DT Segment

203

z

N

Figure 6.13. Chemical structures of blocks used to make polyphthalamides.

n

Figure 6.14. Chemical structure of PAMXD6 polyarylamide.

n

Figure 6.15. Chemical structure of PACM 12 semi-crystalline polyamide.

• Superior chemical and stress cracking resis­tance

• High level of UV resistance

• Low water absorption compared with manyother polyamides, which leaves the mechanicalproperties virtually unaffected

• High dimensional stability

• Balanced mechanical property profile

• High impact resistance, even at low tempera-tures

• Abrasion and scratch resistance

• High glass transition temperature

• Easy processing

Page 203: The Efecct of Creep

204 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

6.2 Polyamide 6 (PA 6, Nylon 6)

6.2.1 BASF Ultramid@BS-HighViscosity,General-PurposePA6Resin

, ,

: In water at 20°C- - _. - - - - - . - ~ .

, ,, ,, ,, ,, ,, ,

... -. - ~ - -. - -- ., . , ,

, , ,, , ,, , ,, , ,, ,

22 . -. -. -.. -r.--.--.--_. -----r - - - - - - ••• - • - - - - - ~. _ •••• _ ••••••••• ~ •••••••••••••••• ~ ••••••••••••••••

. . . ,

20 : _ _~ _ ~ ·······_·····~·····_··········~23°C, 500/0 Humidity·········· " ,.18 _ ~ _ ~ .. - ~ _~ _ ~ ~ .· . . , . .· . . , . .· , . . . .

16 ---------- ---- --:--------- -------:--------- -------:----------------:----------------:--------- -------:- --------- ------, , , . , .. , . , .

, , . ,14 _ - ~ _ :.. ' . ,

Ci' : :Q. : :~ 12 ' .

I/)I/)

f 10-(J)

c.oo 8

::E:

6 ----------------,----- ----------, ---------------.- , ,---------- .. ----------------.---_ .

Time (hrs)

Figure 6.16. Hoop stress versus time of Ultramid® 85 (pipes, diameter 8 mm, wall thickness 1 mm).

6.2.2 SABIC Innovative Plastics Thermocomp@PF-1004(PF004)-20%Glass Fiber Reinforced PA 6 Resin

1.5

-~ 1.0c

.~-(J)

c.Q)

eo.!'iii 0.5ce

::::: Stress = 34_5Mpa

................~

..-.,..,-;-:

~:

:::::::

:

102

Time (hrs)

Figure 6.17. Tensile creep strain versus time of Thermocomp" PF1004 at 23°C and a stress of 34.5 MPa.

Page 204: The Efecct of Creep

6: POLYAMIDES 205

6.2.3 DuPont Engineering Polymers Zytel@73G30LNe010-30%GlassFiber Reinforced, Lubricated, for Injection Molding PA 6 Resin

2.52.01.0 1.5

Strain (%)

0.5O-f-r-......--T~"""T"""r-T"""......;-"I"""T"..,...,.-;-. ............,i-o-...............0.0

10 .....

50 .

40

-C'CIa..~30III

~-en20

2.01.5

1,000 hr

1.0

Strain (%)

~ "." .· . .· . .· .· .· .

0.5

· .. . . ~ -.- .

100 hr.

· .................................... - - .. . .· . .· . .· . .· . .· . .0+-r.....,.............."""T'"...............,....~.....,.... ..........,.........."'T""'"',........................-+0.0

5

40

45 ; ," ~ .· . .

35 : :- ;. .· . .· . .· . .· . .· . .· .- - . - - - - - - - - ~ .

50

10

15

Figure 6.18. Isochronous stress-strain of Zytel®73G30L NC010 at 23°C.

Figure 6.19. Isochronous stress-strain of Zytel®73G30L NC010 at 60°C.

1,000 hr

0.5 1.0 1.5

Strain (%)

· ............................................· .· .· .· .· .· .

o+-..--....................---r-~.....,....-r-.......--r--r-- ..........---,.-+0.0

10

25

5

III

m15...-en

III 20a..:E-

35 ~.. .. .. ~ ..

...... !i::>(;)<:5

30 ; ~'

Figure 6.20. Isochronous stress-strain of Zytel® 73G30L NC010 at 90°C.

Page 205: The Efecct of Creep

206 THE EFFECT OF CREEP AND OTHER lIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

6.2.4 SABIC Innovative Plastics Thermocomp@ PF-1006 (PF006) andPF-1006FR (Fire Resistant)-30% Glass Fiber Reinforced PA 6 Resin

, , : ,68.g MPa

I- Fire Resistant I , , : :, , ,

, ,,

-.- .-

, ,

, , ,, , , , -.- .- .- -.- -.- .: , -. : -. -. : : .- :

, -,- - - - - .... - 34.5 MPa: - -: - ...:. -,- - - .,.. 34.5 MPa...:.-....- ... , , ,

.- _.- -,- _.- _.- _.- _. _. _.-

- - - - -, - - - - - - - 17.2 MPa- ... - ,-

..

1.5

2.0

0.010-1

c'~-tnQ. 1.0Q)

eo.!'iiic

~ 0.5

Time (hrs)

Figure 6.21. Tensile creep strain versus time of Therrnocornp'" PF-1006 (PF006) and PF-1006FR(Fire Resistant) at 23°C and various stress levels.

6.2.5 SABIC Innovative Plastics Stat-Kon@PC-1006-30%GlassFiberandConductive Carbon Reinforced PA 6 Resin

102

Time (hrs)

:: Stress 34.5 Mpa

:

,

:

- - ... - - - - - - - - ...:. -- - ... - ,...- - --- - - - - - -r- - - - - Stress = 17.2 MPa

:0.1

0.0101

0.4

0,5

c'iii 0.3...-tnQ.Q)

eo 0.2.!'iiic

~

Figure 6.22. Tensile creep strain versus time of Stat-Konf PC-1006 at 23°C and various stress levels.

Page 206: The Efecct of Creep

6: POLYAMIDES 207

6.2.6 Toray Industries Amiten" CM1011G-30-30% Glass FiberReinforced, Standard Grade PA 6 Resin

Stress = 50 Mpa

1.5 ~ l-~~~r==l~e...c'j!..enc. 1.0Gleo.!'iiic~ 0.5

Stress - 10 MPa

0.0 +--.......--.-..............................;-----.,--.,......,..--.-..,...,....,......;---....-.........---.-""T"""T...........;---.-..........................~10.1

Time (hrs)

Figure 6.23. Creep strain versus time of Arnllan" CM1011G-30 at 23°C and various stress levels.

6.2.7 DuPont Engineering Polymers Minlon@ 73M30 NCO10-30%Mineral-Reinforced, Heat-Stabilized, for Injection Molding PA 6 Resin

43

.: : ; .· . .· . .· . .· . .· . .· . .· . .· . .· .· .· .· .· .· .· .· .· .· .· .· .

10+-.........--;--.....-.....;.--.......--;-.........--+

o

15

2

Strain (%)

Figure 6.25. Isochronous stress-strain of Minlon®73M30 NC010 at 60°C,

541

. .: ~ : : .· ..· ..· ..· ..· ..· ..· ..· ..· ..· ..· ..· ..· ..· ..o+---.---;.-.....--i-.........--;-...----;-----..--+o

5 ....

25 +-----+-"---+----'----!-""""--+----'---+

20

15 :- ; :- -; .- . .III . .11. : ::E : :"'-'" : :· .· .· .· .· .IIIIIIf 10..en

2 3

Strain (%)

Figure 6.24. Isochronous stress-strain of Minlon®73M30 NC010 at 23°C.

Page 207: The Efecct of Creep

208 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

2.52.0

· . . ................................................· . . .· . . ., , , ,· . . ., , , .· . . .· . . .· . . .· . . .· . . ., . . .· . . .· . . .· , . .· . . .0.5

6 : - _ : : .· ..· ..· ..· ..· ..· ..· ..· ..· ..· ..· ..· .· .· .

2 ....

o+r...............,.....................,r-r-".............-r..............."T"T'"..............r+0.0

8

IIIIII~ 4-UJ

-CISIl.::E-

1.0 1.5

Strain (%)

Figure 6.26. Isochronous stress-strain of Minlon® 73M30 NC010 at 90°C.

6.2.8 Toray Industries Ami/an ™ eM1011G-45-45% Glass FiberReinforced, Standard Grade PA 6 Resin

2.0+-_........---"---'-...........................__'---'--..............................4--_........---"---'-...........................__'--.............0...-................+

1.5 _ --_ -_.. ;.. --_ _. -_ --_ ----: -_._ --_ _. -_ ---_ .. ~-_ -_ _ .

c·f-UJc. 1.0Gl~o.!!!'inc

~ 0.5

Stress = 50 Mpa

. .............................. ,._ __ -_ --_ _-_ _-_ __ _-_ _-_ _-- __ .

Stress =10 MPa

101

Time (hrs)

0.0 +--"""'T"""---,.---.-"""'T"""T'""'T""I"'T"f"----.r--.......-...........................-r--"""'T"""---,.---.-"""'T""".........I"'T"f"----.r--.......-..,......,................+10.1

Figure 6.27. Tensile creep strain versus time of Arnilan" CM1011G-30 at 23°C and various stress levels.

Page 208: The Efecct of Creep

6: POLYAMIDES 209

6.3 Polyamide 11 (PA 11, Nylon 11)

6.3.1 Arkema Rilsan@BESNO TL-Rigid Grade for Tubes, Heat- andLight-Stabilized PA 11 Resin

· ... __ _-_ __ _._ _ .· .· .

................ --.. -.. - -;.-.----.-.-.--.--.----.-.- -; : ····80°C·· .:: 60°C

· . .......................................... _-_ _-_ __ .· . .· .

~~....--7--.~ ~ :-:-:-:-.-.. -.- : ; .~---- ..

. --'---

3.5 ~ , ·i·· .· . .· . .· . .· . .· . .. .~ 3.0.ll::IIIem 2.5­IIICo 2.0:;:;IIICJlCo 1.5iiiIII

-5 1.0'iii~

0.5 !- ~------~------:-- 230C

100.1O.O+--.........-.....-.......................~----.--.....- .......................~----.--~ ........................~----.---r--.....-+

0.01 1

Time (hrs)

Figure 6.28. Residual elongation at break of Rilsan® BESNO TL under 4 MPa stress at various temperatures.

6.3.2 Generic Product and Multiple Product Graphs

25201510

;"

5O+-.................---..-.....-T-.................---.-----.,--,.-.....-........---.---.-r-.....-........---.----.-r-.....-.................---..-+

o

14 . ;" , . :-".....................D";;' ~.~.;~ r·············· .. ····· ·1········· ~·~;~·> r·······················/., . . -' .

12 / ~.~ ~ ,;.;.~.,::.~~ ~ ..

/ ,': : -: :I ' : .-,-: :

10 "/";.: : ;)",::':'. ~ ~ .

Ci I I: ,,' :~ 8 / : : ;" /'. ::2 ·/::;.. · T~>.-/ r · ··] ·· ..·..· ·.. r· .~ I • /, . . .en 6 ,./ ~./: .. ~ : i ~ .

, : ,/. --Rilsan® BZM 30 - Rigid Grade, 30% Chopped Glass4 .. !!'..... _/ ..........:................... - - Rilsan® BMN G8 - 8% Graphite Filled Molding Grade ..

': •/: •••• Rilsan® BMN - General Purpose Molding Gradet, I _. - Rilsan® BMN P40 - High Flexibility Grade

2 {./ : -,.- -.- .- - ., . . . .U· : : : :, : : : :

, , . .

Strain (%)

Figure 6.29. Isochronous stress-strain of several Rilsan® PA 11 resins at 20°C and 1000 hours.

Page 209: The Efecct of Creep

210 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

25 .- _._. _.-----_ '---- --------_. ---- .~-_. ----- --------_ .. :_-_. ----- _.-._---_.' .

•................................. _-_ _-- _----_ -. .. .

10 +---..,.---.-................,....--..................I""T'TTTT"-..--,..........."T""T"'rTTT-............................"T"TT'1r-- ........-r-T'""'T""l""r'T"r----.-.........""T""T......-T.....

10°

Ii 20a.:E-II)II)

e-enc. 15oo:z:

103

Time (hrs)

Figure 6.30. Hoop stress of pipes made of Rilsan® PA 11 resins at various temperatures.

6.4 Polyamide 12 (PA 12, Nylon 12)

6.4.1 Degussa Vestamid@L2140-HighViscosity,HighHeatPA12Resin

10+--.........---'-............................o..l--...........----"---'-.......................o.+-----'----'...............................o..a..J------"-"'"--..................""""'+

cf!-enc.G)

eo~II)cG)I-

10 MPa8.5 MPa7.5 MPa6.5 MPa

5MPa

3.5 MPa

__-,2.5 MPa

2MPa

0.1 +---r-~ ........"'T""T""T'"T'"T'T"""-........--..,.---.-"""T"""'l........."T'T"""----.----.'""""""T.................I"'T'T'"----r-........,.........."'T""T"~

10°

Time (hrs)

Figure 6.31. Tensile creep strain at various stresses of Vestamid® L2140 at 23°C and 50% relative humidity.

Page 210: The Efecct of Creep

6: POLYAMIDES 211

10

-~o-1

:

:

..

:

7.5 MPa

6.5 MPa

5MPa

3.5 MPa

2.5 MPa2MPa1.5 MPa

1 MPa

0.5 MPa

102

Time (hrs)

Figure 6.32. Tensile creep strain at various stresses of Vestamtd'" L2140 at 60De.

100+-_ ___'_----'___''................~ ___'______'_............................a.+_----"--'----'--'................_l__-.........---"----I.---'-........""""+

7.5 MPa7MPa6.5 MPa

6MPa

5MPa

4MPa

3 MPa

2.5 MPa2MPa

102

Time (hrs)

Figure 6.33. Tensile creep strain at various stresses of Vestamid" L2140 at 100De.

Page 211: The Efecct of Creep

212 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

2MPa5MPa

10 MPa

•• - •••••••••• - -. - •••••••••••••.• - •••••••••• - •••••••••• - •••••••••••.••• _ ••••••••••••- ••• - .-p •• _ •••• - •••••••••• - .-. - •••••••• -. - •.• _ ••

, , ,............................................................................................, , ,•.••. .•.••.•••.• . •.••.•.•...••.••.•.••.••.••••.•.•• 1 .••••••••.••••••.•••••..•.•.•.•••..•.•...•••.•., , ,

.....................•............................................•..., ,, ,

.................................................( ..

....................................................................................................................................................................................... ............................................• .............................................•...

.... .. - - , - .... . ...........•••.•.•••...••.••. ! '" ••.•.••.••....•..•.••.•...

....... ............• .............................................•...

..... . . ~ ..

...........................................•. ············································1 .............................................•...

......................................................................................... ; .

............ ~ ..

............................................. ,.

102 +--.....,..--..........--................--......-..........................""'"T--....-..............,...,...,..,.TT'""----.-......-.........................+10°

-ftla.::E-

102

Time (hrs)

Figure 6.34. Tensile creep modulus at various stresses of Vestamid® L2140 at 23°C and 50% relative humidity.

-ftla.::E-

:.... .,.

..

.,. ..:

:;

: :

; -,'

:: :

.- .... .. .- .•.. •. .- .. .. .. .... .. .. .... .- .. .. .. .. .... .- .... .. .- ., .. .. .. .- .- .. .... .- .. .•.. ..•. .- ..•.. .. .. .- .- .. .. .. .. .- .. .. .. .. .- .. ....

" .. ..:

- " .. ..

',' .,.

:...

:: : :

: :

1,5 MPa7.5 MPa

102

Time (hrs)

Figure 6.35. Tensile creep modulus at various stresses of Vestamid® L2140 at 60°C.

Page 212: The Efecct of Creep

6: POLYAMIDES 213

............................................. ; ; .•••••••••••••••••••••••••••••••••••••••••• ) ••••••••••••••••••••••••••••••••••••••••••• 1 •••

2 MPa

4MPa

5MPa

6MPa

7.5 MPa

101 +--........--.--.-...............T""""'-......................................r---...-.............................,r---..-...-........................1if 1~ 1~ 1if 1~

Time (hrs)

Figure 6.36. Tensile creep modulus at various stresses of Vestamid® L2140 at 100°C.

6.4.2 Degussa Vestamid@ L2124-High Viscosity, High Heat, PlasticizedPA 12 Resin

10+--.........---'-..............................-+.--.........---'-..............................-+.--.........---0................................__.........---0..................................

~o-cl!!-tJ)Co 1 .G>eo~II)c

~

1 MPa

102

Time (hrs)

0.1+--.......................................,.,....-.......................................,.,....-.........................................,.....--.-.....,..--.-...............r+10°

Figure 6.37. Tensile creep strain at various stresses of Vestarnid'" L2124 at 23°C and 50% relative humidity.

Page 213: The Efecct of Creep

214 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

c.~..(J)

CoCPf!o.!!'iiic~

10

1

::

:..- :

-

.-: :

:

: :

:

::

: : ::

5MPa

4.5 MPa

4MPa

3.5 MPa

3MPa2.5 MPa2MPa1.5 MPa

1 MPa

102

Time (hrs)

Figure 6.38. Tensile creep strain at various stresses of Vestamid® L2124 at 60°C.

10

-~o-cf!..

(J)Co 1CPeo.!!I/)c~

: ::::

:

: :

.- .

: ::

::

: : :: :

: :

: :

5MPa4.5 MPa4MPa3.5 MPa3MPa2.5 MPa

2MPa

1.5 MPa

1 MPa

102

Time (hrs)

Figure 6.39. Tensile creep strain at various stresses of Vestamid® L2124 at 100°C.

Page 214: The Efecct of Creep

6: POLYAMIDES 215

................................................ ,...... .............................•...

. .............•...

...... . .. . ~ .

.. .. .. .. . ,_ ..

. .-.-.- , .

. . . . . . . . . .. . _... .

..... . . .. ~ ..

. . - ~ ..

. ; ..

. ....................•. -- ~ ..

. ; ..

....................~ ...

................ ···············r····

................ ····Load - 5 MPa

· . . . . . . . . . .. ..........;...

· . . . .. .. •........ ... I . . .

.. • _ . . . . _. . I . . .

· . .. ..................;...

· . . .. . . . . . . , - .. .

. .

· . . . . . . . . . . . . . . .. ..... ... . . .

· . . . . . . . . . . . . . . . . . . . . . . ,. . .

101 -f-----.--...--......-........."'T""T"..-r---....--.--.-....................-r--......---..--.......................,.--........-.....--...--........."'T""T"...-r10° 102

Time (hrs)

Figure 6.40. Tensile creep modulus ofVestamid® L2124 at 23°C and 50% relative humidity.

,:,

". .,.

:..

:;

::

- .... - ·0 o· o· ·0 - ·0 o· ·0 - .. ·0 o· ·0 •. - o· - .. .. •. - .. .. -., .... - ·0 .•....... - .... ..- -.. .. ·0 - .•..; :::

', .. ::; ..

: :,. .,.

: :.,.

::: :

: :

1 MPa1,5 MPa4MPa

5MPa

102

Time (hrs)

Figure 6.41. Tensile creep modulus at various stresses ofVestamid® L2124 at 60°C.

Page 215: The Efecct of Creep

216 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

- 0 O· O· O· ·0 O· - ·0 O· ·0 O· ·0 O· ·0 O· ·0 ·0 O· 0 - O· ·0 - 0' ·0 O· ·0 - - O· ·0 O· O· O· O· 0 O· - O· ·0 O· ·0 O· - O· O· - ·0

;

;

.,. .,.

:

:

- - 0 O· ·0 O· - ·0 - ·0 ·0 O· ·0 - O· 0 O· - - ·0 - - ·0 - - ·0 ·0 - 0 ·0 - ·0 ·0 - 0 ·0 ·0 O· - 0

,. .,;

;

1 MPa

5 MPa

102

Time (hrs)

Figure 6.42. Tensile creep modulus at various stresses of vestarntd" L2124 at 100°C.

6.4.3 Degussa Vestamid@L-GF30-30%ChoppedGlassPA12Resin

-~o-

10

1

:

:

----r-

~

r-":-' :~ : :

: :

:

:

55 MPa50MPa45MPa40MPa35MPa30MPa

102

Time (hrs)

Figure 6.43. Tensile creep strain at various stresses of Vestamid'" L-GF30 at 23°C and 50% relative humidity,

Page 216: The Efecct of Creep

6: POLYAMIDES 217

10

~co-c:e-enc.(I)

e(J

.!!'iiic:(I)I-

1 :

:

:

:

:

:

35MPa30MPa25 MPa

20MPa

15 MPa

102

Time (hrs)

Figure 6.44. Tensile creep strain at various stresses of vestamld" L-GF30 at 60°C.

10

~co-c:.~-enc. 1(I)

e(J

.!!Ule

~

:

::

" :

:

:

:

:

30MPa25MPa

20MPa

15 MPa

102

Time (hrs)

Figure 6.45. Tensile creep strain at various stresses of Vestamid® L-GF30 at 100°C.

Page 217: The Efecct of Creep

218 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

-nsll.::E-

.,.

',,

:.. _.: : :

~;

::

:

-, .. ",.,.

: -: :

- ...- - .• .- - .0 .0 .. •0 o. -0 0- .. ...- -. .- - -. .- -.- 0' -. .- _. - - _0 .. • 0 •. _0 o· .... -. .-..... ..- .... -. •. - .. -. .. - -. ...- :::.-

:-, ; ..

: :

:.,- .,:

:

: :

30MPa55MPa

102

Time (hrs)

Figure 6.46. Tensile creep modulus at various stresses ofVestamld'" L-GF30 at 23°C and50% relative humidity.

:.- : _.,

.- _.: :

: :-, : .,.

:

; .,.:

- .. .. - .. .. -. •. - .- -. .-0- -0 .- _. •. • 0 .- .0 .. .... - -. .- - ... -. .- - -. .- -. .- - .- - _. . - 0_' _0 .- -0- -. .- .. - .... - ...-

', .-

:.' ; i

.,. -,.

.,- -,::

: ::

15 MPa

30MPa

102

Time (hrs)

Figure 6.47. Tensile creep modulus at various stresses ofVestamid® L-GF30 at 60°C.

Page 218: The Efecct of Creep

6: POLYAMIDES 219

.................................... ~ .... _ _ .. _ ~ .

- .. _........•....

. ...........•....

.................................... . ~ ...

.............

..........

· ..... . . . . . . . . . -. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .· .'.. .......•. . -'.-..· .. ....•.. ............•... '- .· .· .. . ,... . , .· .. ............•.... _ 1... . ' .· .· .· .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -. . . . . . . . . . . . . . . . . . . . . . . . . .· .· .· .· ..... ............•.... . .................•... . , .· .· .· .· .· .... ...•.... .....•...· .· .· .· .· .· .· .· .· .102+--.......-.-..,......,"""T""'O""T"T"1r--.......,,..........---.I""'""T"""T""T""l"'T"T'"----.-----r---.-"""T'"""O........~-----r--.-T"""T"" ...........

10°

-ClID.::E-

102

Time (hrs)

Figure 6.48. Tensile creep modulus of Vestamid® L-GF30 at 100°C.

6.4.4 EMS-GRIVORY Grilamid@LV-3H-30%GlassFiberReinforced,Heat-Stabilized PA 12 Resin

70MPa

50MPa

60 MPa

. :.-~:-:-:

3 _ _ : _. _ _ ~ _ _ ~ _ .

-~o-cl!-enCo 2 .Q)

eo..!e'ii)c{!. 1 .

0+--__---.----.-""T'"'"'I......."'I"T""-___._-.........,r'""'"'"T'"................--r--..--__........................~------.----,-"""T"""'l ............_r10.1 101

Time (hrs)

Figure 6.49. Tensile creep strain at various stresses of Grilarnid'" LV-3H at 23°C and 50% relative humidity.

Page 219: The Efecct of Creep

220 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

6.5 Polyamide 66 (PA 66, Nylon 66)

6.5.1 DuPont Engineering Polymers ZytetB) 101-General-Purpose PA 66 Resin

652 3 4

Strain (%)

. ~ _. . -. - ' .. . . ,· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .

1

· . .....................................................

8 .

o+--'-"""T'"--'-~~'--~"""""-r---'---r---'--+o

10

2 ...

4

IIIIIIe-tJ)

-I'CIQ.

~ 6

Figure 6.52. Isochronous stress-strain of Zytel®101 at 1000 e and 50% relative humidity.

10

-I'CIQ.

~IIIIIIG)..-tJ)

5 ....

0--h-.~rTT'lr'TT" ..........................;..,.......,...;..T'T'T"""'"T'TT...........-.+0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Strain (%)

Figure 6.50. Isochronous stress-strain of Zytel®101 at 23°e and 50% relative humidity.

Strain (%)

•• ~ •••••• I •••••••' ••••••· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .

o--h-.rT"l"1r""""""""'T".......TT'T"T'T'T"T"T'TTT'TT'TT"T'TT"T'T"rTT"'...........

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Strain (%)

10

IiQ.

~IIIIIIG)..-tJ)

5

1.51.00.5

...... ~ ; .

............ ~ :- .· .· .· .

.....................................................· .· .

2

5

7

6

o+--.--......._........,r--'T---..--.--...-"""T'"......-.-""T"'""...,......+0.0

1

Figure 6.51. Isochronous stress-strain of Zytel®101 at 600 e and 50% relative humidity.

Figure 6.53. Flexural isochronous stress-strain ofZytel® 101 at 23°e and 50% relative humidity.

Page 220: The Efecct of Creep

6: POLYAMIDES 221

, ,, . . ................................................ __ .· , , . ,, , , . .

, , , . ., , , . ,, • I • ,

, . . . ,· . . . ,· . . . ., . . . ., . . . ., . . . .· . . . ., . . , .

4 . -. . ~ - ~ _.. ---_. - ~ -_. -. _. _. -_. -_.., ,.· .,· .,· .,· .,· .,, ... .. .

, ., ., .

O+--....-..-..............,....-..-.....-...............,r--.....-..,....,............,.-......................."T'IT"-..................r-T"T""1"""---.........................,.,.---r-...................~10-3

-~o-e~ 3 ..!LL

,5c'i! 2 "'"; ················i················:················~··· : .

eo 1 .

Time (hrs)

Figure 6.54. Flexural creep strain versus time of Zytel® 101 at 23°C and 50% relative humidity.

1800+-................................- ........................_ ................................- ........................_ ................................- ........................_ ................................

, ,. , ., .

, . ,.......................... ~ ., . ,, . ,. , ,. . ., ,. ,

· , . ,............................. , , .· , . ,· .,· .,· .,. ,

....3.5 MPa : ~ : ~ .

... _----------: __ .. _-_ :---_ .. __ _--:---_ _-------:- _---------_ ..:----------------:--_ .. _----_ -· . , , , ,, . , , , ,· . , , , ,· , . , . .

· , . , , ,..................................................................................................................· , . , . ,· , . , , ,· , . , , ,· , . , , ,· , . , . ,· , . , . ,, , . , . ,

. , ,................' ., . , ,, . , ., . , ,, . , ,, , , ,, . , ,

, . ................., (' ., . ., . ,, . ., . ., . .

, , , , ,................, _ ., , , , , ,, , , , , ,· , . , , ,, , . , , ,, , . , , ,, , , , , ,

O+--....-.-..............,r--....................'""'"-......................IT"""-....-.-..............,r--....................'""'"-.....................IT"""-....-.-................10.3

l!~

>< 600.!LL- 400cCD..CISc.

200c.«

1600-CISa.~ 1400I/)~:g 1200o

:::Ec. 1000CDeo 800

Time (hrs)

Figure 6.55. Apparent flexural creep modulus versus time of Zytel® 101 at 23°C and 50% relative humidity.

Page 221: The Efecct of Creep

222 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

· . . . . .................................. , ············r··············· ..················ ········ .

· .· .· .· .· ................ ...........•. - .................•........................•..........................•......................., -.-.- ,.· .· .· .· .· . . . . ,................, , __. .-.__.. _ _._--· . . . . ,· ..· ..· ............................ 1... . 1 ! ............................•..........................' .· ..· ..· ..· ..· ..

.. .... .... .... ..· . ..........................•........................... .' ................... ; ; j. • •· .· .· .· .

. .. .•••••••••••••••••• --.----------_ .... _---_ •• - •••• _- •• __ •• '-- •• -.. • ••••••• _---.-_ ••• .! ••• __ ._--_ •••••· . .· . .· . .· . .· . .· ....................•........................•.........................•.........................•..... ····················4

O+-"""'T""""'T""T"T"TTnr----,."""'T"""T"T'TTTrT"-...................TTTTr--...,......T'""T'".........TT""".....,.... .........""T'T"l'"T'"----r""'"T""................,-......."""T"'l'........+_10.3

200

600

"£1000!.III=:; 800"Co:EQ,Q)

fo~=>< 400.!!LL...CQ)..IIIQ,Q,

<C

Time (hrs)

Figure 6.56. Apparent flexural creep modulus versus time of Zytel® 101 at BO°C and 50% relative humidity.

6.5.2 BASF Ultramid@A3K-EasyFlow,FastCycling,General-PurposePA 66 Resin

14 "H=:::=:!:::::::=±=:=:::=:!:::±=:::=:!::::::!::::!j.............."'!"""'".......""'""tI - - .Extrapolated - - . Extrapolated

2.52.00.50+-r-r-r""'T'"T""T...,......,-r-r-r-"T'""T........,r-r-,.....,....,....,....,....,..........-+0.0

8 .. ............: : : _~

: : : ,,<:)· . .· . .· . .· . .· . .· . .· . .· . ._ 6 : ~ : ;.;..

:. :: :,.. ~ '(\<-:E :: »:: <:),,-V- ::.,.. ,,<:),:g :::,.. :f 4 : : /. : .(j) /

. /

t'/:

2 : ~ ~ : -: .. / : : :· . . .

/. : : :· . . .~ : : : :· . . .· . . .· . . .· . . .· . . .

1.0 1.5

Strain (%)

Figure 6.58. Isochronous stress-strain of Ultramid®A 3K at 120°C.

2.52.00.5

· . . .· . . ........................ ; r:· . .· . .· . .· . .· . .· . .· . .· . .· . .· .

2 ...

O+-r........r""'T'"T""T...,......,-r-r-o-............,-r-r""'T'"..........,......,-r-..-+

0.0

12

10

- 8IIIa.:E-IIIIII 6Q).....

tJ)

4

1.0 1.5

Strain (%)

Figure 6.57. Isochronous stress-strain of Ultrarnld'"A 3K at 23°C and 50% relative humidity.

Page 222: The Efecct of Creep

6: POLYAMIDES 223

6.5.3 DuPont Engineering Polymers Zytel@ 40BL-Toughened, LubricatedPA 66 Resin

41

10

-l'CID.

!.til

f!-en

2 3Strain (%)

Figure 6.59. Isochronous stress-strain of Zytel® 408L at 23°C and 50% relative humidity.

6.5.4 DuPont Engineering Polymers Zytel@ 40BHS-Toughened,Heat-Stabilized PA 66 Resin

8 +-----'"--+-----'''''----+--'---!--'''---+

431

~:~ .<:" ~..... ~7 : C)•... : ,,~~ .

· .· .· .· .· .· .6

1 .. . :- : ; .· .· .· .· .· .· .· .· .O+-~--r-----.--r--.....--r-...--+

o

5

2 : : ; .· .· .· .

2

Strain (%)

Figure 6.60. Flexural isochronous stress-strain of Zytel® 408HS at 125°C, dryas molded (DAM).

Page 223: The Efecct of Creep

224 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

6.5.5 DuPont Engineering Polymers Zytel@70G13-13%GlassFiberReinforced PA 66 Resin

30+-~L.--+-+--!---+--+--+--+

. . . . . ....................................................

20

5

:~.....25 ...... ~ .......:.......:....... :..... <y

· . . .· . . ,· . . .· . . .· . . .· . . .· . . .· . . .

coa.!.15IIIIII~-en

10

O-F--r--~--,---r--r--~--,--+

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Strain (%)

Figure 6.62. Isochronous stress-strain of Zytel®70G13 at 60°C and 50% relative humidity.

2.52.00.5

. ..... < ; ;- ; .· . .· . .· . .· . .· . .· . .· . .· . .

5

o-F-T""T'""'1"""T"""""""'."..,.-r"T'"'T""T'""'1"""T""T'""T'"."..,.-r"'T""'T""T""""""T""T'""'T'"+

0.0

25

-&:..... :: : <::>.!-.: ~:

30 ':'" ; ::' :'" ~r::Jr::J ••; •••.•.....•. ~

. R:>'("

.~~ .

35 .

10

-IIIa.!. 20III

~en 15

1.0 1.5

Strain (%)

Figure 6.61. Isochronous stress-strain of Zytel®70G13 at 23°C and 50% relative humidity.

....... : k: ...... · :........: -c: ~:<y ~ ~<::>.

....... ; ; ..

-•-..:-...•.. -> .•. -.. -:- . -- ~ -: .· ..· ..· ..· ..· ..· ..

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Strain (%)

.. .. ............ . .. ,. .· .,..· .,..· .,..· .· .· .. . . ... - --- ; .· . , . .· . . . .· . . . .· . . . .· . , . .· . . . .

O-f---r---r---r---r---r--......-+0.0

10

9

8

7

- 6IIIa.

:::E 5-IIIIIIQ) 4...-en

3

2

1

Figure 6.63. Isochronous stress-strain of Zytel® 70G13 at 125°C, DAM.

Page 224: The Efecct of Creep

6: POLYAMIDES 225

6.5.6 DuPont Engineering Polymers Zytel@70G30HSLR-30%GlassFiberReinforced, Lubricated, Heat-Stabilized, Hydrolysis Resistant PA 66 Resin

Strain (%)

1.00.8

· .. . ; ; .· .· .· .

0.4 0.6

Strain (%)

....................................· .· .

.........................................· .· .· .

. , ,.···········1···········,···········;············ .· .· .· .· .· .

0.2

· ...... -: : -: ; .5

o+---.----..,.....-.........---i----..,.....-.........---.--r--"""T"'""-+0.0

35

30 .......... ·:10 hr~"","",,",~

:100hr ----.'lI~

25 : ,.· .

10

-IIIc,~20Ul

~Ci5 15

1.21.00.80.60.4

· .. ..' ~ .· . . . .· . . . .· . . . .· . . .· . . .· . . .· . .· . .· . .· . .· . .· . .0.2

o+-"""T"'"".....;...--.----i----.---..,.....-..---i-.........-i-.....,....-+0.0

10 .....

50

: 10 hr:: 100 hr ~---Y'7"'7

40 ············1000hr ··· , .

-IIIn.~30Ul

~-tIJ20

Figure 6.64. Isochronous stress-strain of Zytel®70G30HSLR at 23°e and 50% relative humidity.

Figure 6.65. Isochronous stress-strain of Zytel®70G30HSLR at aooe and 50% relative humidity.

~35 ; ;...... .. ~~ ..

· .. C5: :.'"

30 ·: .. 10 hr .

: 100 hr,...:-~r/· ,

25 -: , ..-IIIe,~20UlUl~

Ci5 15

10 ; : ; .· . . .· . . .· . . .· . .· . .· . .. .5 -: ; : _;_ .. . .. . .· .· ,· .· .· .

1.00.80.4 0.6

Strain (%)

0.2O-f---.----,.....-............,...---..,.....-"'T"""---.--r--.........-+0.0

Figure 6.66. Isochronous stress-strain of Zytel® 70G30HSLR at 1000e and 50% relative humidity.

Page 225: The Efecct of Creep

226 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

6.5.7 DuPont Engineering Polymers Zytel@ 70G33L-33% Glass FiberReinforced, Lubricated PA 66 Resin

1.00.80.60.4

.........................................., . ., . ., . ,, . ,, . ,, . ., . ., . ., . ,, . ,, . ,

0.2

, ,.......................................................

o+---.----r-....-__--.----r-....-__--.----r___+_0.0

40

10 ...

-CllD.::E";; 301/12!-en

20

60

50

Strain (Ufo)

Figure 6.67. Isochronous stress-strain of Zytel® 70G33L at 23°C and 50% relative humidity.

25+--!---+--+--+-~--+--+--+

20

15-CllD.::E-1/11/1

2! 10-en

5 . , : : ~ ~ :- .. _.. -· , . . . ., , . . . .· . . . . .· . . . . ,· . . . . .· . . . . .· . . , , .· . . . , ,, . . . . .· . . , . .· . . . . .· . . . . .· . , . . .o """

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Strain (Ufo)

Figure 6.68. Isochronous stress-strain of Zytel® 70G33L at 125°C, DAM.

Page 226: The Efecct of Creep

6: POLYAMIDES 227

6.5.8 DuPont Engineering Polymers Zytel@ 70G33HS1L-33% Glass FiberReinforced, Lubricated, Heat-Stabilized PA 66 Resin

I - - .Estimated I : s, s,· . '<:'~ '<:'

35 : :. ~ s;:> . s;:><;) .: ~: ~,,~: " . /

30 ~ : ! ~ ..: : / s;:><;): : / '5· . <;),

25 :... .....:.. I ':: ../

/:.................. : 1. : ..

/ :

: / :............... ; /. : .

: / :· .( :

10 /..; ; ./ : :

Iia.!. 20IIIIIIe(i) 15

5 ~ ; .

o0.0 0.5 1.0

Strain (%)

1.5

Figure 6.69. Isochronous stress-strain of 70G33HS1 L at 149°C, DAM.

6.5.9 DuPont Engineering Polymers Minlon@12T-36%Mineral-Filled,Heat-Stabilized, Toughened PA 66 Resin

_. - - . - - _ _ _ ~_ -_ _ _.. _ --· . .· . .· . .· . .· . .· . .

.......................: __ : ; ... ... ... ... ... .· .. .

· .................... __ - : __ __ __ __ .· . . ,· , . .· , , .· . . .· . . .· . . .· . . .· . . .................................................................... -._ .

1.4 : , : .· . .· . .· . .· . .· . .· . .· . .__ 1.2

~CD5 1.0><CDu::.5 0.8c'iiib 0.6U)

Q.CD~ 0.4o

10'

. - - .. -- .. - :- ~ : :.. - -.· . . .· . . .· . . .· . . .· . . .· . . .· . . .

0.2

0.0 +---.----.-....................""'T"""----............................T'TT'"-...--.........."'T""T'"I"T'TT--r-..,....,,.....,..............,--_.............................,.-+10-1

Time (hrs)

Figure 6.70. Creep strain in flexure versus time of Minlon® 12T at a stress of 6.9 MPa and 125°C, DAM.

Page 227: The Efecct of Creep

228 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

6.5.10 DuPont Engineering Polymers Minlon@ 108140 NC01D-40%Mineral-Filled PA 66 Resin

321

. .. ; , .

O+--.........----r---r----r--~---+

o

15 .

20+--.......---+--"""----+--........---+

-IIIIl.

!.101/1

~..en

Strain (%)

Figure 6.73. Isochronous stress-strain of Minlon®108140 NC010 at 90°C.

1.5o0.0

5 ~ ; .

15

0.5 1.0

Strain (%)

Figure 6.71. Isochronous stress-strain of Minlon®108140 NC010 at 23°C and 50% relative humidity.

2.52.01.51.00.5

. . .......... .' . . . . ~ : : .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· .· .· .· .· .· .o-f-r................r..-............-r................I""'T'".............."'T"""l.......,.....-T

0.0

10

-IIIIl.::a:-1/11/1CII....en 5

Strain (%)

Figure 6.74. Isochronous stress-strain of Minlon®108140 NC010 at 100°C.

. ...... , , .

O+----r-----r---r----r--~---+o

20+--.......---+---,-..,....~r+--,.....-...,...-+

15

1 2 3

Strain (%)

Figure 6.72. Isochronous stress-strain of Minlon®108140 NC010 at 60°C.

Page 228: The Efecct of Creep

6: POLYAMIDES 229

0.4 .

-~e-e=0.3G)

u::.5

.............................' __ _--_ _-- .

· .· -. -.. - ---. -.. -. -. -. - : -.- ~ ----. -: ----. - --- ---. -. -. --· . .· . .· . .· . .· . .· . .· . .· . .· .· .· .· .

· . .._-_._-_ __ _-_ __ , ' _--_ ---_ _-_.

O.O+--.....--....--.-..........I"""'T"'O.....-r-----.-.....-.........--r-l,...........r---.......-"""'T"""""T""..,.......,..........,..,...--....-................................

10°

c.~ 0.2-enCoG)

eo 0.1

102

Time (hrs)

Figure 6.75. Creep strain in flexure versus time of Minlon® 108140 NC010 at a stress of 6.9 MPa and at 23°Cand 50% relative humidity.

6.5.11 DuPont Engineering Polymers Minlon@ 11C40 NCO10-40%Mineral-Filled, Heat-Stabilized PA 66 Resin

· . , ,............................................... ,............................................. . ... ... ... ... .· .

. ................................................. _-_ _--_ __ __ __ .· . . .· .· .· .

· .· ,. . . . . . . . . ~ , ., ., . , ,, . , ,· . .· . .· . , ,........... . ., . , ,

· : ~ '. . : ... ... ... ., , . ., , . ........................, ,.... . .· . .· . .· . .· . .

.......................; : : ~ .

· .· , . ....................................................... . .· , . .: : . : 3.5 MPa: : : :---.......................: ~ : ~ .

· . .· . .· . .· . ..., ~ ., ., . , ... ... ... ... .

0.0+--.--.........""T'"T"T"T'T,----.....................................r----.---.........."T'"T"T'T'Tr----r---."""'T"""T'"T'"O"T"I"Ir--....---r"""T""..............r10.1

2.2

2.0

1.8

~ 1.6~

e 1.4::3><G)

1.2u::.5

1.0.5l!!

0.8-enCoG) 0.6G)..0

0.4

Time (hrs)

Figure 6.76. Creep strain in flexure versus time of Minlon® 11C40 NC010 at several stress levels and at 23°Cand 50% relative humidity.

Page 229: The Efecct of Creep

230 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

6.5.12 DuPont Engineering Polymers Minlon@ 208-40% Glass Fiber/Mineral-Filled PA 66 Resin

0.4 .---.--------------- ;. -----.~ .. --- .. -.---.---_._ .. __ .. __ .-:----_ _._---_._ .· . .· . .· . .· . .· .· .· .· .· .· .· .

-· . ........ -- ---------.--.-- ----.--.-- ·····r···················--·····---.········--·----··· .

.............................: __ .. __ __ . __ ._-------_.;_._- __ : .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .0.0 +--_._---.,........,................""T'"T""r---........................."""T""".....,..,I""T'T--...--"""T""""""T"""................,..,...----..-..............................+10° 102

Time (hrs)

Figure 6.77. Creep strain in flexure versus time of Minlon® 20B at a stress of 6.9 MPa and at 23°C and 50%relative humidity.

0.5+-_..........----0..........---0......................1--_""""'----0...---'-.................................__"--'"""--................................._---'-_..&...-.......................+

· .••••••••••••••••••••••••••••••• __ • __ ••• • •• __ •• .L •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

~o-0.4 : , : .

· . .· . .· . .· . .· . .· . .· .· .~ 0.3l-----------:~--~ :/I)

u:::.5

· . .............................., ·····r·····························,·················· .

.............................: ~ : .· . .· . .· . .· . .· . .· .· .· .· .· .· .· .0.0 +--_._---.,........,,..................""T'"T""r---........................."""T""".....,..,I""T'T--...--"""T""""""T"""................,...;...----..-..............................+10°

c.~ 0.2-(f)c./I)eo 0.1

102

Time (hrs)

Figure 6.78. Creep strain in flexure versus time of Minlon® 20B at a stress of 6.9 MPa and at 124°C, DAM.

Page 230: The Efecct of Creep

6: POLYAMIDES 231

6.5.13 DuPont Engineering Polymers Zytel@ 70G43L-43% Glass FiberReinforced, Lubricated PA 66 Resin

30+--+--+--~-!--~L...----!--+ 30 +----''-----!--.........-+----+-r--+:--r-'-7--+

0.80.6

............... - .. ., ,

, .. .

o+--.-----i--"""T'"""-r---..-"""T"""-......---+0.0

5 ...

coD.~15III

~-(/)10

20 ' , ..

25

0.2 0.4Strain (%)

Figure 6.81. Isochronous stress-strain of Zytel®70G43L at 100°C and 50% relative humidity.

25 .

5 ....

O+---i--.;--;.--;.-_i-----i,....---+0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Strain (%)

20

coD.!,15IIIIIIe-(/)

10

Figure 6.79. Isochronous stress-strain of Zytel®70G43L at 23°C and 50% relative humidity.

- ~ - - . - ~ .

. ... . ..; -: : ~ : .

o-F---r---r---r--r--r--r---+0.0

5

20

25+---!---!--+--+--+--+---+

IIIIIIf! 10-(/)

15coD.:E-

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Strain (%)

Figure 6.82. Isochronous stress-strain of Zytel®70G43L at 125°C, DAM.

. . . ,..... -.' ~ .

- -. - - -. . . .. . _. .. ~ .

0.2 0.3 0.4 0.5 0.6 0.7

Strain (%)

O-F---r--r--r--..--..--....-__+0.0 0.1

10

35+---!--+--+--+--~-~_+

30 -----

25

5

co 20D.

~IIIIII 15e-(/)

Figure 6.80. Isochronous stress-strain of Zytel®70G43L at 60°C and 50% relative humidity.

Page 231: The Efecct of Creep

232 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

6.5.14 BASF Ultramid@ A 3WG1D-Easy Flow, High Heat, 50% Glass FiberReinforced PA 66 Resin

2.5

- - . Extrapolated

1.0 1.5

Strain (%)

0.5

-III0.~ 50ththII).....en

25

: /

:/ s,/~~

: / ~'S: . : /<t:J~':75 ; :../ ; .

: : /. :: : / : :. ..: /::: : /: :: :/ : :....- - - ~ -..

I: : :I : : :

I : :. .I ::

: I ::'t ::

. • • •• . •. ~ •.•••••.•• -:- •••••••••. :.••.••••••• f ••••••••••

I: : : :I : : : :

I : : :. . .'I :::

Figure 6.83. Isochronous stress-strain of Ultramid® A 3WG10 at 23°C and 50% relative humidity.

50

-III0.:IE-Inf-en

25

- - . Extrapolated

2.52.00.5 1.0 1.5

Strain (%)

Figure 6.84. Isochronous stress-strain of Ultrarnkf" A 3WG10 at 120°C.

Page 232: The Efecct of Creep

34.5 MPa..................................................... ·····r················································ .

6: POLYAMIDES

6.6 Polyamide 610 (PA 610, Nylon 610)

6.6.1 SABIC Innovative Plastics Thermocompe QF006 (QF-1006)-30%Glass Fiber Reinforced PA 610 Resin

1.0+-__----"_~'-----'----'---'---'- ............--I-----"-----""'-----'----'----"---'---"'_+

0.9

0.8 ···············1······································ .

0.7 , .

~ 0.6

233

c.~ 0.5..UJ

~ 0.42!o 0.3

.......................................... - __ __ .17.2 MPa

0.2 _ - _ _ ~ _._._ ..

0.1 , .

0.0101 102

Time (hrs)

Figure 6.85. Creep strain versus time of Therrnocornp" QF006 at 23°C.

6.6.2 SABIC Innovative Plastics Thermocomp@ QFOOB (QF-100B)-40%Glass Fiber Reinforced PA 610 Resin

0.8 +-------"--"------'----'----'---'-...............-1-----"-----""'-----'----'----"---'---"'_+

0' 0.5~c

.~ 0.4..UJCo: 0.3...o

........................ __ ;.. __ .

