The Cryotron Superconductive Computer Component

download The Cryotron Superconductive Computer Component

of 14

Transcript of The Cryotron Superconductive Computer Component

  • 8/20/2019 The Cryotron Superconductive Computer Component

    1/32

    Memorandum 6M-38U3

    Page 1 of 16

    Division 6 - Lincoln Laboratory

    Massachusetts Institute of Technology

    Lexington 73, Massachusetts

    SUBJECT: THE CRYOTRON — A SUPERCONDUCTIVE COMPUTER COMPONENT

    To:

    David R. Brown

    From:

    Date:

    Approval:

    Abstract:

    Dudley A. Buck

    August 22,

    Torben H.

    Meisling

    Tne study of nonlinearities in nature suitable for computer

    use has led to the cryotron, a device based on the destruction

    of superconductivity by a magnetic field. The cryotron, in

    its simplest form, consists of a straight piece of wire about

    one inch long with a single-layer control winding wound over

    it.

      Current in the control winding creates a magnetic field

    which causes the central wire to change from its superconduct

    ing state to its normal state. The device has current gain,

    that is, a small current can control a larger current and it

    has power gain so that cryotrons can be interconnected in

    logical networks as active elements. The device is also small,

    light, easily fabricated, and dissipates very little power.

    1. The Cryotron Principle

     APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

  • 8/20/2019 The Cryotron Superconductive Computer Component

    2/32

    I

    Memorandum 6M-38U3 Page 2

    The resistivity of many superconductive materials is relatively

    high at room temperature, especially those which nave high transition

    temperatures such as niobium, lead, tantalum, etc. It is interesting that

    relatively poor conductors become superconductors at low temperatures whereas

    good conductors such as gold, silver, and copper do not. The resistivity

    of superconductive materials drops as they are cooled. Just above their

    superconductive transition, the resistivity is between 10-1 and io-3 of

    their room temperature resistivity, depending on the purity and mechanical

    strain in a particular sample.

    Below the superconductive transition the resistivity is exactly

    zero.

      That it is truly zero is vividly demonstrated by an experiment now

    in progress by Professor S. C. Collins at M. I.T. wherein a lead ring has

    been carrying an induced current of several hundred amperes since March

    