0.2 ····;·······································6.9 MPa·········

0.1 , .

0.0101 102

Time (hrs)

Figure 6.86. Creep strain versus time of Therrnocomp'" QF008 at 23°C.

Page 233: The Efecct of Creep

234 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

6.6.3 SABle Innovative Plastics ThermocomtP QF012 (QF-100-12}-60%Glass Fiber Reinforced PA 610 Resin

0.9 r ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

0.8 __ __ __ __ .-_ __ . __ .

0.7 ._ _.- _._ _._ _._ _~ _.- - _.. -.

.......................................................... ~ '34.5 MPa' .

~ 0.6c'i! 0.5-UJ

~ 0.4eo 0.3

~

0.2 ····lo·················································--_ _.-

0.1 .

0.0101

Time (hrs)

Figure 6.87. Creep strain versus time of Therrnocornp'" QF012 at 23°C.

6.7 Polyamide 612 (PA 612, Nylon 612)

6.7.1 Degussa Vestamid@ D16-Low-Viscosity, General-Purpose PA 612 Resin

::: :

: : --: :: --- : :

.:

: : :- : :

-: : :::::: : :

17MPa

14MPa

11 MPa

8MPa

5MPa

102

Time (hrs)

Figure 6.88. Tensile creep strain versus time of Vestamidf D16 at 23°C and 50% relative humidity.

Page 234: The Efecct of Creep

6: POLYAMIDES 235

~o-: : :

. ·

: :

: :

: ::

:

7MPa

5MPa

3MPa

2 MPa

102

Time (hrs)

Figure 6.89. Tensile creep strain versus time of Vestamid® D16 at 60°C.

.

: :

-: ----:

: -:. · :.;.;

:

:

: :::

·

7MPa

5 MPa

3MPa

2MPa

Time (hrs)

Figure 6.90. Tensile creep strain versus time of Vestamid® D16 at 100°C.

Page 235: The Efecct of Creep

236 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

.=-_~--I-5 MPa8MPa

............... 11 MPa14 MPa17 MPa

. ,_.•.__.• -. - •.•.__.•.• - -i.'~ 4·.·. - ....•....._....- ....-_...._....- .....-_....- ....-_...-_....- ....-_....- ...-_.

, .. , - ., .

.............. .....•...

.......................•..•.••••. - .......•... ~ .

. . . . . . . . . . . . . . . . .. . . .. .. - .. .

.....................................•.....•...................................................................................( ..

........ ..........................•. ,............................................•...

.••.•••••••••••••••••••••••••••••••.••••••••••••. •••. ..•.••.•••••.•..•..•••••••..•..•.•..•• 1 •.•..•••••••.••..•••••••••.••••••••••••••'••••••

102 +---.----.........~"'T""T"'T"T'1r--- .......~~ .......,......,I'""rT--.....-...........................'O'T'"-........- .............__.......+100 102

Time (hrs)

Figure 6.91. Tensile creep modulus versus time of Vestamid'" D16 at 23DC and 50% relative humidity.

1000900800700

600-nsD. 500~!/)

400.2::s

1:10

:IE 300c.Q)Q)..0.!! 200'iiicQ)I-

~

: :, ,

.:, , ,

:

:

:

:

2 MPa3MPa5MPa7MPa

Time (hrs)

Figure 6.92. Tensile creep modulus versus time of Vestamid® D16 at 60DC.

Page 236: The Efecct of Creep

6: POLY AMIDES 237

1000900800700

600c;;-a, 500~1/1

400::::I::::I

"C0:E 300c.Q)Q)..o..! 200'iiicQ)I-

· ..... __ : _- : __ _-_ ---· .· .· .· .

--"":::::::::::::--.12 MPa3MPa

5 MPa

7MPa

100 +--~-r- ................""T"O"I---.-........"""'T"""........"'TT""-"""'T"""---.-"""'T""""T'""T"--.-.-r--- ........"""O'""T.......r10°

Time (hrs)

Figure 6.93. Tensile creep modulus versus time of Vestamid® D16 at 100°C.

6.7.2 DuPont Engineering Polymers Zytel@ 158L Ne01O-General-Purpose,Lubricated, Higher Melt Viscosity PA 612 Resin

42 3Strain (%)

........;. ; ., .

1

... -: : ; .· . .· . .· . .· . .· . .· . .· .

· ...................................14

12

10

Ii0. 8:E-1/11/1Q) 6..-C/)

4

2

00

....... ; ;. ; .; .· . . .· . . .· . , .· . . ,· . . .· . .· . .

0.5 1.0 1.5 2.0 2.5 3.0

Strain (%)

2

o~"T""T""....;-r-T""".......;. ........"T""T"";-..-,r-T"""-;-.."T""T'"....;-r-T""'lr-Tf­0.0

18

16

14

12

-~ 10:E-1/1 81/1Q)..-C/)

6

4

Figure 6.94. Isochronous stress-strain in flexure ofZytel® 158L NC010 at 23°C and 50% relative humidity.

Figure 6.95. Isochronous stress-strain in flexure ofZytel® 158L NC01 0 at 60°C.

Page 237: The Efecct of Creep

238 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

6.7.3 Degussa Vestamid@ VX7099-20% Glass Fiber Reinforced,Heat-Stabilized PA 612 Resin

-~o-

.: :

:: :

:

:: :

:

:

:

:

:

50 MPa

39.5 MPa

29 MPa

18.5 MPa

8MPa

Time (hrs)

Figure 6.96. Tensile creep strain versus time of Vestamid® VX7099 at 23°C and 50% relative humidity.

10000 +---"-----'-........--1.............."--'-'.........__..0...-........ ........-0....................__......... .................................0.+

8000

6000

· .. _--_ __ _-_. __ ._-_._----_ _--------------_._-_. __ ._-_ _----_ __ ._-_ .· .· .· .· .· .· .· .· .

· .. _-_ __ ._-_.. ----_ _----_ _--- _------_._---------_ _---· .

· .. _------_ _-_ _--_ _-- _-_._--_ -----_ --.-.- _--_ _-· .· .· .· .· .· .· .· .· .· .

-IIID.

~III

-§ 4000ig~~~~~~~~~~~J"8~ 8M~Do 18.5 MPa~ ~M~~ 39.5 MPao ~M~

.9! 2000·iiie~

Time (hrs)

Figure 6.97. Tensile creep modulus versus time of Vestamid® VX7099 at 23°C and 50% relative humidity.

Page 238: The Efecct of Creep

6: POLYAMIDES 239

6.7.4 DuPont Engineering Polymers Zytel@ 77G43L-General-Purpose,Lubricated, 43% Short Glass Fiber Reinforced PA 612 Resin

:J: 100hr..... ~:

30+--~---+----!-----.L--+

0.50.40.1O+------,---r---,...------r---+0.0

20

. .25 : :.. J: : : .

: :.....' ~:: : o' . -c: :: . : § .: ; et>

-III0.

!.151/1

~-tIJ10

0.2 0.3Strain (%)

Figure 6.98. Isochronous stress-strain in flexure of Zytel® 77G43L at 23°C and 50% relative humidity.

25+--~--+-___+--!---+_-_+

· ..' . . :. -.. - -: -. ~ .; .· . . .· . , .· , . .· . . .· . . .· . . .· . . ,· , , .· , . ,· . . .· . . .· , . .· , , .· . . .o-t=--....;....----i-----i---i----.--+

0.0

5 ......

1/11/1e 10-tIJ

20

15-III0.:E-

0.1 0.2 0.3 0.4 0.5 0.6Strain (%)

Figure 6.99. Isochronous stress-strain in flexure of Zytel® 77G43L at 125°C, DAM.

Page 239: The Efecct of Creep

240 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

6.8 Amorphous Polyamide

6.8.1 Degussa Trogamid@ T500o-Standard Grade AmorphousffransparentPolyamide (PA 6-3-T) Resin

60 +-.........-+-..........---!----'-~---'---+__ .......+----+

65432

.. .· . . .... ; ; .· . . .· , . .· . . .· . . .· . . .· . . .· . . .· . . .· . . .· . . .· . . .· . . .· . . .· . . .1

o+--r-"""T"""""'T""~~---.,r--.--~~-r--r--+

o

40

10 ....

:g~ 20-U)

30-l'CIa..::!!-

654321

50

40

-l'CIa..!. 30

I/)

2!-U)20

Strain (%)

Figure 6.100. Isochronous stress-strain of Trogamid®T5000 at 20°C.

Strain (%)

Figure 6.101. Isochronous stress-strain ofTrogami~T5000 at so-c.

50 +---'--..........--......................-1----'-----'---......................-1----'-----'---......................-1----'-----'---......................+

40 ..... · . ......................................................................................................· , ,, ,, ,

. ...............................-.. -. --. --. - -.. ',' ~ .40°C

103

Time (hrs)

o+---.-.......-r-.....-T"........-r---.-.......-r-.....-T"........-r---.-.......-r-.....-T"........-r---.-.......-r-.....-T"........+101

10 , : , .· , ,· , ,, , ,, . ., . ,· , ,, , ., , ., , ,, , .· , .· , ,

Figure 6.102. Internal pressure creep of filter cups of Trogamid®T5000 (3.5 mm wall thickness).

Page 240: The Efecct of Creep

6: POLYAMIDES 241

6.8.2 EMS-GRIVORY Griiamid@TR55-StandardGradeAmorphousffransparent Polyamide Resin

10001001

:: : :

:

~:

......... [.......... . .............

::

~: :

:

~:

: 10 M~:.. .,. ;

: : :: :

::

: :0.00.1

1.5

2.0

0.5

~o-; 1.0.~

en

10

Time (hrs)

Figure 6.103. Tensile creep strain versus time of Grilamid®TR55 at 23°C and 50% relative humidity.

6.8.3 EMS-GRIVORY Grilamid@ TR9D-High-StrengthAmorphousffransparent Polyamide Resin

10001001

: :

: ~:

:: 20 MPa

: : -~

:

: 15 MPa:; ',' :

: 10 MPa -::

: :::

: : ::

: :0.00.1

2.5

1.5

0.5

2.0

c.~

en 1.0

10

Time (hrs)

Figure 6.104. Tensile creep strain versus time of Grilamid®TR90 at 23°C and 50% relative humidity.

Page 241: The Efecct of Creep

242 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

6.9 Polyamide 46 (PA 46, Nylon 46)

6.9.1 DSM Engineering Plastics Stanyl@ TW30D-Heat-Stabilized PA 46 Resin

-

............... .; : .: : 121°C, ,, ,

, , ,, , ,.......................... _ _ _ _ ,_ _.. _ _ -_. ~ .. _ ., , ,, ,

........................... .; -: : ----· , ,· ,

· , ,.................................................................................................· , ,: : : 140°C, , ,, , ,, , ,, , ,, , ,, , ,, , ,· , ,, , ,· , ,· , ,· , ,· , ,· , ,· , ,· , ,

, ,....................................................................................................................., , ,

, ,, ,, ,, ,, ,

............................: __ : .· , ,· , ,· , ,........ - -_ _--- .. - .· , ,, , ,, , ,

.........................::=.. ~~~~~ ----100 +--........-.....-~ ........~r---.....-...-- .........."T""T'"......,..----.----.,.............-I'""'T""T"T'T""-"""'T"""---.-........."T"'"'T".........+

10°

1000+---"--........................................I---"---"""--"'--'-.................-----'"-...............................""'-+-----'---'---'-...................'t-900800700

600Ii0. 500~~ 400:;

"o:E 300c.CI)

foJ!! 200"iiic

{!!.

102

Time (hrs)

Figure 6.105. Tensile creep modulus versus time of Stanyl® TW300 at various temperatures.

6.9.2 DSM Engineering Plastics StanyfB> TW200FB-40% Glass FiberReinforced PA 46 Resin

1000900800700

Ii 6000.

~ 500II)

.a:;, 400"0:Ec. 300CI)

e0J!! 200"iiicCI)I-

: :~ : "

:121°C:

; ; -,

:

: ::

: :140°C

: : -::

: :: :

: :

: : ::

: :

:: : :::

102

Time (hrs)

Figure 6.106. Tensile creep modulus versus time of Stanyl® TW200F8 at various temperatures.

Page 242: The Efecct of Creep

6: POLYAMIDES 243

6.9.3 Comparison of Generic Grades

: : 50% Glass Fiber:

: : 30% Glass Fiber:

::

:

-- .- -.:

: :

: : Unfilled

:

:: :

:

103102

Time (hrs)

Figure 6.107. Tensile creep modulus versus time of DSM Engineering Plastics Stanyl® PA 46 resins withvarying amounts of glass fiber reinforcement.

6.10 Polyphthalamide/High-Performance Polyamide (PPA)

6.10.1 Solvay Advanced Polymers Amodel@EF-1000-lmpact-ModifiedPPA Resin

~ 2.5

~III::J:g 2.0o~c.Q)l!! 1.5oiii...::J~ 1.0

u::­ceC'll 0.5c.c.«

· .•••••••••••••••••••••••••••••••••••••••••••••••••••••• • • • • • J •••••••••••••••••••••••••••••••••••••••••••••••• • • • • • • • • • • •· .· .· .· .· .· .· .· .· .· .· . ......................................., ; .· . .· .· .· .· .· .· .

· .••••••••••••••••• - ••••• - •••• - '•••••••••••••••• - • - ••• - - ••••• .! - •••• - ••••• - ••••••••••••••••• ~ ••••••••••••••••••••••••••• - •· . .· . .· . .· .· .· .· .· .· .· .•••••••••• - ••••••••••••••••• "," ••••• - ••••• - • - - - - - - - ~ - - - - - - - - - - - - - - - - - - - - - - - - - - - r

103101

Time (hrs)

0.0 +---.----.-........................,..,...,r---.....-......-...................~----.-----.---.-"""T"""l ...........-r----.----.-"""'T""".........~10.1

Figure 6.108. Apparent flexural creep modulus versus time of Arnodel'" ET-1000 at 83°C and 14 MPa stress.

Page 243: The Efecct of Creep

244 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

6.10.2 EMS-GRIVORY Grivory@HTV-3H1-30%GlassFiberReinforced,Heat-Stabilized PPA (PA 6T/61) Resin

1.0

0.9

0.8

0.7

0.6.-.~~ 0.5c'i!U) 0.4

0.3

0.2

:: , ,

:

:, ,

: : 60 MPa~

: 40 MPa'.'

:

'. ,:

: 20 MPa, ,

0.1

0.010.1 101

Time (hrs)

Figure 6.109. Creep strain versus time at different stress levels of Grivory® HTV-3H1 at 23°C and 50% relativehumidity.

6.10.3 EMS-GRIVORY Grivory@XE3876-30%GlassFiberReinforced,Flame Retardant PPA Resin

1.2 -_ __ : : _-··· __ ·············i·······················:··········· ., . . .· . . ., . . ,, . . ,, . . ., . . ., . . ., . . .1.0 --- _- - ' 1 •••••• __ ••••••••••••••• •••••••••••••••••••••••

~ : ~ ~60 MPa· , . ,· . . .· . . .· . . .· . . .

c'i! 0.6 L:..:..:..:..:.:..:.:..:..:..:.:.:.:.~~~"""""'"'" -~· ~.,..,...':-:"~..~ : ,;40 MPa······· .U) :::· .· .· .

.-. 0.8~~

L :.::..:..: .:..:..:..:. :..:..:..:..:. .:..:..:..:. d ::.;.:.: ~ ;.:.;.;.: .........~,- ..........~~~T· -:-:- .................. ~ : .0.4 ..

:20 MPa

0.2 . . ..........•................................................: :10 MPa

0.0 +----.----.-"""T""'T........~-..---.--r-T'""O"'?..,.."....-....-- ..........................-r---r-......-r'""T"""l.......-Tr---.---r-"'T""'T"..........r10.1

Time (hrs)

Figure 6.110. Creep strain versus time at different stress levels of Grivory® XE3876 at 23°C.

Page 244: The Efecct of Creep

6: POLYAMIDES 245

:20MPa __-.

-_.__ --_ _---_._--_. --------

_ 0.8~~e

.~ 0.6en

1.0 ---- _ _----------,--_ _--_._--_ _.- ----.----- ---- _----------

1.2 -----.-- --- ; -- --.--------. -----.------ ; --

..... _---_ , ----- ---- _-_._--_ .· .· .· ,

0.2 ---.---- : -- --.----------;---- .. -- ! -- -------.----' ., ,

0.4~~~~~ •.......................

0.0 +----,.........,...........................,..--....-...................."'TTT-.........................""T'"T"'.....,..-..................................;.--......-.............................10.1

Time (hrs)

Figure 6.111. Creep strain versus time at different stress levels of Grivory® XE3876 at 80°C.

6.10.4 EMS-GRIVORY Grivory@HT2V-3H-30%GlassFiberReinforced,Heat-Stabilized PPA (PA 6T/66) Resin

:

r:

~: : 80 MPa. .. ,

............ '- .......................... : ............................

."

: MPa____: 60

',' ;

:: 40 MPa

: 20 MPa: 10 MPa

: ::0.010.1

1.2

0.2

0.4

1.0

1.4

_ 0.8~o-c.~ 0.6-en

101

Time (hrs)

Figure 6.112. Creep strain versus time at different stress levels of Grivory® HT2V-3H at 23°C and 50% relativehumidity.

Page 245: The Efecct of Creep

246 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

6.10.5 Solvay Advanced Polymers Amodel@A-1133HS-33%GlassFiberReinforced, Heat-Stabilized PPA Resin

1.00.80.60.40.2

......... .; : .· .· .

, . , . ,. ',' . . .. . . .. ~ "," .· , . . .· , . , .· . .· . .· . .· .· .· .· .

o+---r---r---.-~ .........___r____..---,,....-..--.........-+0.0

25

Ii 20Q.

!.III

~ 15-en

5 ....

30

10 : ; --; : ..· . .· . .

0.50.40.30.2

. .. ---.-- - .

0.1

. ....., ~ .

· .· ........... "," .. . . ~ '" - .· . . .· . . .· . . .· , . .· . . .· . .· . .· . .· . .

o+-----..,,....--___r_--~----..,---+

0.0

5 ....

35+------!---+------:--!------!---+

30

10

25

Ii 20Q.

!.IIIg: 15..-en

Strain (%) Strain (%)

Figure 6.113. Isochronous stress-strain of Arnoder"A-1133 HS at 23°C.

Figure 6.114. Isochronous stress-strain of Arnodel"A-1133 HS at 125°C.

. .k...... ~:.....: s;): : ¢J'5

.. .... :.....:... "'~ ......

· ............. , : , .· , . .· .· .· .

. . , ....................., .

. .. ................. -,_ -.- ~ .5 ..

10

III

~ 15-en

Ii 20Q.

:E-

25 .

30 ..

O+-....--j___..--j--r-;-....--j---.---j--r-;-....--j---.--+0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Strain (%)

Figure 6.115. Isochronous stress-strain of Arnodel" A-1133 HS at 175°C.

Page 246: The Efecct of Creep

6: POLYAMIDES 247

8

7-ellIl.

~6til::::l::::l't' 5o::!EQ)

,~ 4tileE3oo~ 2e

,[c. 1«

·23°C, 34 MPa

:

~ 1OO°C, 28 MPa

150°C, 21 MPa

: :

:

101

Time (hrs)

Figure 6.116. Apparent compressive modulus versus time at various temperatures and stress of Arnodet"A-1133 HS.

.200 +-_........_"""--...0...-..............."'-1-__"--............................................__................---0............................01--_........._"--"--'.....................'+

.--.....

50 . -_.. -_ .. _.. _ _.. _ _. -.:. -_ -_. --_. ------ -~. --. ---- _ ~. _.. _.. _. -_.. -_._. _.. _. _ -

tiltil~-en~::::l 100Q.::::l

D::c.Q)

eo~'ii)c~

--- --- -- '-~--- --- ---

~--- - - 100°C

_ _. _. - - - - - ~_ .. -- -_.--- _ _.. _ _.~ _.. _.-_. _.. - -~.:-:-. ':-:.':"":.;._.~ -.;;..- .:.., --_ .

---- • - - - - - - - - - • -: - - - - - ••• __ • _• : • 150°C

.......................................... -;- ...

102

Time (hrs)

Figure 6.117. Tensile creep rupture stress versus time at various temperatures of Amoder" A-1133 HS.

Page 247: The Efecct of Creep

248 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

6.10.6 EMS-GRIVORY Grivory@ GC-4H-40% Carbon Fiber Reinforced,Heat-Stabilized PPA Resin

1.0+--"""--......................................I---"'--"""--...................~-----''''---"''--- ...........................----'-----'............................4

0.8 ; , , .· . .· . .· .· .

0.9 . _ _ _ : _.. _ _.. _ ~. _. -_ .. _. _ _ ~ _. -_._. _.. _.. - .· . .· . .· . .· .· .

- __ _-- - .. - .· .· .· .· .· .· . ............. . ; : .. · .. · .. · ·· · .. · .. ·; ·60 MPa.. · · .. ·· . .· . .. .· ............-_ __. __ __. __ , _-_ .· .

07. . .. . . --.. -. - -. --. - ---:- .. - -. -- -.--.--.-. ~ -. ... ... .. . . -.. ~ - -.. - -..· . .· . .· . .· . .· . .0.6 : ; .· . ..-. . . .

~ : : :~ 0.5 . . .c.~

en 0.4

40 MPa....................: -.. - - -.. ~ -.. -. - :- .· .· .

101

Time (hrs)

0.1 ; ~ ~ .· . .· . .· . .· . .· . .0.0 +--........-.............,......,........,..........r---..--........-.................."T"T'T-----r-..........,....................~----.----.---.-....,....., ..........._+10.1

Figure 6.118. Creep strain versus time at different stress levels of Grivory® GC-4H at 23°C and 25% relativehumidity.

6.10.7 EMS-GRIVORY Grivory@ GM-4H-40% Mineral-Reinforced,Heat-Stabilized PPA Resin

2.0 +--"""---"-..............................1---"--"""--........................-----'-......................................----'-----'---'-...0-1'"""'-'--'+

1.5 ; ·····:························· .. ········30-ri,;Pa········ .· .· .· .· .· .· .· .· .· .· .· .· .· .

0.5 .

--seo-; 1.0.~en

10MPa

0.0 +--........-.............,......,........,..........r---..--.....-.................."T"T'T-----r-..........,....................~----.----.---.-....,....., .........._+10.1 101

Time (hrs)

Figure 6.119. Creep strain versus timeat different stress levels of Grivory® GM-4H at 23°Cand25% relative humidity.

Page 248: The Efecct of Creep

6: POLYAMIDES 249

6.10.8 Solvay Advanced Polymers Amodel@ A-1145 HS-45% Glass FiberReinforced, Heat-Stabilized PPA Resin

.. .. .......................... - , .· . . . . .· . . . . .· . . . . .· . . . . .· . . . . .· . . , . .· . . , . .· . . , . .· . . . . .· . , . . .

· . .· .· . .

· .. ....... \ ',' , , .· . . . . . .,. .,. .,. ... ,...,. ... ... .., .,..· .. , .· . . . ., . . . .

, . . . .· . . . .· . . . .· , . . .· . . . .· . . . .· . . . .

5 ...

o+-T""""""'l.---.----i--r-"';"'-T""""""'i.---.----i--r-"';"'-T""""""'i--.--+0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Strain (%)

10

25

30

til

~ 15-thIV 20D.:E-

Figure 6.121. Isochronous stress-strain of Amodet"A-1145 HS at 125°C.

0.40.30.1

· ............. .. , .· . .· . .· . .· . .· .· .· .· .· .

· . .................. . - : .· . .· . .· . .· . .· .

O+---.--.--.....----,-.........-'T'---.--+0.0

25 : , .· . .· . .· . .· . .· . .· . .· . .· . .· . .

5 ~ : : .

35+-----'--+--.......---f-.......-+-----'--+

10

30 .

tiltil 15e-thIV 20D.:E-

0.2Strain (%)

Figure 6.120. Isochronous stress-strain of Amodel®A-1145 HS at 23°C.

25 .

30 , .

•••••••••• ;•••••••• j. ••••••• j •••••••· . .· . .· . .· . .· . .· , .· . .· . .· . .· . . . .......... '.' . -- . -. '.' ~ .

5 ..

10 ~ : : : : .· . . . .· . . . .· . . . .· . . . .· . . . .· . . . .· . . . .· . . . ... ..

tiltil 15e-thIV 20D.

~

O+-.....-~..--r--.........,I'""'"""""---r .........--r-.....---r.........-+0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Strain (%)

Figure 6.122. Isochronous stress-strain of Arnoder" A-1145 HS at 175°C.

Page 249: The Efecct of Creep

250 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

6.10.9 EMS-GRIVORY Grivory@GV-5H-50%GlassFiberReinforced,Heat-Stabilized PPA Resin

1.4+--.........----"---'-...........................-~""____'_ ............................._I__-.........---'----'-...........................-----'''''----'-...........................+

60MPa

· ... . . . . . . . . . . . . . . . . . . . . . . . . . . '.' ':..:,:''~".-.".-." ---.-:-: .

_ 0.8~~

1.0 : --.-------.-- -:---_ _-------_ .· .· .· .

1.2 ; ·····~·····························~····100 MPa·······

s:::f! 0.6....

(J)

0.4 : _-_ .. -----.!---

0.0 +--"""T"""---.----.-"""T"""I"""T""'.....-r----.,.....-~ ..........---r"""..........-r--"""T"""---.-.....,...................""l"'T'"-----r-.....................~10.1

0.2 : ~ ~ .· . .· . .· . .· . .· . .· . .· . .· . .

101

Time (hrs)

Figure 6.123. Creep strain versus time at different stress levels of Grivory® GV-5H at 23°C and 50% relativehumidity.

1.4+--.........----"---'-...........................-~""----'- ..........................._I___.........---'-___'_................'""'"-I-_--'_""'----...................~

40MPa......., _-_ ; .

1.0 ------ .. -- '---- oJ.

1.2 -- -- --- _. _.. -- _.. -- -.. _ ; _ ~-_ _ _.. _.. _. -_. _. --- -.-:--- --- --- ---.· . .· . .· .· .· .· .· .· .

0.4 ._--.. ---------

s:::f! 0.6

en t=::==-==~====; .._ 0.8~~

0.0 +--"""T"""---.----.-"""T"""I"""T""'.....-r----.,.....-~ ..........---r"""..........T--__---.-.....,.....................,.;..-----r-.....................~10.1

0.2 : ~ ~ .· . .· . .· . .· . .· . .· . .· . .· . .

101

Time (hrs)

Figure 6.124. Creep strain versus time at different stress levels of Grivory® GV-5H at 60°C.

Page 250: The Efecct of Creep

6: POLYAMIDES 251

1.2 .

...................... __ ._--_._----_ .

1.0 ------.------.----.----- _--- - __ . __ . __ .. -------

_ 0.8~o-

0.4 ----:-----.---- ~ -.. -_.-.-20MPa

0.0 +----.----,,........---,-"'T""T"T'"T"1r--.....-----,----,-.....................-r--.---r-.......................,...j-----r-...--.......-r-r-T'"T+10.1

0.2 : ····o·····························~··················· .· . .· . .· . .· . .· . .· . .· . .· . .10

1

Time (hrs)

Figure 6.125. Creep strain versus time at different stress levels of Grivory® GV-5H at 80°C.

4.0 +-_--'-_0...-.........................+-_--'-_.0....-.........................+-_---'-_.0....-.........................+-_---'-_.0...-.........................+

40MPa

--. - ~ -.. --. --. -;.--. -. - - .· .· .· .· .· .

3.5 -: ··o······ .. ······· .. · .. ·········~ .. ········ . .· . .· . .· .· .· .

2.5

3.0

1.0 : ~ ; .· . .· . .· . .· . .· . .

0.0 +-----.--..--......."""'T"""'I""T'"l"'1""""----.--.....-......."""'T"""'I""T'"l...-----.--.....-.,......,.....,.......,...,...-----.--..-.,....,,...........-rr+10.1

· .0.5 ----.--.-------.:---- -- --.-- : --.----------.----~.-_. __ ._.. - ----.-- ..· . .· . .· . .· . .· . .· . .· . .101

Time (hrs)

Figure 6.126. Creep strain versus time at different stress levels of Grivory® GV-5H at 120°C.

Page 251: The Efecct of Creep

252 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

6.10.10 EMS-GRIVORY Grivory@HT2V-5H-50%GlassFiberReinforced,Heat-Stabilized PPA (PA 6T/66) Resin

0.6

0.3

0.2

0.7

, r

: 100 MPa.

:,;.;..:..;.;.-- :

i""" ~ : 80 MPa: :

-,- ; ~ 60 MPa-: :

. -,

40 MPa

20 MPa-'. ~ :

::0.0

10-1

0.1

0.9

0.8

1.0

-?f!.- 0.5l:

~en 0.4

101

Time (hrs)

Figure 6.127. Creep strain versus time at different stress levels of Grivory® HT2V-5H at 23°C and 50% relativehumidity.

1.5

-~o- 1.0e.~-(J) 60MPa

0.5 ---- --------------- ---;- ---------------- --- ---------; -----40 MPa' --------------

0.0 +--~--..---.-"""T"""T'""'T'""I""T'T"-----,r--.......- ..........r"""'T"".......-r--"""T"""---.----.---r-r-T""lr-T"T"----.-~ .........."""T"""......-.+10-1 101

Time (hrs)

Figure 6.128. Creep strain versus time at different stress levels of Grivory® HT2V-5H at 80°C.

Page 252: The Efecct of Creep

6: POLYAMIDES 253

6.10.11 EMS-GRIVORY Grivory@HTV-5H1-50%GlassFiberReinforced,Heat-Stabilized PPA (PA 6T/61) Resin

0.6 ._-_ .. __ .

0.9 _.. _ -_. -,- -_ _ - _. ~ .. -_ _ _. _.. _.. _ _.. -~. -_ _.. _ _ _.. _ .· , .· , .· , ., , ., , ,0.8 : ; : .

, , ,, , ,, , ,, , ,

~o- 05 .c . . ,.~ , ,

en 0.4 ~ ~ ~ ·50 MPa·· . . . . . . . . . ., , ,, ,

0.7 : ; ., ,, ,, ,

0.3 : : ~ 40 MPa················ ,

0.2 .--- ; --.---- -- ----.: --.--.----.-- ; -- ., . ., , ,, , ,, , ,

0.0 +--"""T"""~---.-"""T"""T'""'T"""r-TT-----,r--.......- .........."""T"""........-r---.----.-~-.-~......,..---.-......-- .............,...,~

10.1

0.1 : ; ~ ., , ,, , ,, , ., , ., , .

101

Time (hrs)

Figure 6.129. Creep strain versus time at different stress levels of Grivory® HTV-5H1 at 23°C and 50% relativehumidity.

: , ..

:.'. 0 .._--_ ... _--_...............................

~: ............. ;....... . ..................

.~:

',' ~

:r

40 MPa.~

20 MPa'

.'. 0 ~

0.010.1

0.1

0.2

0.9

1.0

0.3

0.6

0.7

0.8

-?f!.- 0.5c.~

(j) 0.4

101

Time (hrs)

Figure 6.130. Creep strain versus time at different stress levels of Grivory® HTV-5H1 at 80°C.

Page 253: The Efecct of Creep

254 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

6.10.12 Solvay Advanced Polymers Amodel@A-1160HS-60%GlassFiber Reinforced, Heat-Stabilized PPA Resin

· . . . ........................................................

.........: ;. ; : .· . . . .· . . . .· .· .· .· .· .· ... . .· . , ........................ , .· . . .· . . .· . . .· . . .· . . ,· . . .· . . .· . . .· . . .· . . ...................................................

5 ..

o..f-...,........;........,....---i---r---;,...--......-i--r---i--r--+0.0 0.1 0.2 0.3 0.4 0.5 0.6

Strain (%)

10

35+-.........-+---'--+----'_!--.a.-.-!-.........-+-..........-+

30

25 : ; ; : ... ... ... ... ... .· .· .· .· .Ii' 20Q.

:E-IIIIII 15e..en

0.20

. ......................... , .

0.05 0.10 0.15Strain (%)

o~r"""T'"_......,....,.... .......__T"""T-r-.........""T""........--r--r+0.00

25 : :- .· . .· . .· . .· . .· . .· . .· . .· . .· .

5 ......

10

30

Ii' 20Q.

:E-IIIIII 15l!!..en

Figure 6.131. Isochronous stress-strain of Amodet"A-1160 HS at 23°C.

Figure 6.132. Isochronous stress-strain of Amodel®A-1160 HS at 125°C.

35 +-----J!----!---+--~--J---+---!-~

· ............................. , .· . . . .· . . . .· . . . .· . . . .· . . . .· . . . .· . . . .· . . . .· . . . .· . . . . ...................................................

· . ..4 ••••••••••••

.............: .; : ; ; .· .· .· .· .· .· .· .· .. .· .. .

5 ...

25 : : ,' : ; .· . . . . ... ... ... ... .,... ... ... .· .

10

Ii' 20Q.

:E-IIIIII 15e..en

30 >···10 hr.~· _~

o+--r----i---;--...----.,...---,...--i---+0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Strain (%)

Figure 6.133. Isochronous stress-strain of Arnodef" A-1160 HS at 75°C.

Page 254: The Efecct of Creep

6: POLYAMIDES 255

6.10.13 EMS-GRIVORY Grivory@ GV-6H-60% Glass Fiber Reinforced,Heat-Stabilized PPA Resin

1.4

1.2

1.0

_ 0.8~o-c.~ 0.6..UJ

0.4

0.2

::

r

::

.'. , ;::

~ .~.','

80 MPa: -60 MPa -, r

:: 40 MPa:

:.'. ;

: :::

101

Time (hrs)

Figure 6.134. Creep strain versus time at different stress levels of Grivory® GV-6H at 23°C and 50% relativehumidity.

0.2

0.4

I

:

: :

- :r

: :

:.'. , ,

: :

: :.'. .

:: : 40 MPa -

',' ;

:: 30 MPa.- , r

:: 15 MPa.s ,

:: :

: ::0.010.1

1.0

1.4

c.~ 0.6en

1.2

_ 0.8~~

101

Time (hrs)

Figure 6.135. Creep strain versus time at different stress levels of Grivory® GV-6H at 80°C.

Page 255: The Efecct of Creep

256 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

6.10.14 Comparison Charts of PPA Resins

. . .· , , .-.... ----. -- ~ - . -.. -... ---------. ,- . -. ----- . -. -. ----- -,---... -. ---------. -: --.. -----. - -------, , , ., , , .· . , ,· . , ,· . , ,

-- PA6T/61/66- - PA6T/66• • • • PA6T/DT

... ' . . . . - ..... --- , , _.-_.--_ -'-' _.---_.. _ _.. ---. _.-_ , .· . . - .. , .· . ,.... , ... ,." ,., , '.... , .0.7 ; ~ ; .• -~. :: : ~ ., .,., , - .. . . .· - -. . . ., . . . ,

0.6 -- --..-~.:.; .•. -., •.•.•-- : -- : --. -- :.-- --. --.. --.. ~ --. --. --.., . . , ., . , , .

1.3

1.2 ..... eo ••••••••••••••••••••• 0 •• 0 •••• __ • ~ __ • • • • _; •• •• _; __ • •• __ .0. _ ; __ • •• •• _ •• _

, . . . ., . . . .· . , ,, . , . ....

1.1 ; ; ; :- ;,.;.."".~ .. ~ .: : : : :: : : -- -- ---:"- :1.0 ';'" ":' . ..:.:.;.; ; : .

~ : . --; : :0...... , • • , •

"-"" 0 9 -_ .-:-..~ .. _ ~ ~ : ~,.:.: .e . - ; ; ; .. ~.,

l!! ::::Ui 0.8

0.4 +----.---r"""T""".......TTT'"-......-..................T'TT'Ir--.....,........,...."T""T'"T"TToT"""---.---.....,...........TTT'"-......-........................,r----.-.....,............T"TT.,.f-

10.1

0.5 .--:. ~-- ; --. --. -- ~ ; ; ~ .· . . , ., . . . .· . , . .· . . . .· . . . .102

Time (hrs)

Figure 6.136. Flexural creep strain versus time by dynamic mechanical analysis of different types of PPA resinsat 150°C and a stress of 28 MPa.

........................................................................... .

· .................................................................................· .· .· .· .· .· .· .· .. .

· ..............................: ; : .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .............................., ·····"\·····························r·················· .

12

Ii 10D.

~III:::J:::J 8"00:EQ,Q)

6e0ii..:::J>< 4

~LL-CQ).. 2«IQ,Q,

<C

0+--.........---....................""T""T...,...,..r--.....................-.-.......'r"'I"'T--.....-..............................""'T"----.....-..............-...............r+10° 102

Time (hrs)

Figure 6.137. Apparent flexural creep modulus versus time of different Solvay Advanced Polymers PPA resinsat 23°C and a stress of 69 MPa.

Page 256: The Efecct of Creep

6: POLYAMIDES 257

5 : ~ ~ +

--A-1133 HS - 33% Glass Reinforced- - A-1145 HS - 45% Glass Reinforced- - - - A-1160 HS - 60% Glass Reinforced

--_.... _. __ ... _--~- ... _--. --. -...

- '., , """- .... _ _.. -_.. ---_.-_.-_.. _.. -,_ .. _.. _.. -_.-.. _ - -_ _.. -_.-_.-----_.-_ -_ ---_.. --_ .· ,..... . ..· ,......· ,.....,· .......,· ....... ,, , ....· . ...... .: : ...., , ....: : ...., , "

----------;., --- --- --

20 +:--::-:-...........----'....................................1---..........--'---'-....................""""'""__.0....-.....................................0..1-_----''''-.....................................+

-III11.

~ 15!IJ..2:::J

'8::Ec.f 10U

~!IJC

~-cfIIIC.C.«

O+--.....,...----..---.r--r-................r---....---.---.--r-T'""'T""......-r--..----.--r-..,....,.....,...,....,------..-............................r+10° 102

Time (hrs)

Figure 6.138. Apparent tensile creep modulus versus time of different heat-stabilized Solvay AdvancedPolymers PPA resins at 23°C and a stress of 13.8 MPa.

25

-III11. 20C)-!IJ:::J:::J"C0 15::Ec.Q)Q)...UoS! 10!IJCQ)....-ce 5IIIC.C.«

:: :

:-- . . . . . . . . . . . . - :.. .. .. ,~ ~ '. .. ... .. _. ..-. -.,; '. .. .. .. .. .. .~. . -. ." . . . . .

: . . . . . . . . . . -:... . . . .- - - - - - - - - - +- - - - - -.. .. .. .. .. .. .. .. .. .. -----.,. - ~

.. .. .. ..---- :--------.. .. .. ..',' .. .. .. '0

:

: :.. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. ..

: -- A-1133 HS 33% Glass Reinforced-- - A-1145 HS -45% Glass Reinforced. . . . A-1 160 HSL -60% Glass Reinforced, Lubricated:

102

Time (hrs)

Figure 6.139. Apparent tensile creep modulus versus time of different heat-stabilized Solvay AdvancedPolymers PPA resins at 23°C and a stress of 34.5 MPa.

Page 257: The Efecct of Creep

258 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

14

Ii 12D.

~t/) 10:::::l:::::l"C0:! 8CoQ)

e0 6~';;s::::Q)I- 4-s::::Q)~

IIICo 2Co«

-- -- A-1133 HS - 33% Glass Reinforced---. . A-1145 HS 45% Glass Reinforced-. - - ----: ~ -.~ ----A-1160 HSL - 60% Glass Reinforced, Lubricated. . . . -. . ----. - . -. ,- -. ---. -----'- : ~ .. .. .. ~ . .- ..... -.

... ..---------- ~ - - - - - - - - - ..,. - -',' ... ... .. _. _. _.--'-+'~ - -:

.'. '- :

:

102

Time (hrs)

Figure 6.140. Apparent tensile creep modulus versus time of different heat-stabilized Solvay AdvancedPolymers PPA resins at 125°C and a stress of 13.8 MPa.

..'" -.. -

--A-1133 HS - 33% Glass Reinforced- - A-1145 HS - 45% Glass Reinforced- ••• A-1160 HSL - 60% Glass Reinforced, Lubricated

. _.-_. _.. -------_.-_.. _.. _... '... _.... -~ .... _. . _ .. _.--_.-_.-_ .. _.. -_.-----_.----_.-_.-... _. - ~ ... -_._. --_.-_.---_.... _._._., ... .... ., . .. ... .. ... .: ....... .. ... ... :: ......:

, ............... __.. __ _-_ ··t'····························, .. .

2 : ; , ., , ., , ., , ., , ,, , ., , ,, , ,, , ,, , ,, , ,, , ,, , ,

0+-----.-......................-T........""T'T"--...-----.----.-"""'T""........"T"T"r---"""'T""-............."""'T"".........,...----....-................,.....,..............-r10°

6 -, , ,.. _ _ ~.--.; ..::..:._ .. __ .:- .. _. __.. __ .. _ _ : __ : .-- . . ,

":'- - . .------ : :--.;.-- - -- - -- -~--

Time (hrs)

Figure 6.141. Apparent tensile creep modulus versus time of different heat-stabilized Solvay AdvancedPolymers PPA resins at 125°C and a stress of 34.5 MPa.

Page 258: The Efecct of Creep

6: POLYAMIDES 259

10

-C'lID. 8~II);:,;:,'00 6:!EQ.4141..0~ 4II)C41

~-c~ 2C'lIQ.Q.«

-- A-1133 HS - 33% Glass Reinforced- - A-1145 HS -45% Glass Reinforced. . . . A-1160 HSL - 60% Glass Reinforced, Lubricated. .

-- ~ ..... .- ~ . . . . . . . ." . . . . :. . . . . . . . . . . . :. . . . . . . . . . . . . . . . ., - . . . .

-'- .-I- -- - - - - - - - .,.. - - - - - - - - - - - - - - - - - - .; - - -

,- ;

102

Time (hrs)

Figure 6,142. Apparent tensile creep modulus versus time of different heat-stabilized Solvay AdvancedPolymers PPA resins at 175°C and a stress of 13.8 MPa.

10

IiD. 8~II);:,;:,'00 6:!EQ.41e0~ 4';c41

~-C41 2..C'lIQ.Q.«

.-- A-1133 HS - 33% Glass Reinforced- - A-1145 HS - 45% Glass Reinforced. . . . A-1160 HSL - 60% Glass Reinforced, Lubricated

. -'- .-. - . - . . . . . . . . . :. . ,- . . . . . . . . . . . . . . . -' . . . . . . . . . . . . . -. . . . . . . .-,- ,- ;

I- - - - - - - - - - ~ - - - - - - - - - ~ - - - - - - - - ..:. - - -

102

Time (hrs)

Figure 6.143. Apparent tensile creep modulus versus time of different heat-stabilized Solvay AdvancedPolymers PPA resins at 175°C and a stress of 34.5 MPa.

Page 259: The Efecct of Creep

260 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

6.11 Polyarylamide (PAA)

6.11.1 Solvay Advanced Polymers IXEF@1022-50%GlassFiberReinforced PAA Resin

1.5

~o- 10.5 .f!en

:100 MPa

............ : ~ 60 MPa .

0.5C.,.,..,.."-:-:-:'::-:-:":'~ ~ ~ ~ =~ ±..:..~ ~ ~ ~ ~ [= : ~ .0.0 +-.........-.-..................-.....-........................----..........................,.-.........-.-..................-.....-........................----.....--T...................

10° 103

Time (hrs)

Figure 6.144. Tensile creep strain versus time of IXEf=® 1022 at 50°C.

60MPa

1.5 .

--~o- 10t: .

.~..tn

40 MPa

0.5 : : ~ .

20 MPa

O.O+--~-~.....--.--.-,.......,,,.-- ........-.....-..........................'"'T"""-----.-.....-_................"'I"T'"----...---+10°

Time (hrs)

Figure 6.145. Tensile creep strain versus time of IXEf=® 1022 at 120°C.

Page 260: The Efecct of Creep

6: POLYAMIDES 261

6.11.2 Solvay Advanced Polymers IXEF@ 1032-60% Glass FiberReinforced PAA Resin

1.0 ; ~.... . .

1.2 .; i .· .· .· ., ., ., ., .

_ 0.8

~ I~----80MPa

0.4 .

0.2 ;- ~ ..· .· ., ., .

10'0.0 +------.--..--.,..........,--.-.......-r-T------..-........-........-..........................,...j---.....-----....,......,................-+

10°

Time (hrs)

Figure 6.146. Tensile creep strain versus time of IXEF® 1032 at 50°C.

6.12 Semi-crystalline Polyamide (PACM 12)

6.12.1 Evonik Industries Trogamid@CX7323-MediumViscosity,PermanentlyTransparent, Injection Molding and Extrusion PACM 12 Resin

542 3Strain (%)

1

5 .; ;. : : .· . . .· . . .· . . ., . . ., . . .· . . .· . . .· . . .· . . .· . . .· . . .· . . .· , . .· . . .· . . .· , . .· . . .· . . .o+-"""T"'""---r----.-----,-..---r--"""T"'""---r----.---+

o

15 .

Iia.!..10

1/1

~..tI)

Figure 6.147. Isochronous stress-strain of Trogami<J® CX7323 at 23°C.

Page 261: The Efecct of Creep

262 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

20 +----'---+----'--+-........-+-........-+-........- ...

541O-f----..--r----.--r----.--r----....--__-.---+

o

5 ...

15

-n:sD.::i 10-InIne-en

2 3Strain (%)

Figure 6.148. Isochronous stress-strain of TrogamicJ® CX7323 at 40°C.

1600+---.........---4---........-----l------'------I---'----04----"""-----+

1000080006000

--40°C, 10 MPa- - 23°C, 10 MPa

40002000

-,,- ,, ...... , . ,

'- --- --~--...,.,-,-- _... - --~ ---' -----.. ------.- - --~. --.- --- ---_.------- - -~- --- --------_.----_._-............ :....'

: :............. : ,...................... , ~ ' ' .

: .......: :. ", ,., ., ., ., .-_.. __ __ - ., . ,, . ,, . ,, . ,, . ,, . ,, . . ....................... ; : : ,.".~ ., . . ....: : : : ...., . . ......, . . ......, . . ....... _ -' -_ : _.. _ _ -_.-': _.. _. _.. _.-_.---------;'_.-_. --_.-_. _.. _.. ---;' _ _. _ -'::-, . . ., , , ., , , ., . . ., , , ., , , ......... _----_ : , , ., , , ,, , , ,, , , ." ." ." ," ,

1400

Ii 1200D.::i-In 1000.2~

"C0 800::ic.C1le 6000.!!'iii 400c:C1lI-

200

00

Time (hrs)

Figure 6.149. Tensile creep modulus of Troqarnid'" CX7323 at 23°C and 40°C and at a stress of 10 MPa.

Page 262: The Efecct of Creep

7.1 Background

In organic chemistry, an alkene, also called anolefin, is a chemical compound containing at leastone carbon-to-carbon double bond. The simplestalkenes, with only one double bond and no otherfunctional groups, form a homologous series of hydro­carbons with the general formula CnH2n• The twosimplest alkenes of this series are ethylene and pro­pylene. When these are polymerized, they form poly­ethylene and polypropylene, which are two of theplastics discussed in this chapter. A slightly morecomplex alkene is 4-methylpentene-l, the monomerfor poly(methylpentene), known under the tradename of TPXTM. If one of the hydrogens in the ethyl­ene molecule is changed to chlorine, the molecule iscalled vinyl chloride, the monomer for polyvinylchloride, commonly called PVC. Acrylic polymersare also polymerized through the carbon-earbon

H H\ /C=C

/ \H H

ethylene

4-methylpentene-1

CH3/

o\C=O

/H2C=C

\eH3

Methyl methacrylate

7 Polyolefins and Acrylics

double bond. Methyl methacrylate is the monomerused to make poly(methyl methacrylate).

The structures of these monomers are shownin Fig. 7.1, with the polymer structures shown inFig. 7.2. The copolymer structure using the norborenemonomer is shown later in Fig. 7.5.

7.1.1 Polyethylene (PE)PE can be made in a number of ways. The way it is

produced can affect its physical properties. It can alsohave very small amounts of co-monomers, whichwill alter its structure and properties.

The basic types or classifications of PE, accordingto ASTM 1248, are:

• Ultra low density polyethylene (ULDPE): poly­mers with densities ranging from 0.890 to 0.905g/cm", contains co-monomer

H CH3\ /C=C

/ \H H

Propylene

H CI\ /C=C

/ \H H

Vinyl chloride

Norbornene

Figure 7.1. Chemical structures of monomers used to make polyolefins.

263

Page 263: The Efecct of Creep

264 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

• Very low density polyethylene (VLOPE), poly­mers with densities ranging from 0.905 to 0.915g/cm', contains co-monomer

• Linear low density polyethylene (LLOPE):polymers with densities ranging from 0.915 to0.935 g/cm", contains co-monomer

• Low density polyethylene (LOPE): polymerswith densities ranging from about 0.915 to0.935 g/cm'

• Medium density polyethylene (MOPE): poly­mers with densities ranging from 0.926 to 0.940g/cm', mayor may not contain co-monomer

• High density polyethylene (HOPE): polymerswith densities ranging from 0.940 to 0.970g/cm", mayor may not contain co-monomer

Figure 7.3 shows the differences graphically. Thedifferences in the branches in terms of number andlength affect the density and melting points of someof the types.

Branching affects the crystallinity. A diagram ofthe representation of the crystal structure of PE isshown in Fig. 7.4. One can imagine how branching inthe polymer chain can disrupt the crystalline regions.The crystalline regions are the highly ordered areasin the shaded rectangles in Fig. 7.4. A high degree of

Poly-(4-methyl-l-pentene) Polyethylene

CH3

I--CH-CHz-

Polypropylene

CI

I--CH-CHz-

Polyvinyl Chloride

H3C~o

Ic=o

I--CHz-f--

CH3

Poly(methyl methacrylate)

Figure 7.2. Structures of polyolefin polymers.

HDPEDensity =0.94-0.97 g/cm3

Melt Point =128-136 °C

MDPEDensity =0.93-0.94 g/cm 3

Melt Point =120-130 °C

VLDPE/LLDPEDensity =0.90-0.93 g/cm 3

Melt Point =100-130 °C

LDPEDensity = 0.915-0.935 g/cm 3

Melt Point =105-115 °C

--

l-

I--

-Figure 7.3. Graphical depictions of polyethylene types.

Page 264: The Efecct of Creep

7: POLYOLEFINS AND ACRYLICS

Figure 7.4. Graphical diagram of the crystal structure of polyethylene.

265

branching would reduce the size of the crystallineregions, which leads to lower crystallinity.

7.1.2 Crosslinked Polyethylene(PEX)

A modification of HDPE is called crosslinkedpolyethylene. It is a form of PE with crosslinks andit is commonly abbreviated as PEX or XLPE. TheHDPE has undergone a chemical or physical reactionthat causes the molecular structure of the PE chainsto link together as described in Section 104.3 andFig. 1.35. This reaction creates a three-dimensionalstructure that has superior resistance to high tempera­ture and pressure. PEX is primarily used in tubing.There are three primary commercial methods forproducing PEX tubing:

• Peroxide (or Engel) method (PEX-a): Cross­links during extrusion while the polymer ismolten

• Silane method (PEX-b): A chemical crosslink­ing method in which reactive silane groups aregrafted onto the polymer backbone

• Radiation or electron-beam method (PEX-c):The formed tubing passes through a radiationchamber that generates the crosslinks

Further details are beyond the scope of this book.

7.1.3 Polypropylene (PP)The three main types of PP generally available are:

• Homopolymers are made in a single reactorwith propylene and catalyst. It is the stiffest ofthe three PP types and has the highest tensilestrength at yield. In the natural state (no colo­rant added) it is translucent and has excellentsee-through or contact clarity with liquids. Incomparison with the other two types it has lessimpact resistance, especially below oac.

• Random copolymers (homophasic copolymers)are made in a single reactor with a small amountof ethylene «5%) added, which disrupts thecrystallinity of the polymer allowing this typeto be the clearest. It is also the most flexiblewith the lowest tensile strength of the three. Ithas better room temperature impact than thehomopolymer but shares the same relativelypoor impact resistance at low temperatures.

• Impact copolymers (heterophasic copolymers),also known as block copolymers, are made in atwo reactor system where the homopolymermatrix is made in the first reactor and then trans­ferred to the second reactor where ethylene andpropylene are polymerized to create ethylene­propylene rubber (EPR) in the form of micro­scopic nodules dispersed in the homopolymer

Page 265: The Efecct of Creep

266 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

matrix phase. These nodules impart impactresistance to the compound both at ambient andcold temperatures. This type has intermediatestiffness and tensile strength and is quite cloudy.In general, the more the amount of ethylenemonomer added, the greater is the impact resis­tance with correspondingly lower stiffness andtensile strength.

7.1.4 Polymethylpentene (PMP)The 4-methylpentene-l based polyolefin is manu­

factured and marketed solely by Mitsui Chemicals,Inc., under the trade name TPXTM. This lightweight,functional polymer displays a unique combinationof physical properties and characteristics due to itsdistinctive molecular structure, which includes abulky side chain as shown in Fig. 7.2. PMP possessesmany characteristics inherent in traditional polyole­fins such as excellent electrical insulating propertiesand strong hydrolysis resistance. Moreover, it featuresa low dielectric constant as well as superb clarity,transparency, gas permeability, heat and chemicalresistance, and release qualities.

It can be used for extruded and film products as wellas injection-molded and blow-molded applicationitems, including:

• Paper coatings and baking cartons

• Release film and release paper

• High frequency films

• Microwave cookware

• Food packaging such as gas permeable packagesfor fruit and vegetables

• LED molds

7.1.5 Ultra High Molecular WeightPolyethylene (UHMWPE)

Thermoplastic UHMWPE is also known as highmodulus polyethylene (HMPE) or high performancepolyethylene (HPPE). It has extremely long chains,with molecular weight numbering in the millions(usually between 3.1 and 5.67 million). The highmolecular weight leads to very good packing of thechains into the crystal structure. This makes UHM­WPE a very tough material, with the highest impactstrength of any thermoplastic presently made. It ishighly resistant to corrosive chemicals, with excep­tion of oxidizing acids. It has extremely low moisture

absorption and is highly resistant to abrasion. Itscoefficient of friction is significantly lower than nylonand acetal.

7.1.6 Rigid Polyvinyl Chloride(PVC)

PVC is a flexible or rigid material that is chemi­cally non-reactive. Rigid PVC is easily machined,heat formed, welded, and even solvent cemented.PVC can also be machined using standard metalworking tools and finished to close tolerances andfinishes without great difficulty. PVC resins are nor­mally mixed with other additives such as impactmodifiers and stabilizers, providing hundreds ofPVC-based materials with a variety of engineeringproperties.

There are three broad classifications for rigid PVCcompounds: Type I, Type II, and chlorinated PVC(CPVC). Type II differs from Type I due to greaterimpact values but lower chemical resistance. CPVChas greater high-temperature resistance. These materi­als are considered ''''unplasticized,'' because they areless flexible than the plasticized formulations. PVChas a broad range of applications, from high-volume,construction-related products to simple electric wireinsulation and coatings.

7.1.7 Cyclic Olefin Copolymer(CDC)

COC is an amorphous polyolefin made by the reac­tion of ethylene and norbornene in varying ratios. Itsstructure is given in Fig. 7.5. The properties can be cus­tomized by changing the ratio of the monomers foundin the polymer. Being amorphous it is transparent.Other performance benefits include:

• Low density

• Extremely low water absorption

-fCH2-CHZ+X-+---CH--CH

V CHz\

HC ~CH

\ /CHz-CHz

y

Figure 7.5. Chemical structure of cyclic olefincopolymers.

Page 266: The Efecct of Creep

7: POLYOLEANS AND ACRYLICS 267

• Excellent water vapor barrier properties

• High rigidity, strength, and hardness

• Variableheat deflection temperature up to 170°C

• Very good resistance to acids and alkalis

7.2 Polyethylene (PE)

7.2. 1 LyondellBaselllndustriesPolyolefins HDPE, Density0.945glcfTiJ

Figure 7.6. Isochronous stress-strain of HDPE,density 0.945 g/cm3 at 23°C.

o+.-"T"T"..,..,......."'TI"T"T"....-,rr"""T"T",................"'T""'''T"T"..-+

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Strain (%)

: 1 hr

: 102 hr

..... :·10 hr··

· .............., ~ .

· .. .................. . .. , .· , . . .· , . . .· .· .· .· ., .· .. . .. . .2

6 -: ;- ; ;.

5

(;"4a.:E-

7.1.8 PolyacrylicsWhile a large number of acrylic polymers are man­

ufactured, polymethyl methacrylate (PMMA) is byfar the most common. Nearly everyone has heard ofPlexiglas'". PMMA has two very distinct propertiesthat set the products apart from others. First, it isoptically clear and colorless. It has a light transmis­sion of 92%. The 4% reflection loss at each surface isunavoidable. Second, its surface is extremely hard.They are also highly weather resistant.

7.1.9 Other Olefin/Acrylic PolymersThere are a large number of acrylic/olefin copoly­

mers manufactured. One of the best known is thecopolymer of ethylene and methacrylic acid form­ing a polymer known as ethylene-methacrylic acid(EMAA). This is more commonly known by its tradename, Surlyn", made by DuPont. Generally, there islittle multipoint data publicly available for thesepolymers, so they are not included in this book.

2

IIIIII 3e..en

5 : "': "":"'1'j-ii':' .:: : 10 hr:: 102hr

...................., ; 103 hr:

6 : -; ~ : ... ..., ..· ..· ..· ..· ..· ..· ..· .

0...,..,...............................,..,......."'T"T"'T"T"T"T...........-r"T"T""......r+0.0 0.5 1.0 1.5 2.0 2.5 3.0

Strain (%)

Figure 7.7. Isochronous stress-strain of HDPE, density 0.945 g/cm3 at 40°C.

Page 267: The Efecct of Creep

268 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

7 +-"......."""'-+..............-+-'-......."""'-+..............-+-'-......."""'-+..............+

3.02.52.0

· .· ... .· .· .· .· .· .· .· .· .· .· .- - •• -I' •••••••••••••••••••••••••••• ~ •••••••••, . . .· . . .· . . ,· . , ,· . . .· . . .· . . .· . . .· , , .· , . .

0.5

-.. -. -.. -: : ~ ; :. - -..· . . . .· . . . .· . . . .· . . . .· . . . .· ., .: : : : 1 hr :: : ' : . 10 hr.........; ; ; ; ". '10

2hr

· . .· . .· . .· . .· . .· . .· .

6 __ ._; : ~ ':- : ., . . . ., . . . .· . . . .· , , . .· , . . .· . . . .· , . . .· . . . .· . . . .5 : : ~ ~ _. -:.. _.. _.. _.· . . , ., . . . .· . , , ,, . . . ., . . . ., , . . ., . . . .· . . . .· , . .

2

o+r.......""I"T.................T'"""" .........,.....,...r-r-r-T""1r-"'"'"'.........-r-r---.....-+0.0

1

I/)

~ 3-(J)

(i4D.::E-

1.0 1.5

Strain (%)

Figure 7.8. Isochronous stress-strain of HDPE, density 0.945 g/cm3 at 80°C.

7.2.2 LyondellBaselllndustries HOPE, Density 0.948 g/cm3

c;- 750D.

!.III.a::::l

"Co 500

::IEQ,Q)

eo~

~ 250

~

, , . ,........................................................., , .

--- -------

100000100001000101O+-___._.......................~---.-~"'T""T'T'T'T"rr____._~ .......T'T'T"rr_.......-....."r'""T'"T'T'n~ .......-....."r'""T'"T'T'n~~--.-.,.....,...........r0.1 100

Time (hrs)

Figure 7.9. Comparison of tensile creep modulus versus time at 23°C of HDPE, density 0.948 g/cm3 andvarious stress levels.

Page 268: The Efecct of Creep

7: POLYOLEFlNS AND ACRYLICS 269

500 +------..........................01--......................................'--....................................-...0....-...........................- ...........................0.0.1------..............................4

100000

----

100001000

. ., __--'-'-.0•• -.------_ •• _-_ ••• __ •• ,••••••••• __ ••••• __ • ••• _

10

5MPa

1

· ............ -.. - .· ..· ..· ..· ..· ..· ..· ..· ..· ..· ..· ..· ..· ..

· . -----, " ...................................... - -., "., ".· ".· ..,, .", .", ."· .", .,., .,.· ..· ..· ..O+----.-.....,...."T""T'"rT'T"I-r--.....,....-r-........."T'TT'Ir---r-"'T""'T.........T"TTT-~T""'T'" ........."TTT'"-T""""""'l........................---,..............,....,.........+-

0.1

100

400

~ 300

=='tSo:::liEQ.

~ 200,-~o.!!'iiic

~

-IVe,:::liE-

100

Time (hrs)

Figure 7.10. Comparison of tensile creep modulus versus time at 40°C of HOPE, density 0.948 g/cm3 andvarious stress levels.

7.2.3 LyondellBasell/ndustries Hosta/en@GM5010 T3-High Density0.947 g/cm3, MFR 10 g/10 min HOPE

• • • • , I................................................... : , : .· , , . , .· ..,.· ,.,.. . , ., . , ., . , ., . , ., . , .· . .· . .· . .· . .· . .· .--- - ....-­--- - -;- --

101+---r-""T""T"T"T'Tnr----..--r-rTT..........-,........,...................,r--~r-T'"'lr-T'TT.-r--.....,....""T""T ................---.......,....T""T"TTTT1"-..................T'TTTf-

10.1 102

Time (hrs)

Figure 7.11. Tensile creep modulus versus time at 23°C of Hostalenf GM 5010 T3 and various stress levels.

Page 269: The Efecct of Creep

270 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

104 +----'-.........................---.........................~-"""'- ...............~- .......................-----'-......................- ..........................~- ........................"'"'t_

5MPa: : - - - -: - - - -

•••••••••••••••• '•••••••••••••••• ~ •••••••••••••••• 1 •••••••••••••••• 0•••••••••••••••••' •••••••••••••••• 1 ••••••• _ ••••••• _

· .· . , . , .................................... -_ ;-- _-_ _--_ : .• • I • , •· . . . , ,· , . , , ,· , . , , ,· . . , . .• , • I , ,· , . , , ,· . . . . .· . . . . .: 2MPa : : : :

, . . ., . . ,, . . .,. ,: : ----~---

101 +--.....--.-......."'"""1r--....-.............""T-......-................,...---........................,--.....--.-.......rTTTr--....-.............""T-......-.............nt10.1 102

Time (hrs)

Figure 7.12. Tensile creep modulus versus time at 40°C of Hostalerr" GM 5010 T3 and various stress levels.

15+--""""--.................................----'-----"--'-.................-l--_.o...-""""--................~- .......---'-........................._-"--...............................14 . , . .13 20°C:::;:::::::::::::::::::::: :~:::::::::::::::::::::::;::::::::::::::::::::::~:::::::::::::::::::::::12 '....................... . ; ; ..11 ··· .. ········'40°C···;············· .. ···· .. ··;········ .. ··· ;................... . -- ..10 . ; , ; .

, .

.......... - -- , - ~ -. - - - - .· , . ,· , . ,· .,· .,· .,

-5 .--- .. --.-.----- ---~--- .. -.--.- -.------: ---.- -.- ------ -.. ----~-.- .. -.---.- .. -.----.-.

, , . ,· . . .· . . ., , . .· . . .4 : : _ _ -~ _ : .· . . .· . . .· . . .· . . .· , . .· . . .,. ,

3 ; ; ~ ; .· , . .· . . .· , . .· . . .· . . .· , , .· , . .· . . .· . . .· . . .· . . .· . . .

9- ; -- ; --.--.... . ; -!-60°C ; : : :8 -----. --.-. ----.... ------..... --;- -----... -------.... ---: ----..... --------.... - ~- .. --...... --..... ~ ... ~· . . .· , . .7 --_ -_ :-. _. _ :....... . ~ : .· ,80°C ; ;· ,

2+--.......-r-........r-T'"'l"'T'T'1r------,r--......-......."T""T'"r-rT--.....--.-..................~-.....--.-....- ...............r--..--.......T"""'l""'T""T"~

101

-euD.

~ 611>11>f-U)

Cooo

::I:

Time (hrs)

Figure 7.13. Hoop stress versus time at various temperatures of Hostalerr" GM 5010 T3 and various stress levels.

Page 270: The Efecct of Creep

7: POLYOLEFINS AND ACRYLICS 271

7.2.4 LyondellBaselllndustries [email protected],MFR 6.5 g/10 min, Stabilized HOPE

6

5

2

· ...................... . . - .. ··············f··············· . .· . .· . .· . .· . .· . .· . .· . .. .

· ................. - - .. -.- .

431O-f----.-.....;...-..,.....---......---.---i--.....---+

o 2

Strain (%)

Figure 7.14. Isochronous stress-strain of Lupolen@ 5031 L at 23°C.

7+---'-.......11--........-+_""--+---'-_+.-.........-+

6

· .. .. , .· .· .· .· .· .· .· .· .· .· . .••• ",- •••••••••• 1 ••••••••••• ~ •••••••••••· . .· . .· . .· . .· . .· . .· . .· . .· .· ......................... - - , .2

.. .5 : > : : ... ... ." ... ... ... ... .. .. .

1 ..

541O+---.--r--.....-.......-....-.....---.--~-r--+

o 2 3

Strain (%)

Figure 7.15. Isochronous stress-strain of Lupolen@ 5031 L at 40°C.

Page 271: The Efecct of Creep

272 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

7.2.5 LyondellBaselllndustries HOPE, Density 0.954 glcm3

Strain (%)2.5 3.00.5

· .. . . ',' ~ ., . . .· . . .· . . .· . . .· . . .· , , .· . . .· . . .· . . .· . . .. . . . . .. . . -, ~ .· . . . .· . . . ., . . . .· . . . .· . . . .· . . . ., . . . .· . . . .· . . . .· . . . .

· . ......... ' .· .· .· .· .· .· .· .· .· .

2

o-f-r'"T'""I"'""I"T"T'""I"'..,..,...T"T'"..,..,...T""T'"T""T""T""T""T"T""T""T""I"""T""........r-r+0.0

6 : :- ; , :.1 hr ..: : : ; : 10 hr, . . . .~ : : : : 102 hr· .. .5 ........ -:..........;......... ~ ........ ;.... "';'103 hr

:104

hr

7 ...............-'-+................+---..........""'-+....................+-0-............&..+........""'"-'-+

II>

~ 3-CI>

li'4Il.:E-

1.0 1.5 2.0

Strain (%)

Figure 7.17. Isochronous stress-strain of HOPE,density 0.954 g/cm3 at 40°C.

3.02.5

: 1 hr: 10 hr

.... 102 hr·

: 103 hr

:.104

hr.

· .··r·········.··········· .· .· .· .· .· .· .· .· .

1.5 2.01.00.5

5 : :- .;.· . .· .· .· .· .· .· .· .· .

6 -; :- , ; .· . .· . .· . .· . .· . .· . .· . .· . .· . .

2

o-f-r'"T'""I"'""I"T"T'""I"'..,..,...T"T'"..,..,...T""T'"T""T""T""T""T"T""........I"""T""........r-r+0.0

II>

~ 3-t/Jli'4Il.::E-

Figure 7.16. Isochronous stress-strain of HOPE,density 0.954 g/cm3 at 23°C.

7 .................""'-+....................+-0-..........&..+................+-0-......0..+-......0..0+

6 -; :- ; ; .., ,.., ..., .." ,.,. ..., .... ,... .." ..5 : :- ; ; .,. ..., .... .... .... ,... .... .... ..

3.0

; 10 hr;102 hr

2.50.5O+r-"T'""I"'.....;-...............j-,-,.......-;-...........,..;."T'""I"'.......;-.-.........-r0.0

,. ..Ii' 4 ; ; ~1 hr: .; ..Il.::E-

2

1.0 1.5 2.0

Strain (%)

Figure 7.18. Isochronous stress-strain of HOPE, density 0.954 g/cm3 at BO°C.

Page 272: The Efecct of Creep

7: POLYOLEFINS AND ACRYLICS 273

7.2.6 LyondellBaselllndustries [email protected]/cm3, MFR 2 g/10 min, Stabilized HOPE

5432

· .·······1··········· ..············ .· .

. . .. , .. . .

1o+---r----r-......-~---r-or--....-_.,.-.--+

o

5 -- ---- ---- -:-- -- -- -- ----:-. .. .

2

1

6

ca 4no~1/11/1 3e-en

5432

· . ..... ',' ~ .

1

.~ ~ :<:' "'..... :

: ~ <3 ~ :· '" " : ~

--- ---, ---- -<, '<:' -----------~

· . .............., .

· . . .. . . . . . . . . . ',' . .. .. . .. ,. . ~ " .· . .· .· .· .· .· .· .· .

5 --------

o+-........---,-.....--"""T""---.--r-""'"T"""~--r---+o

1

2

1/11/1 3e-en

Strain (%)

Figure 7.19. Isochronous stress-strain of t.upolen"5261Z at 23°e.

Strain (%)

Figure 7.20. Isochronous stress-strain of Lupolen'"5261Z at ac-e.

7.2.7 LyondellBaselllndustries [email protected], MFR 6.6 g/10 min HOPE

--- - -:- ---

10'

5 MPa

. .2MPa················,················:················.: : .

· . .· . .· . .· . .· . .· . .· . .. .~-'---' .---

-~----

.. .•••••••••••••••• ••••••••••••••••• .: •••••••••••••••• 1 ••••••••••• _ •••• ••••••••••••••••••• •••••••••••••••• 1 ••••••••••••••••· , . . . .· .· .· .· .· .· .,..· ....· ..,.

, .· .· .· .. .· .. .· .. .· '. ,· ,. .· ..· ..· ..· ..· ..101 +--.-...-r-o"'TTT'Oor--.............................,-..---.-...............-r----..................,....-.r----.-....................-.r-............................,..--.-...-r-o..............10-1

Time (hrs)

Figure 7.21. Tensile creep modulus versus time at 23°e of Hostalerr" eRP 100 and various stress levels.

Page 273: The Efecct of Creep

274 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

· , . , . ...... _-_ _--.-.- , , _-_ -.-_ _-_ _-- -- ; .· , . , . .· , . . . ,· , , . . ,• , , I , •· , , . , ,, , . . , .· , , . . ., , " .: 2 MPa: :: :, ., .· . , ., " - - -- -.- --

101 ;-~"""T""" ............,-......-....-rT'TTnr-........--.-................r-__.................,...---......................,rr--................I""I""'"......,.-.,.....,"'""'T""'lr"'f'T'f+10'1 102

Time (hrs)

Figure 7.22. Tensile creep modulus versus time at 40°C of Hostalen" CRP 100 and various stress levels.

151413121110

9

8-ftS 7D.:E

6-I/)I/)Gl 5...-Cf)Q.0 40:J:

3

..20°C' ~ : ~

" ',' ; "

",

"

AO°C', ,', ;

· ·60°C· ~ : ~

:" "

80°C, :· ", ·

· .., ·:" ; "

:

" :

: :

:

Time (hrs)

Figure 7.23. Hoop stress versus time at various temperatures of Hostalerr" CRP 100.

Page 274: The Efecct of Creep

7: POLYOLEFINS AND ACRYLICS 275

7.2.8 LyondellBaselllndustries HOPE, Density 0.960 glcm3

. .· .· .

6 : :- _._.~_ .· . .· . .· . .· . .· . .· . .· . .· . .

2

· .5 -: : .· . .· . .· . .· . .: : 10 hr

.. ;102 hr .

o+...-"T""T""T""T""r-T""'l......,..............."T"""""T""T""T""T""r-T""'lr-T""'T""T""T""T""T"+

0.0 0.5 1.0 1.5 2.0 2.5 3.0Strain (%)

(;140.::IE-

... : .· .· .· .· .· .· .· .· .· .

· . ................... , , .

· . . ..........................................................

10 hr: 102 hi-

.103 hr···

......... :. . ... .. .:.. .. ... ~ ~ ; .· . . . .· . . . .· ...· ,..· .· .· '"· .· .· .. ............ . . .. .· . . . .· . . .· . . .· . . .· . . ., . . .· . , ., . . .· . . .

1 ..

5

2

6

o+...-"T""T""T""T""r-T""'lr-T""'T""T""T""T""T"T"T'"T""T""T'"T""r-T""'t""T'"T........""T""T"+

0.0 0.5 1.0 1.5 2.0 2.5 3.0Strain (%)

II)II) 3l!!-en

(;140.::IE-

Figure 7.24. Isochronous stress-strain of HOPE,density 0.960 g/cm3 at 23°C.

Figure 7.25. Isochronous stress-strain of HOPE,density 0.960 g/cm3 at 40°C.

7 +a-........."""+-.........'""""'!................+-&-........."""+-.........'""""'!...............+

· . ............... -.. _ .. __ .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .

......... ; ; ; ; ... .· .· .· .· .· .· .· .

6 : : : ; ... .... .... .... .... .... .... .... .... ..5 -.;---.----- -, -----.-- -.-- ; : .'. ..,. .... .... .... ",. ..,. .... .... .

2 ;. '.

1

(;140.::IE-

· ............................... . .· .· .· .· .· .· .· .· .· .

o+...-.......'I"'"T'",....,...,......,..............."T"""""T""T""T""T""r-T""'lr-T""'T""T""T""T""T"+

0.0 0.5 1.0 1.5 2.0 2.5 3.0Strain (%)

Figure 7.26. Isochronous stress-strain of HOPE, density 0.960 g/cm3 at ao°c.

Page 275: The Efecct of Creep

276 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

1000 +-~""",,---'-"""""""""'''''''''''.a..l--''''''''''----''---'-'''''''''''''''''..o..l-----'--''''''''''''''''''''''''''''.a...o..+-----'---'''''--'''''''''''''''''''''...o..a.+

. ................... _, __ .

E~ 250.!!LL

Ii 750e,

!.I/)

.=::::I"Co:liE 500 . . . . .. . .. . . . .. : AO°C' : .c. . .Q)

eo

100010010+--.....--.....-.-...................-r---.----..~ .....................,.,...-~--. .........-.-.,..,....l"'TT'"-___.--r--........."'T""T'..-Ti-0.1 10

Time (hrs)

Figure 7.27. Flexural creep modulus versus time of HOPE, Density 0.960 g/cm3 at two temperatures.

7.2.9 LyondellBaselllndustries [email protected]/cm3, MFR 8 g/10 min, Stabilized HOPE

54

~;,:>y'

; ..<::> ;.' :' ' .. .

.' .· . . .

1

· , . .. .

5 .

4 ; ; ~ : .· ..· ..· .· .· .· .· .· .· .· .· .

o+----..--r--.....-r---.----.,r--.....----r-....----+o

1 ..

2 3Strain (%)

Figure 7.29. Isochronous stress-strain of Lupolen@6031 M at 40°C.

54

.........................................· . .· . .· . .· . .· . .· . .· . .· . .· . .

1

· . . .·····.············,···········1··········· ..···········. . , ., . . .· . . ,· . . .· . . .· . . .· . . .· , . ,................................. : .· . . ,· . . .· . . .· . . ,· . . .· . . .· . . .· . . .· . . .

7

6 .

O+-~-...--.....-r---r----.-.....----T-....---+

o

2

· .5 : ," : : .· . . .· . . .· ..· ..· ..· ..· ... .

1

8+----'--+-..........-+----~'-----+----+

-C'llc,

!.4I/)

~Ci)3

2 3

Strain (%)

Figure 7.28. Isochronous stress-strain of Lupolen@6031M at 23°C.

Page 276: The Efecct of Creep

7: POLYOLEFINS AND ACRYLICS 277

7.2.10 Multiple PE Product Comparison Charts

1250+----'--"---'.............................--.........----"----".................."""'"'---1'---""""----"---'-............................--"""--..................................""+

10001001

· ,.................. __ ._-_.__ . __ __ _----_._-- ---------_ _-_._-------· ,

............................ : : ~ :7.. ':":'...,.,._........",~

, , ., , ., , ., , ., , ,, , ,, , ,, , ,, , ,, , ,· , ., , .O+----.----..............................,..--_._..............--.-............,--......---.---.-.........................--....-_.__._...............-rt-

0.1

1000

l!~><

~ 250u.

I/)~

~"Co:::Ec.CDe 500o

-IIIIl.:::IE-

10

Time (hrs)

Figure 7.30. Comparison of flexural creep modulus versus time at 23°C of PEs of different densities.

10001001

'0 • •••••••• __ ••••••••• : •••••• ••••••••••••••••••• 1 ••••••••••••••••••••••••• _ •••• •••••••••••••••••••• __ •••• __· , .· , .· , .· , ., , ,, , ., , ., ,................................................... , .

, . ..' •• '.".".'."' ••• "."."j' •• ".' •• ' •• ' •• ".' •• ' •• ' ••• ; ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

, . ,, . ., . ., , ,, . ., . ,, . ,

......................................................... ~ ., ,, ,, ,, ., ., ., .

0+--........-....-....-r.,....,........T-----.----...............................,..----.----.---.--.-..................r---_._.............."""'T'"""r""'T'"~

0.1

800

700

Ii 600Il.:::IE-I/) 500~

~"C0 400:::Ec.CDCD

300..0ii..~ 200><CD

u:::100

10

Time (hrs)

Figure 7.31. Comparison of flexural creep modulus versus time at 40°C of PEs of different densities.

Page 277: The Efecct of Creep

278 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

·· .... ··:·· .. · ........10°C

: -20°C. ---....

= :

2

~ 4e-UJ 3c.oo::I:

': : ,.... ......•.................. j ..................•

.. ~ § . : .!i 5 1------.;----===: ::;;c- ~800C . 70°C

1+----.,.---r-""T""T.....-r1-.r----..........."""'T"""........'"T""-..--.........................,.-_.......................,r--"""'T"""....-..................,..----r---r-.......................

10° 103

Time (hrs)

Figure 7.32. Hoop stress versus time at various temperatures of Hostalerr" HDPE.

7.3 Crosslinked Polyethylene (PEX)

7.3. 1 Generic PEX

10000010000100

I-- PEX-b Silane

I- - PEX-a Peroxide23°C

- -. ............. 20°C- ........ : ......":": ..,,-..-,....,....,...~. _. -:-._'-'-'~'~ '';';'';'; '.;;.' ,.;;.,:,.~.: '~.:~'~' :.:::":":":" ~'~ '':':

82°C ::

""'" - : :: 93°C

- - - - -- - - - .- - - - 80°C- - - - -95°C - - - - - - - - - - - - - - - - - - - -

:

:

:

2

110

20

10987

'i 6

!. 5tntn 4f-UJc. 38::I:

1000

Time (hrs)

Figure 7.33. Hoop stress versus time of two types of PEX at various temperatures.

Page 278: The Efecct of Creep

7: POLYOLEFINS AND ACRYLICS 279

151413121110

9

8

Ii 7ll.

!. 6IIIIIIE 5....

enQ,g 4J:

3

~ :

:~~:~~::;

~ ,',

, 30°C::" ~', 40°C~'

I :~ :

'soocE' .,~ : :

'60°C~ " ; ;70°C=:

'80°C~' ", ,[, -90°C=

, :' ..,95°C~ :

: : :: " t : : r

: : : :

: : :

:11O°C~ : : : :

: I

: : : ::

102

Time (hrs)

Figure 7.34. Hoop stress versus time of a pipe made of PEX at various temperatures.

7.4 Polypropylene (PP)

7.4.1 LyondellBaselllndustries Polyolefins Hostalen@ H21SD-Easy Flow(Homopolymer) PP

2.0 2.50.5

5 - .. -...... '.. -....

4

0+-r""T"""T"""T""'1r-'T""".........."T""'T'".........""T"""T-.-.......-..........T""T'".........-r+0.0 1.0 1.5

Strain (%)

Figure 7.36. Isochronous stress-strain of Hostalen'"H2150 at 40°C.

2.0O+-o--.-........"""'T'"...,.....,...........................,...........""T"""..........-.-..-+0.0

5

1 '

-eull.!.3IIIIIIE....en

2

0.5 1.0 1.5

Strain (%)

Figure 7.35. Isochronous stress-strain of Hostalerr"H2150 at 23°C.

Page 279: The Efecct of Creep

280 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

54

, .. .

1

. . . .. .

o-T-T"'"T"""1...,...I"""T"""T""'T'""T""'T""T'""'T"""T'"""lr-r-'I"""T'".....-r-r-r"'"T"""1~

o 2 3

Strain (%)

Figure 7.38. Isochronous stress-strain of Hostalerr"H2150 at 80°C.

431

. ,. - .

, ,.......................................................

5 5

o-r-,......................;-...,...........-.-;-,....,....,.....,.--;-...,......,...........,..-+o

4 4

1 .

2

Strain (%)

Figure 7.37. Isochronous stress-strain of Hostalen'"H2150 at 60°C.

7.4.2 LyondellBaselllndustries Polyolefins HostalefiB> H2222-High HeatStability, Extremely High Extraction Stability (Block Copolymer) PP

1098

Ii 7Il. 6::E-; 51/1f 4-U>go 3oJ:

2

10°C:20°C:30°C40°C:

.. · .. · 50°c: : .

60°C: '

70°C:

80°C:90°C:95°C:

110°C:1200G

1+-...,..."T'""T"TT'T'I..-r-"""T'"""T'""T"'T"T'T'l..-r---r-"T""'T"'T"T'T'l,."...........................,.".............................,.................................,...--r-....................,..f-10.1 102

Time (hrs)

Figure 7.39. Hoop stress versus time of Hostalerr" H2222 at various temperatures.

Page 280: The Efecct of Creep

7: POLYOLEFINS AND ACRYLICS 281

7.4.3 LyondellBaselllndustries Polyolefins Hostalen@ H22SD-Easy Flow,High Heat, Extremely High Extraction Stability (Homopolymer) PP

20

109

Ii 8D. 7~ 6II):g 5

b 4enQ,

g 3:::E:

2

10°C···20°C···········

30°C

40°C

50°C60°C

1+-...................TTTTI-.....-T"""T'"T'TTTTT""---.--r-T"TTT'I~"""T"'"" ...................,r--.........."'T'"T"TTTrT"---.-"""T"""I""T'T'I'"ror-.....,....."T'""'T"'l~

10°

Time (hrs)

Figure 7.40. Hoop stress versus time of Hostalen'" H2250 at various temperatures.

7.4.4 LyondellBaselllndustries Polyolefins Hostalen® HS216-Easy Flow(Random Copolymer) PP

1098

Ii 7D. 6~ 5II)II)II) 4... 110°C;-enQ, 3

:0 1200G

0:::E:

2

1+-......................TTTrT----,..........T""T"T"I'TTf"""~""T'""T"T'TT'r~ ...................TTTTI;--.....-T"""T'"T'TTTTT""---.--r-T"TTT'I~"""T"'"" ........."T"I"rI'f_

10.1

Time (hrs)

Figure 7.41. Hoop stress versus time of Hostalen" H5216 at various temperatures.

Page 281: The Efecct of Creep

282 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

7.4.5 LyondellBaselllndustries Polyolefins Hostalen@H1022-EasyFlow,High Impact (Block Copolymer) PP

2.52.00.5

· ......................................................· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .

o+-r................................,.......;"""T"""l"""'T'""or---i-.........""T'"""I-T-I"""'T'""'O"'"T"+0.0

5

4

-ClIQ.

!..31/1

~-tJ)

2

1.0 1.5

Strain (%)

Figure 7.43. Isochronous stress-strain of Hostalen"H1022 at 40°C.

2.01.5

. .................................................

5

6 +--..................0..-+---................+---.........-+-0..-+---................+

4

0+-.............-'l"""'T"""T"""..............,....,....................-'l"""'T"""T"""..............,....+0.0 0.5 1.0

Strain (%)

Figure 7.42. Isochronous stress-strain of Hostalerr"H1022 at 23°C.

. ........................................... - .1 ..

4 .

5

-ClIQ.

!..31/1

~-tJ)

2

432

Strain (%)

1o+--......,.......,........,.......;--.-.............-;-..-r-.........-r-.........--r-....-+

o

Figure 7.44. Isochronous stress-strain of Hostalerr" H1022 at 60°C.

Page 282: The Efecct of Creep

7: POLYOLEFINS AND ACRYLICS 283

7.4.6 SABIC Innovative Plastics Verton* MV006S (MFX-7006 HS)-30%Chemically Coupled, Long Glass Fiber Reinforced PP

:

:

:

..,

Stress = 20.7 MPa

::

:

... 13.8 MPa:

:

:...

~

: ::

:

:

0.6

0.8

0.010°

c'f-(J)c. 0.4CDfo~'iiic

~ 0.2

Time (hrs)

Figure 7.45. Tensile creep strain versus time of Verton* MV006S at 23°C and various stress levels.

0.8

0.6-~o-.5l!-(J)c. 0.4CDeo~II)e~ 0.2

Stress = 20.7 MPa: ::

-~: -'----~ ------

~

:

...:

:: :: : 6.9 MPa...:

:

:

: :

Time (hrs)

Figure 7.46. Tensile creep strain versus time of Verton* MV006S at 50°C and various stress levels.

Page 283: The Efecct of Creep

284 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

7.4.7 SABIC Innovative Plastics Verton* MVOOBS (MFX-700B HS)-40%Chemically Coupled, Long Glass Fiber Reinforced PP

::

:: :

: :-.- ;

:

:::

~0.7 MPa: : Stress =-.-:

: 13.8 MPa..;...

00. .. ;

:: : 6.9 MPa

: :::

,

0.6

0.8

0.010°

c.~..tJ)c. 0.4CI)

2!o.!!'inc~ 0.2

Time (hrs)

Figure 7.47. Tensile creep strain versus time of Verton* MV008S at 23°C and various stress levels.

0.8

0.6-~co-cl!..

tJ)c. 0.4CI)

2!o~I/)c

~ 0.2

::: :

: Stress = 20.7 MPa: :

:: :

.,-,..... :

: :: 13.8 MPa

:

... --6.9 MPa

:

:

: :

Time (hrs)

Figure 7.48. Tensile creep strain versus time of Verton* MV008S at 50°C and various stress levels.

Page 284: The Efecct of Creep

7: POLYOLEFINS AND ACRYLICS 285

0.8

0.6

e'~-enc. 0.4G)

eo~lIJC

~ 0.2

Stress = 20.7 MPa-; ;

~~ -

-.-3.8 MPa

:

. -,- ;

6.9 MPa

:

••

Time (hrs)

Figure 7.49. Tensile creep strain versus time of Verton* MV008S at 70 De and various stress levels.

7.4.8 SABIC Innovative Plastics Verton* MVOOAS (MFX-700-10 HS)­Chemically Coupled, 50% Long Glass Fiber Reinforced PP

0,8

0.6-~o-c~-enc. 0.4G)

eo~'iiic~ 0.2

::

-.- ,'. Stress = 34.5 MPa

: --------------~>--;-

-,- ; ;

:

20.7 MPa

;

:

:

Time (hrs)

Figure 7.50. Tensile creep strain versus time of Verton* MVOOAS at 23De and various stress levels.

Page 285: The Efecct of Creep

286 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

7.5 Polymethylpentene (PMP)

7.5.1 Mitsui Chemicals TPXTM PMP Resin

20°C

· .. . . . . . . . . . . . ~ - - - - - - ~ - .

2 :- __ .. __ ;. __ __ .· .· .· .· .· .· .· .1 _ - _;._ _ - -- '

_4~

5 , .

6 __ __ .:- __ : .· .· .· .· .· .

c.~ 3-tn

O+-----r--.---.-....--..................r---~--r--......._ ........."""T"""""""'""T---.--....._.........,I'""'"'"T'"........._r+

10°

Time (hrs)

Figure 7.51. Creep strain versus time ofTPX™ PMP resin at various temperatures.

7.6 Ultra High Molecular Weight Polyethylene (UHMWPE)

7.6.1 Ticona GUR@ 412o-High Bulk Density, Corrosion-Stabilized UHMWPE

0.8 +----'----"-.......................o.l-~ ......................................_"""---.......................-.£, ............................I--.......................................+

0.7 .:.. L j .1 - - prOj~cted I ..· . . ,· . . .· , . ,, . . .· . . .· . . .

0.6 _ -_ ~ --_ _._ ~ _ _ _ ~. _ ~ :;. ;,.I',~"""

· . . .,· . . ., . . .· , .

....................................................................................................................· , , .· . . .· . . .· . . .· , . .· . . .· . , .

· . . .................................... .· . . .· . . .· . . .· . .· . .· . .· . .· . .

· . ................................................... __ -_ _- .. , . .· . . ,· , . .· . . .· ..· ..· ..

0.2

0.5 : ; - _._~... . ; _ .· . . .· . . .· . . ,· . . ,.. ... .-~!!.... 0.4c

.~..tn 0.3

10'

0.1 < ;. i··· : .· . . .· . . .· . . .· . . .· ..· ..· ..0.0+----.---.-...........................;-----..........--.-................;.--...---............""T""'T"'.....-rj---.--.............-r-T...........j---..--.-.,......,....T"T"T"r+10.1

Time (hrs)

Figure 7.52. Creep strain versus time of GUR@ 4120 at 23°C and 1 MPa stress.

Page 286: The Efecct of Creep

7: POLYOLEANS AND ACRYLICS 287

1000 +--o...-.......--............I------'---' ...............I--__........--'-..........'""'"'-l. ---'-.............................._--'-......................................

I - - Projected

Ii 750D.:E-

. ...... _-----_ -.. __ - .

In:::J:::J

"o 500:ECoII)

fc~:g 250

~

. ..... _----------------- .. ----_ _ _-----,-----_ .. _ _-_ - .

--- --------_._ .... _------ .._----_ .... _-----_._--

- --

0+--.....-........."'"T""T.......T------r---.~"T""T"T"T'T1r-----.-~"""T"""T""T'"lr-rT'f-~~"""T'""'r-T'"T"T'TT'-"""T""""""T""".........-T ..........-rr10.1

Time (hrs)

Figure 7.53. Tensile creep modulus versus time of GUR® 4120 at 23°C and 1 MPa stress.

7.6.2 Ticona GUR@4152-HighBulkDensity,Corrosion-Stabilized,Lubricated UHMWPE

0.8 +-_"--...........................""'"-_o...-.........................""'"- o...-......................-I-- ""--.......--.............I-----' .......--....~

Projected0.7 --. -- j. .. --. -- j l .I-----~ I. .· . .· . .· . .· . .· . .· . .· . .0.6 .· . . ,· , . ,, . . ,· . . ,, . . ., . . ,

.....: .....

. .· .· .· .· .· .· .· .· ............ .. .. .· . .· . .· . .· . .· .· .· .

· .-_ __ __ _---.-_ .· .· .· .· .· .· .

0.1 : : ··················i·······················:··········· .· . . .· . . .· . . .· . . .· . . .· . . .· . . .

0.2 -- .

0.5 : -- --..: --. --. -- -- i --. --. -- :.. -- -- -- --~ ..• , , • #11"", . , .· . , .· . , .· . .· . .· . .

0.0 +--.....-........."""T"T................-~.....- ........."'"T""T""T"T"IT------,.....-.........""T"'T.......T-----.,.....-.........""T"'T.......T-----.~ .........""T"'T'T"T'T'I-

10.1

-?fe- 04.5 .t!-U> 0.3

Time (hrs)

Figure 7.54. Creep strain versus time of GUR® 4152 at 23°C and 1 MPa stress.

Page 287: The Efecct of Creep

288 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

1000 +--'--........................ol------'--'---'-...................I-----'-----o......................~----'----'- ...........................- ..........--'-....................r..o+

--- ---

I - - Projected

Ii 750 .0­:E-II)~

~

~

o 500:EQ.Q)

eo~~ 250

~

O+--.....-.........""T'"T"T"T"T~----r----rr--r-.....-rT'T'T"r----r---r-..-T""T""r-T'T'!-~---,-"'"T"""r-T"T"T'TT"---r--..-.......-T .......o-Tf-10.1

Time (hrs)

Figure 7.55. Tensile creep modulus versus time of GUR® 4152 at 23°C and 1 MPa stress.

7.6.3 Ticona GHR@ 811O-Powder, Corrosion-Stabilized, High Melt FlowRateUHMWPE

0.8 +--"---.............................""'----"--.............................""'----'--.............................-l--~"--- .......................-l--~"""-- .................~

Projected0.7 : : ; .I__~........---.JI. .· . .· . .· . .· . .· . .· . .· . .0.6 ······················· .. ·· .. · .. ··············· .. ·· .. ··· .. ·············.·······················r··············· .. ······

. .· .· .· .· .· .· .· .............................................................................................· . .· . .· . .· . .· . .· . .· . .

· .......................................................... __ .· .· .· .· .

0.2

· . .0.5 .----.-- --.---- .. :.-- --.-------.--: --.-------.-; --.------- .. :.. ---- ---_._._---_... ... ... ... ... .---_.. _ _.. __ ._-_._-:._ _. __ ._--_. __ ._~-_._ .. ---_._._--_._-_ .. :._ .. _._. __ . __ ._-----_._~. ~_:--:.~._ __ .

-'#-- 04c: .

e-tn 0.3

0.1 : : ··················i·······················:··· · .. · · .· . . .· . . .· . . .· . . .· . . .· . . ,· . . .0.0 +--.....-.........-r-r""T"T"'l~-.....- .........-r-r"T"T"T~----,r__ .........""T'"T"T"T"T~----,r__ .........""T'"T"T"T"T~____,r__ .........""T""T"T"T"Tf_

10.1

Time (hrs)

Figure 7.56. Creep strain versus time of GHR® 8110 at 23°C and 1 MPa stress.

Page 288: The Efecct of Creep

7: POLYOLEFINS AND ACRYLICS 289

1000+-_......................................_ ........--'-...................~_---a.---'---'- ................-I--_"""--"""--........................._ ...............................................

I - - Projected

Ii 750D.::E-III..2~

"0o 500::EQ.Q)

eo.!!'ii) 250c~

..... ",.;.- .~ ..... -.... -.---

0+--...--...,......T""'T""T'"T"'1"TT'"--r-.....,...."""T'"""........."T'T'I---.,.----.---.-""'l"""T............--....-...--r""'T".......'TT""-"""T'"""-r-........"'"T'"T~

10.1

Time (hrs)

Figure 7.57. Tensile creep modulus versus time of GHR® 8110 at 23°C and 1 MPa stress.

7.6.4 Ticona GUR@ and GHR@ UHMWPE

14+---...................o.o.ol.-"""--...............a.4----"---'-...............I--..........................~- ................................---'-..........................- .............................

• • • • Projected

. . ~ .

8MPa

12 MPa

10 MPa

: ··· ..2 MPa.. ··

.:. 7.'": . .4 MPa....

.., Q.MP.~ .

----:-----------------

· . ,.. _-.------_. __ . __ .- __ . __ .. -_._-, .· .· ,

... :" ...' ,

'.... ._.. _..••.•• __1'.':;. ••• _. _. .. __ . A:' ._

· . ....................... __ ._-------_ .. _---_ .. __ ._-_.__._----------------· . .· . .· . .· . .· . ., . ., ,· ., .. __ . __ . __ . __ . __ __ -., ,, ,

, .,12 _.. _.. -_. -_. -- --~ -- -_. -_. -_.. _.. -:- .. _.. _.. -_. -_. --:-- --- -_. ---- -_. --:-- -_. ---- --- -_. --:-- _.. _.. ---· , . . ,· , . . .· , . . ,· . . .· . . ,· . . .· . .

~ 10-c'iij..(j) 8Q.Q)

f(.) 6~'0of 4Q,

Eo(.) 2

Time (hrs)

Figure 7.58. Compressive creep strain versus time of GUR® and GHR® at 23°C and various stress levels.

Page 289: The Efecct of Creep

290 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

, . . , ,, . , . ,I . . . . .· . , . .· . . . .--:.. _-_ __ . __ ._-; ; ; ; .

20 +- ~- ............................~ ............................I.I.l---'.......................l--"""'-................0.4----'--'-...............Jl---...............'4

18 . 1 Projected

8MPa

. .· .· .· . 10 MPa

.•••••1••••••••••••••• 1 •••••••••••••••C.::::••••· . .· ................................................... -.... . .· . .· . .· . .: _._ ... _-_. __ .:. .. _.. __ ... _.....:.. _._~-~.~~ ....· .· .· .· .· .· .

• __ ••••••••••••• t.. __ •••• •••••••••••••••••••••••••••••••••••••••••••••• __ ••••••••· . , .· . , .· . . .· . .· . .· .--_.. _--_ .· . .· .· .· .· .· .

· . ............ :.; .::...... . : .

· .

2 ~ : .

O+----.-........"T""T'"rTT'Or---r-""T"""'I""T"T........ - ......................"TTT"-........."""'T'""I""r"T"........----.---.-""T""T"T'TTo;-----r--r-......,I"TTTr---r-......................

10.3

'#: 16 ; ;------ .. --------;.-- ; ··········;················-;··--12 MPa····"'-'" : : : : : :· , , , , ,· , . . . ..= 14f!enQ. 12

~o 10

~.; 8

!Q. 6Eoo 4

Time (hrs)

Figure 7.59. Compressive creep strain versus time of GUR® and GHR® at 50°C and various stress levels.

25 +-.......__..............I---'-..............oIoIooIol-_........................04-_..................................---Io......................0.4--........-'-........"'"'""I--....................."""+

8MPa

6MPa

12 MPa

·10 MPa ....

· ............................................· . .· .· .· .

....... : : : : : .· . , , ,: : : : : 2MPa: . : : :· . .· . .· . .· . .· . .· . .· . .

. ~ .· .

·-.. -.

. '",

• • 7'

· . .................................................................· . .· . .· . .· . .· .· .· .· .· .

................ ~ ...... .. -:- ..

O+---r"""T'"""...........rnr-,.........-rT"T'TTl.,..--.-...,...,.........-n,----............""T""T"T'TTTr--r-"T""'T""T"TTorrr----.--r"'r""T"r"TTT1r-...--.,.....,...'I'"T"T'l.....10-3

•••• Projected

_ 20

~o-e.~en 15c.~c~.; 10o!Q.Eo(.) 5

Time (hrs)

Figure 7.60. Compressive creep strain versus time of GUR® and GHR® at 80°C and various stress levels.

Page 290: The Efecct of Creep

7: POLYOLEFINS AND ACRYLICS 291

7.7 Polyvinyl Chloride (PVC)

7.7.1 PolyOne Corporation Geon ™ Fiberloc ™ 87241-High Flow, HighImpact, Opaque PVC Resin

· .. : : ;. ·23°C.········:················.. ... .· .· .· .

· '. . . . ~ -. . . . . . . . . . . . . . . - .· .· .· .· .· .· .

· .· "," ~ .· .

· .; ~ ;... . .; ~ . . . . . .. . :- ., . , , , .· ., ,., ., .., ., ..· .. ..

................................. .· .· .· .· .· .

· .; ~ ;.. . . . . . . . .. . :- ~ : .· . , , . ,· . . . . ,, . . . . .· ,. .· .. .

· - .; ~. . . . . . . . . . . . . . .. . :. ~ ~ ... .... .... .... .... .· -: ; . . . . . . . . . . . . . . .. . -: ~ :- .

r---~'~: :::· ...· . .• •••• _ •••••••• '•••••••••••••••••' • • •••••• _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ •• __ ••• __ ••• J ••••••••••••••• _ ~ ••••••••••••••••· .

1000

900

800IiQ.

~ 700rn~

600~

"0:iE 500Q.G)G) 400...

<.J~ 300·iiieG)I- 200

100 ••••••••••••••••••••••••••••••••• J •••••••••••••••• \ ••• • • • • • • • • • • • • • • • •· . . .· . . .· , . .· . , .· . . ,· . . ,

Time (hrs)

Figure 7.61. Tensile creep modulus versus time of Geon" Fiberloc" 87241 at various temperatures.

7.7.2 Unspecified Grades and Product Comparison Charts

--- Ductile failure, necking- - Craze Initiation----- Stress Whitening

"""'~---_ ~ ~ :" -.::-.-.':'~.-,.;--- _...;.:.:...~----~ ..::-:... _ .. ~ .

· , . .· . . .· . . ,: ' , :

.. :· ................................ "" .

: :"'"

.......60 .\ ~~: •.< : : ; .

, . . "--------.------.---------,'"i ' : .........: :== 50 \, :., >~> : : ; ; ~ : .'"-' "'~ ""' : ~~ .. ---~: ~ : ~

~, ' ..... .-, : .. -- .. -..~---..: : :......; "'-:..~. -.. ~';:.:::-:.."' '. ~ _:-:--.'; ~~. ·-·1ooO.o.·.:.:..:.·.-~t .._..•. _ _ ~ .- - _:- · ,"-.. _:· .· .· .· .· .. ~ ' .

· .· . Strain2.0%1.5%······

.c...t7)

~ 40"-enQ):s 30a::::Ia:Q. 20

!o

104101

Time (hrs)

O+-....,.....,.................,-..................-..r----.-........"T'TT'O"T"""""-r-.....-T.......,,.-...................-..r--...........................,--.-................,,....-..........,..,..............10.3

Figure 7.62. Creep rupture strength versus time of PVC at various strain rates.

Page 291: The Efecct of Creep

292 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

0.5-+-..................................~- ......--o................................---.......--o....................---'---".....................~- .......~ ...............................

: 80510,10% Glass ~------==-...:...-_--...-;----0.4 : : -.. -.. -.. -.;-.--.----------.-.-.- ~ .· , . .· . . ,, , . .· . .· . .· .

; 80520, 20% Glass :

0.3 . ----------------;-- -----------------------: ------------------------:--. ----.. --.... -.. --. --. ~ -------------------------· . . ,· . . ,, , . ,, , . ,· . , ,· , . .· . . ,. . .: 80530,30% Glass : :

c.~Cii 0.2

0.1 -----------------:-- -----------------------:- -----------------. --- ; -.. - -. --, ------------------------.· , , ., , , ., . . ., . . ., . , .· . , ., . . .· . . .· . . .· , . .· . . .· . . .0.0 +--r-.......T""T'"T"T"'I-r--""T'"""....,...-r-........"T"T"rT"""-..................,..........,.""T"T"TT"""--r----.-.......""T'"""Ir-r-r-rr----r---.---.---.-........-.+

Time (hrs)

Figure 7.63. Creep strain versus time of PolyOne Corporation Geon" Fiberloc" PVC products with variousglass fiber reinforcement levels at 23°C.

80510, 10% Glass

1500

80530, 30% Glass

______ ••• ••• __ •••••• • __ ••••• __ •• •• • • • J •••••••••••••••••••••••••••• " ••• _· . .· . .· . .· . .· . .· . .· . .· .· 80520, 200(0Glass :

········t····· ----.--.-- --.---------- -- .

· . .-----_. __ _ _ .. ,-_._ _ .. _._.. _.- , .

1600~:::I><CI)

u:::

1900

-CISQ.

;;;. 1800

101

Time (hrs)

1400 +--~-.-- ........."""T"""I,.......T---........--.---.~""T""T""T"T"r----r----r---r ........................,r---.....-..............-r-,....,....-.+10-1

Figure 7.64. Flexural creep modulus versus time of PolyOne Corporation Geon" Fiberloc" PVC productswith various glass fiber reinforcement levels at 23°C.

Page 292: The Efecct of Creep

7: POLYOLEFINS AND ACRYLICS 293

7.8 Cyclic Olefin Copolymer (COC)

7.8.1 Topas Advanced Polymers Topas@

-.. -- - - ~ - . - - .. - - - - - - - . -,- . - - -.. - . - - - .

............. __ ---.-- -.-.- .

'l. 3oooT--""""""-''':';';''';':'':'':''':''::':'':'':'':'':':'':':':':':':':+====~·~I/l~

~'C

~ 2500Q.Q)

e(.J

~~ 2000Q)

u::

1000100101500 +-----.-....,......"""T"""......-,.......,............,r---.........-~....-- .........""T'""'T......;..--......----.----.---.-"""T"""T'""'T"""r+

1

Time (hrs)

Figure 7.65. Flexural creep modulus versus time of most Topas'" products at 23°C.

7.9 Acrylics

7.9.1 Lucite Industries Diakon™ LG156-Good Flow, Injection MoldingAcrylic Resin

3.0 +----'-....................0.0.0.1-_............................~ ...................................----'---'-..................I--.....................................---o.---'-.........~

2.5 ~ " .

2.0 ; ; ~ ; ';'" '20 MPa .. · ..

0.5 -_._ _; _ ~ ····r .. ·

100010010

~10MPa

..... _- __ .· .· .· .· .· .· .· .· .· .· .1

Time (hrs)

0.10.010.0

1E-3

1.0 ; ; , .. .. .. .

.-~~ 15c ..~u;

Figure 7.66. Creep strain versus time of Diakon" LG156 at different stress levels and at 23°C.

Page 293: The Efecct of Creep

294 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

7.9.2 Lucite Industries Diskon" MG102-General-Purpose, High Heat,Extrusion Acrylic Resin

2.5 ' J ••• • • • • • • • • • • • _.-.-~ •• _ •••••• _._ •• _.- ••••••••••••• _.- ••• __ _.- _._ •• ---_._.-

1000100100.10.01

· .2.0 .. _._._._ .. _._ .. _.<._._ _ _._ ~-_ __ .. _._ ;--_ _._. _._.;. __ : .· . . . .· . . , .· . . . .· . , , .· . . .· . . .· . . .· . , ,· . . .· . , ,...................; --.; : ; -. - ;..-. - '20- Fljfp~i'

.. ,." ,... .... .." ," ," ," ,

0.0 +---.--..-.................~__r--r-T""'T""I"'T'T'Tr---..-"""T'"""T'""'T'"'I"'T'TTr----r-"""T"'""r-T'"T"TTT'Ir--"""T""" ...................."T'TT'l-"""T"'""..........................

1E-3

· , .: ' : :0.5 - - - -:.. -. -. ----. -. -. ---- ~- --. -------.- ---.- -: -. -- - : .

, . , .· . . .· . . .· . , ,, . . .· . , ,, , . .

1.0 -- ;.--. -- 0··········· -- : --. -- -- --: .. --.· , . ,· . . .· . . ,., ,· , ,

-~o- 1.5c'E....tn

1

Time (hrs)

Figure 7.67. Creep strain versus time of Diakon" MG102 at different stress levels and at 23°C.

7.9.3 Cyro Industries AcrYlite@H15-UV-StabilizedAcrYlicResin

25 +-"""""'-...................I--..................~----'---'- ..........04----'-..................4-"""""'-...................I--..................~----'---'- .........04----'-..................+3.0%

, "••••• , ••••••••••••••••••••••••••••••••••••••••••••• ,J ••••••••••••••

1.0%

Strain= 0.5%

20 _.. - '-_. _ _. --- .:- _.. ----- _.~ ; : : ~ .. . . . . .. , . . . .· . . . .· . . . .· . . . .· . . . .· . . . .· . . . .· . . . .· . . .· . . .

I/)I/)

~ 10....tn

_ 15ca

Q.

:::E-

· . . . ............................................................................· . . .

O+-"""T"'"".................,r--.........""T'"T"'I"TTTf"----r"""T"""I""T"T'O.._rr_---.-"'T""T"TTTT~"""T"'"" .................,r--..........""T"T"'I"TTTf"----r--r-r-T'T".._rr_--r"'T""T"TTTT+

10.3

5 .. --. --. ------,-- --.. --. ----. ',', ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,

101

Time (hrs)

Figure 7.68. Stress versus time of Acrylite® H15 at different strain levels and at 23°C.

Page 294: The Efecct of Creep

7: POLYOLEFINS AND ACRYLICS 295

--Time to Fracture- - Crazing Stress

-: --.

. .· . . ,.... _-_ _-_ _-_ - .· . . ., , , ,· . . .· . . ., , , ., . . ,.. ... ... ... ... ... .

- -- __ .· .· .· .· .

--_.:.'"':""._""'- ~ .. _ _.. ; _ _ -: __ : ......... --~

:-

............

...... ...... .

, ,-- - - - - - ,,- - - - -'- - - -. - - - - --,;

....

20

~e 15InIn2:!enC'll: 10 -----------­'Nf!o

-";- --- ~--5 ------ --------;---- -----------:- -----.-- ~ ~ ; : :':'. ~'~'-'-''''''.;.:''· , , , , , ,· . . . . . .· . , , . . .· . . . , . .· . . . , . .· , ,. ", , .. .,· . .. ..· . ,. .,· . .. .., , ,. .,· . .. ..0+-_r_"T""T"T'TTnr----.-"""T""'lr"'T'T'rnT"----r"""T'"T"T"T""""-,.....,..........""r-"T"""r-T'"l"'""'rr---.-........T'TTl...-r-"""T'"""T"""I"'T'T"l....,...~_r_T"T'T .........10.3 10

1

Time (hrs)

Figure 7.69. Time to fracture and crazing stress versus time of Acrylite'" H15 at 23°C.

7.9.4 Product ComparisonsLucite Industries Diakon" ST45G8-high impact acrylic resinLucite Industries Diakon" CLG356-good flow, injection molding acrylic resinLucite Industries Diakon" CMG302-general-purpose, high heat, extrusion acrylic resin

ST45G8

100001000

CLG356

CMG302

100

· ............................................· .· .· .· .· .· .· .· ., .· ., .· ., .10.1

0.5 : : .· .· .

0.0 +----.----r_r_........"TTT-..,.-..,.-,........,.........rr---.~_r_ .......'TTf"-"'T"""...,........r-T'"lr"T"T"-r--~____r"'"T"" ........'TTf"-"'T""".......,r-T'"l"'T'T"l+0.01

2.0 : __ ..: ; : : .· . . .· . . .· . . .· . . .· . . .· . . .· . . .· . . .· . . .· . . .· , . .· . . ,••••••••••••••••••••••••••••••••••••••• J •••••••••••••• • • • • • • • • • • • • • • • • • • • • • • • • • • • • •••••••••••••••• J •••••••••••••••••••1.5-~0-I:

I'G...1.0-en

10

Time (hrs)

Figure 7.70. Creep strain versus time of various acrylic resins at a stress of 10 MPa and at 23°C.

Page 295: The Efecct of Creep

296 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

2.0 --.. : ---- ------ ..' ·····_--··········r···················:··············· : ., ., ".· ".: ::: CLG356· .,.· "· ... .. .

ST45G82.5 ~ ' ~ .

1.0

~o- 15c .'j!U)

0.5 : ------.-.-.-~-_._ _------ ;------ -- --.: ----.-- :--- _-_ .

1000100100.10.010.0 +----,................."T'"T"'I'TT'l'--r--r-................,.,...---,................."T'"T"'I'TT'l'--r--r-................,.,....-............................- ........-r-............~

1E-3 1

Time (hrs)

Figure 7.71. Creep strain versus time of various acrylic resins at a stress of 20 MPa and at 23°C.

Page 296: The Efecct of Creep

8.1 Background

Thermoplastic elastomers (TPEs) have two bigadvantages over the conventional thermoset (vulca­nized) elastomers, namely ease and speed of process­ing. Other advantages of TPEs are recyclability ofscrap, lower energy costs for processing, and theavailability of standard, uniform grades (not generallyavailable in thermosets).

TPEs are molded or extruded on standard plastics­processing equipment in considerably shorter cycletimes than those required for compression or transfermolding of conventional rubbers. They are made bycopolymerizing two or more monomers, using eitherblock or graft polymerization techniques. One of themonomers provides the hard, or crystalline, polymersegment that functions as a thermally stable compo­nent; the other monomer develops the soft or amor­phous segment, which contributes the elastomeric orrubbery characteristic.

Physical and chemical properties can be controlledby varying the ratio of the monomers and the lengthof the hard and soft segments. Block techniques cre­ate long-chain molecules that have various or alter­nating hard and soft segments. Graft polymerizationmethods involve attaching one polymer chain toanother as a branch. The properties that are affectedby each phase can be generalized as follows.

"Hard phase"-plastic properties:

(1) Processing temperatures

(2) Continuous use temperature

(3) Tensile strength

(4) Tear strength

(5) Chemical and fluid resistance

(6) Adhesion to inks, adhesives, and over­molding substrates

"Soft phase"-elastomeric properties:

(1) Lower service temperature limits

(2) Hardness

8 Thermoplastic Elastomers

(3) Flexibility

(4) Compression set and tensile set

Three high performance types of TPEs make upthis chapter.

8.1.1 Thermoplastic PolyurethaneElastomers (TPUs)

Urethanes are the reaction product of a diisocya­nate and a long- or short-chain polyether, polyester,or caprolactone glycol.The polyols and the short-chaindiols react with the diisocyanates to form linear poly­urethane molecules. This combination of diisocya­nate and short-chain diol produces the rigid or hardsegment. The polyols form the flexible or soft seg­ment of the final molecule. Figure 8.1 shows themolecular structure in schematic form.

The properties of the resin depend on the nature ofthe raw materials, the reaction conditions, and theratio of the starting raw materials. The polyols usedhave a significant influence on certain propertiesof the thermoplastic polyurethane. Polyether andpolyester polyols are both used to produce manyproducts.

The polyester-based TPUs have the followingcharacteristic features:

• Good oil/solvent resistance

• Good UV resistance

• Abrasion resistance

• Good heat resistance

• Good mechanical properties

The polyether-based TPUs have the followingcharacteristic features:

• Fungus resistance

• Low temperature flexibility

• Excellent hydrolytic stability

• Acidlbase resistance

297

Page 297: The Efecct of Creep

298 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

Flexible SegmentFlexible

Rigid Segment Segment Flexible Segment

""""""'"V"'v4t-~""/'\../'\.."'-""""~""" ••-""".'''''~

• Urethane Group

Segment of Diisocyanate

Segment of Long-chain Diol (Ether or Ester type)

Segment of Short-chain Diol

Figure 8.1. Molecular structure of a thermoplastic polyurethane elastomer.

In addition to the basic components describedabove, most resin formulations contain additives tofacilitate production and processability. Other addi­tives can also be included such as:

• Demolding agents

• Flame retardants

• Heat/UV stabilizers

• Plasticizers

The polyether types are slightly more expensiveand have better hydrolytic stability and low-tempera­ture flexibility than the polyester types.

8.1.2 Thermoplastic CopolyesterElastomers (TPE-Es or COPEs)

These TPEs are generally tougher over a broadertemperature range than the urethanes described inSection 8.1.1. Also, they are easier to process.

• Excellent abrasion resistance

• High tensile, compressive, and tear strength

• Good flexibility over a wide range of tempera­tures

• Good hydrolytic stability

• Resistance to solvents and fungus attack

• Selection of a wide range of hardness

In these polyester TPEs, the hard polyester seg­ments can crystallize, giving the polymer some of theattributes of semi-crystalline thermoplastics, mostparticularly better solvent resistance than ordinaryrubbers, and also better heat resistance. Above the

melting temperature of the crystalline regions, theseTPEs can have low viscosity and can be molded eas­ily in thin sections and complex structures. The prop­erties of thermoplastic polyester elastomers can befine-tuned over a range by altering the ratio of hard tosoft segments.

In DuPont Hytrel® polyester TPEs, the resin is ablock copolymer. The hard phase is polybutyleneterephthalate (PBT). The soft segments are long-chainpolyether glycols.

8.1.3 Thermoplastic PolyetherBlock Amide (PEBA) Elastomers

Polyether block amides are plasticizer-free TPEs.The soft segment is the polyether and the hardsegment is the polyamide (nylon). They are easy toprocess by injection molding and profile or filmextrusion. Often they can be easily melt-blended withother polymers, and many compounders will providecustom products by doing this. Their chemistryallows them to achieve a wide range of physical andmechanical properties by varying the monomericblock types and ratios.

(I) Light weight

(2) Great flexibility (extensive range)

(3) Resiliency

(4) Very good dynamic properties

(5) High strength

(6) Outstanding impact resistance properties atlow temperature

(7) Easy processing

(8) Good resistance to most chemicals

Page 298: The Efecct of Creep

8: THERMOPLASTIC ELASTOMERS 299

8.2 Thermoplastic Polyurethane Elastomers (TPUs)

8.2.1 BASFElastollan@ 1164 D-PolyetherResin, Shore Hardness 64DTPUResin

10 12468

Strain (%)

2o+-....---i-....---i-....---i-~-i-~-i-~+

o

1 .. . .-: : , , '- .

_3CISQ.

~:le 2..(/)

Figure 8.2. Isochronous stress-strain of Elastollan® 1164 D at 23°C.

8.2.2 BASFElastollan@ 1185 A-PolyetherResin, Shore Hardness 85A TPUResin

1.0 .

UlUle..(/)

0.5

205 10 15

Strain (%)

O.O~....,......., ..........;--.-...,..........~j--,- .........--T-.-.........-+o

Figure 8.3. Isochronous stress-strain of Elastollarr" 1185 A at 23°C.

Page 299: The Efecct of Creep

300 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

8.2.3 BASF Elastollan@ C 64 D-Polyester Resin, High Crystallinity, ShoreHardness 64D TPU Resin

8 106

· . .----; \ .· . .· . .· . .· .· .· .· .

4

· .- ••• , •••••••••• p ••••••••••••••••••••••••••

. . .. ' ~ ' .· . . .· . . ... ... ... .· .· .· .

2

...... ~ -: :- .

2

o+-....,......-r----.-----r---.----,r---..--~-.--.....,--+o

1

6

5 , ," , ; : .· ..· ..· .· .· .· .· .· .

Strain (%)

Figure 8.4. Isochronous stress-strain of Elastcllanf C 64 D at 23°C.

8.2.4 BASF Elastollan@ C 85 A-Polyester Resin, High Crystallinity, ShoreHardness 85A TPU Resin

201510

Strain (%)

50.0 T-r--r-........"T""'.........................,-....-r-..........-,-.,.....,............,r-+

o

1.0

10 hr~: ----'lW

Cii"Q.

~tiltile..

CIJ0.5

Figure 8.5. Isochronous stress-strain of Elastollarr" C 85 A at 23°C.

Page 300: The Efecct of Creep

8: THERMOPLASTIC ELASTOMERS 301

8.2.5 BASF Elastollan@ R 3000-20% Glass Fiber, Shore Hardness 73DTPUResin

30

25

ca 20Q.

!.III

~ 15-(/)

. . .- , --

· .· .. ~ ',' , ~ .· .

10

5 ............................................ . .

108642o+--.--""';""--.---i----.----;'---......-.j--...--+

oStrain (%)

Figure 8.6. Isochronous stress-strain of Elastoltanf R 3000 at 23°C.

8.3 Thermoplastic Copolyester Elastomers (TPE-Es or COPEs)

8.3.1 DuPont Engineering Polymers Hytrel@4056-HighPerformance,Low Modulus, Shore D40 TPEE

3

1

........................................................ .

.......; ; .

155 10

Strain (%)

o+-..................-,........;................................-i--,.---.--""T""""""'l,........;....--.---I-o

Figure 8.7. Isochronous stress-strain of Hytrel®4056 at 23°C.

Page 301: The Efecct of Creep

302 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

12102

. - -_ , .· .· .,.· ., .· .· ,..· ,..· ...· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . , . ............ ,_ __ , .

0.0 +--..-.....,...---..---,r---....-..,................,...---..---,r---....-+o

2.0 +-...o--+-........-+........_!--"""'--!--__-+--'---+

468

Strain (%)

Figure 8.9. Isochronous stress-strain of Hytrel®4056 at BO°C.

0.5

1.5

-coD.!..1.0Ine-f/)

15

........................................· .· .· .· .· .· .· .· .· .· .· .............................. __ .

. .... __ __ __ .

0.0 +-,......,......,....-..-~ .............,...-..-T"""'.............,......,....T"""'..........o 5 10

Strain (%)

Figure 8.8. Isochronous stress-strain of Hytrel®4056 at 40°C.

2.0

0.5 ..

2.5

-coD.!..1.5

=:~-en

1.0

...... ... ..... ~ .....

-coD.:E-

... • L ' .............................................•.•.•....•......•.•.....•.• ~ •

....................... :::: :••••:••- :::::::::::::::::::::::::::::::::: ···············l----------Ext-r-ap-o-Ia-te-d--,F·....................................................................................................................................

.. .. ! .

··········t······························i·····~·~·~·~ . _ . _ . 1.4 MPa

- .........;,:

.._ _ _ _ .. .. . 'i'"

.................................... ,...

.•.••••••••••••••••••••••••••••••••• 1 •.•• • • • • • • • • • • • • • • • • • • • • • • • •• • • •

. .

• • •••••••••••••••••••••••••••••••• J • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ~ ••••••••••••••••••••••••••••••••••••l ...••

...............................................................................................•.. ~ ...

.......... ,. . . ..................................•...

..................... . ····r .

:-:-~ 5.5 MPa-- :-:-.~~ 5.9 MPa

10°+--....-.........................---.---......................r-----r---r.....................,r--.......---r........,...,..,......,-...............-.-..............

10.1

Time (hrs)

Figure 8.10. Tensile creep modulus versus time of Hytrel® 4056 at 23°C and various stress levels.

Page 302: The Efecct of Creep

8: THERMOPLASTIC ELASTOMERS 303

8.3.2 DuPont Engineering Polymers Hytrel@ 5526-High Performance,Medium-High Modulus, Shore 055 TPEE

141210

•• .1 ••••••••••••••••• , •••••••· . .· . .· . .· . .· . .· . .· . .

42

2

1 -- -----;----- ---;--- -----, --------;- -------;-- ---· . . . ,· . . . ., . , . .· . . . .· . . , .· . , . .· . . . .

;; .' ~-~'(.

7 --......:...... -).... -... -..... ;--- - . :..---,,<): -------" .... .... .,.. .... .... .... ..

6

8

:g 4e-o

3

6 8Strain (%)

Figure 8.12. Isochronous stress-strain of Hytrel®5526 at 40°C.

1510

Strain (%)

5

• 1 ••••••••••••••• .1 •••••••••••••••••• ••••••· .· .· .· .· .· ...............................................· . .· . .· . .· . .· . .· . .· . ......................... ~ .

•••••••••••••••••••••••••••••• .1 ••••••••••••••••••••••••· . .· . .· . .· . .· . .· . .· . .

................ ; : : .· . .· . .· . .· .· .· ............................ .: .· .· .· .· .· .· .· .

2 --- ----------;----------------,-----------------;------· . .· . .· . .· . .· . .· .

o-t-......................-i-.......--.-"'"T"'""..;.....,.....................-.;.......,-+o

9

1

10-I-..............--+--'................-+--'....,....................+---"-+

8

7

- 6IIIQ.:E 5-IIIIIIe 4-0

3

Figure 8.11. Isochronous stress-strain of Hytrel®5526 at 23°C.

6-I---!----+-........-+--'----!----a.---!-----o---..J1........f-

.....' -, - - ~ .· . . .· . . .· . . .· . . .· . . .· . . .· . . .· . . .· . . .· . . .· . . .

. . . . . ... ~ ' ~ .

-IIIQ.

!o3III

f-O 2

5 -- .. -.. _L -.- -- -----

4 --------~---------;- ...... ._

10 124 6 8

Strain (%)

2o-f-"'"T"'""-;-...........;...--.---i-.......---r_---;--....--i____+_

o

Figure 8.13. Isochronous stress-strain of Hytrel®5526 at ao°c.

Page 303: The Efecct of Creep

304 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

.. ,:

1 - - ExtrapoIated I:, .. : ;.. :: : :

.. '. ,

.,. ..

. ., .. ;

:- : - - - - -: : -"- ..- - .. .... - ~ .. ..- ...... .. - .. .._.. - .. .. .. ..- .. ....... .. - .. .. ...... - .. ..•. ..-.. .... .... - .... ..- ...., ., ..

.;,;,;,;; s, ..... .- ... .-- .- .- ......- - .~ -; .. .. .... - "..."--- : .. : ~. .... ~. - _.-.;.' -:

; -, - - - - - - -.,

:: : ".- -: ----:

::

3.4 MPa

5.5 MPa8.3 MPa9.7 MPa

11.0 MPa

12.4 MPa

Time (hrs)

Figure 8.14. Tensile creep modulus versus time of Hytrel® 5526 at 23°C and various stress levels.

8.3.3 DuPont Engineering Polymers Hytrel@ 6356-High Performance,Medium-High Modulus, Shore D6 TPEE

10 128

, . ,............... , , ., , ,, , ,, , ,, . ,, , ., , ,, , ,, , ,, , ,, , ,, , ,

6

. , . .·······r········.·········.·········.····

42O+-_._-r-........"""T".......---,----.r--r--.,.....-r-_._-r--+

o

8 ( ;. o •• '.

2 ...

10 , , : ., , ., , ., . ,. . ,, . ,

IIIIII!Ui 4

-:. 6:E-

Strain (%)

Figure 8.16. Isochronous stress-strain of Hytrel®6356 at 40°C.

• _ •• I •••••• J •••••• . . . . . . . . . .. _ •••••, . . .· . , ,· . . ., . ,, . ,, . ,· , ,· , ,, , ,· , ,, . ,

2 ..

4

8 .

10

12

-CllD.:E-

O+-......-r--o~.....,.."""T'"-.--r-.,.....T'"'"'"'r--r-...---r-......-+o 2 4 6 8 10 12 14 16

Strain (%)

Figure 8.15. Isochronous stress-strain of Hytrel®6356 at 23°C.

Page 304: The Efecct of Creep

8: THERMOPLASTIC ELASTOMERS 305

6

5

Ul

~ 3-en

2

· .............................· .· .· .· .· .· .· .· .· . .t·············.·············.·······

· .· . .-_ , ,. .· . .· . .· . .· .· .· .· .· .· .· ...... -- ~ .· . . .· . . .· . . .· . . .· . . ., . . ,., .., ... .· ...........................................................

82o-f--.....----r---.--..;....-.....---r---.--..;....---I-

o 4 6

Strain (%)

Figure 8.17. Isochronous stress-strain of Hytrel® 6356 at 80°C.

13.1 MPa

...................

.....................

'0'- ••••• _._, _•••••• -.,_._ e •••••••• •••__•••• _ ••• _ •••••••••· .. .. .· ......................... ...•..••.. ~... . , .· .-""""-" -'... . ....•....

. .. . .

......... i'·

-C'llc,

!.

~ E==:::::::E=====:=~:::::::::f:::::::::;;~.; ::::__5.5 MPa::i 102 .. _.. _... _.~~:::._ ... _.. __ .... :~.::'- 8.3 MPa

Q.CI)

ec.!!·iiic~

101-+--........,......,........rTT..;--....................~...r-- .........,..................,....;...-..,....-.-..................r---.--.-..,....,...............10.1

Time (hrs)

Figure 8.18. Tensile creep modulus versus time of Hytrel® 6356 at 23°C and various stress levels.

Page 305: The Efecct of Creep

306 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

8.3.4 DuPont Engineering Polymers Hytrel@ 7246-High Performance,High Modulus, Shore D72 TPEE

~ •••••••:••••••• :••••••• ~ •••••••: •••••• .;••••••• j. ••••••

· . , , . . .... ~ -: : : : :- : .· ..· ..· .· .· .· .· .· .

...... ( .....:......~ ... : ·~·1·03·hr ·~ ......· ., .,.· ,..· .,., .".: ~ : : :- .

, . . . .· . , . ... .... ... ... ... ... ........................................ , .· . , , ., . , . .· . , ... ... ... ... ... .· , . , ......................................, .

14 ~ : : ;..· . . .· . .· . .

12

10-III11.:::iE 8-1/11/1Q)...- 6C/)

4

2

00 2 4 6 8 10 12 14 16

Strain (%)

Figure 8.20. Isochronous stress-strain of Hytrel®7246 at 40°C.

25205

. .; ~ ~ ;. .

o..,..,..................,r-.-.......'I"""'T".................""T'"'l...-r-.......T""T'"........-r+o

15

5 ..

-III11.

!.10

i-C/)

10 15

Strain (%)

Figure 8.19. Isochronous stress-strain of Hytrel®7246 at 23°C.

10 .

. . ......... , .

. ~ ~ ~ : .

. ..... , .2 ...

-:. 6:::iE-ien 4 .......

8

10 128642o+--r--r--....---i-....-.;-....--i-.........--i----.____4_

oStrain (%)

Figure 8.21. Isochronous stress-strain of Hytrel® 7246 at ao°c.

Page 306: The Efecct of Creep

8: THERMOPLASTIC ELASTOMERS 307

- - - 18.9MPa

-- ------

~- - 5.5 MPa

........ I - - Extrapolated F

.......................... \ .... ~ .. _..-;- ..

-I...... . ; , ;

-I ; ; ,.

-1 =-_= .

III.2.g - 12.4 MPao 102 _•.•__ •..•.•.. _•.•.••.•.. _...••.•..._....•....•.... _ •....•... _ ....••.

::E ~. .. . .. .. .. . ;... .. .. ..... . ...;.. .. .. cc;---_=:.:. .CoG)

eo~'iiic~

101+--..--........."""T"""r-T"I'"..,....--r--.........,r'""'T""........TT"""-......-~r-T'"T'T'T-rr--~""T'""".,....,.."T"T"I"T'1""-""T'""" .................,....~10.1

Time (hrs)

Figure 8.22. Tensile creep modulus versus time of Hytrel® 7246 at 23°C and various stress levels.

Page 307: The Efecct of Creep

9.1 Background

The following sections will briefly explain thestructuresand propertiesof the various fluoropolymers.It is important to keep in mind that there are varia­tions of most of these polymers. The most commonvariation is the molecular weight, which will affectthe melting point somewhat, and the viscosity of thepolymer aboveits melt point, properties that are impor­tant in determining processing conditions and use.

Traditionally, a fluoropolymer or fluoroplastic isdefined as a polymer consisting of carbon (C) andfluorine (F). Sometimes these are referred to as per­fluoropolymers to distinguish them from partiallyfluorinatedpolymers, fluoroelastomers, and other poly­mers that contain fluorine in their chemical structure.For example, fluorosilicone and fluoroacrylate poly­mers are not referred to as fluoropolymers.

9.1.1 Polytetrafluoroethylene(PTFE)

PTFE polymer is an example of a linear fluoropo­lymer. Its structure in simplistic form is shown inFig. 9.1.

Formed by the polymerization of tetrafluoroethyl­ene (TFE), the (-CF2-CF2-) groups repeat manythousands of times. The fundamental properties of flu­oropolymersevolve from the atomic structure of fluo­rine and carbon and their covalent bonding in specificchemical structures. The backbone is formed of car­bon-carbon bonds and the pendant groups are car­bon-fluorine bonds. Both are extremely strong bonds.The basic properties of PTFE stem from these twovery strong chemical bonds. The size of the fluorine

F FI Ic--cI IF F

n

Figure 9.1. Chemical structure of polytetrafluoroethylene.

9 Fluoropolymers

atom allows the formation of a uniform and continu­ous covering around the carbon-carbon bonds andprotects them from chemical attack, thus impartingchemical resistance and stability to the molecule.PTFE is rated for use up to 260°C. It does not dis­solve in any known solvent. The fluorine sheath isalso responsible for the low surface energy (18 dynes/em) and the low coefficient of friction (0.05-0.8,static) of PTFE. Another attribute of the uniform flu­orine sheath is the electrical inertness (or non-polar­ity) of the PTFE molecule. Electrical fields impartonly slight polarization in this molecule, so volumeand surface resistivity are high.

The PTFE molecule is simple and quite orderedand so it can align itself with other molecules or otherportions of the same molecule. Disordered regionsare called amorphous regions. This is importantbecause polymers with high crystallinity requiremore energy to melt. In other words they have highermelting points. When this happens it forms what iscalled a crystalline region. Crystalline polymers havea substantial fraction of their mass in the form ofparallel, closely packed molecules. High molecularweight PTFE resins have high crystallinity andtherefore high melting points, typically as high as320-342°C (608-648°F). The crystallinity of as­polymerized PTFE is typically 92-98%. Further, theviscosity in the molten state (called melt creep vis­cosity) is so high that high molecular weight PTFEparticles do not flow even at temperatures above itsmelting point. They sinter much like powdered met­als; they stick to each other at the contact points andcombine into larger particles.

PTFE is called a homopolymer, a polymer madefrom a single monomer. Recently many PTFE manu­facturers have added minute amounts of othermonomers to their PTFE polymerizations to producealternate grades of PTFE designed for specific appli­cations. Generally, polymers made from two mono­mers are called copolymers, but fluoropolymermanufacturers call these grades modified homopoly­mer if the copolymer is added at less than 1% byweight. DuPont grades of this type are called Teflon®NXT resins. These modified granular PTFE materialsretain the exceptional chemical, thermal, anti-stick,

309

Page 308: The Efecct of Creep

310 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

and low-friction properties of conventional PTFEresins, but offer some improvements, namely:

• Weldability

• Improved permeation resistance

• Less creep

• Smoother, less porous surfaces

• Better high-voltage insulation

The copolymers described in the following sec­tions contain significantly more of the non-TFEmonomers.

9. 1.2 PolyethyleneChlorotrifluoroethylene (E-CTFE)

E-CTFE is a copolymer of ethylene and chlorotri­fluoroethylene. Figure 9.2 shows the molecular struc­ture of E-CTFE:

This simplified structure shows that the ratio ofthe monomers is 1:1 and strictly alternating, which isthe desirable proportion. Commonly known by thetrade name Halar®, E-CTFE is an expensive, melt­processable, semi-crystalline, whitish, semi-opaquethermoplastic with good chemical resistance and bar­rier properties. It also has good tensile and creepproperties and good high frequency electrical charac­teristics. Applications include chemically resistantlinings, valve and pump components, barrier films,and release/vacuum bagging films.

9. 1.3 PolyethyleneTetrafluoroethylene (ETFE)

ETFE is a copolymer of ethylene and tetrafluoro­ethylene. The basic molecular structure of ETFE isshown in Fig. 9.3.

The structure depicted in Fig. 9.3 shows alternat­ing units of TFE and ethylene. While this can bereadily made, many grades of ETFE vary the ratio of

H H F FI I I IC-C-C-CI I I IH H F CI

n

Figure 9.2. Chemical structure of polyethylenechlorotrifluoroethylene.

H H F FI I I IC-C-C-CI I I IH H F F

n

Figure 9.3. Chemical structure of polyethylenetetrafluoroethylene.

the two monomers slightly to optimize properties forspecific end uses.

ETFE is a fluoroplastic with excellent electricaland chemical properties. It also has excellent mechan­ical properties. ETFE is especially suited for usesrequiring high mechanical strength, chemical, ther­mal and/or electrical properties. The mechanical prop­erties of ETFE are superior to those of PTFE andfluorinated ethylene-propylene. ETFE has:

• excellent resistance to extremes of temperature;ETFE has a working temperature range of-200°Cto 150°C;

• excellent chemical resistance;

• good mechanical strength with excellent ten­sile strength and elongation and has superiorphysical properties compared with most fluo­ropolymers;

• With low smoke and flame characteristics, ETFEis rated 94V-0 by the Underwriters LaboratoriesInc.; it is odorless and non-toxic;

• outstanding resistance to weather and aging;

• excellent dielectric properties;

• non-stick characteristics.

9.1.4 Fluorinated ethylene-propylene(FEP)

If one of the fluorine atoms in TFE is replacedwith a trifluoromethyl group (-CF3) , then the newmonomer is called hexafluoropropylene (HFP). Thepolymerization of HFP and TFE monomers yieldsa different fluoropolymer-fluorinated ethylene­propylene-called FEP. The number of HFP groupsis typically 13% by weight or less and its structure isshown in Fig. 9.4.

The effect of using HFP is to put a "bump" alongthe polymer chain. This bump disrupts the crystalli­zation of FEP, which has a typical as-polymerizedcrystallinity of 70% versus 92-98% for PTFE. It also

Page 309: The Efecct of Creep

9:FLuOROPOLYMERS

Figure 9.4. Chemical structure of fluorinatedethylene-propylene.

lowers its melting point. The reduction of the meltingpoint depends primarily on the amount of trifluorom­ethyl groups added and secondarily on the molecularweight. Most PEP resins melt around 274°C (525°F),although lower melting points are possible. Even highmolecular weight FEP will melt and flow. The highchemical resistance, low surface energy, and goodelectrical insulation properties of PTPE are retained.

9.1.5 Perfluoroalkoxy (PFA)Making a more dramatic change in the side group

than that done in making PEP, chemists put a perfluo­roalkoxy group on the polymer chain. This group issignified as -O-Rf' where R, can be any number oftotally fluorinated carbons. A typical one is perfluo­ropropyl (-O-CFz-CFz-CF3). These polymers arecalled PFA and the perfluoroalkylvinylether group istypically added at 3.5% or less. Another commonperfluoroalkoxy group is perfluoromethylvinylether(-O-CH3) making a polymer called MFA. The struc­ture of PFA is shown in Fig. 9.5.

The large side group reduces the crystallinity dras­tically. The melting point is generally between 305°Cand 310°C (58I-590°F) depending on the molecularweight. The melt viscosity is also dramatically depen­dent on the molecular weight. Because PFA is stillperfluorinated as with PEP, the high chemical resis­tance, low surface energy, and good electrical insula­tion properties are retained.

CF3ICF2ICF2IoI

CF2-CFz-CF2-CF2-CF2-CF-CF2-CF2

n

Figure 9.5. Chemical structure of perfluoroalkoxy.

311

9. 1.6 Polychlorotrifluoroethylene(PCTFE)

PCTFE is a homopolymer of chlorotrifluoroethyl­ene, characterized by the structure shown in Fig. 9.6.

The addition of the single chlorine atom contrib­utes to lowering of the melt viscosity to permit extru­sion and injection molding. It also contributes to thetransparency, the exceptional flow, and the rigiditycharacteristics of the polymer. Fluorine is responsiblefor its chemical inertness and zero moisture absorp­tion. Therefore, PCTFE has unique properties. Itsresistance to cold flow, dimensional stability, rigidity,low gas permeability, and low moisture absorptionare superior to any other fluoropolymer. It can beused at low temperatures.

9.1.7 Polyvinylidene Fluoride(PVDF)

The polymers made from I, l-difluoroethene (orvinylidene fluoride) are known as polyvinylidenefluoride. They are resistant to oils and fats, water andsteam, and gas and odors, making them of particularvalue for the food industry. PVDF is known for itsexceptional chemical stability and excellent resistanceto ultraviolet radiation. It is used chiefly in the pro­duction and coating of equipment used in aggressiveenvironments, and where high levels of mechanicaland thermal resistance are required. It has also beenused in architectural applications as a coating onmetal siding where it provides exceptional resistanceto environmental exposure. The chemical structure ofPVDF is shown in Fig. 9.7.

One of the trade names of PVDF is Kynar'". Thealternating CHz and CFz groups along the polymerchain provide a unique polarity that influences itssolubility and electric properties. At elevated tem­peratures PVDF can be dissolved in polar solvents

F ClI IC--C

I IF F

n

Figure 9.6. Chemical structure of polychlorotrifluo­roethylene.

Page 310: The Efecct of Creep

312 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

F H

I IC--C

I IF H

n

Figure 9.7. Chemical structure of polyvinylidenefluoride.

such as organic esters and amines. This selectivesolubility offers a way to prepare corrosion resistantcoatings for chemical process equipment and long­life architectural finishes on building panels.

The key attributes of PVDF include:

• Mechanical strength and toughness

• High abrasion resistance

• High thermal stability

• High dielectric strength

• High purity

• Readily melt processable

• Resistant to most chemicals and solvents

• Resistant to ultraviolet and nuclear radiation

• Resistant to weathering

• Resistant to fungi

• Low permeability to most gases and liquids

• Low flame and smoke characteristics

9.1.8 THV™THVf M is a polymer of tetrafluoroethylene,

hexfluoropropylene, and vinylidene fluoride. It is

Table 9.1. Melting Point Ranges of Various Fluoroplastics

made by 3M Dyneon. It has the following pro­perties:

• Low processing temperature

• Bonds to elastomers and hydrocarbon plastics

• Good flexibility

• Permeation resistance

• Excellent clarity and light transmission

9.1.9 HTEHTE is a polymer of hexfluoropropylene, tetraflu­

oroethylene, and ethylene. It is made by 3M Dyneon.It has the following properties:

• Broad processing range

• Very good chemical resistance

• Permeation resistance

• High light transmission in visible and UV regions

• Excellent dimensional stability and toughness

• Good electrical properties

9. 1.10 Melting Points ofFluoroplastics

The melting points of the fluoropolymers areimportant in establishing the maximum use temper­atures and the minimum processing conditions.Molding temperatures will be above the melt pointsgenerally by at least 25°C. Likewise, the maximumuse temperatures are usually at least 25°C belowthe meltpoints. Table 9.1 lists the melting point rangesof the fluoropolymers discussed in this chapter.

Fluoroplastic Melting Point ee)Polytetrafluoroethylene (PTFE) 320-340

Polyethylene chlorotrifluoroethylene (E-CTFE) 240

Polyethylene tetrafluoroethylene (ETFE) 255-280Fluorinated ethylene-propylene (FEP) 260-270Perfluoroalkoxy (PFA) 302-310Perfluoroalkoxy (MFA) 280-290Polychlorotrifluoroethylene (PCTFE) 210-212

Polyvinylidene fluoride (PVDF) 155-170THV™ 115-235

HTE 155-215

Page 311: The Efecct of Creep

9:FLUOROPOLYMERS 313

9.2 Polytetrafluoroethylene (PTFE)

9.2.1 DuPont Teflon@ PTFE

20.6 MPa

3.5 MPa

................ __.. __ .

: 6.9 MPa:------­~--~--:

, ,............................................... ; _.-_._ _ ., ., ., ., ., -~'---

, . , ... _--_. __ . __ : _-_._--_. __ ; __.. __ . __ : _--_.;--_. __ .. . . ,, , . ., , . ., , . .

10-~0-c.~-en~'iiic 1Q)I-

0.1 +--..--.........""""T"""...........;--...---~...._r_T""T"T"TT""-""T"'""-r-"T"""T"""T""T'"T"TT"-""""T""" ............................"'I""r'T-.....,.......,..""""T"""....,...,..........

10.2

Time (hrs)

Figure 9.8. Tensile creep strain versus time of Teflon® PTFE at -54°C and various stress levels.

100+-_"--..................................._...0...-....0...-........................_-'-".................."-'-'-_--'-................................0..0.+_---'----'---'-.....................

3.5 MPa

6.9 MPa

...... <_ _. -- _. - _. - - -- -:- - - _. - - -. - - .. - - - -- .., ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,· ,· ,, ,, ,· ,, ,, ,, ,

10.3 MPa

, ,•••••••••••••••••••••••, •••••••••••••••••••••• _j •••••••••••••••••••••

, ,, ,, ,, ,

. --.. -. -. ----. -. -. --. -.' ----. -.... -. --. ---.... - ~ . -. --. --..., ,

0.1 +--..--.........,................TT"""-...---""T"'""T"'"'T'"T""T"T"TT""-""T"'""-r-"T"""T"""T""T'",..,..,.-""""T"""............,....,........."'I""r'T-~.....,.."""T"""T""T'" ..........

10.2

10-~0-cf!-en

~'iiic 1Q)I-

Time (hrs)

Figure 9.9. Tensile creep strain versus time of Teflon® PTFE at 23°C and various stress levels.

Page 312: The Efecct of Creep

314 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

4.0 MPa

-~o-10 -------- --~--.- --;----.- .

-

3.5 MPa

. -_.. _---_ .

1.4 MPa

1 ---_. ---. _. -_ .: ~ _. _.. --. --. ---_.. -;_ ~ ., . . ,, . . ., . . ,, . . ,, . . ,, I • ,

, . . ,, , . ,· , . ,· , . .· , . .· , . .· , . ,· . . ., , . .· . . .· . . .· . . .· . . .· . , .· . , .

Time (hrs)

Figure 9.10. Tensile creep strain versus time of Teflon® PTFE at 100°C and various stress levels.

2.1 MPa

1.4 MPa

0.69 MPa

· ... . . . . . ~ ------.-- : -------- ~ ---. --- .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .

......................... ; : ; .· . , ,· . , ,, . . ,, . . ,, • • I

, . . ,.. ... ... .· .· .· .· .· .

1

10 ..... -... -...-.~~~~~~~-(fl.-

Time (hrs)

Figure 9.11. Tensile creep strain versus time of Teflon® PTFE at 200°C and various stress levels.

Page 313: The Efecct of Creep

9:FLUOROPOLYMERS 315

:

::::

12.1 MPa:: :. ,

"

: 6.9 MPa::

:: 3.5 MPa

::

v, ; .'.

:: :

:: :

:: ::

0.110'1

100

-~0- 10c0'iiiInec.E00cc 1'Ii..-fI)

Time (hrs)

Figure 9.12. Compressive creep strain versus time of Teflon® PTFE at 23°C and various stress levels.

:

: ::

:: : ::

:: 5.2 MPa

-, .': : 3.5 MPa

: ::

: 1.4 MPa -: : :: :.'. r : ; '.

: : : :- :

:: :

: :: : :

: :: :

"0.1

10'1

100

-:::e0- 10c0'iiiInec.E00cc 1

'~-fI)

Time (hrs)

Figure 9.13. Compressive creep strain versus time of Teflon® PTFE at 100°C and various stress levels.

Page 314: The Efecct of Creep

316 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

6.9 MPa

~to-c.~..UJ..

C'GCD.cUJ

5.2 MPa....... __ __ __ ._-_ -_._-_ --.--------_ ..

4.1 MPa

2.4 MPa

0.01+--......---r---........"T'""'T'".......,--..---.--r-..........""T""'I"'...,...-.......-..--........................r---r-..............-.-...........-t10'1 101

Time (hrs)

Figure 9.14. Shear creep strain versus time of Teflon® PTFE at 23°C and various stress levels.

: : : 4.1 MPa

- : ::

: 2.4 MPa: :" : ,- 1.4 MPa

-~

:r; ,', ,: :

:

::

:: :

1E-310.1

0.1-~to-C.~..UJ..

C'GCD.c 0.01UJ

1

101

Time (hrs)

Figure 9.15. Shear creep strain versus time of Teflon® PTFE at 100°C and various stress levels.

Page 315: The Efecct of Creep

9:FLuOROPOLYMERS 317

9.2.2 Asahi Glass Chemicals Fluon@ G163-Fine Particle Powder, LowBulk Density PTFE

8+-__~_--,-_-+-_ .......--J!-----'-_-+

431

........... ! ~ - . -: .· . .· . .· . .· . .· . .· .· .· .O+--.--""';'---.---i--...---;--....--+o

1

6

7

2 _ i·············· ~. _ ~ _ .

5

2

Strain (%)

Figure 9.16. Isochronous stress-strain of Fluon® G163 at 25°C.

5MPa

6MPa

4 ; : ; , .· , . ,· . . ,· , . ,• , I ,.. .· .· .· .· .· ,· ., ,

;i'o-c.2 3(I)(I)eQ.Eoo 2.5c

.~..en 1

Time (hrs)

Figure 9.17. Compressive creep strain versus time of Fluon® G163 at 25°C and various stress levels.

Page 316: The Efecct of Creep

318 THE EFFECT OF CREEP AND OTHER 'nME RELATED FACTORS ON PLASTICS AND ELASTOMERS

9.2.3 Asahi Glass Chemicals Fluon@ PA 1025Z (Old Code VG-25)-25%Glass Filled PTFE

12 MPa:

10 MPa

: : 6MPa

u, ...=.....~~.~~~:2MPa

, ..... : ~ : ~ : '~""'8 MPa"",. ..,.. ..,· . .· . .· . .· . .· .· .

4 ················i·················:·················:· , ; ., , . , ., . . , .

, . . ., . , .· .· .· .c,2 3IIIIIIfCoEoo 2.!:c'E..(fJ 1

~o-

Time (hrs)

Figure 9.18. Compressive creep strain versus time of Fluon® PA1025Z at 25°C and various stress levels.

9.2.4 Multiproduct Comparison Charts of PTFE

3.0 +---'-............................LI----'-............................LI----'-..............................LI-----'-..............................LI----'-.............................LI----'-..........................'+

-----. -- ~ - .

-- VG-25, 25% Glass Fiber Filled----- VX1, 30% Glass Fiber and Complex Salts

VX2, 63% Bronze and Graphite ..... ~ ~ ;"""'~""""'"

L...-__~----~----~-------J' :",,-:

" :, ., . , . ", :

••••••••••••••••••• ~ ••••••••••••••••• 0 ";" •••••• ••• •• ";" ••••••••••••••••• ";"" .;;_~ •••••••••• ~ •••••••••••••••••••

: : : ,;,,' :: : : ", : :, . . ". .

................... ~ : ···~L:.·.;;,· ..<·~·····+·············:..:.·:.:>·..,·':":···········", :

", :" .

" .-...................: ~~'~~~':~~~~"~'~"":':' -- . .;..~.~ ~ .

",~" .: --,- -'­...;.;. -- :

2.5

0.5 r ••••

~o- 20c .o'iiiIIIfCo 1.5Eoo,!:c 1.0

'E..(fJ

0.0 +---'--""'''T""T''TT'T''rr---'--'''''''T""T''TT'T''rr---'--'''''''T""T''T'T''T'l';---'--'''''''T""T''T'T''T'l';---'--'''''''T""T''TT'T''';---'--'''''''T""T''TT'T''rI-

10.3 10°

Time (hrs)

Figure 9.19. Compressive creep strain versus time of filled Fluon® at 20°C.

Page 317: The Efecct of Creep

9:FLuOROPOLYMERS 319

9.3 Polyethylene Chlorotrifluoroethylene (E-CTFE)

9.3.1 Solvay Solexis Halar@ E-CTFE

, '1.5 : ; : : .

~o-c'i!-(I)g- 1.0 :--_ __ -_.;--_ .2!o.!'iii

c 1__~~d~:-:-:-:-~~±~=~~7~~.{!! 0.5· , : : ; ~ .

4MPa

10000100010010.10.0+---.---.-........rT'T"IT----.-.......................r--..................r-T'"T"T"TT'!--.-......................,.-......................,.......,.-.....-...........,...,......-.t-

0.01 10

Time (hrs)

Figure 9.20. Tensile creep strain versus time of Halar" E-CTFE at 23°C and various stress levels.

16+---'-.......................-------'-...........................---..................................I--.....................................- ..................................- ..........................~

10000

:4MPa

1000100

--. -- ~ .· , .· , .· . .· . .· . .· . .

10.1

~----. ,.................. ; .

. --------. ---. - : : :. . . . . . . . .. . ~ : -.. - -., . , . .· . . . .· . . . .· . . . .., .... .... ..

0+---.---.-................."..--....--.................r----.-.......................r----.........r-T'"T"T"TT'!r--........................"T"TT'!--.-................~

0.01

2t::=:~==+=~~T·]····················r··················, ,

14 -;_ ; .. _ _ -:- _0 _ •• _~ •••••• o. _0 _ •••••••• :.

I • , ,

I , , ,

I , , ,

I , , ,

, . , ,· , , ,· , , , ,._----_._--_._ ,----_ _---------.-_._---------- , , _-- ---_. __ __ ._-

c'iii 10..-(I)go 8 .f : :o ' ..! 6 ~ ·····~············ .. ··· .. ~· .. · .. ·········· .. ·~············6 MP~'''''''' .'iiic{!!

4

_ 12~o-

10

Time (hrs)

Figure 9.21. Tensile creep strain versus time of Halar" E-CTFE at 75°C and various stress levels.

Page 318: The Efecct of Creep

320 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

10000100010010

· .--------- ~ -----:- ---- : - . - .· . ,· , ., . ,, . ,, . ,· , ....................................................................................· . . .· . . .· . . .· . . .· . . .· . . .

0.10.01

· , ........... - ~ -. -. - -:- ------. --.. ~ -. --., . ,, . ,, , ,, , .· , .

· ,....... ----- : -. - -. ---:- -----. -.. - ~ -.. ----- ; -----. - -. --:- ---- -.. ------:- ---------, , , , ,, . . , ., , , I •

, . , , ., . . . .· . . , .---_ _- __ __ , --_ _-_ _-_ -----_ --_._-· , . , . .· , . , , ,· , ., .· , .. ,· " ': : : 2.5 MPa . :... -_ ,.----_ --_ ; __ --_., ., , . , . ,, I • , • •

: : :: :· " .

2 -L..-_"""-_-:-0_- - - - - - -:- ••••••••••••• - - -:- - - - - - - - •••••••• , ••••••••••• - - - - -, - - ••••••••••••• -:•••••••••••• - - - - -:- - - - - - - •••••••••, . , , . ,, . . . . .· . . . . .· . . . . .· . . . . .· . . . . ,

O+-"""'T""".......-T..,...,.,'"T"---.................,rTTT'Ir--~,......., ......."T"""........-......,..,..,..rTTf"-.........................r---.................,...-....--r-T'"T"'O..........1E-3

18

16

14-~0- 12,5III....t/) 10Q.G)

e 80.!'iii 6cG)I-

4

1

Time (hrs)

Figure 9.22. Tensile creep strain versus time of Halar" E-CTFE at 125°C and various stress levels.

4+---'- 1-- 1.I.I.j._..a...- .0.4---r. ~ ~_ -'4-

, , ...................................................................... .

...................................................................· , .· ,· ,

_3::::s:o-cl!..t/)

g.2eo.!·iiic~ . ,1L=c=~~~ -.. --.--.----------------'-- .

100001000100100.10.01O+---r--................rTTf"---..........................r---.................,...-....--r-........rTTT'Ir--~ .............."T"""............-..............,.-.,......,,...,..,............

1E-3 1

Time (hrs)

Figure 9.23. Tensile creep strain versus time of HalafID E-CTFE at 150°C and various stress levels.

Page 319: The Efecct of Creep

9:FLuOROPOLYMERS 321

16+-----''-------4-__........-J-----'''''------4--........-J-----'----7--........-7"-----'''''-----7--........-T

· .14 : : : .· . .· . .· . .· . .· . .· . .

160140120

· ... _--_ _-_.. __ __ .· .· .· .

10080604020

· .._----_._._ __ _-_ --_ .

..................... __ : ---_._-_ : _--: : ., ".· ."· ,.,· ,.,· ".· ".· .

. ..... _.-.. _._.- ; : : ; : .., ,.,.' ....' ..,.' .., ... .

· . .2 .. _-_ -_ __ .: _-_ : : :..· . , ., . , ., . . .· . , ., . , ., . , .• • , I

O+--..,.....-r--...----..,r-----.----r----.----T-~-___r_- .......--r--.....--...,.....-.....--+o

12 __ _-_ .. - _._._ -- ----:-- : --- --- ; -- ..-.. , . ,

Co ; : ;e 10 : : :coi~ 8

CDa:til 6een 4 ~ ~ : : : .

Temparature (0C)

Figure 9.24. Stress relaxation versus temperature of Halar<ID E-CTFE at 1000 hours and 2% total strain.

9.4 Polyethylene Tetrafluoroethylene (ETFE)

9.4.1 DuPont Tefze/@ ETFE

1oo-c, 5.5 MPa

6 : : : ; .· . , ,· , . .· , . .I • • I· . , ,• I • •

100001000

23°C, 13.8 MPa

100

· .. - .23°C, 6.9 MPa

:............. -: - ~ .

· .· .· .· .· .· .· .· .

· .. . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . ~ ..

101

· .............................................· .· .

O+--......-............................-r--......-...,.........................;--"""T""".........,....,,..............;.-~---.- ...........-r"........i-----.---,.................""T"T"'~0.1

· .

1 t I ..

· . .~ 5 : ; -- ; 1aaoc, 2.8 MPa· .. · ..~ :::· . .· .· .· .· .c.~en 4Q.Q)

!o 3

Time (hrs)

Figure 9.25. Flexural creep strain versus time of Tefzel®ETFE at various temperatures and stress levels.

Page 320: The Efecct of Creep

322 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

9.4.2 DuPont Tefzel@ ETFE HT-2004-25% Glass Fiber ReinforcedPolyethylene Tetrafluoroethylene (ETFE)

23°C, 27.6 MPa

1OO~C, 13.8 MPa

_._.---_ -. ~- _.. --_ _ _ _ _. _.. ---_.. -23°C, 13.8 MPa

· , ..... ---_.---_ _. -:- _._. _ _ ----_ ":- -.. -_. _ _.- ~- _.----_ -_. _.. -: ., . . ., . ,, , ,, , ,, . ,, , .· , .· , .· ,· ,· ,· ', ., ., .

_3~-

100001000100101O+--..--,.....,.....,...,........-r----.....-,.....,..................-r----.....-...-.-................-r----.....-...-.-................-r----.....-...-.-...................r0.1

Time (hrs)

Figure 9.26. Flexural creep strain versus time of Tefzel®ETFE HT-2004 at various temperatures and stress levels.

8000 +-~'---'--'- .................I-----'----'-...........................--'--'-........................-"""--......................~-""'-- ..............""""'"'-T

, . .-----. --- ~ -. ~ --. ------------------. ~ . - ~ - --.. --. -.23°C: : : :· . . .· . . .· . . .. . .. . .

••••• 0 •• ' •••••••• ---------- •• --, ••••• -- ••••••••••• --._y _

......................, ; ; ~. '~' ,--....:... ~ ., . . ,, • I ,

, . . ,, . . ., . . ,, . , ,, . ,

7000

i:::E 6000-en~

"5 5000'Co

:::E! 4000~

~ii: 3000 .1.~~ .o.~ ••.•••••••.••• : •.•••••••••.•.•••••••• ; •••.••••••.•.••••••.•. f •••••.••.••••••••••••• f ••••••••••••••••.•••••... . , . ,c . : : :e :::[2000 : --- ----:---.----------Q, : :~ : :· ,

10000

-1000100101

· , , .· , , .---_._---------_._----:---------- .. ---------.:.----------_·_-------·i·--------------------·i·-········---_·-_ .. -.-I , , •· , , .· . , .I • • •· . . .· . , .· . , .O+----..........,........."T""T"'T'T"I"lr----r---r-"""T'""".........."T'TT'--r--r-......-r"T"T"'l,.,.,....-...-..........................,..--..--.............................

0.1

1000

Time (hrs)

Figure 9.27. Apparent flexural creep modulus versus time of Tefzel® ETFE HT-2004 at various temperatures.

Page 321: The Efecct of Creep

9:FLUOROPOLYMERS 323

9.5 Fluorinated Ethylene Propylene (FEP)

9.5.1 DuPontTeflon@ FEP

6.9 MPa

13.8 MPa

........... __ .. ; __ i -0-- ----- .· ., ., ., ., .· .· .· ,· ., .· .· ., ., .

-?fl.- 10c'i!(;)Q.G)

eo.!!'iii 5 -l._-......,..,..,.,-:..~..":"':'..":":..~ ~ ~ ; ; .c . . .~ ~ ~ ~

, . ., . ., , ,, ,

100010010+--.......----.--........"T""'T"'T"T"1--..........................................,..-----.-...................,.........,'T"""-........---........................."'T"T"f-0,1 10

Time (hrs)

Figure 9.28. Tensile creep strain versus time of Teflon®FEP at -54°C and various stress levels.

4O+--........-"-"-........~ __""---_................................._-" "'O"'-............................'-I--_--'-_......................"""'++

1000

: ~ ··~ .. ····· .. · .. ·· .. ·6.9 MPa"

3.5 MPa

· .---------------------- 00 -----_ •• _------_ •· .· .

, ,....................... -.------_._--_ _---_._-_ ., ,, ,, ,, ,· ,· ,· .

....... -.. -. - : :- ~. .. . .. . .. . .. .. . ., , ., , ., , ., , ,, , ,, , ,, ,

5 .

35 : ; , .· . .· . .· . .· . ., . .· . ., ._ 30

:::E:o-c,- 25l'!-t/)~ 20eo.!! 15'iiic~ 10

10

Time (hrs)

Figure 9.29. Tensile creep strain versus time of Teflon® FEP at 23°C and various stress levels.

Page 322: The Efecct of Creep

324 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

100+-_........_ ........--......................+-_--'----'---'........................1--_ _'_ .................0.....11--_......... .........................

5.2 MPa

. . .-. --. -. --------. -. --. -.. -. . . .. . ..... ---. -.. -. --.. ---..... --..... -..... -..... -. -.... - . ~ .... -. --... -. -. -.. ----. ---. -

25 -- _ -- ----_ -----: ------ --.. ---- -- ---_. ~ ------. ----- -- ~- -- -. -- '3.5 MPa-

: ~J-: -------t---r

c

~go 50fo.!'iiic~

75-'#.-

1.4 MPa

10001001o-1==::::::;::::::::;:::::;::::;:::;::;~==;::::::::::;:::::=;t:::=:::;::::::::::::!:=::::===10.1 10

Time (hrs)

Figure 9.30. Tensile creep strain versus time of Teflon® FEP at 1000e and various stress levels.

10+--.........- ........--......................+--........----...............................+--........----...............................+--........----...................,........+

-~o-8 ; ···f····----··············

, ., ., ., ., ., ., .

6

4 __ 0 ••••••••••••••••••••••••• ; •••••••••••••••••••••• _-- ••• ; •••• -- • ••••• ; ••••••••••••••••••••••••••••

0.69 MPa

10001001

········f····························:················ ; ----.-------- ., . ., , ., . ,, , ., , ,. , ,, , ,, , ,, ,, ,, ,, .O+--........---.---.....................,,.......-......................................."""T'"----......-....-..,.....,.......'r"T'"'lr-r--........--,.......,...............~

0.1

2 .

10

Time (hrs)

Figure 9.31. Tensile creep strain versus time of Teflon® FEP at 175°e and various stress levels.

Page 323: The Efecct of Creep

9:FLuOROPOLYMERS 325

. : .

17.2 MPa

. ......................~ i······················ .~ ~ ·13.8 MPa·

, . . ,, , . .· , . .· . .· .· .· .

........ _-_ ----: _ _------_ .. __.: _--_ :.----_ .· . .· .· .· .~--

20.7 MPa20 : .-~o-c

o'i 15!Q.

Eoo.5 10c't!CiS

5 : ; : ; .· . . ., . . ., . . ... .~ : 6.9 MPa ~ 3.4 MPa

1000010001001010+--...---.-........................,.-.......---..........................-r---.-__-.-,.......,1"'T"T"r---...-....-.........,..,..,....,..-.............................,...,.,r+0,1

Time (hrs)

Figure 9.32. Creep strain in compression versus time of Teflon® FEP at 23°C and various stress levels.

15 +--"'O"-........................r..o.lo_--O' .........................&.4-_....................................I--_o..-..&....-...............o....&+._.......--o........................+

5.2 MPa

-'#.-5 10'0eQ.

Eoo,5c't!CiS

· ... _----- ; -............. . _--_._-_ , _--_ .· .· .· .· .· .

................; _---------_ : _- .· .· .· .· .· .· .: : 1.4MPa· .· .

1000010001001010+--,.......,.....,"""'T'"'.........-r--....---.--...................;-.--.---.-.,....,.."T"T""r-rT--......-_._.......................;.--.----.-......-...-r"l.......,+0.1

Time (hrs)

Figure 9.33. Creep strain in compression versus time of Teflon® FEP at 1eeoc and various stress levels.

Page 324: The Efecct of Creep

326 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

10001001

:

:: :

: 9 MPa

:

~:

:

6.9 MPa~ ~ ~

:: :

: 4.1 MPa:

: :1.4 MPa

0.00.1

0.3

-~0-c 0.2'(ij...UiQ.

~0iie0 0.1'iii...~

10

Time (hrs)

Figure 9.34. Torsional creep strain versus time of Teflon® FEP at 23°C and various stress levels.

10001001

:: : 4.1 MPa:

: : ::

::t

: :: : :

: ::

: :

, .2.4 MPa.:

--------- : :

. ; ; ; ·1 .4 MPa· I-:

: 0.7 MPa

.

0.6

0.00.1

0.5

-~0-c 0.4"i!UiQ.CI) 0.3!0iic0 0.2.~

~

0.1

10

Time (hrs)

Figure 9.35. Torsional creep strain versus time of Teflon® FEP at 100°C and various stress levels.

Page 325: The Efecct of Creep

9:FLUOROPOLYMERS 327

............... -_ __ . __ __ .

2% Strain Rate :

•••••••••••••••••••••••,•••••••••~....~...~... ~....~_ ..'-'o;.;,"• .:.:..:..... :..:..:•••••••••:••••••••••••••••••••••• : •••

, ., ., ., ., .· ,· ,· ,, , ......... --- . --_. ---_.. -;. -_.------_ ; -.. -----_ ;. -------_. -- . -- ~ _. - ---------

, , , ., , , ., , , ., , , .

0.5% Strain Rate : : :, .

1 _.. --_.. _. _. ---_ .. --_..; ----_. -_. --_. ----; _ _ -------"," -_ ..

5

-C'll

~ 4-co:;~ 3Q)a:U)U)

! 2-en

1001010.10.01O+--..--......-................"'"T""--.--.-"'T"""r.............,.----r----.--.-T"""I"".............----.-....................rr--..--......-..........,...,..,,..,.r1E-3

Time (hrs)

Figure 9.36. Stress relaxation versus time of Teflon® FEP at 23°C and various strain rates.

, ., .

, . ,• ••••• T •••••••••••••••• - - •• - - '.- • - • - • - • - - ••••••••••••• ~ ••••••••••• - - - - - - •• - •••

, ., .

, ,-_._----_ : : _--:-.. _----_._. __.. __ .. _ .., .

20% :o Str. . 'amRate:

10% StrainRate:

5% Strain Rate

..... _-_ __ ._---_ ,-----_ .

5 ..

i::IE 10-

0.5% Strain Rate:

1001010.10.01o-t--...--......................r----.----.-......-...............;.-"""T""""""T"""......................;.--.....................................;.--..--.,....,..................I-1E-3

Time (hrs)

Figure 9.37. Stress relaxation versus time of Teflon® FEP at 100°C and various strain rates.

Page 326: The Efecct of Creep

328 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

9.6 Perfluoroalkoxy (PFA)

9.6.1 DuPont Teflon@ PFA

·······---···········t···-----············---

· , . .---_._----_ -_ , .· , . ., , , ., . , ., . , ., . , ., . , ........................,- ., , .· . , ,· . . .· . , ,· . . .: : : : 6.9 MPa....................... , , , ; _ ., , , ., , , ., , ,, . ,, .

, . .-- -----. . . . ----- .~ --------. -. ---_.-.. -:- - --. --. -_ -. ---- ~. ---- --.. -. -----: -. -----------. --.., . , .· . , .· . , .· . , ,

- - -. -.. - - -;. - -_ --. ----- -A:' - -. -. - ----- ~. ----. ---- -. -------· . ,, . ,, . ,, . ., , .

· . ,...... -. -. -- -:- - ---. . . . . -- ~ ----- ---- ~ ---- .· , . .· . . ., , . ., , .

.......... __ : --_ : -_ .:, ., ., .· .

.......................'.......... . : .; ., ,: : 3.4 MPa· ,

10

9

8

- 7~0-.5 6ftI..-U)Q, 5CDe

40.!'iii 3cCDI-

2

· .· .· ., .· ., .O+--..........,.....,......""T'"T"T"TT'-......................................or--...-.........................,..-................-.-.............,..---..-.....................Tt-10.1

1 .

Time (hrs)

Figure 9.38. Tensile creep strain versus time of Teflon® PFA at 23°C and various stress levels.

10+-_"--..........................&.l-_""""-................................._ .....................................a._........---a.......................a-----'_............................'+

, . , .9 : : : ; .

, . , ., . , ., . , ., . , ,· . . .

3.4 MPa........................

, .· , ....................................., ····-·t························ , .· , .· , .· , .

.......................; ~ -;...- .· , .· .· .

, ,· .4 .

5· ~ ; ~ ., ,, .

8 : : : , .· . . ,· . . .· . . ,· . . .· . . .~ 7o-

•••••••••••••••••••••••••••••••••••••••••••••••••••••• • • • • • • _ ••••••••••• J ••••••••••••••••••••••• ! •••••••• _ •• • • • • • • • • • • • •· . . .· . . .· . . .· . . .c ' . . .'~ 6 ~ : ~ ~ 5.2 MPa'!-

en --Q,CDeo.!'iiic~ , .2 : : : .; .· . . .· . . ,· . . ,· . . .

1 ; ; ~ i·······················; ; 1.4 MPa ;.. ., .

Time (hrs)

Figure 9.39. Tensile creep strain versus time of Teflon® PFA at 1eeoc and various stress levels.

Page 327: The Efecct of Creep

9:FLuOROPOLYMERS 329

12

11

10

9-~ 80-.5ClI 7....fI)

c. 6Gle s0j!

4'iiic~ 3

2

1

.." ·5.2 MPa·

: ::

~ :: :

~

: :" : " ,

: :'. .'. ~

,'3.4 MPa'

~. ... .:

-.. _--_._----- -r ',' " ;: : 2.1 MPa

»>: '. , .: :

. ------------- ~ .,. ;

: :"

-e- ; ;

: :. :. : " ;

: : :

'.Time (hrs)

Figure 9.40. Tensile creep strain versus time of Teflon® PFA at 200°C and various stress levels.

9.6.2 Solvay Solexis Hyflon@ PFA P22D-Low Molecular Weight PFA Resin

7 ................ ---. -; ---- - ~ --. -. ---- .

-~-------6 .

............. -.- : - - -. ------ ~ ---. - --.. ,, ,, ,

, ,

.......... _----_._--_._--------: _----------_ _- ~.~_.~-, ,_·...·~···200°C

- -225°C, ..................... _------------- ; '; - ., ,, ,, ,, ,, ,, ,

2 - : : - .

Cise,:E-=4e..enc.3oo

::I:

1000100

1 . - i········ -. ~ ., ,, ,, ,, ,, ,, ,, ,0+---.......----.-....-............................,,...---.......- ........---.....-..--...............,....;..---.....--............,..--+

10

Time (hrs)

Figure 9.41. Hoop stress versus time of Hyflon® PFA P220 at various temperatures.

Page 328: The Efecct of Creep

330 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

9.6.3 Solvay Solexis Hyflon® PFA P42D-Medium Molecular Weight PFA Resin

3.0 MPa

............:.---_ .

-- --;-- , ; .. '2.0 MPa'· .

. ,............................. __ .,------_ ... _---· ,· ,· ,

· , .......... '." .. "., ';, , .. --, ':"" --" --, : ',. --.", --", ...: ; .. '2.5 MPa'

t===+=--+----~.., ~~ ~ = ~ ~ ., ., .

5 .

20 ", : ", ,:." ".: ,:'" ., , . .· , . .· . .· . ,· . ,, . ,, . ,· . ,· . ,· . ,· . ,

cl! 15

Ci5Q.G)

fo.!! 10'iiic~

-~o-

1.0 MPa

100010010.1 10

Time (hrs)

Figure 9.42. Tensile creep strain versus time of Hyflon® PFA P420 at 200°C and various stress levels.

9.6.4 Solvay Solexis Hyflon@ PFA M62D-High Molecular Weight PFA Resin

30 +----'----'-....................I.lo.l--.................................- ........."""'-'................1--............................................----'................................_"""--........-;-

; 2.5 MPa

· ,..................... - .· ,· ,· ,· ,: ; 2.0 MPa· ,· ,

......... ; : .· .· .· .· .

, . ,................................................ _-- , ., . ,, . ,, . ,, ., ., .· ., ., .

25 --.------ .. --- : : _- .

;i'o

~ 20

e....U)Q.G) 15eo.!!'iiic~

100010010.1

~~~::::::::.~ ~.. ~ ~,.,.,~".,"':",., ·······1···'··,··,""

, . ,, . ,, . ,. . ,, . ,, . ,, . ,

5 ----.......

O+----.---.-....,....,r""T"r...,...-...-....................,.--.-...,............."""""',..-................................-rr--..............................,.-...,..............-+0,01 10

Time (hrs)

Figure 9.43. Tensile creep strain versus time of Hyflon® PFA M620 at 200°C and various stress levels.

Page 329: The Efecct of Creep

9:FLUOROPOLYMERS 331

9.6.5 Solvay Solexis Hyflon@ PFA M72D-Very High Molecular Weight MFAResin

·

........ -_._-_ ;. __ ._-_ ----. __ .: -_ : __._---_. __ .· . .· . '

5 __ . :. --.. -- ;--- -- ;.:-: .-:-..7 ..~ ..~ --, . .· .· .· .· .. "';' -. --." ··200"C·············-···· --- -- .

•-•--.. ----. ----•-•••••••• -- ~ . ----. -.. --.. --.. --.• -•••• -••:.••. -. --. ---.. --.. --.. ------ A:' -•••••••••••••••••••••••••••, , ., . '· . ., . .· . .· . .· .· .· ,· ,, .

• • • • • • • • • • • • • • • • - •••••••••• - ~ - - - - - - - - - - - •• - - - •• - •• - - - • - - - "t' - • - • - •• - - •••••••••••••••••• ',' ••••••••••••••••••••••••••••

, . ,, , ,, , .

100001000101+--"""T"'""~"""T""""T""'T""T""T'",...;....-"""T"""---.-~ .........,...,....,....-i--........---.........."""T""".............;.----.-......-.......................+

1 100

Time (hrs)

Figure 9.44. Hoop stress versus time of Hyflon® PFA M720 at various temperatures.

9.6.6 Comparison Charts of PFA Resins

· '"......................... _._._._-_ , , .· . . , ," ", .. .

. .-- -- ~ ---- -- ~.. -- --- --.~.-- -- ~ .. -- Hyflon PFA - P Series ..· .. .· .· .

" "45 --. -----.. --;--. ------ -- : ---.. ----. -;-- , --------- ;.. -----.. ----" --..· . .· . .· , .· . .40 --- ; ----.: -- ; _- -·--·-··~···_···············1···················· , , . ,· , , . ,

., "

., "35 ; ; : _ ~ ;.. _ .· , , .· .· ,· .30 .- --- ~ ---- - - --..;. - -.. ~ - -- :. - - -- .-?fl.

- 25c'j!Ui 20

15 ---- ;----- -........ .: ---.. ---. --- .;- -, ---. --- ;. ------.. --- .· '"· .,· "· "· "10 - :.... . ;..... . ; , -----.--.. ; .. . .. , .5 ~ ; : ~ ~ .

, , . , ,.. ... ,.. ,.. .4.03.53.02.01.5 2.5

Stress (MPa)

Figure 9.45. Isochronous stress-strain of Solvay Solexis Hyflon® PFA resin series at 200°C for 2000 hours.

Page 330: The Efecct of Creep

332 THE EFFECT OF CREEP AND OTHER llME RELATED FACTORS ON PLASTICS AND ELASTOMERS

9.7 Polychlorotrifluoroethylene (PCTFE)

9.7.1 Daikin Industries Neotlon™ M-300H-General-Purpose PCTFE

12 ~ : ~ : .· . .· . .· . .11 : : , . . . . ~ ... .., .· .10 -: :....... .. : ; ..· . .· .· ... ......................................... , - _--.- ., . . .· , , .· . , .

:~ ..... ::::::::::::::::t::::::::::::::::::::::):::::::::::::::::::::::j:::::::::::::::::::::::· . , .· . , .1 ~ : ~ ; 23°G .

, . . .

............. - _-_. __.. __ - -_ __ .· . .· .

8 ~ : ~ : ., . . .· . .

7 -_ .. __ -:- ---- ---.-;--- --:._-_ __ . __ ; ., . , .· .,, . , .· . . .-_ --.-----.--- .. --- ·······.··_-_·_-_···· __ ········1'······················· . . .· , . ,· , , ,5 . , . ,...................... ; : : : '800G' ., , . ., . . .

c'f...tJ)

Q.CD 6eo..!'iii 4c~

2.5x10 12.0x10 11.5x1011.0x1015.0x100O+--.-......----r---.----.,.....-.--....---.-......----T'"---.----.-.--....---.-......----r---.----.,.....--r--~-.- .........___.___+0.0

Time (hrs)

Figure 9.46. Tensile creep strain versustime of Neoflon™ M-300H at various temperatures and a stressof 6.9 MPa.

9.7.2 Daikin Industries Neotlon ™ M-400H-High Molecular Weight,Increased Toughness PCTFE

13+-..................--'---&.----1'--"---'---..................--1---&.---''-''---'----1--.........--'---&.---''--1----'---..................--'-__+

•............... .} ......................• I •••...........•......... .. .

· . ............................................................................................... ; .· . . .· . . .· . . .· . , ......... ... ... ... .

4 ~ : ~········ .. ····· .. ······;· · .. ·····80oG·· .., . . .· .

, . . .... . . .. . . .. . '-. . .. . .. . . .. . .. . ~ ., . , ... ... .7 : ; : ; .

· . . .· "· ..

11 : : ~ : ., . , .: ; : : 100°C10 ,.................. .., . , ., . , .· . .· .

12 ~ : ; ... ... .· .

...................................................................................· . .· .· .,5 8e(j)Q.CD 6eo 5..!'iiicCD

~ 3· .

2 ~ : : ~ ; .· . . .· . . ,

1 ~ : ~ ; 23°G ..· . . .

2.5x10 12.0x10 11.5x1011,Ox101O+--.-......----.----.---,r--.--~-.-......--i----.----.,.....-.--....---i-......----.----.----.,.....-;-~-.- .........---.--+0.0

Time (hrs)

Figure 9.47. Tensile creepstrainversustime of Neoflon" M-400H at various temperatures and a stressof 6.9 MPa.

Page 331: The Efecct of Creep

9:FLuOROPOLYMERS 333

9.8 Polyvinylidene Fluoride (PVDF)

9.8.1 Solvay Solexis Solef@ 101o-General-Purpose, Homopolymer,Molding, and Extrusion PVDF

1082

· , . ."," : ., , ,, . ,, , ,, . ,, , ,, , ,

, , ,................................................., , ,, ,, ,, ,, ,, ,, ,· . . .. -. ',' -,' - - -.. ~ -..

.... - :- -: ~ : ., . . ., . . ., . . ., . . .· , . .· . . .· . . .

5

o+-.....,...---,i--....---i--....-....;----.-..;...-.....,...--+o

10

:l 202!....en

15

co 25Q.

:it-

35

40

30

4 6Strain (%)

Figure 9.48. Isochronous stress-strain versus time of Solef® 1010 at 23°C.

6051 - 5 MPa

· . ...........: _-:. __ ._----_. __ . __.. _--:------._------· . .· . .· . .· . .· .: : 1010-5 MPa: : i-

2 --- ---- _.. --_ --_.~. -_ .. -_ .. --_. ---- :. _ -_ .. _ _ '.... . _.-.. -t- _ ••••• _ ••• -_. -_ •• _. ','" _ ••• _ ••• _••· .· .· .· .

10 : : __ ..

-ose";;" 8 : ":" : : : .

·e : : ' : :.... .. ..en :. ::g. 6 ~ : : : 60512-4MPa .e : : : :o.!'enc~

100010010

Time (hrs)

10.10+-~---.-"""T""T""T"T"'I..-r----. .........."""T"""...........,...-,........,r-r-............,..-.......-.........................-...._..,......,........"T'TT1,....-"""T"""~....+

0.01

Figure 9.49. Tensile creep strain versus time of Solef® 1010 at 120°C and various stress levels.

Page 332: The Efecct of Creep

334 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

10000

......... 5.5 MPa

1000

......... , 5MPa

4.5 MPa

100

-...lI.....~ ..........-~: 6 MPa. ,-_. .. --.: ~ :.., . ,, ,

.......: : - - :- :-.· , , ,· , , ,· , . ,· . . ,

10.1

.................. ";' -.. - ~ .. -------. . ":' ---. --. - :" --: . ----.. - ':" .

: : : : : 7MPa.............. ---. -;- ' ~. . .. . :- .. --_ ~ -. . . :..: :' . 6.5 MPa

2

O+-.......,........--.-................- ..........T""T"" ......rr----.---.....................,.-.....""T'"""T""T""......rr----.---.....................,.-.....""T'"""T""T""........,......

0.01

4

20 : __ ~ _-_._ ;............ "0 •••••••••••••••• _-~ ••••••••••••• _.- •• -~.· . . . . ,: : : : : :· , , , , .____ •••••••••• __ __ •••••••••••• .. •••••••• _ _. • -r-o' ,I'., "." "," ",

22 : , : : ~~· , , ,· . , ,· , . .

_ 18'#.- 16c'iiib 14fI)

go 12eo 10.!!'iii 8c~ 6

10

Time (hrs)

Figure 9.50. Tensile creep strain versus time of Solef® 1010 at 140°C and various stress levels.

50

40

30

20-caQ.::E-I/)e- 10fI) 9c.o 8~ 7

6

5

4

- :.:- 30°C-: - - -:- : ----...; ... ...:- : 50°C: : -- - -:-

: : ---,: : :: : : :

: : : 100°C'1''1''1''1' ''I' :..": : ..""!' '"

....... ---..... -~ ................ 120°C........ .... . ..... -.. ~ ..................,.. ..... .....:

..,..: :

... : 140°C: .... .....

: ... : ... ........: : : ~... ... .... 150°C.. ' ...:"" .. :

: : :: : : :: : :

: : : :: : :

:.,101

Time (hrs)

Figure 9.51. Hoop stress versus time of Solef® 1010 at various temperatures.

Page 333: The Efecct of Creep

9:FLUOROPOLYMERS 335

25+-__-I---'_-I- '---J-__---l-_............._....o...----Io_........---l"---'- --'--+----+

14013012011010090807060

.-- .; __ : : --_ _------- ---_..· . .· . .· . ., . .· . .· .· ., .· .· .· ,

50

· , , , . .____ ••••••• , ••••••• _. __ (" • __ • __ ,••••••••••••••••••• __ .0 ••, •••• _------ .. --_ •••••••••••••

........... :. --. --. - : : : : -:. --. . . . . . .. . ~ . . . . . . . . . .. . .• • I • ., ,· , , . .. ,· , , , .. ,, , , , .. .· , , . .. .· . , . .. .· . , . " .· , , . " .· . , . .. .· . , . " .· . . . " .· . . . .. .

O+----.....-"""T"-..,....---,r---.---r----.....-"""T"-..,....---,r---.---r----.....-"""T"-..,....---.,,....-........--r--....--+40

-ftID.

~ 20e«I

~oIt) 15s'tl.!«I'0Q. 10l!­><WII)II)

~ 5-enQ.oo

::I:

Temperature (OC)

Figure 9.52. Hoop stress extrapolated to 50 years versus temperature of Solef® 1010.

20+--......-+-------I----'''''''----Io---.......-------l-_-''-_-J-_........._-I-_........_+

10090807060504030

. .,...... -------r----·········· ..· ·· ,_ ._, _ , .

5 ~ ~ : : ~ ~ : ., . , , . . ,, , . , . . ,, , , , , . ,, "'"· "'"· .· .· .,...· .· .· .· .· .· .· .O+--op--r--....---,r--........----r---..--;.-.....,..---r--........-...;...-"""T'"""-...;...-..,.....-+

20

f 15«IG)>.oIt)

s

-ftID.::::E-

'tl.! 10«I'0Q.e-><wII)

fenQ.oo

::I:

Temperature (0C)

Figure 9.53. Hoop stress extrapolated to 50 years versus temperature in the presence of water of Solef® 1010.

Page 334: The Efecct of Creep

336 THEEFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

9.8.2 Solvay Solexis Solef@ 8088/0902-Carbon Fiber Reinforced PVDF

1.0 +-__....o.-_"--.................................... '-I-__........._....o.-....................................o..l-__-'-_........--o.--o..................""""'+

, ,0.9 -- ----- : ------ ---.---.------ : ---.--------------------.------ .

, ,, ,, ,, ,, ,

_. - _. - - - _. - - - _. _ ••••••••••••••• _. _. - _ • .i. __ • • _. _ _ _. • • __ • _ •••• '" •••••••••••••••••••••• _. __ •• __ •• •• _, ,, ,, ,

.- .. --_._ _--------_._. . -_ _- , --------------------------------_., ,, ,, ,, ,, ,, ,._-- ----------_._-_. __ "\ _ -.-_ .. --_._----------.------_._--------------------------_._-, ,

, ,..................... --------_._._-----.----_._----------_._._ __ ._ _ _. __ __ _-_._-, ,, ,, ,, ,

...................... --- __ ----. - ; -.. -. --.- ------. -----:-. - 20 MPa, 120°C. ., ~---i-' ----

0.8 -- .. --- : ----.---------- : --------_ ., ,, ,, ,, ,-~ 0.7

c'ftjJ:: 0.6rnQ.CP 0.5eo.!! 0.4'iiic~ 0.3

0.2 -------------- : : 10 MPa, 120°C. ., ,

100010010

•• __ •• _ • .1 __ •• ._ .. _ _ __ •• __ ._. • __ •, ,, ,, ,, ,, ,, ,O.O+---.........-......-....,........,.....................r-r---..........- .........__....,............"'I""I'"--.....,..-_~~--.- ........,......,..+

1

0.1 -..

Time (hrs)

Figure 9.54. Tensile creep strain versus time of SolefID 8088/0902 at 120°C and various stress levels.

9.8.3 Arkema Kynar@ PVDF

100001000100

:: 3.7 MPa, 90°C.'

:: :::. -,-

:: :,

3.14 MPa, 90°C: :

-,-

: 3.7 MPa, 60°C:

:: ::

1,2 MPa, 90°C:; ... ~

-1.2 MPa, 60°C" :

:::0.0

10

0.5

3.5

4.0

3.0-?ft.-c.ftj 2.5..-rngo 2.0eo.!! 1,5'iiic~ 1.0

Time (hrs)

Figure 9.55. Tensile creep strain versus time of Kynar® at various temperatures and stress levels.

Page 335: The Efecct of Creep

10

10.1 Background

This section contains information and multi­point properties for several high-temperature, high­performance plastics. They might be classified ormight have been appropriate to include in anotherchapter, but they are grouped in this chapter becauseof their performance levels.

10.1.1 Polyetheretherketone (PEEK)Polyetheretherketones are also referred to as

polyketones. The most common structure is given inFig. 10.1.

PEEK is a thermoplastic with extraordinary mecha­nical properties. The Young's modulus of elasticityis 3.6 GPa and its tensile strength is 170 MPa. PEEKis partially crystalline, melts at around 350°C, and ishighly resistant to thermal degradation. The materialis also resistant to both organic and aqueous environ­ments, and is used in bearings, piston parts, pumps,compressor plate valves, and cable insulation appli­cations. It is one of the few plastics compatible withultra-high vacuum applications. In summary, the prop­erties of PEEK include:

• Outstanding chemical resistance

• Outstanding wear resistance

High-Temperature Polymers

• Outstanding resistance to hydrolysis

• Excellent mechanical properties

• Outstanding thermal properties

• Very good dielectric strength, volume resistivity,and tracking resistance

• Excellent radiation resistance

10.1.2 Polyethersulfone (PES)PES is an amorphous polymer and a high­

temperature engineering thermoplastic. Even thoughPES has high temperature performance, it can beprocessed using conventionalplastics processing equip­ment. Its chemical structure is shown in Fig. 10.2.PES has an outstanding ability to withstand exposureto elevated temperatures in air and water for pro­longed periods.

Because PES is amorphous, mold shrinkage is lowand it is suitable for applications requiring close tol­erances and little dimensional change over a widetemperature range. Its properties include:

• Excellent thermal resistance-Tg 224°C

• Outstanding mechanical, electrical, flame, andchemical resistance

o

0-o-0-o-~

Figure 10.1. The structure of polyetheretherketone.

o

0---O-~o

Figure 10.2. The structure of polyethersulfone.

337

Page 336: The Efecct of Creep

338 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

• Very good hydrolytic and sterilization resis­tance

• Good optical clarity

• Processed by all conventional techniques

10.1.3 Polyphenylene Sulfide(PPS)

PPS is a semi-crystalline material. It offers anexcellent balance of properties, including hightemperature resistance, chemical resistance, flow­ability, dimensional stability, and electrical charac­teristics. PPS must be filled with fibers and fillersto overcome its inherent brittleness. Because of itslow viscosity, PPS can be molded with high loadingsof fillers and reinforcements. Owing to its out­standing flame resistance, PPS is ideal for high­temperature electrical applications. It is unaffectedby all industrial solvents. The structure of PPS isshown in Fig. 10.3.

There are several variants to regular PPS that maybe talked about by suppliers or may be seen in theliterature; they are:

• Regular PPS is of "modest" molecular weight.Materials of this type are often used in coatingproducts.

• Cured PPS is PPS that has been heated to hightemperatures, above 300°C, in the presence ofair or oxygen. The oxygen causes some cross­linking and chain extension called oxidativecrosslinking. This results in some thermoset-like

properties such as improved thermal stability,dimensional stability, and improved chemicalresistance.

• High molecular weight (HMW) linear PPS hasa molecular weight about double of that of reg­ular PPS. The higher molecular weight improveselongation and impact strength.

• HMW branched PPS has a higher molecularweight than regular PPS, but it also has poly­mer chain branches along the main moleculebackbone. This provides improved mechanicalproperties.

The properties of PPS are summarized below:

• Continuous use temperature of 220°C

• Excellent dimensional properties

• Transparent

• Improved impact strength and toughness whencompared with PES

• Excellent hydrolytic stability

• High stress cracking resistance

• Good chemical resistance

• Good surface release properties

10.1.4 Polysulfone (PSU)PSU is a rigid, strong, tough, high-temperature

amorphous thermoplastic. The structure of PSU isshown in Fig. 10.4.

Figure 10.3. The structure of polyphenylene sulfide.

Figure 10.4. The structure of polysulfone.

n

Page 337: The Efecct of Creep

10: HIGH-TEMPERATURE POLYMERS

Its properties are summarized below:

• High thermal stability

• High toughness and strength

• Good environmental stress crack resistance

• Inherent fire resistance

• Transparence

10.1.5 Polyphenylsulfone (PPSU)PPSU is a rigid, strong, tough, high-temperature

amorphous thermoplastic. It has a high heat deflec­tion temperature of 405°F (207°C). It can withstandcontinuous exposure to heat and still absorb tremen­dous impact without cracking or breaking. It is inher­ently flame retardant and offers exceptional resistanceto bases and other chemicals. The structure of PPSUis shown in Fig. 10.5.

Its properties are summarized below:

• High heat deflection temperature of 207°C

• Superior toughness

• Exceptional hydrolytic stability

• Good chemical resistance

• Transparent

339

10.1.6 Polybenzimidazole (PSI)PBI is a unique and highly stable linear heterocyclic

polymer. Its chemical structure is shown in Fig. 10.6.PBI exhibits excellent thermal stability, resistance tochemicals, acid and base hydrolysis, and temperatureresistance. PBI can withstand temperatures as high as430°C, and in short bursts up to 760°C. PBI does notburn and maintains its properties at temperatures aslow as -196°C.

As it is ideally suited for application in extremeenvironments, PBI can be formed into stock shapesand subsequently machined into high-precision fin­ished parts. Because PBI does not have a melt point,moldings from virgin PBI polymer can only be formedin a high-temperature, high-pressure compressionmolding process.

PBI is highly resistant to deformation, and has lowhysterisis loss and high elastic recovery. It exhibitsductile failure and may be compressed to over 50%strain without fracture. Celazole'" PBI has the highestcompressive strength of any thermoplastic or thermo­setting resin at 400 MPa. There is no weight loss orchange in compressive strength of Celazole'" PBIexposed to 260°C in air for 500 hours. At 371°C, noweight or strength change takes place for 100 hours.In spite of these unusual properties, PBI is usuallyblended with other plastics, particularly polyestersand PEEK.

o

Figure 10.5. The structure of polyphenylsulfone.

o

0---<Q>-~o

n

Figure 10.6. The structure of polybenzimidazole.

Page 338: The Efecct of Creep

340 THE EFFECT OF CREEP AND OTHER nME RELATED FACTORS ON PLASTICS AND ELASTOMERS

10.2 Polyetheretherketone (PEEK)

10.2.1 Victrex PLe vtetrex" 450G-Unreinforced PEEK

100010010.1

..: : ~· ', , ., . .: . ,· . ,· . ': :

.. ... : .,.

: : -: : : 40 MPa

: :

: : : :: :

-,- -.- -,-: : : 30 MPa

:

:

20 MPa... : -.- ...: :: :

: : :: : 10 MPa

: : : :

: :0.0

0.01

1.5

2.0

-~e,c'!eni" 1.0!c.!!'iiic~ 0.5

10

Time (hrs)

Figure 10.7. Tensile creep strain versus time of VictreX® 450G at 23°C and various stress levels.

5MPa

1 MPa

2MPa, ,••••••••••••••••• ~ ••••••••••••••••••• ; ••••••• - • - ••••••••• '0 •••••

, ,, ,

. . , ,----,------------_._-- ...,._----_._---------- .. ----------_···---_·,--_·_--------------r-----·, , . , ,, ,. .., .

, , .••••••••••••••••••• ,•••••••••••••••••• __ , ••••• ••• -0 •••••

, ,, ,, ,, ,. ,. ,

1.0 4 •••••• __ .

-~~ 0.8c'!en§" 0.6..o.!!'iiic~

10000100010010.10.0 +----,.--r""T""T"T"TT........---.---.-........................----.---r"""T'""l"'T"'r"....................-.-.-.................-...--.I""""T""................-...--'f"""T""T'"T"'~

0.01 10

Time (hrs)

Figure 10.8. Tensile creep strain versus time of VictreX® 450G at 150°C and various stress levels.

Page 339: The Efecct of Creep

10: HIGH-TEMPERATURE POLYMERS 341

10.2.2 Victrex PLC Victrex@ 450CA30-30% Carbon Fiber Reinforced PEEK

100010010.1

..:

: : : :

: 80 MPa:.. "

: : : ::

: : :: : :: 60 MPa.'. ~

::

:

: 40 MPa.. , . ','

: : : :: :

: : :: , 20 MPa..

: : : ::

::

: : :: :.,0.0

0.01

0.4

0.5

0.1

-~~e'iti 0.3

Q,

~o.!! 0.2'0e

{Eo

10

Time (hrs)

Figure 10.9. Tensile creep strain versus time of VictreX® 450CA30 at 23°C and various stress levels.

0.5T---'--..........................~-----''''--- ...................................---'-----Io--'-............................- ........--'-.........................------t-

. ..: ~ -, ,, ,, ,, ,, ,, ,, ,, ,

0.4 : , ., ,, ,, ,, ,, ,-'#.-c:

'! 0.3enQ,

~o.! 0.2 L.;.;..:.;.....--'.~..:":":..::"".:.------;_ ..---.._.._ _ ~ _. -_. ----------- .'0 ' ,c:

{Eo20MPa

10010

. ~ --.:- -. --- ~ --------, , ,, , ,, , ,, , ,, ,, ,, ,, ,, ,, ,, ,, ,

0.1

0.1 : .

0.0+--......................................-r--.......-"""T"'"......................;--..,..........-.......r"""T'""........;--..,..........-......................i--+0.01 1

Time (hrs)

Figure 10.10. Tensile creep strain versus time of VictreX® 450CA30 at 150°C and various stress levels.

Page 340: The Efecct of Creep

342 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

10.2.3 Comparison Charts of PEEK

100001000101

:

Victrex 450G, 0.1% Strain, 150°C- •••••••••••• - - - - - •••• ~ ••••••••• - •••••••••••• :•••••• - •• - - - • - - - ••••••• :••••• - • - - - •• - - - - ••••••• I· ••••••••• - -

, , , ,

: :• • I , •· . . . .· . , . .· . . . ,: Victrex 450G, 0.1%, Strain 23°C ; ;

-------------.....----[- --------. ....-----~ --------------.......-r ------------------. ---:" ....-----------------r ---

: : ~ Victrex 450GL30, 0.1% strain, 23°C, . , . .

•• _ •••• _ •• _. _ •• _ •• - _ •• , •••• -. - - - _. - _ •• - - - _ •• or' • _ ••••••••••• - - _ •• _. '1' - _. - - _ ••• _ ••••••••••• 't" ••• _. - - _ •• - - _. - _ ••• - - -,- • _ •. . . ,

: :: :

:: :

. --.... -- ----------... ; ......................:...... -. -- ----------Victrex 450CA30, 0.2% strain, 150°C- -----;- ---

;: Victrex 450CA30, 0.2% strain, 23°C

o0.1

25

20-asa.CJ-III~ 15~"00:EQ.Q)

10Q)..0.!!.;e~ 5

100

Time (hrs)

Figure 10.11. Tensile creep modulus versus time of Victrex® PEEK resins at various temperatures and variousstrain rates.

125+----'---'---'-................._---'----'-...................&..&.I-_...o...-...o...-................o.l--_o..---.........................I---""-""--'-.......~- ...........

100 .:..:.::-.,.., -- - -..:..'-~- -------------.----- -~ - ~ ~ -.-------- -~- ----------- : : : :, , I •. .

Victrex 450G--- --- -:---

'i 75 ---------------------~- ------------------- -~- ------------------. -:- .. -.... ~-~.:-:-.~. :"::-:-:.,=,,--:E ---.;,;-.:,:-.:.--::.,--------"'-" : --IIIIIIeen 50Q.ooJ:

Victrex 450GL30

, . . . ,....... _-_ _-_ ,--_._-_.. _-_ (" , ' ..,'.".' .. '

100001000101o+----.---.r-T'""T"T'"rTT'1-r-T'"r-T'"...............'"'T'"-...............................,--.--........."'T"T"T'TTr-----.----.--.-..............,.--.-.L0.1

25 ----- .. ---- --- , ; -------:--------------.-------:----------- .. --.-- ;.. - .· . , , ,, , , . .· . , , ., . . . ., . , . ., • • I •

, , . , .· . . . ., • I •· "., .,.· ...

100

Time (hrs)

Figure 10.12. Hoop stress versus time of Victrex'" unfilled and 30% glass fiber filled PEEK resins at 23°C.

Page 341: The Efecct of Creep

10: HIGH-TEMPERATURE POLYMERS 343

-70+-_--'-_.............o...-.............................__"'---.......... ---&................................J~- .........-'--...........................~----'l--I

: : : 0°. . .: : Victrex 450CA30 ~60 "': """;" ":'" .. .

-ellC. 50:::iii-Zl~-en 40Q.ooJ:

. -- - - --.. - -. - -.. - - ~ - -. --. - ~ -.. -· .· .· .· .· .--- --- ---- --....~.~.~ _."".;..:. ~ '':':'':'': '~."= .~ ..-e-, - -''""-'~':':'~'~':'': ~~ - _.. - vi'~i~~~'450GL30"" - .

--- ' ----- - - - . _ - - - - - - -: - 0° 90°

- - -:- - - - - - - - - - --t - _..............

... ,

30 ~ .-.~. t.~:.~. :.~ :.:. :.~.e. , .•.•.- _'e·.'~ ~i.·.·~ '.' ~.; '':'e':';'': '.':';';': :': .;;~.:.:.; '::' :.;.:.

: : Victrex 450G ~· .

10010120-4--___.-...,...-r-""T"'""..................~--.....-..-...- ..............."T'T'"--......--~---.---.....,...I"""'T"""I"T"""--.---+

0.1

Time (hrs)

Figure 10.13. Hoop stress versus time of Victrex® PEEK resins at 150°C. (The 90° indicates the direction oftesting perpendicular to melt flow, 0° along the direction of melt flow).

10.3 Polyethersulfone (PES)

10.3.1 BASF Ultrason@E2010-MediumViscosity,UnreinforcedPES

2.01.5

-: , : .

0.5o~""""""T"'""r-r""""''''''''''"""T'"""T'''''''" ...............-i-.........--r-......-+0.0

-ellc.!.10II)

~-en

15

1.0

Strain (%)

Figure 10.14. 1ODD-Hour isochronous stress-strain of Ultrasonf E 2010 at various temperatures.

Page 342: The Efecct of Creep

344 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

10000100010

~' ,, ,

.. ........... :.................. ....1" ............................:

MPa :40 ::,....:

:

:: :

30 MPa : :: : :: : :: : :.. ..

:

20 MPa:

: : ::

:" ,

10 MPa ::: :

:: : ::

0.01

2.0

~ 1.5e,c'i!(j)

2' 1.0~o.!!.;c~ 0.5

100

Time (hrs)

Figure 10.15. Tensile creep strain versus time of Ultrasorr" E 2010 at 23°C and various stress levels.

2.5+--........----..............................._-.......--'--'...........................I---........---r.---r.--'-........~'--- ......--'---'-.................a..o..r

c

~ 1.5

Q.

~o.!! 1.0.;c~

-?fl.-2.0 : : , .

, , ,, , ,, , ,, , ,, , ,, , ,, , ,, ,

10 MPa

100001000100.0 +----r---.~--r-....-rT"T"f--......- .......__...................,-----.--.--.........................,......-__---.-........__,...,...,.-.+

1 100

Time (hrs)

Figure 10.16. Tensile creep strain versus time of ultrasorr" E 2010 at 140°C and various stress levels.

Page 343: The Efecct of Creep

10: HIGH-TEMPERATURE POLYMERS 345

10.3.2 Solvay Advanced Polymers Radel@ A-200A-Medium Viscosity,Unfilled, General-Purpose PES

35+-...............o...+...............--+-a-..................,a,.'1'"-'............o....t

0··~··············

o .

~:

30 -; , .

· .25 _ _..:.. _ _.. ~_ : .· . .· . .· .· .· .· .· .· .· .

5 .

10 : ~ : .· . .· . .· . .· . .· . .· . .· . .· . .. .

Cil20D.:::E-

2.01.5O-h,.......,..........-........;........-.......-.-;......-.-.......--i-......................+0.0 0.5 1.0

Strain (%)

Figure 10.17. 100-Hour isochronous stress-strain of Radel® A-200A at various temperatures.

3.0+-_"--.......................4----'--'.................o...&..I.JI-----'----'-...................."""""'_..........................................._ .....................................~

-IIID.C)-; 2.5.2:::l't'o:::ECoCDeo~ 2.0!IIICoCo

<C

· . .··················f·······················,·······················t-······················· . .· .· .

:85°C-- -. ------ --;- ----.-.. - ~ -----------. -.. -:- --. ~ .· . . ,· , , ,· . , ,· . . ,· . , ,· ..· ..· ..· ..· ..· ..· .· .· .· .· .· .

100000100001000100101.5+--....-......................-i-----.---.--.-"T""T'"........,i--.......................................---.----,-....,....,................- ........_ .......................I-

1

Time (hrs)

Figure 10.18. Apparent creep modulus versus time of Radel® A-200A at a stress of 20.7 MPa and varioustemperatures.

Page 344: The Efecct of Creep

346 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

10.3.3 BASF Ultrason@ E 2010 G4-Medium Viscosity, 20% Glass FiberReinforced PES

2.01.51.0

Strain (%)

0.5oof-,....,....,.....,..-i-..................,,.......;.................,...........;.-r-...............-+0.0

· .10 : ~ ';'" .· . .· . .· .· .· .· .· .· .· .· .· .· .· .· .

40

30-ftIQ.:E-

Figure 10.19. 1000-Hour isochronous stress-strain of Ultrasorr" E 2010 G4 at various temperatures.

10.3.4 Solvay Advanced Polymers Radel@ AG-23O-Medium Viscosity,30% Glass Fiber Reinforced PES

35+--+--~----!--","""","--+-:-....,..,.+-,.~

30

.....; ~ ~ .. . ., . .

........... -,- ~ .10

25 ········:····· __ ·:········i···· : : ~ .· . . . . .· .. .,· .. .,· .. .,· .. .,· ,. .,, .. ... ... .Ii 20Q.:E-

5 .

O+--;--;---;----T---;--;.--+0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Strain (%)

Figure 10.20. 1DO-Hour isochronous stress-strain of Radel® AG-230 at various temperatures.

Page 345: The Efecct of Creep

10: HIGH-TEMPERATURE POLYMERS 347

Ci711.~III.2:::J

'1::Jo:IE 6Q.CPeo­ceIII 5Q.Q.~

... __ --_ ----_ .

. .···········Z3°C························;·············· .

. ..~ ·170°C······· ·· .. ···· ; .

10000010000104+--....-........................,.j--....--.......-.....................;--"'"T"'""-r-"T"""T.......'"'T'"-....................,....,,....,....,"'T'Tf----.----r.................~

1 100 1000

Time (hrs)

Figure 10.21. Apparent creep modulus versus time of Radel® AG-230 at a stress of 20.7 MPa and varioustemperatures.

10.3.5 Sumitomo Chemical Sumika Excel@4101GL3D-30% Glass FiberReinforced PES

i': -/.~ .: /:

~ ~ ....<?'l> /. \)~. /~ /

0(,' /<':>\)· . . '\ :'..........................................., '.' . . . . . . . .. . . . . . .. ./' .· . . , .

2.0 ; ; ; .· . .· . .· .

20°C, 39 MPa

20°C, 29 MPa

· . . ~:~ ~ ,

.~ '~5~0~, 20_M:~~' '~":..'~'~' ~'~'~'~'~'~'~';': ';.' -+ '.;.' ._. _.:-:.~.~ ~ : .· . . , ., . . . ., . . , .· ..,· ..· ... .

ZO°C, 10 MPa

100001000101 100

Time (hrs)

Figure 10.22. Tensile creep strain versus time of Sumika Excel® 4101GL30 at various temperatures and stresslevels.

Page 346: The Efecct of Creep

348 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

10001001

· . ......... --. -. ---. -- : -.---. -.. ---. ------. ------:- -. -------- ~ . -- -.· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .0.0+--.......--.--........."T""'T'"......,--..--......."""T""""T"""'I".......TT""---..-..--......................-r--.......--..--........."T""'T'"~

0.1

-~ 1.0 L=~:.:.:..:.~:..:;.:.;..:..-.~_..-:"-=-:"~'·:":":··:-:-··:-:-··~··"""""~""········· ~ .

.~ ~ ~~ ..UJCoQ)

eo~::::l 0.5><Q)

u:::

10

Time (hrs)

Figure 10.23. Flexural creep strain versus time of Sumika Excel®4101GL30 at 150°C and various stress levels.

10.3.6 BASF Ultrason@E2010 G6-Medium Viscosity, 30% Glass FiberReinforced PES

70 +-__o....----'-----'____'"-"-..........a..l-__......._..L...-...........o...-..................~----''-- ........____'"---'-..................L..I-___+

100001000

.. - - ~ -.. --.. -----.. -------- :-. --- .· .· .· .· .· .· .· .

100

...................-----_ _--_._--_ _-',: :-. .- . .............. ~

.. --.. --- ---- . - - . -. -- . ---:..":'": -""""- - - - ---. -. -- . ---. -.. ~ -.. -- - -. - ~ . -- .......: :· .· .- .· -...................................; ~ -:-: .-=-.."':- ......, , ...:.,. :: :.:, : .

; : -- -:- -.· .· .· .· .

0+---....----.---.--.........."T'""'T""T"T--.......-..--_.._.....-........"T""'T'"r------...----.---..---.-"""T""""T""'T'"..,..;...---4-10

10 : , ; .· . .· . .· . .· . .· . .· . .· . .· . .

23°C :

60 . : ~....................................................................... , , .· . .· . .· . .· . .· . .: 60°C : :

.c~

g'40eenCo 30~o..9!'(i) 20e~

~ 50:E-

Time (hrs)

Figure 10.24. Tensile creep strength in water versus time of ultrason" E 2010 G6 at various temperatures.

Page 347: The Efecct of Creep

10: HIGH-TEMPERATURE POLYMERS 349

10.4 Polyphenylene Sulfide (PPS)

10.4. 1 Chevron Phillips Chemical Ryton@ A-200 PPS

24°C/34.5 MPa : ::

: -66°C/34.5 MPa : :.. -- - '-' - ..~- -- - - - - - - .;- - - :- - - -- - - -;- - -:- - - : 24°C/68.9 MPa- - - - - - -- +- - - - -: - - - - - - -- - ... .~- -- ....

~6~o~68.·9M~~: - - - - -- - - - -121°C/34.5 MPa

: :

:-.- ; .. ..

: : ::

: :::

20

o0.01 0.1 10 100 1000

Time (hrs)

Figure 10.25. Tensile creep modulus versus time of Ryton® A-200 at various temperatures and levels of stress.

10.4.2 Ticona Fortron@ 1140L4-40% Glass Fiber Filled, Medium MeltViscosity PPS

5

o+-""T"'""--j-.....,...--;--....---i-"",-r--,,---;-""T"'""-+0.0 0.2 0.4 0.6 0.8 1.0 1.2

Strain (%)

25

0.80.60.4

Strain (%)

0.2O+-----.-"""T'"-..--~-_r_-r-_....-+

0.0

90+----'_-+-_..o...----l._........._+----'-_+

60 20

ca -IIIa. a.:E ~15-III IIIIII IIIGl e..... ...

CfJ CfJ30 10

Figure 10.26. Isochronous stress-strain of Fortron"1140L4 at 23°C and 50% relative humidity.

Figure 10.27. Isochronous stress-strain of Fortron®1140L4 at 120°C.

Page 348: The Efecct of Creep

350 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

1.5O~.....-.,......,...-.---;."""'T"""'T"''""T"""...,.....-i-....-,.......,,.....,.-i--+

0.0

......... ,)..../ :

/ fQo:. / .fQ(J :: / <o~ :. ~.... .y ~ :

· . ,,<:) .: / ~'J :

............ , ':" '''j'' "cs ~ ./ :

/ :: / :I :

5 1.; : : .I : : :I: : :I: : :· . .

~: : :· . .· . .· . .· . .· . .

15

20+-.........__O_.........+-.........___...........+-.o..-I................-+-"'I"

0.5 1.0

Strain (%)

Figure 10.29. Isochronous stress-strain of Fortrorr"1140L4 at 200°C.

-CllQ.::E 10-t/)~..

(fJ

1.51.0

....... ; .

0.5

Strain (%)

0+-...,.......,.......,.......,.......,.......,.......,.......,.......,.......,...._.__.__.__._-+0.0

5 : ; .· .,· .· .· .· .· .· .· .· .· .· .· .· .· .

20

Figure 10.28. Isochronous stress-strain of Fortron'"1140L4 at 150°C.

t/)t/)

! 10..(fJ

15-CllQ.::E-

: :

I I:: - - Extrapolated: :: : :

: : 80 MPa - - - - --: :

70 MPa: : : - - - - --: :: : 60 MPa - - - - --

: : :: : 50 MPa - - - - - -: :: :: : 40 MPa - - - - --: : :

: :: :

30 MPa --- - - -: : : :

: ::: : : :: :

10.90.8

0.7

0.6-~ 0.5e'! 0.4enQ.

$ 0.3..o.!!'0c 0.2~

0.10.1 1 10 100 1000 10000

Time under Stress (hrs)

Figure 10.30. Tensile creep strain versus time of Fortron? 1140L4 at 23°C, 50% Relative Humidity, and variouslevels of stress.

Page 349: The Efecct of Creep

10: HIGH-TEMPERATURE POLYMERS 351

1-';/!.0-c"(ij.....enQ.

~0.!!'iiie

{E.0.1

I: I- - Extrapolated:

:

: : :: : 30 MPa: -- - --.. .. .. ... .. .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. ~."-: .. . .. .. .. ... .. :

25MP~ - - - --- -20 MPa: -- - -: : ~ - --:

MP~ ---- 15 - -- -:

MP~ - - --10 - --: :: :- :

MP£ - -- -5 -- --:

.. .. .. .. .'. .. .. .. ... ... .. .. .. .. .. .. .. .. .. :- :: : :: : :

: :: : :: : ::

0.1 1 10 100 1000 10000

Time under Stress (hrs)

Figure 10.31. Tensile creep strain versus time of Fortrorr" 1140L4 at 120°C and various levels of stress.

1- - Extrapolated I

1-';/!.0-e.(ij..enQ.CP~0.!!·iiic

{E.0.1

22.5 MPa - - .

............ .; 2Q·MP-a .. ; .._._._ ..,..,.-:: .~. ::..---17.5 MPa - --

15 Mpa - --

-----

.. _------------------_.'------_._------------_._--_ ... --- .....· .· .· .

0.1 1 10 100 1000 10000

Time under Stress (hrs)

Figure 10.32. Tensile creep strain versus time of Fortrorr" 1140L4 at 150°C and various levels of stress.

Page 350: The Efecct of Creep

352 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

1- ~ Extrapolated I

1

1000010001001010.1 +--~"""""T"""r"""""T"TT--""--''''''''''''''''''''''''T""-.....--r-'''''''''''''''''"''"'''1r----.r--....-.-r-'''''''"'OT"--r- .......-r-.,...,..''''''''''''

0.1

Time under Stress (hrs)

Figure 10.33. Tensile creep strain versus time of Fortrorr" 1140L4 at 200°C and various levels of stress.

:

: I- - Extrapolated I,: : :: : :

:: :

: : :: :

.. .. .. . .. .. .. .. :.. .. .. .. .. . . .. .. ~r : ", . . ... .. ..

: : 20 MPa : : - - - - - - -: :40 MPa

: - - - - - - -: : 60 MPa :

:

- - - - ~ ..~ ..~.. --.- .. .. ... '. ... .. .. . . .. -- .. --'. .-- .. .. .. .. .. .. .. .... -- . .. .. .. .. .. .. .... . . .. .. ..: : : :

80 MPa : ::

: -:-- - - - -- --: : ::: :

: ::

25000

-«ID.!. 20000I/)::l::l

"Co:ECoG)

eo 15000.!'iiic~

100000.1 1 10 100 1000 10000

Time under Stress (hrs)

Figure 10.34. Tensile creep modulus versus time of Fortrorr" 1140L4 at 23°C, 50% Relative Humidity, andvarious levels of stress.

Page 351: The Efecct of Creep

10: HIGH-TEMPERATURE POLYMERS 353

7000+-----'..........'--'-......................l----'----'--'-................- ........................................~-""'--""'-- ..............~- ...........................""'"4_

1-, - Extrapolated I

10000

.... ....

....

100010010

.............. _----_ _-_ __ __ :--------_ ---

1

oS : :4f'O~··············1······················ :- .

, '· '· '· '· ', ., '

. -- ; .. ---. -. --- ~ ----. --: ------ ., . ,, . ,, . ,, . ,, . ,, . ,, . ,, . ., . .· , .· , ,· , .2000+--....-......................~-....- ........................~-....-,......,. ................._r_-....-,......,.................._r_-....-,......,..................+

0.1

3000

6000

1/1.2 5000='8:EDo! 4000o~1/1C

~

-ftIQ.:E-

Time under Stress (hrs)

Figure 10.35. Tensile creep modulus versus time of Fortron® 1140L4 at 120°C and various levels of stress.

- --

Extrapolated I...

.. ~ : .

, ,............................, ···r··········· ,· ,· ,· ,

............................, ., , ., .· .· .· .

· -- . - : ---. ----- ~ -. --. ---- .: .· , ,· , ,· , ,

· ,· , .......................................................... ; .· , .22.5 MPa : : :

, .

· , ,· -. ----. - '. . . . . . ~ ' .· , .· , ,· , .· , .· , ,, .

· , ,· , ,: : :Ir-----· -. -.. ----. ---. -. --:- --. -. -.. --- -.. ~ . --. -. ------. ---- :.· , ,, , ,· , ,· , ,· ,

2000 r==~~:::-:~t~~.-.----~..-;.;;.;.,;",;..:.:.:.:..:.:.:.:..:.:.:.:..:.:.:.:.:..:.:.:.L=~= _

5000

3000

, ,

7000 ..2.5 MPa ~ : ., ,

8000

6000

9000

10000+---'----'----'-.....................a.+------'"-"'--.......................l---'--.................................o.+-_........--'----'"................"""'+

-ftIQ.:E-

10000100010

· : ~ : - .· , .· , ., , .· , ., , .O+---.---.-......................"""'T'"----..--r--.....................,r--......-.-.......................,..;...-__._----.---..__._............+

1

1000

100

Time under Stress (hrs)

Figure 10.36. Tensile creep modulus versus time of Fortron® 1140L4 at 150°C and various levels of stress.

Page 352: The Efecct of Creep

354 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

5000+- .....................................I-----'----'-............................._ .............................................._....I...-....I...-...................o+.-_.a...-...........................+1- - Extrapolated I

10000

---

1000100

· ....... _-, .. __ ._-_ _--_., .. .· .

101

. .. _. -_ ••• - -- _•• - -_ ••••• f •••••••••••••••••••••• .; •••••••••••••• _. - -- - -- ~ •• _. _. _•• -- _. - _. _. _•• - ~- _0" - _. _. _ ••••~. :-:-.

, , . ., , . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .

- - - - - • - - - ••••••••• - - - - f - • - •••••••••••• - - - •••• .;• - •••••••••••••• - - - ••• {- - •••••••••••••• - • - •• - ~ - - - - •• - •••••••••• - - • - •. . . ., , . ., . . ., , , ,· . .· . .· . .· . .· . .· . .· . .· ....... --- --. --. . . -. - - --- ~ -----. -. ------ ~ -.. ---. --. - - ~ --. -.. -. -.. -. -.. - .· . .· . .· . .· . .· . .· . .· . .· . .· .· .· .

O+--.....-........."""T""'O.......rr--.....-........."""T""'O.......-r----..,....--.........................-r----..,....--.........................-r----..,....--.........................+0.1

1000

4000

II).a 3000~'tJo:Ec.~ 2000o.!!'iiic~

-ftI11.

~

Time under Stress (hrs)

Figure 10.37. Tensile creep modulus versus time of Fortrorr" 1140L4 at 200°C and various levels of stress.

10.4.3 Chevron Phillips Chemical Ryton® R-4-40% Glass Fiber Filled,High Strength PPS

: : :

::

24°C/34.5 MPa : : :

r- - - ~

24°C/68.9 MPa' '.' .. .. """ .-.-.-- ------.-.- ..-¥- ----: :r- - - - - :- - --- 66°C/68.9MPa- -:- -- - ---- .,.. - - --- - - ... .. . . ... .. .. .. -0-- . . ..

66°C?~5M~~':" .~ ...

: - -121°C/34.5 MPa :

: : :: :

.. . . .. .. ... . . .. .. .. ... .. .. .. ..:

: : :: :

: ::

20

Ci' 1511.~-II)~

~'tJ0 10~C.GlGl...0.!!'iii

5c~

o0.01 0.1 1 10 100 1000

Time (hrs)

Figure 10.38. Tensile creep modulus versus time of Ryton® R-4 at various temperatures and levels of stress.

Page 353: The Efecct of Creep

10: HIGH-TEMPERATURE POLYMERS 355

, ,....... -. -.. ---- ..- --.. ---. - ~ -. ----.. --. - , --.. -.. -- -

.~. ~.~. t·:-:·:-:·-:-: ..,...- '';',: ',:.:'

......: _-_ : __ .. _-.· ,............... __ ._-_ __ . __ . __ ; ., ,, ., ., .· .· .· .· ,· ,· ,

, .... __ -_ __ , --_. __ --_ .. ;-_ -.. __ --- ., . ., . ., . ., . '· . ,· . ,· , ,· , ,, , ', , ,

660C/34 : ----------:----- .:..24°C/68.9 MPa ,14 .. _._._,2, ~~'';'': .;.:...:....:-. ':..'~"'" ~ ~.. ;-..:"':-.'",..-.---- - ~~:.. ..:~::~~~.~~~.~~~ .

Ii 24°C/34.5 MPa .,D.C)

-; 12.a:::J

"8::E 10Q.Q)

eo.!'iii 8c

{!!.

6 ; ; ; ~ ., , , ., , . ,, , . ,, , , ,

0.01 0.1 1 10 100 1000

Time (hrs)

Figure 10.39, Tensile creep modulus versus time of Ryton® R-4 at various temperatures and levels of stress,

15 +-_..&....-........................"""""-lo_ ___"__..........................o.l-_.......................................~-'--..a...- ..........................._--'-___"--'-....................

24°C/68.9 MPa

...... __ , ,. __ ., ., ., ., ., ., ., ., ., ., ., ,, ,, ., ,, ., ,, ,, ,, ,, ,, , . .............. -. -. -. _.--:- -- -- - ; -------_._.- -: --. --- ~ _.-_.-.. - -

121°C/34.5 MPa : : : :, , . .· , , ., . .

, . .· .· .· .

Time (hrs)

Figure 10.40. Flexural creep modulus versus time of Ryton® R-4 at various temperatures and levels of stress,

Page 354: The Efecct of Creep

356 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

10.4.4 Chevron Phillips Chemical Ryton@ R-7-65% Glass Fiber/MineralFilled PPS

-C'll11.~ 15111=-='8::::EQ,

fo 10.!'iiic~

-------+-...................: ~.~.~.~. ;4:C~·~~·~~a-·"'·- - _. '~""" :.:. .;: ~.~.~.~.~ ., .---

10001001010.15 +-----r----r.................~- ...............................'O'T"""-....-......................,r__--.---.-.................'""T'"-~""T'"'"'"'lr"""T"""r""I"T"l+

0.01

Time (hrs)

Figure 10.41. Tensile creep modulus versus time of Ryton® R-7 at various temperatures and levels of stress.

10.4.5 Chevron Phillips Chemical Ryton@ R-10-65% Glass Fiber/MineralFilled PPS

Ii11.~ 10 ;. ; : , .111 : ' :.=: :=~~ -~ 121°C/34.5 MPa ' ,o 5 : ; : , _ .~ ::= "><CDu:

100001000100101O+-----r----r.................~- ...............................'O'T"""-....-......................,r__--.-__._.................'""T'"-~..,.......,~r""I"T"l+0.1

Time (hrs)

Figure 10.42. Tensile creep modulus versus time of Ryton® R-10 at various temperatures and levels of stress.

Page 355: The Efecct of Creep

10: HIGH-TEMPERATURE POLYMERS 357

10.4.6 Ticona Fortron@ 6165A4-65% Glass Fiber/Mineral Filled, Low MeltViscosity PPS

Figure 10.43. Isochronous Stress-Strain of Fortron'"6165A4 at 23°C and 50% Relative Humidity.

1.00.2o+-.......-r---....,.-.......-;----.--j---.--+0.0

15

-I'llQ.

!.10III

f..tn

0.4 0.6 0.8

Strain (%)

Figure 10.45. Isochronous stress-strain of Fortron'"6165A4 at 150°C.

, :

: / :;: :

.. ;.. / b······~······;·······'I cf : :: .0: : :;. ~. , .<f: : :

.. :./~ : ~ L .:~. : : :1 ~, . . .

/;.§5: : : :/:: ;:· .... .

...... ~ 1····:······~····· .. :·······:······~········ .....: r : : : : :; / : : : : :" ...: I: :::· .. ....... • f" .; ; ; ; ; ; .

I

r'J;

40

50

10 .. . ~ -;- : ~ -; ~ ~ .· . . , . . .· . . , . . ." ..." "." ..." ,.." ..." ,.." ." .o " .

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Strain (%)

IiQ.

!. 30

~en 20

1.21.00.4 0.6 0.8

Strain (%)

0.2

/

/;/

/I~

. : . 1 (f.. : :-- ~ ·····y·o~ --:- .· . . 'A:': : 1 , '< :· . ~ .; : I';:)~. :: :/~(;j::: j":;· . .

1. . .· . .· . .

1 ':. ... :/ ; ; ~ .

I: : ; :1 : : :· . .

: 1 :::· '":1 ::;

;: :;:'I : :::· '".,. '"

~. "., '"· '"· '"o-f--..--j-"""T""--;-.......--;.---.....--j-...---i--..--+0.0

10

IiQ.

!.IIIIII2!..tn

5

Figure 10.46. Isochronous stress-strain of Fortrorr"6165A4 at 200°C.

1.21.00.2o+----r-........--;-.......--;.---.....--j-...---i-.......-+0.0

:/ 0/(f

: 1 o~; 1 <f. ~.

: 1,;:)-<:' :I s§5 :

.: I~:20 : ':" : "1".. ; ; .. .. .: : : 1 :: I :

I: :. .1 : :

1 : :j: :.. .

., /.: ; ; ~ .1 : ; : :

: I: : : :. ..:I' ::I. ::

1 : ::'I ..

~en 10

-I'llQ.:::i-

0.4 0.6 0.8

Strain (%)

Figure 10.44. Isochronous stress-strain of Fortron'"6165A4 at 120°C.

Page 356: The Efecct of Creep

358 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

: :60 MPa - - - - -- -:50 MPa - - - - -- -: ---:40 MPa - - --:

: ---MPa --:30 - -: ::: ---: ---: :20 MPa -: :

: ::

: : ......: ......--...: :"OMP8:

:: : :

:

: :

I- - Extrapolated I: :

10.90.80.7

0.6

~ 0.5e'! 0.4enc.~ 0.3...o~'ene 0.2

{Eo

0.10.1 1 10 100 1000 10000

Time under Stress (hrs)

Figure 10.47. Tensile creep strain versus time of Fortrorr" 6165A4 at 23°C, 50% relative humidity, and variouslevels of stress.

:30 MPa:25 MPa:20 MPa

:15 MPa

------------------ ------------

1- - Extrapolated I

1000010001001010.1 +--..--...,........................T"TT"-........~ ........"'T""T"T"T"'I~-...--""T'""" .................."T"TT-~---. ........................,.,...-""T'"""........""T'""".................

0.1

Time under Stress (hrs)

Figure 10.48. Tensile creep strain versus time of Fortrorr" 6165A4 at 120°C and various levels of stress.

Page 357: The Efecct of Creep

10: HIGH-TEMPERATURE POLYMERS 359

1000010001001010.1 F--....-.......,...,....r"T"T"TT""-............-....................,.-.....................................r----...............--.-r"T"T...,--............-..............."I'"'I'f

0.1

1Extrapolated I0.9 1- - ....

0.8 .... ....0.7 ....

0.6 ....- ....C 0.5c:::'as 0.4..-t/)Q, ....G)

0.3!0.9! ....'0 .... ....e 0.2{!

Time under Stress (hrs)

Figure 10.49. Tensile creep strain versus time of Fortronf 6165A4 at 150°C and various levels of stress.

1- - Extrapolated I

- ----

- ----

-----

- --- --

, .• _;--_ ••••••••••••••••••••,•• __ •••••••••••••••••• 0; __ • ••••••••••••••••· , ,· , ,· , ,· , ,· , ,· , ,· , ,· , ,, , ,· , ,, , ,· , ,· , ,, , ,· , ,· , ., , ., , .

.......................~ ~ ~ 1!? ~~a

1t·======~=~~±=~~~~~====j~=~=~=~~~~~t=~~~2~~~·~~~~~~~:t~~==':="11' :=="-'~"'.':';';';''';';'- _...i _--===t=====~--=====f:J1.5 Mpa ---

1

-(fl.-c:::'as..-t/)Q,G)

!0~'0e~ 0.1

0.1 1 10 100 1000 10000

Time under Stress (hrs)

Figure 10.50. Tensile creep strain versus time of Fortron® 6165A4 at 200°C and various levels of stress.

Page 358: The Efecct of Creep

360 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

25000+-_'--............................I---____'..................................L---"--"..........................l----'---"'..................~- ......... ---'-................._'_'T

I- - Extrapolated I

100001000

..: : .: .... .... .... .... ....

100101

.. __ . __ __ : _--_._---_.: _--, ,, ,, ,, ,, ,

10000 +--.--........."""T""'T""T'T"O-r-----..........,........."'T""T"........,....-----.---........................,r-----.-~ ........T""T""I"'T'T'1--=.----.--r-T""T'"'l~

0.1

-ftID.!. 20000 r~~":"':":":~......i....._ : : ~ .

III :::~ ::::::I ::" ::o "

::ECoCDeo 15000~'iiil:

~

Time under Stress (hrs)

Figure 10.51. Tensile creep modulus versus time of Fortron'" 6165A4 at 23°C, 50% relative humidity, and vari­ous levels of stress.

12000 +-----'---.........................~----'----'---'- ..................L---"'--"...............""""'-l_.........___'_................._......l._ ___'_.........--'-........~

1- - Extrapolated 1

--:----

, , ,•••••••••••••• ••• •••••••••••••••••••••••• • • • • • • • ' •• • ••••••• J ••••• __ •••••••••••• _

...................... :- _-_ : _._., ,, ,

. , . ,.. _-_. __ _-_ _-,.. __ _-_.. _-,-_ _- _-- _--_ ---- _.2000

4000

10000

-ftID.!. 8000 ..III~::::I

"o 6000::ECoCDeo~'iiie~

Time under Stress (hrs)

Figure 10.52. Tensile creep modulus versus time of Fortrorr" 6165A4 at 120°C and various levels of stress.

Page 359: The Efecct of Creep

10: HIGH-TEMPERATURE POLYMERS 361

1- - Extrapolated 15000 ..................... __ _-: --_ __ :.. _-_. __ _-_ _.-

CiD.!. 4000C/)

.2~

"C~ 3000c.CI)

eo 2000~'inc

~ 1000

--_ -_ , -_ ---

17.5 MPa

--------- -- - - - --............ __ : __ _;-_._----_. __ .; __ ---_.

, ,, ,, ', ,, ,, ', ', ,, ,

, , '...... __ _--_..---_ -_ _ , -_ , - .

10000100010O+--.......--.........................,.......;..---,....--.....-...--................-r--~ ........__T'""""T"""............,-----.-.....-...--................+

1 100

Time under Stress (hrs)

Figure 10.53, Tensile creep modulus versus time of Fortrorr" 6165A4 at 150°C and various levels of stress.

3500;-_.......----'----'.................~ ...........................................""'-4-__'__........................................_----'"_..o...-.......-'-.........+

1- - Extrapolated 1

10000

--... -......1000

, ,........ , __ _-.----_. __ _-- _-

10

......... __ __ ._-_ : __ _- ;_ _--., ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,

1500

1000+--.......................~ ............,-----.,.--.....-...--.--.-........-r--"""T"""..................,....,.............,-----.-.....-T'"'"'"O--.-........T1

C/).2 2500~

"Co:Ec.f 2000o~'inc

~

3000-lI:lD.

!.

100

Time under Stress (hrs)

Figure 10.54. Tensile creep modulus versus time of Fortrorr" 6165A4 at 200°C and various levels of stress.

Page 360: The Efecct of Creep

362 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

10.4.7 Generic and Product Comparison Charts of PPS

15000+-__.0....----0. .......... ...................... ...........................................+-__"""'----''''---.0....-..................'-'+

--1140L4- - 6165A4

80°C

-__----J.---

120°C

--- --- ---

-_::-~ -~ -~. ':"":.~._.- -- -... --." -':--!-=.":':":':'-:':'.:':'.::' -~ -----_.....------:- ------------

--........ --- ----- -~ . ----. -.. - ':'":.~ -- --.: ...:.... ",:.: ".:..,' :. .--

1 10 100 1000

Time under Stress (hrs)

Figure 10.55. Flexural creep modulus versus time of Ticona Fortrorr" resins at various temperatures.

5000+-_.................................I----o.--o...................L..L.I-_..............................................._...a...-..............................o.l-- .................................I---+

--1140L4- - 6165A4

· , . . .-----------_ .. _------,--------_ , _---_._-.-_._--- --- , _----_ .. -,------

-'-

. l _ . : ~ :.. _ .

· . .· . .· . .· . .· . .· .· .· .· .· .

------~----- - -':- ......... - _.

· --...... __ ._----_._----~---------------------:-._ : ~.~---~-~-~.~.~ -• , • I

• , • I· , . ,· . . ,, , . ,· , . ,· . . .· , . .

.................. -- .:--. ---------- - . - ---.. ; .; ~ : .I • I I •

I I • I I

• I I I II • I • I

I • I • •

I • I I •

I • • • •

I • I • I

• • • • I

• • I • II • I • I

I • • • I

4000

II)

~ 3000

"o::lEQ.G)e 2000o~=><£ 1000

-CllD.::lE-

0.01 0.1 1 10 100 1000

Time under Stress (hrs)

Figure 10.56. Flexural creep modulus versus time of Ticona Fortrorr" resins at 200°C.

Page 361: The Efecct of Creep

10: HIGH-TEMPERATURE POLYMERS 363

1.0 -I----'- --"- ........JL----"- .......,J- ~- """'"t

0.9 ----·1

1000100100.10.010.0 +--........................,.j----r-..................,...---.---r...............,""T""-....................""'T"-.....-.....................,.-..,.-...............~

1E-3

0.2 _.-.0-·· --.--.-----:-- ;. : : ~ .· . . . ,· . . . ,· . . . ,, . . . ,0.1 : ~ ~ : ~ .

, . . . ,, . . . ,, . . . ,, . . . ., . . . ,

, . ., . .0.8 --- : ----- ; -- : --.-- : ---- : - ., , . . .: : : : : -------

......... 0.7 _.. _. -_ -:- -0 - _0 - _ •••• ~ ••••••••••••• - - -- - -;_ ••••••••••••••• - --:- -- - _ •••••••••• -, • ..;,..-:",:.-:': ••• - ••••••••

'# : : : :. :,~ , . . ~

.~ 0.6· -. - -------- ~- ---------- -~ -------~. ~ -~ -~~~ -~ -~ -- --~':":"f~" ---- --- -------i- - --- -.-~ : ~--: : .

05 '- - - , ~ _-_. __ .- ----- ---- -------i . ~-~-~-~-~·~·~r~-.;.-- ...· ..... ---[------------------: : ,(.) 0.4 ----- -.. ----.- ------....... . --. -----------~- -----. - - -.~ ------------------ ~- - - .

.! ::.; "c 0.3 _. -_. _. ----_ ":" _._ _. -_. -~._. _. -- _. -_ -":" -":" ---. ---0 - _ •• - - _. - - ~- - - _. -- - _ ••• _. -_._-

~ : : : : :, , . . .

1

Time (hrs)

Figure 10.57. Tensile creep strain versus time of two types of PPS resins at 121°C and a stress level of34.5 MPa.

3.0 +-__..................................._"'---........................_ ................................01----0.................................---<..............................._ ................................

Ruptured at 211 hrs.-- Ryton® R-4XT 40% Glass Filled- - HMW Linear PPS 40% Glass Filled

2.5 . -- ~- ~ -. ----- ~ .. ---- ~ .. -------.. - ·,r··· .. ·······, . . . : ......, . . . ......: : : : .:> :, . . ......, . . ......: : : : ............, , . ....... .···················,···················r·············· ;..0-0••••••••••••••••••••••••••••••••••••••••••••· , ......, .· . ....., .

c ~ ~ .... ;-.......... ~ ~'! " '.en : -~..... ::1.5 -----------.- --- --_-~-- ---. --- ------- ~- - ---------- -~ -......... . --------.-~ -- -~ ..... - ~ ~ ,

~ --: : '(,,) : :

~ 1.0 L~:,;,:,:,;'-'--i-""'''~'':'':'':'' .::-:..~..':":"--:-:-:--·f·············· - : --------.. : j -------..c: ::::~ ::::. . . .. . . .

~ 2.0-

0.5 : ~ ~ ~ ~ .

1000100100.10.010.0 +--........................orr----r-.................,.;---.........................,.;-.-....................TTi--.....-...............,.,...;.-..,.-.......................

1E-3 1

Time (hrs)

Figure 10.58. Tensile creep strain versus time of two types of PPS resins at 121°C and a stress level of68.9 MPa.

Page 362: The Efecct of Creep

364 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

10.5 Polysulfone (PSU)

10.5.1 BASF Ultrason@ S 201O-Unreinforced, Medium Viscosity PSU

15

-C'llQ.

!..10II)

!..en

5 ; ; ~ .

4310+--....-__,.-........-..,...-....--,...----..--+

o 2

Strain (%)

Figure 10.59. 1OOO-Hour isochronous stress-strain curves of ultrason'" S 2010 at various temperatures.

10000100010

: :; : :

40 MPa; :

~

: :

- ~ : '30 MPa

:

;

: : 20 MPa

:: : :

:

: : : 10 MPa

:: :

: :0.0

1

2.0

2.5

0.5

-~~e'j! 1.5UiQ.

~o.!! 1.0'iiie~

100

Time (hrs)

Figure 10.60. Tensile creep strain versus time of Ultrason'" S 2010 at 23°C and 50% relative humidity andvarious stress levels.

Page 363: The Efecct of Creep

10: HIGH-TEMPERATURE POLYMERS 365

40MPa

20MPa. .........., -_ -., .

. .. . - -- ----. _ ~. -. --- - --- -:- . -. -. - ----. - -. - _.--..· .· .· .· .· .· .· .

3.0 -. __ _ -_ .. ~ ---_ - < ---- --- ---- ----· .· .· .· .· .· .· .· .~ 2.5~c'i!(i) 2.0Q.

~o 1.5.!'iiie~ 1.0

L~=~.:.:.::.:~~~~ ----·..,.,·.~. ':":.. :-:..-:-:..-.:..:-:-.~ .. :~..-:-:..---..:-:-.~ ~ '10 MPa0.5 __ . . J •••••

100001000100

Time (hrs)

100.0 +----.----r--...--.-.........,..,..;.--....-...._"'"T"'"".,....,............-r--.......- .....................-T.......,r--..,........,...__._....................-r

1

Figure 10.61. Tensile creep strain versus time of Ultrason" S 2010 at 140°C and various stress levels.

100000100001000

· .•••••••••••••••••••••••••••••••••• t ••••••••••••••••••••••· .· .· .

10010

· ........................, : .· .· .· .· .· .· .· .

· ........................., .

5 : ~ ; .· . .· . .· . .· . .· . .· . .· . .· . .O+--...--........"""'T""..........,--......-..........................,...-..,...."'"T"'"".,....,..'"I""T"'......;--...._--.-................~---.-....,.......- ...............+1

30 ----- _---- : -- ; --.--------: .. _- ;. _-_ --- .., • I ,· . . ,· . . ,• • I •

• • , I· . , ,· . . .· . .25 ~ ; ~ .· . . .· . . .· . . .· . . .· . . .· . , .· . . ... .-ClID.

~20.s::.-C)ce 15-enQ.oo 10J:

Time (hrs)

Figure 10.62. Hoop strength versus time of Ultrason® S 2010 pipe exposed to pressurized water at 95°C.

Page 364: The Efecct of Creep

366 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

10.5.2 Solvay Advanced Polymers Udel@ P-170o-Unreinforced,Mid-viscosity PSU

, ., , .

••••• - _ .. - _ •• _. - - - - -1- • _ ••••••••••••••••••••••• - - -I' - - - - - - - - - - .. - - - - - - - _ •••

_ 1.5~e,c'e(j)Q.

~ 1.0

o.!!'USc~

., ................ _-_ --_ _----_ .20.7 MPa

· ,'" --. ----,- ----.. - ~ ., , ,, . ,, . ,, . ,, . ,, . ,· , ,, , ,

: : 13.8 MPa· ,

0.5 : ~ : ~ : : ~ : : .

6000400020000.0 +----..-...,....---..-...,....---.-...,....----.-...,...---.....-__-....-....,...-....-.....,...-..--.....,..-.....---r--..._-+

o 8000 10000 12000 14000 16000 18000 20000

Time (hrs)

Figure 10.63. Tensile creep strain versus time of Udel® P-1700 in water at 23°C and various stress levels.

2.0+---""'-----1---........---1--------1---........--........--........---+

20.7 MPa

1.5 ·· .. ·········· .. ·····L~ ·~ ~········~~ ~ : ~ ~ , .- . .'#--c'e(j)Q.$ 1.0..o.!!'USc~ 0.5

13.8 MPa

. ,... __ ._-_._--_._- _--_ ---------_ - _-------_ .

. . ,......... _--_ _--_ _------------ ..__ _---_.__ . __ .,._--------.- .

100008000600040002000O.O+---...----r---...._---r---_._--""T"'"--........--....;---........---+

oTime (hrs)

Figure 10.64. Tensile creep strain versus time of Udel® P-1700 in water at 60°C and various stress levels.

Page 365: The Efecct of Creep

10: HIGH-TEMPERATURE POLYMERS 367

.

2.0 ~ ~ : ""20.7 MPa'• • 0· .o •

~v: : [ [~ 1.5 ~ ~ j : 1-

en : : : :Q. : : : :CI) : : : : 13.8 MPaCI) • 0 0 0... . , . .

j'.ov···················································1···············································0.5 : : ; : 1-

1000080006000,

4000·20000.0+---....----r---........---r----.---...,-----r---.,...-----r----+

oTime (hrs)

Figure 10.65. Tensile creep strain versus time of Udel® P-1700 in air at 99°C and various stress levels.

2.5+---...0...---__---"----1---""""'-__-1-__........__--1-__---'-__-+

• 0-- ~ ---_. - - -. -~ . -. -.. -. ------ - ~ -- ----. --. -.. ---.. -:- -----. ----.. - ., . . ,, • I ,

, . . ., . . ., . , ,, . . ., . , ,, , . ,o 0 •

o 0 0

o. 0· . . ..... .. ------.-- ..... -..-.---- ..... --- .. ---- ... ,.... ---- .... ······--·--1'--·········---·----·--.----···········--------

2.0 : : ; : .

: : ~-+-: --t-o-~o •o •o 0

o •o •o •

c

~ 1.5

Q.

~o.! 1.0'iiic~

10000800060002000

0.5 : : ; : .I , • •

• I • •· , . .· , . .· , . ., . . .· , . .· , . .I , • ,, , . ,, , . ., , . ,

O.O+----r----,...--.....,.----,---...---'T""""--""T"'""--....,...--.....,.---+o 4000

Time (hrs)

Figure 10.66. Tensile creep strain versus time of Udel® P-1700 in air at 149°C and various stress levels.

Page 366: The Efecct of Creep

368 THE EFFECT OF CREEP AND OTHER 'nME RELATED FACTORS ON PLASTICS AND ELASTOMERS

2.5+-__-'-----"_.o....-........--'-o....o..Jl--_--' ---'----"---"............................__--'-_--'----'----'---'-"-'-""+

· .. · .. · .. · .. · .. · .. ····149°C· .......................... _--_ : ~~ ~----.--.~ ~~

­ceftIQ,Q, 0.5<

2.0 -- ---- ;. -- ---- .. -: .- . .ftI : :

~ : :~ : :- , ,, ,

, ,, ,, ,

1000010001000.0 +---~-.---~~ .................,....--...,....-......--.--.-........-r-r-r---....,...-...,....---r---r-.-T""'T'"-r+

10

Time (hrs)

Figure 10.67. Apparent creep modulus versus time of Udel® R-1700 at various temperatures.

10.5.3 BASF Ultrason@ S 2010 G4-20% Glass Fiber Reinforced, MediumViscosity PSU

3.53.02.5

· . ................................· . .· . .· . .· . .· . .· . ,· . ,· . ,· . ,· . ,· . ,· . ,· . ,· . ,

1.00.5o+r-.........'T"""" .........'T"""" .........-rr.........-rr........-rr........"'T"I"'........r+0.0

· , ,10 .- :-.. _.. -.:- _. _.. _. ~ :- : ~ .· . . . . .· , , , , .· . . . . .· , . . . .· , . , . .· . . . . .· , , , . .· . . . , ,· . . , . .· . . . . ,· . . . . .· . . . . ,· . . . . ,· . . . . .

40

I/)I/)

f 20-en

30-ftIe,:::E-

1.5 2.0

Strain (%)

Figure 10.68. 1OOO-Hour isochronous stress-strain curves of Ultrason'" S 2010 G4 at various temperatures.

Page 367: The Efecct of Creep

10: HIGH-TEMPERATURE POLYMERS 369

10.5.4 BASF Ultrason@ S 2010 G6-30% Glass Fiber Reinforced, MediumViscosity PSU

60 j : ~';~~~ .

.c..~40l!!(;)Co 30~oGl:;; 20c::~

· ,......... - - - - - . - ~ - - -:- ~ - - .. - - ., . ,· ,· ,· ,· .· .· .· .................................................................· .

...........................: : 60°C .

· ..................................................................

100000100001000

Time (hrs)

100

10 , :· ,· ,· .· .· ,· ,· .· .

Figure 10.69. Tensile creep strength versus time of Ultrason" S 2010 G6 exposed to water at various temperatures.

10.6 Polyphenylsulfone (PPSU)

10.6.1 Solvay Advanced Polymers Radel@R-5000-Transparent,General-Purpose for Injection Molding PPSU

30

25 .

10

35 +'-..........................o.+................................JL...o.............................+

30

25

ca 20a.!.IIIIII 15e..

C/)

10

5

321o+r.............................;-.......~ ..............,j-r-."'T"T"...............+

oStrain (%)

2.52.01.0 1.5

Strain (%)

0.5

Figure 10.70. Isochronous stress-strain curves ofRadel® R-5000 at 23°C.

Figure 10.71. Isochronous stress-strain curves ofRadel® R-5000 at 95°C.

Page 368: The Efecct of Creep

370 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

54

,l':'

..c::'c'~,

1O+----r-....,...---,r--.----r-....-~---+

o

~/ ~ ~"J/:-e, : l;:)' ~

~ / : c§5,' ,,<::'1'0.;, :'" ~/ ., ~.., :' rv:

, : / ,( :15 ~.. -/ i /.: ~ .

,. ,. ,

/ . / r . :# " • •

/ :,' :I ., :

/ /. :· ' , :

, : / " :••••• • •1•••••• C o ••,.. • •••••••••••• , ••• -- .

, :/ I, ~ ,, I ", ,:,

.' I~', I

I' I ,': . . ,, , I : : :I I • • • •5 .. ,t.;/, .~ ~ .. __ __ .. ~ ~ .

, I,. . . .,,. . . .I , : : : :':: :.. ... ... ... .· .· .· .· .· .· .

-CISDo.:E 10-Ul

!-tJ)

2 3Strain (%)

Figure 10.72. Isochronous stress-strain curves of Radel® R-SOOO at 160°C.

2500 +---&._""------&._""------1-_""------&._""------&._-1----&._""------&._""------1-_""------&._...-.--&._+

. .••• __ • • •••• __ • ••••••••••••••••••••••••••••••• 1 ••••••••••••••••••••••••• _

- -... ... ... ...

. . ..-----_ .. _--- ; , __ ._--_.. _---- .· .· .· .· .· .· .

30MPa

tOMp. . . . .a .20 Mp • - • - •• - • ~ •a . . ... _. ... ... .. ... ..

... -; ... .......... ............ -:-._----- ............

3Mpa_7.MPa......... _ -_ .

Ul:::J:::J'Co:IEQ.

~c 1500.!'ii)e~

iCJ 2000-

200015005001000+-.......- ..............- .......~- ..............- ..............--i-.......- ..............-....-.....;.-....-.......-....-.......-+

o 1000

Time (hrs)

Figure 10.73. Tensile creep modulus versus time of Radel® R-SOOO at 23°C and various stress levels.

Page 369: The Efecct of Creep

10: HIGH-TEMPERATURE POLYMERS 371

as 1750D-C'-o:::J'3'8:E 1500Q.

~c.!!'0e 1250{!

"~,:,":,, """-'--' ~ '-'',r:-:-:",,~'" ,~"" -,-...........~~.:.:.:.:.:.:.:.=l':':-~ ---------~---------

... ?~ !APa""""""",:, ~,: ,: r. ~,·,t ,- ~'.'~ '.' '.':';': ': .:.':.. .t': '.. ~' ~ ':.:.. '.'~' .. '.'~' •. '.' ~'~'~ '.' .'. '.'~' .. '.' ~

· '· ., .· .· .· .· .· .

200015005001000+----.--....-....,...-....-...,...---.-.,....~-....-__r-...-....,...-.....- ........___,r__...,....---.-.,....~-+

o 1000

Time (hrs)

Figure 10.74. Tensile creep modulus versus time of Radel® R·5000 at 95°C and various stress levels.

20001500

-----~

500

.. . . . : ........... ... . . . . -.- - - ••• _ •••• - - • - •••••••••• - •• ~ ••••••••• - - - - •• - - - - - - - - - ~. ': • ~ 0-' :' ....... _ .-.".; "." 'e-':' -; -." :- :. - ;~-.- __- :. - ~ -.- "." :. ~ ": ": : -: -:".- : - :

· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .

......: _-- ; : .- _ 7Mp: : :

- _ a' : :tOMp............ : : :a - _. . .

:............ ' .

....... ---.--.--------- ;. ··f····························:······················ .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .· . .

1000

lC'-o:::J 750'3'8:EQ.

~ 500c.!!'0c:{! 250

1000

Time (hrs)

Figure 10.75. Tensile creep modulus versus time of Radel® R·5000 at 160°C and various stress levels.

Page 370: The Efecct of Creep

372 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

2.4+--..a...-...............................""'-I--..........................................&..&.I----'--...................~--''-- .............................&.I__...............................''''''''!_

100000100001000

· .--------····,····------------······-r··--·----········ .· .· .

. __ .· .· .

10010

.... - - ~ -- -.. --..: : ---- r- - .: : : :· , . ,· , . ,· , . .· , . .· . .· . ... ----. --- -. ~ -- -------- :- --. - -. --.:- --- -. ---- ;.. ---- --------: : : :, . . ., . , ., . , ., . , ., . , ., , I •

.............. __ .· .170°C;

1.0+--_......................."T"""-..--......,...,...,........"T"""-..--..,......,....................;.--..............,....,............,.;....-......................................I-1

· .2.2 .,;",:··· .. · ····230C· ~ __ .: _ : _ ~ -.. - .· . . ., . . ,. . .

..-.. '"CIS '"D. .::52. 2.0 _.. -S50C-;' _. -- --- _ ":' -_. - .-..-- - ; -- -_. --- --- _ ;..-- --- --- _. -_. _..- .In::s~ 1.8o:;. 1.6r=~~~==-~CC=3==-ieo­c! 1.4

CISQ,Q,

« 1.2

Time (hrs)

Figure 10.76. Apparent creep modulus versus time of Radel® R-SOOO at a stress of 20.7 MPa and varioustemperatures.

Page 371: The Efecct of Creep

11 Table of Poisson's Ratios

Manufacturer Trade or Filler Name Approxi- Other Test Poisson'sCommon mate Filler Features Tempera- Ratio

Name Content ture (OC)(wt%)

Polystyrene (PS)

BASF Polystyrol 0.35

Acrylonitrile-Butadiene-Styrene (ABS)

Dow Plastics Magnum® 22.7 0.35-0.36

SABIC Innovative Cycolac'" DH High heat grade 22.7 0.35Plastics

SABIC Innovative cycotac" General-purpose 22.7 0.35Plastics GSM

SABIC Innovative Cycolac" KJB Flame retardant 22.7 0.35Plastics

SABIC Innovative Cycolac" L General-purpose 22.7 0.35Plastics

Lustran Polymers Lustran®446 General-purpose, 22.7 0.35high impact

Acetals-Polyoxymethylene (POM) Homopolymer

DuPont Engineering Delrin® 100 High viscosity 22.7 0.35Polymers

DuPont Engineering Delrin® 500 General-purpose 22.7 0.35Polymers grade, surface

lubricated

DuPont Engineering Delrin® 10% Glass fiber 22.7 0.35Polymers 510 GR filled, medium

viscosity

DuPont Engineering Delrin® 520 20% Teflon® 22.7 0.35Polymers MP PTFE filled,

medium viscosity

DuPont Engineering Delrin® 900 Unfilled low 22.7 0.35Polymers viscosity

DuPont Engineering Delrin® 1700 Unfilled, ultra-low 22.7 0.35Polymers viscosity

Polyoxymethylene Copolymer (POM-Co)

Mitsubishi lupital® Low flow, 22.7 0.35Engineering-Plastics F10-01 extrusion grade

Mitsubishi lupital® Moderate flow, 22.7 0.35Engineering-Plastics F20-02 melt index:

9 g/ 10 min,injection moldinggrade

373

Page 372: The Efecct of Creep

374 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

Manufacturer Trade or Filler Name Approxi- Other Test Poisson'sCommon mate Filler Features Tempera- Ratio

Name Content ture eC)(wt%)

Mitsubishi lupital'" High flow, 22.7 0.35Engineering-Plastics F30-02 injection molding

grade

Ticona Celcon® 23 0.37all grades

Modified Polyphenylene Ether/Polyphenylene Oxide (PPE or PPO)

SABIC Innovative Noryl® Unmodified 22.7 0.38Plastics

SABIC Innovative Noryl®GFN2 Glass fiber 20 22.7 0.28Plastics

SABIC Innovative Noryl®GFN3 Glass fiber 30 22.7 0.27Plastics

SABIC Innovative Noryl® Mineral filler 10 High strength 22.7 0.27Plastics HS1000

SABIC Innovative Noryl® Mineral filler 10 High strength, 22.7 0.31Plastics HS2000 high impact

Polycarbonate (PC)

Dow Plastics Calibre® 22.7 0.37

SABIC Innovative Lexan® 22.7 0.38Plastics

Polybutylene Terephthalate (PST)

Unspecified Unspecified Glass fiber 30 0.349-0.3631

Polyethylene Terephthalate (PET)

DuPont Engineering Rynite® 520 Glass fiber 20 General-purpose 0.40Polymers

DuPont Engineering Rynite® 530 Glass fiber 30 General-purpose 22.7 0.41Polymers

DuPont Engineering Rynite® 545 Glass fiber 45 General-purpose 0.39Polymers

DuPont Engineering Rynite® 555 Glass fiber 55 General-purpose 0.37Polymers

DuPont Engineering Rynite®935 Mica, fiber 35 Low warpage 0.38Polymers glass

DuPont Engineering Rynite® 940 Mica, Fiber 40 Low warpage 0.36Polymers glass

DuPont Engineering Rynite® 408 Glass fiber 30 Toughened 0.45Polymers

DuPont Engineering Rynite® Glass fiber 15 Toughened 0.49Polymers 415HP

DuPont Engineering Rynite® Glass fiber 35 Super tough 0.49Polymers SST 35

DuPont Engineering Rynite® Glass fiber 30 Fire resistant 0.40Polymers FR330

Page 373: The Efecct of Creep

11: TABLE OF POISON'S RATIOS 375

Manufacturer Trade or Filler Name Approxi- Other Test Poisson's

Common mate Filler Features Tempera- Ratio

Name Content ture (0C)

(wt%)

DuPont Engineering Rynite® Glass fiber 15 Fire resistant, 0.41

Polymers FR515 higher heat

DuPont Engineering Rynite® Glass fiber 30 Fire resistant, 0.40

Polymers FR530 higher heat

DuPont Engineering Rynite® Glass fiber 45 Fire resistant, 0.38

Polymers FR543 higher heat

DuPont Engineering Rynite® Mica, Glass 43 Fire resistant, 0.35

Polymers FR943 fiber higher heat, lowwarpage

DuPont Engineering Rynite® Mica, Glass 45 Fire resistant, 0.38Polymers FR945 fiber higher heat, low

warpage

DuPont Engineering Rynite® Mica, Glass 46 Fire resistant, 0.33Polymers FR946 fiber higher heat, low

warpage

DSM Engineering Arnite® 23 0.43Plastics

Liquid Crystalline Polymer (LCP)

Solvay Advanced Xydar 22.7 0.37Polymers

Polyetherimides

SABIC Innovative Ultem® 1000 General-purpose 22.7 0.36Plastics grade

DuPont Engineering Vespel® 0.34Polymers TP-8054

DuPont Engineering Vespel® Graphite, 0.29Polymers TP-8395 PTFE

DuPont Engineering Vespel® Glass fiber 30 0.30Polymers TP-8212

DuPont Engineering Vespel® Carbon fiber 30 0.45Polymers TP-8130

DuPont Engineering Vespel® Carbon fiber 10 0.43Polymers TP-8311

DuPont Engineering Vespel® Carbon fiber 30 Improved wear 0.48Polymers TP-8549

DuPont Engineering Vespel® Carbon fiber, 15,15 0.46Polymers TP-8792 PTFE

Polyamide-Imides

Solvay Advanced Torlon® 4203L Fluorocarbon, 3.5 Lubricated, 3% 0.38Polymers titanium fluorocarbon/0.5%

dioxide titanium dioxide

Solvay Advanced Torlon® 4275 Fluorocarbon, 23 Wear resistant, 0.30Polymers graphite 20% graphite

powder powder/3%fluorocarbon

Page 374: The Efecct of Creep

376 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

Manufacturer Trade or Filler Name Approxi- Other Test Poisson'sCommon mate Filler Features Tempera- Ratio

Name Content ture (OC)(wt%)

Solvay Advanced Torlon'" 4301 Fluorocarbon, 15 Wear resistant, 0.33Polymers graphite 12% graphite

powder powder/3%fluorocarbon

Solvay Advanced Torlon® 4347 Fluorocarbon, 16 Wear resistant, 0.33Polymers graphite 8% graphite

powder powder/8%fluorocarbon

Solvay Advanced Torlon® 4435 0.42Polymers

Solvay Advanced Torlon® 5030 Fluorocarbon, 31 High strength, 0.40Polymers glass fiber 30% glass

fiber/1%fluorocarbon

Solvay Advanced Torlon® 7130 Fluorocarbon, 31 High strength, 0.37Polymers graphite fiber 30% graphite

fiber/1%fluorocarbon

Solvay Advanced Torlon® 9040 Fluorocarbon, 41 High strength, 0.33Polymers glass fiber 40% glass

fiber/1%fluorocarbon

Polyimides

DuPont Engineering Vespel'" SP1 Isotropic 22.7 0.41Polymers

DuPont Engineering Vespel® SP21 Graphite filler 15 Isotropic 22.7 0.41Polymers

Nylon 66

DuPont Engineering Zytel® 101 General-purpose 0.41Polymers grade

DuPont Engineering Zytel® 101L General-purpose 0.41Polymers grade, lubricated

DuPont Engineering Zytel® 408 High impact 0.42Polymers

DuPont Engineering Zytel® 408L High impact, 0.42Polymers lubricated

DuPont Engineering Zytel® 408HS High impact, 0.42Polymers heat-stabilized

DuPont Engineering Zytel® 70G33 Glass fiber 33 0.39Polymers

DuPont Engineering Zytel® Glass fiber 33 Lubricated 0.39Polymers 70G33L

DuPont Engineering Zytel® Glass fiber 33 Lubricated, 0.39Polymers 70G33HS1L heat-stabilized

Page 375: The Efecct of Creep

11: TABLE OF POISON'S RATIOS 377

Manufacturer Trade or Filler Name Approxi- Other Test Poisson'sCommon mate Filler Features Tempera- Ratio

Name Content ture (OC)(wt%)

DuPont Engineering Zytel® Glass fiber 33 Lubricated, 0.39Polymers 70G33HRL hydrolysis

Resistant

DuPont Engineering Zytel® 70G43 Short glass 43 General-purpose 0.39Polymers fiber grade,

lubricated

DuPont Engineering Zytel® Glass fiber 33 High impact 0.41Polymers 71G33 L

DuPont Engineering Zytel® ST 801 Super tough 0.41Polymers

DuPont Engineering Zytel® Super tough, 0.41Polymers ST 801 HS heat-stabilized

DuPont Engineering Minlon® Mineral 40 0.41Polymers 10B40

DuPont Engineering Minlon® Mineral 40 Higher impact 0.40Polymers 11C40 strength,

platable

DuPont Engineering Minlon® 12T Mineral 36 Superior impact 0.40Polymers strength, low

warpage,heat-stabilized

DuPont Engineering Minlon®20B Mineral and 36 Heat-stabilized 0.41Polymers glass

Nylon 612

DuPont Engineering Zytel® 151 L General-purpose, 0.42Polymers lubricated

DuPont Engineering Zytel® Glass fiber 33 Lubricated 0.40Polymers 77G33L

DuPont Engineering Zytel® Short glass 43 General-purpose 0.42Polymers 77G43L fiber grade, lubricated

Amorphous Nylon

Evonik Degussa AG Trogamid®T Transparent 0.35

Nylon 46

DSM Engineering Stanyl® Heat-stabilized, 23 0.37Plastics TW300 unfilled

DSM Engineering Stanyl® Heat-stabilized, 23 0.45Plastics TW300 unfilled (Cond.)

DSM Engineering Stanyl® Heat-stabilized, 23 0.37Plastics TE300 unfilled,

moderate flow

DSM Engineering Stanyl® Heat-stabilized, 23 0.37Plastics TQ300 unfilled,

moderate flow

Page 376: The Efecct of Creep

378 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

Manufacturer Trade or Filler Name Approxi- Other Test Poisson'sCommon mate Filler Features Tempera- Ratio

Name Content ture (0C)(wt%)

DSM Engineering Stanyl® Heat-stabilized, 23 0.38Plastics TE350 unfilled, flame

retardant

DSM Engineering Stanyl® Heat-stabilized, 23 0.38Plastics TW350 unfilled, flame

retardant

Polyphthalamide (PPA)

Solvay Advanced Amodel® Glass fiber 15 Heat-stabilized 23 0.41Polymers A-1115 HS

Solvay Advanced Arnodel" Glass fiber 33 Heat-stabilized 23 0.41Polymers A-1133 HS

Solvay Advanced Amodel" Glass fiber 45 Heat-stabilized 23 0.41Polymers A-1145 HS

Solvay Advanced Amodel® Glass fiber 60 Heat-stabilized, 23 0.35Polymers A-1160 HSL Lubricated

Solvay Advanced Arnodel'" Mineral 30 Lubricated 23 0.31Polymers A-1230 L

Solvay Advanced Arnodel'" Mineral 40 Lubricated 23 0.29Polymers A-1240 L

Solvay Advanced Arnooel'" Glass/mineral 40 Lubricated 23 0.38Polymers A-1340 L

Solvay Advanced Amodel® Glass/mineral 40 Heat-stabilized 23 0.38Polymers A-1340 HS

Solvay Advanced Arnodel" Mineral 40 Heat-stabilized 23 0.40Polymers A-1440 HS

Solvay Advanced Amodel" Glass/mineral 40 Heat-stabilized 23 0.38Polymers A-1540 HS

Solvay Advanced Amodel® Glass/mineral 65 Heat-stabilized 23 0.31Polymers A-1565 HS

Solvay Advanced Arnodel" Glass fiber 33 High 23 0.41Polymers A-4133L crystallinity,

Lubricated

Solvay Advanced Arnodel'" Glass fiber 35 High crystallinity 23 0.39Polymers A-6135 HN

Solvay Advanced Amodel® Glass fiber 33 23 0.37Polymers AFA-6133

VOZ

Solvay Advanced Arnodel'" Mineral 40 Impact-modified 23 0.32Polymers AP-9240 NL

Solvay Advanced Amodel® Glass/mineral 65 Heat-stabilized 23 0.35Polymers AS-1566 HS

Solvay Advanced Arnodel'" Glass fiber 33 Heat-stabilized, 23 0.41Polymers AS-4133 HS high crystallinity

Solvay Advanced Amodel® Unreinforced Heat stabilized, 23 0.38Polymers AT-1002 HS high impact

Page 377: The Efecct of Creep

11: TABLE OF POISON'S RAnos 379

Manufacturer Trade or Filler Name Approxi- Other Test Poisson'sCommon mate Filler Features Tempera- Ratio

Name Content ture (OC)(wt%)

Solvay Advanced Arnodel? Glass fiber 16 Heat-stabilized, 23 0.40Polymers AT-1116 HS toughened

Solvay Advanced Arnodel" High impact 23 0.40Polymers AT-5001

Solvay Advanced Amodel" Glass fiber 15 Heat-stabilized, 23 0.39Polymers AT-6115 HS toughened

Solvay Advanced Amodel® Impact-modified 23 0.39Polymers ET-1000

Solvay Advanced Amodel® Impact-modified, 23 0.40Polymers ET-1000 HS heat-stabilized

Solvay Advanced Arnodel'" Impact-modified, 23 0.35Polymers ET-1001 L lubricated

Solvay Advanced Amodel'" Glass fiber 33 Fire resistant 23 0.37Polymers FR-4133

Polyarylamide (PAA)

Solvay Advanced Ixef® 1022 Glass fiber 50 20 0.35Polymers

Polyethylene

Chevron Phillips Marlex® HDPE; melt flow 23.9 0.40Chemical TR210 rate: 0.85

g/10 min; density:0.944 g/cm3

Chevron Phillips Marlex® HDPE; melt flow 23.9 0.43Chemical TR210 rate: 0.85

g/10 min; density:0.944 g/cm3

Chevron Phillips Marlex® HDPE; melt flow 23.9 0.44Chemical TR226 rate: 1.5

g/10 min; density:0.944 g/cm3

Chevron Phillips Marlex'" HDPE; melt flow 23.9 0.44Chemical TR226 rate: 1.5

g/10 min;density: 0.944g/cm3

Polytrimethylpentene (PMP)

Chevron Phillips Crystalor'" Glass fiber 30 23.9 0.44Chemical HBG30

Acrylics

Evonik Industries Plexiglas G 22.7 0.35

Thermoplastic Copolyester Elastomer (TPE-E or COPE)

DuPont Engineering Hytrel ®4056 Hardness: Shore 0.45Polymers D40

DuPont Engineering Hytrel® Hardness: Shore 0.45Polymers G4075 D40

Page 378: The Efecct of Creep

380 THE EFFECT OF CREEP AND OTHER TIME RELATED FACTORS ON PLASTICS AND ELASTOMERS

Manufacturer Trade or Filler Name Approxi- Other Test Poisson'sCommon mate Filler Features Tempera- Ratio

Name Content ture (OC)(wt%)

DuPont Engineering Hytrel ®5556 Hardness: Shore 0.45Polymers D 55

DuPont Engineering Hytrel ®6346 Hardness: Shore 0.45Polymers D 63

DuPont Engineering Hytrel ®7246 Hardness: Shore 0.45Polymers D 72

Polytetrafluoroethylene (PTFE)

DuPont Teflon® 22.7 0.46

Fluorinated Ethylene-Propylene (FEP)

DuPont Teflon® 22.7 0.48

DuPont Teflon® 100 0.36

Polyvinylidene Fluoride (PVDF)

Arkema Kynar® 460 Natural 22.7 0.34resin,homopolymer

Polyetheretherketone (PEEK)

Victrex pic Victrex® 450G Unreinforced General-purpose 22.7 0.42grade

Victrex pic Victrex® Glass fiber 30 22.7 0.42450GL30

Victrex pic Victrex® Carbon fiber 30 0.44150CA30

Victrex pic Victrex'" Carbon fiber 30 0.44450CA30

Victrex pic Victrex® Carbon fiber, 30 0.40150FC30 PTFE

Polyethersulfone (PES)

Solvay Advanced Radel A 0.41Polymers

Solvay Advanced Radel® Glass fiber 30 Medium 0.42Polymers AG-230 viscosity

Solvay Advanced Radel® Glass fiber 30 0.42Polymers AG-330

Polyphenylene Sulfi de (PPS)

Chevron Phillips A-200 Glass fiber 40 23.9 0.40Chemical

Chevron Phillips Ryton® R-4 Glass fiber 40 23.9 0.38Chemical

Page 379: The Efecct of Creep

11: TABLE OF POISON'S RAnos 381

Manufacturer Trade or Filler Name Approxi- Other Test Poisson'sCommon mate Filler Features Tempera- Ratio

Name Content ture (0C)(wt%)

Chevron Phillips Ryton® R-4 Glass fiber 40 51.7 0.40Chemical

Chevron Phillips Ryton® R-4 Glass fiber 40 79.4 0.42Chemical

Chevron Phillips Ryton® R-4 Glass fiber 40 107.2 0.44Chemical

Chevron Phillips Ryton® R-4 Glass fiber 40 135 0.48Chemical

Chevron Phillips Ryton® R-4 04 Glass fiber 40 23.9 0.38Chemical

Chevron Phillips Ryton® R-4XT Glass fiber 40 Impact-modified 23.9 0.38Chemical

Chevron Phillips Ryton® R-7 Glass fiber, 55 23.9 0.36Chemical mineral filler

Chevron Phillips Ryton® R-7 Glass fiber, 55 51.7 0.38Chemical mineral filler

Chevron Phillips Ryton® R-7 Glass fiber, 55 79.4 0.40Chemical mineral filler

Chevron Phillips Ryton® R-7 Glass fiber, 55 107.2 0.44Chemical mineral filler

Chevron Phillips Ryton® R-7 Glass fiber, 55 135 0.50Chemical mineral filler

Chevron Phillips Ryton® XT Impact-modified 23.9 0.40Chemical

Solvay Advanced RadelR 0.43Polymers

Polysulfone (PSU)

Solvay Advanced Udel® P-1700 Unreinforced, 0.37Polymers Mid-viscosity

Solvay Advanced Udel® GF-110 Glass fiber 10 0.43Polymers

Solvay Advanced Udel® GF-120 Glass fiber 20 0.42Polymers

Solvay Advanced Udel® GF-130 Glass fiber 30 0.41Polymers

Polyphenylsulfone (PPSU)

Solvay Advanced Acudel® Modified 0.41Polymers 22000

Solvay Advanced Acudel" Modified 0.42Polymers 25000

Page 380: The Efecct of Creep

Appendix 1: Abbreviations

ABS Acrylonitrile-Butadiene-Styrene PET Polyethylene TerephthalateASA Acrylonitrile-Styrene-Acrylate PEX Crosslinked PolyethyleneCOC Cyclic Olefin Copolymer PFA PerfluoroalkoxyCOPE Thermoplastic Copolyester Elastomer, PI Polyimide

same as TPE-E PMMA Polymethyl MethacrylateE-CTFE Polyethylene Chlorotrifluoroethylene PMP PolytrimethylpenteneEMAA Ethylene-Methacrylic Acid Copolymer POM Polyoxymethylene or AcetalETFE Polyethylene Tetrafluoroethylene HomopolymerEVA Ethylene-Vinyl Acetate POM-Co Polyoxymethylene Copolymer or AcetalFEP Fluorinated Ethylene-Propylene CopolymerHDPE High Density Polyethylene PP PolypropyleneHPPA High Performance Polyamide PPA PolyphthalamideLCP Liquid Crystalline Polymer PPE Polyphenylene Ether, same as PPOLDPE Low Density Polyethylene PPO Polyphenylene Ether, same as PPELLDPE Linear Low Density Polyethylene PPS Polyphenylene SulfideMABS Methyl Methacrylate-Acrylonitrile- PPSU Polyphenylsulfone

Butadiene-Styrene PS PolystyreneMDPE Medium Density Polyethylene PSU PolysulfoneMFR Melt Flow Rate PTFE PolytetrafluoroethylenePA Polyamide (Nylon) PTP PolytrimethylpentenePAA Polyarylamide PTT Polytrimethylene TerephthalatePAl Polyamide-Imide PUR PolyurethanePAMXD6 Polyarylamide, Polyxylylene PVC Polyvinyl Chloride

Adipamide PVDF Polyvinylidene FluoridePBI Polybenzimidazole SAN Styrene-AcrylonitrilePBT Polybutylene Terephthalate SBC Styrenic Block CopolymerPC Polycarbonate SMA Styrene-Maleic AnhydridePCE Perchloroethylene TEEE Thermoplastic Elastomer Ether EsterPPC Polyphthalate Carbonate Block CopolymerPCT Polycyclohexylene-dimethylene TPE Thermoplastic Elastomer

Terephthalate TPE-E Thermoplastic Copolyester Elastomer,PCTFE Polychlorotrifluoroethylene same as COPEPE Polyethylene TPU Thermoplastic PolyurethanePEBA Thermoplastic Polyether Block Amide Elastomers

Elastomers UHMWPE Ultra High Molecular WeightPEEK Polyetheretherketone PolyethylenePEl Polyetherimide ULDPE Ultra Low Density PolyethylenePES Polyethersulfone VLDPE Very Low Density Polyethylene

383

Page 381: The Efecct of Creep

Appendix 2: List of Trade Names

Product Polymer Types Manufactured by

ACRYLITE PLUS® Acrylic (PMMA) CYRO Industries

ACRYLlTE® Acrylic (PMMA) CYRO Industries

ACUDELTM PPSU Solvay Advanced Polymers, L.L.C.

Akulon'" Nylon 6, Nylon 66 DSM Engineering Plastics

Akulon'" Uttraflow" Nylon 6 DSM Engineering Plastics

Algoflon PTFE Solvay Solexis, Inc.

Arnilan'" Nylon 6, Nylon 610, Nylon 66, Nylon Toray Resin CompanyCopolymer, Nylon

Arnilus" Acetal Toray Resin Company

AMODEL® PPA Solvay Advanced Polymers, L.L.C.

Apec® PC Bayer MaterialScience AG

Aqualoy® Nylon 66, PP A. Schulman GmbH

Arion PEEK Greene, Tweed & Co.

Arnite® PBT, PBT+PET, PET DSM Engineering Plastics

Arnitel® TEEE DSM Engineering Plastics

ASHLENE® ABS, ABS+PC, Acetal, Nylon 11, Nylon Ashley Polymers, Inc.12, Nylon 6, Nylon 610, Nylon 612,Nylon 66, Nylon 66/6, PBT, PC,PC+PBT, PET, PPE, PPE+PS,PPE+PS+Nylon, SAN

AURUM® PI Mitsui Chemicals America, Inc.

Avaspire" PEEK Solvay Advanced Polymers, L.L.C.

Bayblend® ABS+PC Bayer MaterialScience AG

Bayfol® PC,PC+PBT Bayer MaterialScience LLC

Bergadur® PBT PolyOne Corporation

Bergaform® Acetal PolyOne Corporation

Berqamid" Nylon 6, Nylon 66, Nylon 66/6 PolyOne Corporation

CALIBRETM PC Dow Plastics

Capron" Nylon 6 BASF Corporation

Celanex® PBT Ticona

Celazolef PBI Quadrant Engineering Plastic Products

Celcon® Acetal Ticona

Celstran'" PE, Nylon 6, Nylon 66, PBT, PPS, TPU Ticona

Centrex" AES, ASA,ASA+AES, ASA+PC INEOS

Chisso Polypro PP Chisso America Inc.

Clearflex® PE Polimeri Europa

385

Page 382: The Efecct of Creep

386 ApPENDIX 2

Product Polymer Types Manufactured by

ComAlloy® ABS, Nylon 6, Nylon 66, PP A. Schulman GmbH

Compel® PP Ticona

Comshieldf ABS, Nylon 66, PC, PPS A. Schulman GmbH

Corntut'" ABS+PC, Nylon 6, Nylon 612, Nylon 66, A. Schulman GmbHPBT, PBT Alloy, PC, PC+PET,PC+Polyester, PC+Styrenic, PET, PP

Crastin® PBT, PBT Alloy DuPont Engineering Polymers

Cristamid" Nylon 12 Arkema

CYCOLAC® ABS Sabic Innovative Plastics

CYCOLOY® ABS+PC,PC Sabic Innovative Plastics

CYREX® PC+Acrylic CYRO Industries

CYRO®MCR Acetal CYRO Industries

CYROLlTE® Acrylic (PMMA) CYRO Industries

Cyrolon'" PC CYRO Industries

CYROVU®HP2 Acrylic CYRO Industries

Delrin® Acetal DuPont Engineering Polymers

Desmopan'" TPU, TPU-Ester/Ether, TPU-Polyester Bayer MaterialScience AG

Diakon" Acrylics Lucite International Inc.

DuracapTM PVC PolyOne Corporation

Durethan" Nylon 6, Nylon 66, Nylon Copolymer, LANXESS AGNylon

Durethan'" A Nylon 66 LANXESSAG

Durethanf B Nylon 6 LANXESS AG

Durethan'P T Nylon 6 LANXESS AG

Dutral EPDM, EPM, Polyolefin Polimeri Europa

Dyflor PVDF Degussa AG

DYLARK® SMA NOVA Chemicals

Dyneon" ETFE ETFE Dyneon

Dyneon" PFA Fluorelastomer Dyneon

Dyneon™ THV ETFE, FEP, Fluorelastomer, Fluoropoly- Dyneonmer, PFA

Edgetek™ ABS, Acetal, PE, LCp, Nylon 6, Nylon PolyOne Corporation610, Nylon 612, Nylon 66, PBT, PC,PC+PSU, PEEK, PEl, PES, PPA, PPS,PPSU,PSU

Edgetek™ XT PC+PBT PolyOne Corporation

Edistir® PS,SBC Polimeri Europa

Elastollanf TPU, TPU-Ester/Ether, TPU-Polyester, BASF CorporationTPU-Polyether

Elvamide® Nylon DuPont Engineering Polymers

EMERGETM ABS, ABS+PC, PC Dow Plastics

ENDURAN® PBT, PBT+PC+PET, PBT+PET Sabic Innovative Plastics

ENGAGETM TPO Dow Plastics

Page 383: The Efecct of Creep

LIST OF TRADE NAMES 387

Product Polymer Types Manufactured by

Enpnite TP Chisso America Inc.

EpiSpire™ PSU Solvay Advanced Polymers, L.L.C.

Fiberloc™ PVC PolyOne Corporation

Fortron® PPS Ticona

Fluon® PTFE Asahi Glass Chemicals

GAFONETM PES Gharda Chemicals Limited (Solvay)

GAFONETM B PSS Gharda Chemicals Limited (Solvay)

GAFONETM P PPSU Gharda Chemicals Limited (Solvay)

GAFONETM S PSU Gharda Chemicals Limited (Solvay)

GAFONETM T PSS Gharda Chemicals Limited (Solvay)

GATONETM PEEK Gharda Chemicals Limited (Solvay)

GELOY® ASA, ASA+AMSAN, ASA+PC, Sabic Innovative PlasticsASA+PVC,ASA+SAN

Geon® PVC Alloy, PVC Elastomer, PVC+NBR PolyOne Corporation

Geon® HTXTM PVC PolyOne Corporation

GESAN® SAN Sabic Innovative Plastics

Grilarnid'" PE, Nylon 12, Nylon 12 Elast, Nylon, EMS-GRIVORYPPA, TP

Grilon® Nylon 6, Nylon 6 Elast, Nylon 6/69, EMS-GRIVORYNylon 610, Nylon 612, Nylon 66, Nylon66/6, Nylon Copolymer, Nylon, TPE

Grivory'" Nylon Copolymer, PPA EMS-GRIVORY

GHR® UHMWPE Ticona

GUR® PE, Polyolefin, UHMWPE Ticona

Halar" ECTFE Solvay Solexis, Inc.

Halon ETFE Solvay Solexis, Inc.

Hiloy® ABS, Nylon 6, Nylon 612, Nylon 66, A. Schulman GmbHPBT, PBT Alloy, PC, PET, PolyesterAlloy, PPE+PS+Nylon, PPS, SAN, SMA

Hostacom Polyolefin, Pp, TPO LyondellBassell Polyolefins

Hostatorm" Acetal Copolymer Ticona

Hostalen PP PP LyondellBassell Polyolefins

Hostalen'" PE,PP LyondellBassell Polyolefins

HSPP PP Chisso America Inc.

Hyflon® MFA PFA Solvay Solexis, Inc.

Hyflon® PFA PFA Solvay Solexis, Inc.

Hylar® PVDF Solvay Solexis, Inc.

Hytrel® TPC-ET DuPont Engineering Polymers

Impet® PET Ticona

lupiace'" PPE+PS Mitsubishi Engineering-Plastics Corp

lupilon'" ABS+PC, PC, PC Alloy, PC+PBT, Mitsubishi Engineering-Plastics CorpPC+PET

lupital'" Acetal Mitsubishi Engineering-Plastics Corp

Page 384: The Efecct of Creep

388 ApPENDIX 2

Product Polymer Types Manufactured by

IXEF® PAMXD6 Solvay Advanced Polymers, L.L.C.

KADEL® PEEK Solvay Advanced Polymers, L.L.C.

Kapton PI DuPont Packaging & IndustrialPolymers

KetaSpire™ PEEK Solvay Advanced Polymers, L.L.C.

Koblend'" ABS+PC,PS+PE Polimeri Europa

Kostil® SAN Polimeri Europa

Kynar Flex® PVDF Arkema

Kynar® PVDF Arkema

Lexan® ABS+PC, PC, PC+PBT, PC+Polyester, Sabic Innovative PlasticsPC+PPC,PC+SAN,PPC

Lubrlcomp'" ABS, Acetal, Nylon 12, Nylon 6, Nylon Sabic Innovative Plastics610, Nylon 612, Nylon 66, Nylon, PBT,PC, PEEK, PEl, PES, PPA, PPE+PS,PPSU, PVDF, SAN, TPEE

Lubrilon'" Nylon 6, Nylon 612, Nylon 66, Nylon, A. Schulman GmbHPBT Alloy, PC, PPS

Lubriloy® Acetal, Nylon 66, PC, PPA, PPE+PS Sabic Innovative Plastics

Lubri-Tech™ Acetal, Nylon 612, Nylon 66, PC, PPS PolyOne Corporation

LUCITE® Acrylic (PMMA) Lucite International Inc.

LUCITE® Acritherrn" Acrylic (PMMA) Lucite International Inc.

LUCITE® SuperTuf™ Acrylic (PMMA) Lucite International Inc.

Lupolen PE LyondellBassell Polyolefins

Lupolex PE LyondellBassell Polyolefins

Luran® SAN BASF Corporation

Luran® S ASA BASF Corporation

t.ustran'" ABS ABS, ABS+Acrylic INEOS

Lustran'" Elite ABS INEOS

Lustran'" SAN SAN INEOS

tustran'" Ultra ABS, ABS+PC INEOSAG

MAGNUMTM ABS Dow Plastics

Makroblend'" PC Alloy, PC+PET Bayer MaterialScience LLC

Makrotol" PC Bayer MaterialScience LLC

Makroton" PC,PC+PET Bayer MaterialScience AG

Malen PE LyondellBassell Polyolefins

MarFlex™ HiD® PE Chevron Phillips Chemical CompanyLLC

MarFlex™ PE PE+PE Chevron Phillips Chemical CompanyLLC

Marlex® PE Chevron Phillips Chemical CompanyLLC

Maxxarn" PP PolyOne Corporation

Maxxarn" FR PE,PP PolyOne Corporation

Metocene PP LyondellBassell Polyolefins

Page 385: The Efecct of Creep

LIST OF TRADE NAMES 389

Product Polymer Types Manufactured by

MINDEL® PSU, PSU Alloy, PSU+ABS Solvay Advanced Polymers, L.L.C.

Minlon® Nylon 6, Nylon 66 DuPont Engineering Polymers

MonTor Nylon Nylon 6, Nylon 610, Nylon 66, Nylon Toray Resin Company

Moplen PP,TPU LyondellBassell Polyolefins

Neoflon™ PCTFE Daikin Industries

Norpex'" PPE Custom Resins Group

NORYLGTX® PPE+PS+N~on,PPS+PPE Sabic Innovative Plastics

NORYL PPX® PPE+PS+PP Sabic Innovative Plastics

NORYL® PPE, PPE+Polyolefin, PPE+PS, Sabic Innovative PlasticsPPE+PS+PPS+PPE,PS

Novodur'" ABS INEOS

Nylatron'" Nylon 66 DSM Engineering Plastics

Nylene® Nylon 6, Nylon 612, Nylon 66, Nylon Custom Resins Group66/6, Nylon,

Oleform PP Chisso America Inc.

Olehard PP Chisso America Inc.

Orgalloy® Nylon 6, Nylon 6 Alloy, Nylon 66 Alloy Arkema

Pebax® PEBA Arkema

PELLETHANETM TPU-Ester/Ether, TPU-Polyester, Dow PlasticsTPU-Polyether

Petra® PET BASF Corporation

Plexalloy® ABS+Acrylic Rohm GmbH & Co. KG

POCAN® PBT, PBT+ASA, PBT+PET, PC+PBT, LANXESS AGPET

Polyaxls" EVA, PE, Polyolefin, PP A. Schulman GmbH

Polybatch™ PET, Polyolefin, Pp, PS A. Schulman GmbH

Polyfabs'" ABS A. Schulman GmbH

Polyflam'" ABS, ABS+PC, PE, Pp, PS A. Schulman GmbH

Polyfort® PE, Nylon+Pp, Polyolefin, PP A. Schulman GmbH

Polyman® ABS, ABS+PC, Acrylic (PMMA), ASA, A. Schulman GmbHPC,SAN

Polystyrol PS BASF Corporation

PREVAILTM ABS+TPU Dow Plastics

PREVEX® PPE+PS, SMA Sabic Innovative Plastics

PULSETM ABS+PC Dow Plastics

RADEL® A PES Solvay Advanced Polymers, L.L.C.

RADEL® R PES,PPSU Solvay Advanced Polymers, L.L.C.

REMEX® PBT, PC+PBT Sabic Innovative Plastics

Reny PAMXD6 Mitsubishi Engineering-Plastics Corp

RETAIN ABS+PC,PC Dow Plastics

Rilsan® Nylon 11, Nylon 12 Arkema

Rilsan® Fine Powders Nylon 11 Arkema

Riteflex® TEEE Ticona

Page 386: The Efecct of Creep

390 ApPENDIX 2

Product Polymer Types Manufactured by

Rynite® PBT, PET DuPont Engineering Polymers

Ryton® PPS Chevron Phillips Chemical CompanyLLC

Schulablendf ABS+Nylon, ABS+PC, Nylon 6, A. Schulman GmbHNylon+PP

Schuladur'P PBT, PBT+PET, PET A. Schulman GmbH

Schulaformf Acetal A. Schulman GmbH

Schularnidf Nylon 6, Nylon 66, Nylon 66/6, Nylon A. Schulman GmbH

Schulatecf PPS,SPS A. Schulman GmbH

Sinkral'" ABS Polimeri Europa

Siveras" LCP Toray Resin Company

SOLEF® PVDF Solvay Solexis, Inc.

Stanyl® Nylon 46 DSM Engineering Plastics

Stapron'f E PC+PET DSM Engineering Plastics

Stat-Kon® ABS, ABS+PC, Acetal, Nylon 12, Nylon 6, Sabic Innovative PlasticsNylon 610, Nylon 66, PBT, PC, PEEK,PEl, PES, Polyolefin, PPA, PPE+PS,PPS, PUR

Stat-Loy" ABS, ABS+PC, Acetal, Acrylic (PMMA), Sabic Innovative PlasticsNylon 6, PBT, PP

Styrolux" SBC BASF Corporation

STYRON A-TECHTM PS Dow Plastics

STYRONTM PS Dow Plastics

SUMIKAEXCEL® PES PES Sumitomo Chemical America, Inc.

SUMIKASUPER® LCP LCP Sumitomo Chemical America, Inc.

Teflon® AF Fluoropolymer DuPont Fluoropolymers

Teflon® C PFA PFA DuPont Fluoropolymers

Teflon® FEP FEP DuPont Fluoropolymers

Teflon® PFA PFA DuPont Fluoropolymers

Teflon® PTFE PTFE DuPont Fluoropolymers

Tefzel® ETFE DuPont Fluoropolymers

Terblend® N Nylon 6+ABS BASF Corporation

Terturan'" ABS BASF Corporation

Terlux® MABS BASF Corporation

Texin® ABS+TPU, PC+TPU, TPU, TPU-Ester/ Bayer MaterialScience LLCEther, TPU-Polyester, TPU-Polyether

Thermocompf ABS, ABS+PC, Acetal, ETFE, Nylon 11, Sabic Innovative PlasticsNylon 12, Nylon 6, Nylon 610, Nylon 612,Nylon 66, PBT, PC, PC+PBT, PEEK,PEl, PES, Polyester, Tp, PPA, PPE+PS,PPS, PPSU, PSU, PUR, PVDF, SAN,TP,TPEE

Thermotut'" Nylon 6, Nylon 610, Nylon 612, Nylon Sabic Innovative Plastics66, Nylon, PBT, PC, Polyester, Tp, PPS

Page 387: The Efecct of Creep

LIST OF TRADE NAMES 391

Product Polymer Types Manufactured by

Thermx® PCT DuPont Engineering Polymers

Therrnylene'" PP Asahi Kasei Plastics North America Inc.

THVTM Fluoropolymer Dyneon

Topas® COC Topas Advanced Polymers

Toraycon'" PBT Toray Resin Company

Torelina" PPS Toray Resin Company

TORLON® PAl Solvay Advanced Polymers, L.L.C.

Toyolac™ ABS, ABS+Nylon, ABS+PBT, ABS+PC Toray Resin Company

Toyolac" Parel ABS Toray Resin Company

TPXTM PMP Mitsui Chemicals America, Inc.

Triax® ABS, ABS+Nylon, Nylon 6+ABS INEOS

Troqarnid'" Nylon 6/3T, Nylon Degussa AG

TYRILTM SAN Dow Plastics

UDEL® PSU Solvay Advanced Polymers, L.L.C.

Ultem® PEl, PEI+PCE Sabic Innovative Plastics

ultracur'" PBT, PBT+ASA, PBT+PET BASF Corporation

Ultraforrn'" Acetal Copolymer BASF Corporation

Ultrarnid'" Nylon 6, Nylon 66 BASF Corporation

Ultrarnid" A Nylon 66 BASF Corporation

Ultrarrud'" B Nylon 6 BASF Corporation

Ultramid® C Nylon 66/6 BASF Corporation

Ultrason'" E PES BASF Corporation

Ultrason'" S PSU BASF Corporation

Valox® ABS+PBT, ABS+PBT+PET, PBT, Sabic Innovative PlasticsPBT+PC+PET, PBT+PET, PC+PBT,PET

Vandar'" PBT, TEEE Ticona

Vectra" LCP Ticona

verton" PP Sabic Innovative Plastics

Vespel'" PI, PEl DuPont Engineering Polymers

Vestarnid'" Nylon 12, Nylon 12 Elast, Nylon 612, Degussa AGPEBA

vestodur'" PBT Evonik Industries

Victrex® PEEK Victrex PLC

Voloy® Nylon 6, Nylon 66, Nylon 66 Alloy, PBT, A. Schulman GmbHPBT Alloy, PET, PP

Voltalef® PTFE Arkema

Xantar'" PC DSM Engineering Plastics

xantar" C ABS+PC DSM Engineering Plastics

XENOY® ABS+PBT+PC, PBT+PET, PC+PBT, Sabic Innovative PlasticsPC+PET, PC+Polyester

XT® Polymer Acrylic (PMMA) CYRO Industries

Page 388: The Efecct of Creep

392 ApPENDIX 2

Product Polymer Types Manufactured by

XYDAR® LCP Solvay Advanced Polymers, L.L.C.

XYLEX® PC+Polyester Sabic Innovative Plastics

Yparex" PE DSM Engineering Plastics

Zenite® LCP DuPont Engineering Polymers

Zytel® Nylon 6, Nylon 612, Nylon 66, DuPont Engineering PolymersNylon 66/6

Zytel® HTN PPA DuPont Engineering Polymers

Page 389: The Efecct of Creep

Appendix 3: Unit Conversion Tables

The following tables show conversion factors toconvert most of the units used in this book from SIunits to various English units. SI units are The Inter­national System of Units (abbreviated as SI from

Pressure, Stress, Modulus

Systeme Internationale, the French version of thename). The conversion factors are reported only tofour significant figures.

Convert from Convert to Multiply by

gigapascal (GPa) MPa 1000

kilopascal (kPa) atmosphere, standard (atm) 0.009869

kilopascal (kPa) bar (bar) 0.01

kilopascal (kPa) kilogram-force per square centimeter (kgf/cm2) 0.01020

kilopascal (kPa) pound-force per square inch (psi) (lbf/in.2) 0.1450

megapascal (MPa) kilogram-force per square millimeter (kgf/mm 2) 0.1020

megapascal (MPa) pound-force per square inch (psi) (lbf/in.2) 145.0

pascal (Pa) atmosphere, standard (atm) 9.869 x10-6

pascal (Pa) bar (bar) 0.00001

pascal (Pa) dyne per square centimeter (dyn/crn'') 10

pascal (Pa) gram-force per square centimeter (gf/cm2) 0.01020

pascal (Pa) kilogram-force per square centimeter (kgf/cm2) 1.020 x10-5

pascal (Pa) kilogram-force per square meter (kgf/m2) 0.1020

pascal (Pa) kilogram-force per square millimeter (kgf/mm 2) 1.020 x10-7

pascal (Pa) pound-force per square foot (lbf/ft2) 0.02089

pascal (Pa) pound-force per square inch (psi) (lbt/ln.") 0.0001450

Strain

Convert from Convert to Multiply by

percent (%) Deformation per unit length-metric 0.01(mm/mm)

percent (%) Deformation per unit length-English 0.01(in.lin.)

Deformation per unit length-metric percent (%) 100(mm/mm)

Deformation per unit length-English percent (%) 100(in.lin.)

393

Page 390: The Efecct of Creep

Accelerating creep stage, 5Accumulated creep strain, 10Acetal copolymer. See Polyoxymethylene Copolymer

(POM-Co)Acetal polymers. See Polyoxymethylene (POM)

homopolymerAcrylics, 293-296

Acrylite" H15, 294-295Diakon™ CLG356, 295Diakon' CMG302, 295Diakon™ LG 156, 293Diakon' ST45G8, 295product comparisons, 295-296

Acrylite" H15, 294-295Acrylonitrile-butadiene-styrene (ABS), 22, 34, 55-61.

See also Lustran" ABS 446; Magnum' 1040Cycolac" G360, 57Cycolac'" X37, 58direct comparison of ABS resins, 61Toyolac" 100, 57

Acrylonitrile-styrene-acrylate (ASA), 33-34,42-47.See also Luran'" S 757 R; Luran'" S 776 S;Luran'" S 778 T

Addition polymerization, 19Additives, 23-25, 27Adipic Acid, 198Alloys, polyester, 118, 161-165Alternating copolymer, 19American Society for Testing and Materials (ASTM),

17-18ASTM D 1693-08, 18ASTM D2561, 18ASTM D2990-01, 17ASTM D5592-94(2002)el, 17ISO 1167, 17ISO 1167-1:2006, 17ISO 1167-2:2006, 17ISO 22088-1 :2006, 18ISO 3384:2005, 17ISO 6914:2004,17ISO 899-1 :2003, 17ISO 899-2:2003, 17

Amilan' CMlO11G-30, 207Amilan' CM1011G-45, 208Aminolauric acid, 198Aminoundecanoic acid, 198Amodel'" A-1133 HS, 246-247Amodel'" A-1145 HS, 249

Amodel" A-1160 HS, 254Amodel'" ET-I000, 243Amorphous nylon, 201

chemical structure of, 202Amorphous polyamide, 240-241

Grilamid" TR55, 241Grilamid'" TR90, 241Trogamid" T5000, 240

Antiblocking agents, 23Antistatic agents, 24Apparent creep modulus, 8-9Apparent modulus, 9Axial or longitudinal stress, 3

Bayblend'" T85, 67-70isochronous stress-strain

at 23°C, 67at 40°C, 67at 60°C, 68at 80°C, 68

tensile creep modulus versus timeat 23°C, 68at 40°C, 69at 60°C, 69at 80°C, 70

Bayblend'" T88-2N, 72-74isochronous stress-strain

at 23°C, 72at 40°C, 72at 60°C, 72at 90°C, 72

tensile creep modulus versus timeat 23°C, 73at 40°C, 73at 60°C, 74at 90°C, 74

Bayblend" T88-4N, 75-77isochronous stress-strain

at 23°C, 75at 40°C, 75at 60°C, 75at 90°C, 75

tensile creep modulus versus timeat 23°C, 76at 40°C, 76at 60°C, 77at 90°C, 77

Bending stress. See Flexural stress

Index

395

Page 391: The Efecct of Creep

396

Biphenol Diamine (BP Diamine), 169Biphenol diamine PMDA polyetherimide, 1684, 4'-Bisphenol A dianhydride (BPADA)-PPD

polyetherimide, 168BPADA-DDS polyetherimide, 168BPADA-MPD polyetherimide, 168BPADA-PMDA-MPD copolyetherimide, 169

Blends, 22polyester blends, 118, 161-165styrenic blends, 35, 67-81. See also Bayblend" T85;

Bayblend'" T88-2N; Bayblend" T88-4N; CycoloyC1000; Luran S KR 2861-1; Terblend'" N NM-19;Terblend® N NG-02

Block copolymer, 19-20Branched polymers, 20

creep mechanisms for, 26

Cantilever beam bending, 2-3Capro1actam, 198Catalysts, 23-24Celanex'" 2300 GV/30, 131Celanex'" 2500, 123Celanex'" 3210, 129Celanex" 3300,131-132, 140Celazole" PBI, 339Celcon" GB25, 106Celcon'" GC25A, 104Celcon" M90™, 94-95

isochronous stress-strain curvesat 23°C, 94at 40°C, 94

tensile creep modulus versus timeat 23°C, 94at 40°C, 95

Celcon'" M270™, 93Celcon" TX90PLUS, 98Combustion modifiers, 23Composites, 23-24Compressive stress, 1-2Condensation polymerization, 19-20Copolymers, 19-20

alternating, 19block, 19graft, 19random, 19

Coupling agents, 25Crastin" LW9020, 163Crastin" LW9030, 164Crastin" S600FlO NCOlO, 123Crastin" SK601, 129Crastin'" SK603, 130Crastin" SK605, 134Crastin" SK609, 138

isochronous stress-strain curvesat 23°C, 138at 60°C, 138

Crastin'" ST820 NCOlO, 128Crastin'" T805, 135Crastin" T841FR, 139Crastin'" T843FR, 139Creep

basic concepts, 4-18categories, 5-6of metals, 4regions of, 5-6stages, 5-6

Crosslinked polyethylene (PEX), 265,278-279commercial methods for producing, 265generic PEX, 278-279

Crosslinked polymers, 20creep mechanisms for, 26

Crystalline versus amorphous plastics, 21-22Cyclic olefin copolymer (COC), 266-267, 293Cycolac'" G360, 57Cycolac" X37, 58Cycoloy C1000, 70-72

tensile creep strain versus timeat 23°C, 70at 60°C, 71at 90°C, 71

Data, creepcategories, 5first stage of, 5isochronous creep, 7isometric curves, 8primary, 5steady state, 5tertiary creep, 5three-dimensional plot, 7two-dimensional plots, 7

Delrin" 100, 500, 900, 84-86isochronous flexural stress-strain

at 23°C, 84at 45°C, 85at 85°C, 85at 100°C, 85

Delrin® 100ST NCOlO, 86-88isochronous stress-strain

at 23°C, 86at 40°C, 86at 60°C, 87at 80°C, 87

Delrin" 510GR NCOOO, 88-90isochronous stress-strain

at 23°C, 88at 40°C, 88

tensile creep modulus versus timeat 23°C, 89at 60°C, 89at 90°C, 90

INDEX

Page 392: The Efecct of Creep

INDEX

Delrin® 520MP NCOIO, 90-91isochronous stress-strain

at zs-c, 90at 60°C, 90

tensile creep modulus versus timeat 23°C, 91at 60°C, 91

Diakon' CLG356, 295Diakon' CMG302, 295Diakon' LG156, 293Diakon' ST45G8, 295Diamino Diphenyl Sulfone (DDS), 1691, 12-Dodecanediotic Acid, 198Dyes, 25Dylark'" 480P16, 63-64

flexural creep strain versus time at noc, 63tensile creep strain versus stress at 23°C, 64

Dylark" SMA resins, 64

Elastic modulus, 8-9Elastic recovery, 4Elastollan'" 1164 D, 299Elastollan'" 1185 A, 299Elastollan'" C 64 D, 300Elastollan" C 85 A, 300Elastollan" R 3000, 301Elastomers, 1-30,22-23Environmental stress cracking (ESC), 12-17

performance expectations, 16-17generalizations about, 16

tests for, 12-17single cantilever test, 13-14tensile creep rupture test, 15-16three point bending test, 14

Equivalent stress, 3Ethylene-methacrylic acid (EMAA), 267Extenders, 25Extruded polystyrene (XPS), 33

Failure, creep, 10Fiberloc ™87241, 291Fillers, 23Finite element analysis, 29-30Fire retardants, 23Flame retardants, 23Flexural creep, 4Flexural stress, 2-3

cantilever beam bending, 2-3occurrence, 2simple bending, 2

Fluon® G163, 317Fluon® PAI025Z, 318Fluorinated ethylene propylene (FEP), 310-311,

323-327. See also Teflon" FEPFluoropolymers, 309-336. See also Fluorinated ethylene

propylene (FEP); Polytetrafluoroethylene (PTFE)

397

melting points of, 312perfluoroalkoxy (PFA), 311polychlorotrifluoroethylene (PCTFE), 311polyethylene chlorotrifluoroethylene (E-CTFE), 310,

319-321polyethylene tetrafluoroethylene (ETFE), 310polyvinylidene fluoride (PVDF), 311-312THV™,312

Fortron'" 1140L4, 349-354isochronous stress-strain of

at noc, 349at 120°C, 349at 150°C, 350at 200°C, 350

tensile creep modulus versus time ofat 23°C, 352at 120°C, 353at 150°C, 353at 200°C, 354

tensile creep strain versus time ofat noc, 350at 120°C, 351at 150°C, 351at 200°C, 352

Fortron" 6165A4, 357-361isochronous stress-strain of

at zs-c, 357at 120°C, 357at 150°C, 357at 200°C, 357

tensile creep modulus versus time ofat 23°C, 360at 120°C, 360at 150°C, 361at 200°C, 361

tensile creep strain versus time ofat zs-c, 358at 120°C, 358at 150°C, 359at 200°C, 359

Generic PEX, 278-279GHR® 8110, 288-289GHR® UHMWPE, 289-290Graft copolymer, 19-20Grilamid" LV-3H, 219Grilamid" TR55, 241Grilamid'" TR90, 241Grivory" GC-4H, 248Grivory" GM-4H, 248Grivory'" GV-5H, 250-251Grivory" GV-6H, 255Grivory" HT2V-3H, 245Grivory" HT2V-5H, 252Grivoryf HTV-3Hl, 244Grivory" HTV-5Hl, 253

Page 393: The Efecct of Creep

398

Grivory'" XE3876, 244-245GUR® 4120,286-287GUR® 4152,287-288GUR®, 289-290

Ha1ar® E-CTFE, 319-321stress relaxation versus temperature of, 321tensile creep strain versus time of

at 23°C, 319at 75°C, 319at 125°C, 320at 150°C, 320

Hard phase plastic properties, 297Heterophasic copolymers, 265High density polyethylene (HDPE), 264, 267-269

density 0.945 g/cm', isochronous stress-strain of, 267at 23°C, 267at 40°C, 267at 80°C, 268

density 0.948 g/cm'', tensile creep modulusversus timeat 23°C, 268at 40°C, 269

density 0.954 g/cm'', isochronous stress-strainat 23°C, 272at 40°C, 272at 80°C, 272

density 0.960 g/cm'', isochronous stress-strain ofat 23°C, 275at 40°C, 275at 80°C, 275

High impact polystyrene (HIPS), 20, 33creep curves

at 20°C, 40in stress cracking testing of, 42

High-temperature polymers, 337-372Homophasic copolymers, 265Homopolymers, 265Hoop stress, 3-4Hostaform'" C 2521, 95Hostaform'" C 9021, 92-93, 105

flexural creep modulus at various temperatures, 93tensile creep curves at 23°C, 92time compression stress curves at 20°C, 92

Hostaform'" S 9063, 99Hostalen" CRP 100, 273-274

hoop stress versus time at varioustemperatures of, 274

tensile creep modulus versus timeat 23°C, 273at 40°C, 274

Hostalen" GM 5010 T3, 269-270hoop stress versus time at various temperatures of, 270tensile creep modulus versus time

at 23°C, 269at 40°C, 270

Hostalen" H1022, 282

INDEX

Hostalen'" H2150, 279-280isochronous stress-strain

at 23°C, 279at 40°C, 279at 60°C, 280at 80°C, 280

Hostalen" H2222, 280Hostalen" H2250, 281Hostalen'" H52l6, 281Hyflon® PFA M620, 330Hyflon" PFA M720, 331Hyflon'" PFA P220, 329Hyflon'" PFA P420, 330Hytrel®5526, 303-304

isochronous stress-strainat 23°C, 303at 40°C, 303at 80°C, 303

Hytrelf 6356, 304-305isochronous stress-strain

at 23°C, 304at 40°C, 304at 80°C, 305

Hytrel" 7246, 306-307

Imide polymer blends, 170-171Immiscible blends, 22Impact copolymers (heterophasic copolymers), 265Impact modifiers, 23-24Impet" 330R, 144Impetf 61OR, 142Isochronous creep, 7Isometric curves, 8-9Isophthalic acid (IPA), 201Isophthalic Acid, 198IXEF® 1022, 260IXEF® 1032,261

Kynar'" PVDF, 336

Lexan'" 101, 119Lexan'" 141R, 119-120Linear low density polyethylene (LLDPE), 264Linear polymers, 20

creep mechanisms for, 26Liquid crystalline polymers (LCPs), 116-118,

157-160monomers to make, 117Vectra" ABO, 157Vectra" B130, 159Vectra" C130, 159Vectra" E130i, 160Vectra" H140, 160Zenite'" 6130 BKOlO, 158

Log-log scales, 9Low density polyethylene (LDPE), 264Lubricants, 23

Page 394: The Efecct of Creep

INDEX

Lubricomp" DFL-4036, 121-122creep strain versus time

at 23°e, 121at zo-e. 122at 120oe, 122

Lupolen'" 5031L, 271isochronous stress-strain of

at 23°e, 271at ao-c, 271

Lupolen'" 5261Z, 273Lupolen" 6031M, 276Luran S KR 2861-1,81

isochronous stress-strainat 23°e, 81at so-c, 81

Luran'" 378 P G7, 50-53creep modulus versus time

at 23°e, 51at -o-c, 52at so-c, 52at so-c, 53

isochronous stress-strainat 23°e, 50at 40oe, 50at so-c, 51at so-c, 51

Luran'" 378 P, 47-50creep modulus versus time

at 23°e, 48at 40oe, 49at 60 oe, 49at so-c, 50

isochronous stress-strainat 23°e, 47at 40oe, 47at 60oe, 48at 80oe, 48

Luran'P S 757 R, 42-45creep modulus versus time

at 23°e, 43at 40oe, 44at 60oe, 44at 80oe, 45

isochronous stress-strain curvesat 23°e, 42at 40oe, 42at 60oe, 43at 80oe, 43

Luran'" S 776 S, 47Luran" S 778 T, 45-46

creep modulus versus timeat 23°e, 46at 60oe, 46

isochronous stress-strainat 23°e, 45, 47at 60oe, 45at 70oe, 47

Lustran" ABS 446, 55-56creep strain versus time

at 23°e, 55at -o-c, 55at 60oe, 56at so-c, 56

Magnum™ 1040,58-60creep modulus versus time

at 23°e, 59at 50oe, 60at 80°C, 60

isochronous stress-strainat 23°e, 58at so-c, 58at so-c, 59

Maximum surface strain, 14Measures of creep, 6-18Medium density polyethylene (MDPE), 264Melting points of fluoroplastics, 312Mesh,29Metals, creep properties, 4Methyl methacrylate-acrylonitrile-butadiene-styrene

(MABS), 34, 62-63. See also Terlux" 2802 TRMethylene dianiline (MDA), 169Mica, 25Minlon'" lOB140 NeOlO, 228-229

creep strain in flexure versus time ofat 23°e, 229

isochronous stress-strain ofat 23°e, 228at so-c, 228at so-c, 228at too-c. 228

Minlon® 11e40 NeOlO, 229Minlon® 12T, 227Minlon'" 20B, 230Minlon'" 73M30 NeOlO, 207-208Modulus, creep, 8-9Moire fringe extensometer, 15Molecular weight, polymers, 20-21M-Phenylene Diamine (MPD), 169Multiphase polymer blends, 22

Neoflon" M-300H, 332Neoflon' M-400H, 332Nodes, 29Non-fibrous fillers, 23Normal stress, 1Noryl'" 731, 112Noryl'? GFN1, 113Noryl'" GFN2, 113Noryl'" GTX964W, 111Nylon 6,198-199

characteristics of, 198chemical structure of, 199

Nylon 11, 199

399

Page 395: The Efecct of Creep

400

Nylon 12, 199Nylon 46, 201

chemical structure of, 206Nylon 66, 199-200Nylon 610, 200

structure of, 20 INylon 612, 200-201

structure of, 20 INylon 666 or 66/6, 201

Oxydianiline (aDA), 169

Particulate fillers, 23Perfluoroalkoxy (PFA), 311, 328-331. See also Hyflon"

PFA P220; Teflon® PFAHyflon" PFA M620, 330Hyflon'" PFA M720, 331Hyflon" PFA P420, 330PFA resins, comparison, 331

Peroxide (or Engel) method (PEX-a), 265Pigments, 25Plasticizers, 24-25Plastics, 1-30,33-81. See also Styrenic plastics

creep in, mechanisms, 25-27branched or crosslinked polymers, 26linear polymers, 26reinforced plastics, 26

Poisson's ratio, 27-28Polyacrylics, 267Polyamide (PA), 35Polyamide 6 (PA 6, Nylon 6), 204-208

Amilan' CMIOIIG-30, 207Amilan' CMIOIIG-45, 208Minlon" 73M30 NCOIO, 207-208Stat-Kon® PC-I006, 206Thermocomp'" PF-1004, 204Thermocomp'" PF-I006 (PF006), 206Ultramid" B5, 204Zytel® 73G30L NCOIO, 205

Polyamide II (PA II, Nylon 11),209-210Rilsan® PA II resins, 209

Polyamide 12 (PA 12, Nylon 12),210-219.See also Vestamid" L2140; Vestamid'" L2124;Vestamid'" L-GF30Grilamid" LV-3H, 219

Polyamide 46 (PA 46, Nylon 46),242-243generic grades of, comparison, 243-259Stanyl'" PA 46, 243Stanyl" TW200F8, 242Stanyl" TW300, 242

Polyamide 66 (PA 66, Nylon 66), 220-232.See also Ultramid'P A 3K; Zytel'" 101Minlon" 10B140 NCOIO, 228-229Minlon'" l1C40 NCOIO, 229Minlon'" 12T, 227Minlon'" 20B, 230

Ultramid'" A 3WG10, 232Zytel® 408HS, 223Zytel® 408L, 223Zytel® 70G13, 224Zytel'" 70G30HSLR, 225Zytel® 70G33HSIL, 227Zytel® 70G33L 33, 226Zytel® 70G43L, 231

Polyamide 610 (PA 610, Nylon 610), 233-234Thermocornp" QF006 (QF-I006), 233Thermocomp" QF008 (QF-1008), 233Thermocomp'" QF012 (QF-100-12), 234

Polyamide 612 (PA 612, Nylon 612), 234-239.See also Vestamid'" D16; Zytel'" 158L NCOIOVestamid" VX7099, 238Zytel" 77G43L, 239

Polyamide-imide (PAl), 167-170, 187-192Torlon'" 4203L, 187Torlon® 4275, 189-190Torlon" 4301, 188Torlon® 4375, 189Torlon® 5030, 190Torlon" 7130, 191-192

Polyamides/Nylons, 197-262. See also individualNylon entriesdiacids used to make, 198diamines used to make, 198monomers used to make, 197

Polyarylamide (PAA), 202, 260-261IXEF® 1022, 260IXEF® 1032,261

Polybenzimidazole (PBI), 339Polybutadiene, 22Polybutylene terephthalate (PBT), 22, 115-116,

123-141,170Celanex" 2300 GV/30, 131Celanex'? 2500, 123Celanex'" 3210, 129Celanex'" 3300, 131-132Crastin'" S600FIO NCOI0, 123Crastin" SK601, 129Crastin'" SK603, 130Crastin'" SK605, 134Crastin" SK609, 138Crastin" ST820 NCOIO, 128Crastin" T805, 135Crastin'" T841FR, 139Crastinf T843FR, 139performance properties, 115product comparisons of PBT Resins, 140-141Ultradur'" B4300 G6, 135-136Ultradurf B4520, 127-128Vestodur'" 2000, 124-125Vestodur" GF30, 132-134Vestodur'" HI19, 126-127Vestodur'" HI19-GF30, 137-138

INDEX

Page 396: The Efecct of Creep

INDEX

Polycarbonate (PC), 35,115,119-122Lexan'" 101, 119Lexan" 141R, 119-120Lubricomp'" DFL-4036, 121-122performance properties, 115Thermocomp" DF-1006, 120-121

Polychlorotrifluoroethylene (PCTFE), 311, 332Polycyclohexylenedimethylene terephthalate (PCT), 118Polyesters, 115-165. See also Liquid crystalline

polymers (LCPs); Polycarbonate (PC); Polybutyleneterephthalate (PBT); Polyethylene terephthalate (PET)formation, 115-116

Polyether block amide (PEBA) elastomers, 298Polyether plastics, 83-113

modified polyphenylene ether/polyphenylene oxides(PPE or PPO), 84

Polyoxymethylene (POM), 83Polyoxymethylene Copolymer (POM-Co), 83-84,

92-110Polyetheretherketone (PEEK), 170, 337, 340-343

Victrex" 450CA30, 341Victrex'" 450G, 340

Polyetherimide (PEl), 167, 171-186. See also Ultem'"1000; Ultem® 2200; Ultem® 2400; Ultem® PEl resins;Vespel® TP-8054; Vespel" TP-8130; Vespel'" TP-8212;Vespel" TP-8311; Vespel® TP-8395; Vespel® TP-8549;Vespel'" TP-8792PEl resins, product comparison, 184-186Ultem" CRS5001, 181-182Ultem" XH6050, 183-184

Polyethersulfone (PES), 337-338, 343-348Radel® A-200A, 345Radel" AG-230, 346-347Sumika Excel'" 4101GL30, 347-348Ultrason" E 2010 G4, 346Ultrason" E 2010 G6, 348Ultrason'" E 2010, 343-344

Polyethylene (PE), 263-265, 267-278classifications, 263

High density polyethylene (HDPE), 264,267-269

Linear low density polyethylene (LLDPE), 264Low density polyethylene (LDPE), 264Medium density polyethylene (MDPE), 264Ultra low density polyethylene (ULDPE), 263Very low density polyethylene (VLDPE), 264

crystallinity, 264-265Hostalen'" CRP 100, 273-274Hostalen" GM 5010 T3, 269-270Lupolen'" 5031L, 271Lupolen'" 5261Z, 273Lupolen'" 6031M, 276products, comparison, 277-278

Polyethylene chlorotrifluoroethylene (E-CTFE), 310,319-321Halar® E-CTFE, 319-321

401

Polyethylene terephthalate (PET), 19, 116, 142-157, 170Impet'" 330R, 144Impet" 61OR, 142Rynite" 415HP, 142-143Rynite" 530, 145-146Rynite'" 545,153-154Rynite" 555,154-157Rynite" 935, 147-149Rynite" 940, 149-150Rynitef FR515, 143-144Rynite" FR530, 146-147Rynite'" FR943, 150-151Rynite" SST35, 152-153

Polyethylene tetrafluoroethylene (ETFE), 310, 321-322Tefzel'" ETFE HT-2004, 322Tefzel" ETFE, 321

Polyimide (PI), 170, 192-195Vespel" SPl, 192-193Vespel" SP21, 193-194Vespel" SP22, 194-195

Polymerization, 19. See also Addition polymerization;Condensation polymerization; Copolymers

Polymers, 18-25Polymethyl methacrylate, 22Polymethylpentene (PMP), 266, 286Polyolefins, 263-296Polyoxymethylene (POM) homopolymer, 83, 84-91.

See also Delrin® 100, 500, 900; Delrin" 100STNCOIO; Delrin'" 510GR NCOOO; Delrin® 520MPNCO10

Polyoxymethylene copolymer (POM-Co), 83-84,92-110. See also Hostaform" C 9021; UltraformfN2200 G43; Ultraform'" N2200 G53Celcon'" M270™, 93Celcon" M90™, 94-95Celcon'" TX90PLUS, 98Hostaform" C 2521, 95Hostaform'" S 9063, 99Ultraform'" H4320, 97Ultraform" N2320 003,96-97

Polyphenylene ether (PPE), 84Polyphenylene oxides (PPO), 84

Polyphenylene sulfide (PPS), 338, 349-363.See also Fortron" 1140L4; Fortron'" 6165A4;Ryton'" R-4cured PPS, 338generic and product comparison, 362-363HMW branched PPS, 338HMW linear PPS, 338properties of, 338regular PPS, 338Ryton" A-200PPS, 349Ryton'" R-7, 356Ryton" R-IO, 356

Polyphenylsulfone (PPSU), 339, 369-372.See also Radel" R-5000

Page 397: The Efecct of Creep

402

Polyphthalamide/high-performance polyamide (PPA),201-202,243-259Amodel" A-1133 HS, 246-247Amodel'" A-I 145 HS, 249Amodel'" A-1160 HS, 254Amodel'" ET-l 000, 243Grivory" Ge-4H, 248Grivory'" GM-4H, 248Grivory'? GV-5H, 250-251Grivory'" GV-6H, 255Grivory'" HT2V-3H, 245Grivory'" HT2V-5H, 252Grivory'" HTV-3Hl, 244Grivory" HTV-5Hl, 253Grivory" XE3876, 244-245PPA resins, comparison, 256-259

apparent flexural creep modulus versus time,256-259

flexural creep strain versus time by dynamicmechanical analysis, 256

Polyphthalamides, 203Polyphthalate carbonate (PPC), 118, 161Polypropylene (PP), 265-266, 279-285

homopolymers, 265Hostalen'" H1022, 282Hostalen'" H2150, 279-280Hostalen'" H2222, 280Hostalen'" H2250, 281Hostalen'" H5216, 281impact copolymers (heterophasic copolymers), 265random copolymers (homophasic copolymers), 265Verton" MV006S, 283Verton" MV008S, 284-285Verton" MVOOAS, 285

Polystyrene (PS), 22, 33, 36-42extruded polystyrene (XPS), 33general-purpose PS resins, 41generic products and direct comparison of PS resins,

40-42high impact polystyrene (HIPS), 33polystyrene 168 N, 39

creep strain curves at 20°C, 40polystyrene 454 C, 37-39

creep modulus versus time at 23°C of, 38creep modulus versus time at 40°C of, 38creep modulus versus time at 60°C of, 39isochronous stress-strain at 23°C of, 37isochronous stress-strain at 40°C of, 37isochronous stress-strain at 60°C of, 37

polystyrene 456 F, 40creep rupture curves at various temperatures, 40

polystyrol 143 E, 36creep modulus versus time at 23°C of, 36isochronous stress-strain at 23°C of, 36

Poly sulfone (PSU), 338-339, 364-369Udel® P-1700, 366-368

INDEX

Ultrason" S 2010, 364-365Ultrason" S 2010 G4, 368

Polytetrafluoroethylene (PTFE), 309-310, 313-318Fluon'" 0163,317Fluon® PA1025Z, 318Teflon® PTFE, 313-316

Poly trimethylene terephthalate (PTT), 118Polyvinyl chloride (PVC), 291-292

Fiberloc' 87241, 291rigid PVC, 266

Polyvinylidene fluoride (PVDF), 311-312, 333-336.See also Solef'" 1010Kynar'" PVDF, 336Solef'" 8088/0902, 336

P-Phenylene diamine (PPD), 169Primary creep region, 5Product design, plastic, using creep data in, 27-30Pseudo elastic design method, 28-29Pyromellitic dianhydride (PMDA), 169

Radel® A-200A, 345Radel® AG-230, 346-347Radel" R-5000, 369-372

apparent creep modulus versus time of, 372isochronous stress-strain curves of

at 23°C, 369at 95°C, 369at 160°C, 370

tensile creep modulus versus time ofat 23°C, 370at 95°C, 371at 160°C, 371

Radial stress, 3Radiation or electron-beam method (PEX-c), 265Random copolymer, 19-20, 265Rapra tensile creep machine, 15-16Reinforced plastics, creep mechanisms for, 26Reinforcing fillers, 23Release agents, 23Rilsan® PA 11 resins, 209Rupture

creep rupture, 10-11in air and aggressive environments, 12

strength, 9-12stress rupture, 10-11

Rynite'" 415HP, 142-143Rynite'" 530, 145-146Rynite'" 545, 153-154

Rynite'" 555,154-157flexural creep strain versus time

at a stress of 6.9 MPa, 154, 156at a stress of 13.8 MPa, 155, 156atastressof27.6MPa, 155, 157

Rynite" 935,147-149flexural creep strain versus time

at a stress of 6.9 MPa, 147

Page 398: The Efecct of Creep

INDEX

at a stress of 13.8 MPa, 148at a stress of 27.6 MPa, 149

Rynite" 940, 149-150Rynite" FR515, 143-144

Rynite'" FR530, 146-147Rynite'" FR943, 150-151Rynite" SST35, 152-153

Ryton" A-200 PPS, 349Ryton" R-4, 354-355Ryton" R-7, 356Ryton" R-lO, 356

Sebacic Acid, 198Secant modulus, 28Semi-crystalline polyamide (PACM 12),202-203,

261-262Trogamid" CX7323, 261

Shear stress, 1-2Silane method (PEX-b), 265Single cantilever test, 13-14Slip, 23Smoke suppressants, 23Soft phase elastomeric properties, 297Solef® 1010,333-335

hoop stress versus time of, 334isochronous stress-strain versus time of

at 23°C, 333at 120°C, 333at 140°C, 334

Solef® 8088/0902, 336Stanyl'" TW200F8, 242Stanyl'" TW300, 242Stat-Ken" PC-1006, 206Steady state region, 5Strain versus time creep behavior, 6Strain, measurement, 6-8Strength, creep, 9-12. See also Rupture strengthStress corrosion cracking (SCC), 14Stress, measurement, 6-8Stress. See also individual entries

types of, 1-4Styrene-acrylonitrile (SAN), 33134, 47-54.

See also Luran" 378 P; Luran" 378 P G7generic products and direct comparison of

SAN resins, 53-54Styrene-maleic anhydride (SMA), 34-35, 63-64.

See also Dylark'" 480P16; Dylark'" SMA resinsproduction, 35

Styrenic block copolymer (SBC), 35,65-67.See also Styrolux'" 656C

Styrenic plastics, 33-81acrylonitrile-butadiene-styrene (ABS), 34,

55-61acrylonitrile-styrene-acrylate (ASA), 33-34,

42-47blends, 35, 67-81. See also Blends, styrenic

403

methy1methacrylate-aerylonitrile-butadiene-styrene(MABS), 34, 62-63

polystyrene, 33, 36-42styrene-acrylonitrile (SAN), 34, 47-54styrene-maleic anhydride (SMA), 34-35, 63-64styrenic block copolymers (SBCs), 35, 65-67

Styrolux" 656C, 65-67creep modulus versus time

at 23°C, 66at 40°C, 66at 60°C, 67

isochronous stress-strainat 23°C, 65at 40°C, 65at 60°C, 65Sumika Excel®4101GL30, 347-348Surlyn®, 267

Teflon® FEP, 323-327creep strain in compression versus time of

at 23°C, 325at 100°C, 325

stress relaxation versus time ofat 23°C, 327at 100°C, 327

tensile creep strain versus time ofat -54°C, 323at 23°C, 323at 100°C, 324at 175°C, 324

torsional creep strain versus time ofat 23°C, 326at 100°C, 326

Teflon® NXT resins, 309Teflon® PFA, 328-329

tensile creep strain versus time ofat 23°C, 328at 100°C, 328at 200°C, 329

Teflon" PTFE, 313-316compressive creep strain versus time of

at 23°C, 315at 100°C, 315

shear creep strain versus time ofat 23°C, 316at 100°C, 316

tensile creep strain versus time ofat -54°C, 313at 23°C, 313at 100°C, 314at 200°C, 314

Tefzel'" ETFE HT-2004, 322Tefzel® ETFE, 321Tensile creep rupture test, 15-16Tensile creep, 4-5Tensile stress, 1-2

Page 399: The Efecct of Creep

404

Terblend" N NG-02, 79-80isochronous stress-strain

at 23°C, 79at 60°C, 79

tensile creep modulus versus timeat 23°C, 80at 60°C, 80

Terblend'" N NM-19, 78-79isochronous stress-strain

at 23°C, 78at 40°C, 78

tensile creep modulus versus timeat 23°C, 78at 60°C, 79

Terephthalic acid (TPA), 198,201Terlux'" 2802 TR, 62-63

creep modulus versus time at 60°C, 63isochronous stress-strain

at 23°C, 62at 40°C, 62at 60°C, 62

Tertiary creep region,SThermal stabilizers, 25Thermocomp'" DF-1006, 120-121Thermocomp" PF-I004, 204Thermocomp" PF-I006 (PF006), 206Thermocomp'" QF006 (QF-1006), 233Thermocomp'" QF008 (QF-1008), 233Thermocomp'" QF012 (QF-100-12), 234Thermoplastic copolyester elastomers

(TPE-Es or COPEs), 301-307Hytrel" 5526, 303-304Hytrel® 6356, 304-305Hytrel'" 7246, 306-307isochronous stress-strain

at 23°C, 301at 40°C, 302at 80°C, 302

Thermoplastic elastomers, 297-307'hard phase' plastic properties, 297'soft phase' elastomeric properties, 297polyether block amide (PEBA) elastomers, 298

Thermoplastic polyurethane elastomers (TPUs), 297-301Elastollan'" 1164 D, 299Elastollan® 1185 A, 299Elastollan® e 64 D, 300Elastollan® e 85 A, 300Elastollan® R 3000, 301

Thermosets versus thermoplastics, 21Three point bending test, 14THV™, 312Ticona Vectra® A950 Lep, 117Time, measurement, 6-8Topas'", 293Torlon" 4203L, 187Torlon®4275, 189-190Torlon" 4301, 188

INDEX

Torlon'" 4375, 189Torlon" 5030, 190Torlon'" 7130, 191-192Torque, 2Torsional constant (K), 2Torsional stress, 2Tougheners, 23Toyolac" 100, 57TPX™ PMP Resin, 286Trogamid'" eX7323, 261Trogamid'" T5000, 240

Udel® P-1700, 366-368Ultem® 1000, 171-173

creep strain versus timeat 23°C, 171at 60°C, 172at 100°C, 173at 150°C, 173

Ultem" 2200,173-175creep strain versus time

at 23°C, 173at 60°C, 174at 100°C, 174at 150°C, 175

Ultem" 2400,175-177creep strain versus time

at 23°C, 175at 60°C, 176at 100°C, 176at 150°C, 177

Ultem® eRS5001, 181-182creep strain versus time

at 23°C, 181at 60°C, 181at 100°C, 182at 150°C, 182

Ultem® PEl resinsapparent creep modulus versus time

at 23°C and 34.5 MPa, 185at 23°C and 48.3 MPa, 184at 82°C and 23.6 MPa, 186at 82°C and 34.5 MPa, 185

flexural creep strain versus timeat 23°C and 48 MPa, 186

Ultem® XH6050, 183-184creep strain versus time

at 23°C, 183at 127°C, 183at 150°C, 184

Ultra high molecular weight polyethylene (UHMWPE),266,286-290GHR® 8110, 288-289GHR® UHMWPE, 289-290GUR® 4120,286-287GUR® 4152,287-288GUR®, 289-290

Page 400: The Efecct of Creep

INDEX

Ultra low density polyethylene (ULDPE), 263Ultradur'" B4300 G6, 135-136

isochronous stress-strainat 23°e, 135at so-c, 135

tensile creep strain versus timeat 23°e, 136at 100oe, 137

Ultradur'" B4520, 127-128isochronous stress-strain

at 23°e, 127at so-c, 127at 100oe, 128

Ultraform" H4320, 97Ultraformf N2200 G43, 99-101

isochronous stress-strain curvesat 23°e, 99at «rc, 99at so-c, 100at 100oe, 100at 120oe, 100

Ultraform" N2200 G53, 101-103creep modulus versus time curves

at 23°e, 103at 40oe, 103

isochronous stress-strain curvesat 23°e, 101at -o-c, 101at so-c, 102at so-c, 102at 100°C, 102at 120oe, 102

Ultraform" N2320 003, 96--97isochronous stress-strain

at 23°e, 96tensile creep strain versus time

at 23°e, 96tensile creep modulus versus time

at 23°e, 97Ultraform'" N2720 M21O, 106--107

creep modulus versus time curvesat 23°e, 107

isochronous stress-strain curvesat 23°e, 106at so-c, 106at 120oe, 107

Ultraform" N2720 M63, 108-109creep modulus versus time curves

at 23°e, 109at «rc, 109

isochronous stress-strain curvesat 23°e, 108at -o-c, 108at so-c, 108at 100oe, 108

Ultramid'P A 3K, 222Ultramid'" A 3WG10, 232

Ultramid® B5, 204Ultrason'" E 2010 G4, 346Ultrason" E 2010 G6, 348Ultrason'" E 2010,343-344Ultrason" S 2010 G4, 368Ultrason'" S 2010, 364--365UV stabilizers, 24

Valox'" 508, 161-163creep strain versus time

at 23°e, 161at so-c, 162at 82°e, 162at 121°e, 163

Vectra'" ABO, 157Vectra'" B130, 159

Vectra" e130, 159Vectra'" E130i, 160Vectra'" H140, 160

Verton* MV006S, 283Verton" MV008S, 284--285Verton* MVOOAS, 285Very low density polyethylene

(VLDPE), 264Vespel'" SPl, 192-193Vespel® SP21, 193-194Vespel® SP22, 194-195Vespel® TP-8054, 177Vespel® TP-8130, 178Vespel" TP-8212, 178Vespel'" TP-8311, 179Vespel'" TP-8395, 179Vespel® TP-8549, 180Vespel'" TP-8792, 180Vestamid" D16, 234--237

tensile creep strain versus time ofat 23°e, 234at so-c, 235at 100oe, 235

tensile creep modulus versus time ofat 23°e, 236at so-c, 236at 100oe, 237

Vestamid'" L2124, 213-216tensile creep strain at various stresses of

at 23°e, 213at so-c, 214at 100oe, 214

tensile creep modulus at various stresses ofat 23°e, 215at so-c, 215at 100oe, 216

Vestamid'" L2140, 210-213tensile creep strain at various stresses of

at 23°e, 210at eo-c. 211at 100oe, 211

405

Page 401: The Efecct of Creep

406

tensile creep modulus at variousstresses ofat 23°C, 212at 60°C, 212at 100°C, 213

Vestamid" L-GF30, 216-219tensile creep strain at various

stresses ofat 23°C, 216at 60°C, 217at 100°C, 217

tensile creep modulus at variousstresses ofat 23°C, 218at 60°C, 218at 100°C, 219

Vestamid" VX7099, 238Vestodur'? 2000, 124-125

tensile creep strain versus timeat 23°C, 124at 100°C, 124

tensile creep modulus curvesat 23°C, 125at 100°C, 125

Vestodur" GF30, 132-134tensile creep strain versus time

at 23°C, 132at 100°C, 133

tensile creep modulusat 23°C, 133at 100°C, 134

Vestodur" HIl9, 126-127tensile creep strain versus time

at 100°C, 126tensile creep modulus versus time

at 23°C, 126at 100°C, 127

Vestodur'" HIl9-GF30, 137-138

tensile creep modulus versus timeat 23°C, 137at 100°C, 138

Victrex" 450CA30, 341Victrex" 450G

Viscoelasticity, 30Von Mises equivalent stress formula, 3

Xenoy" 6370, 164-165

Young's modulus, 28

Zenite" 6130 BKOIO, 158Zytel® 101,220-222

apparent flexural creep modulusversus timeat 23°C, 221at 60°C, 222

flexural creep strain versus time at 23°C, 221flexural isochronous stress-strain at 23°C, 220isochronous stress-strain of

at 23°C, 220at 60°C, 220at 100°C, 220

Zytel" 158L NCOIO, 237Zytel'" 408HS, 223Zytel'" 408L, 223Zytel'" 70G 13, 224Zytel'" 70G30HSLR, 225Zytel® 70G33HSu, 227Zytel" 70G33L 33, 226Zytel'" 70G43L, 231Zytel'" 73G30L NCOIO, 205

isochronous stress-strainat 23°C, 205at 60°C, 205at 90°C, 205

Zytel'" 77G43L, 239

INDEX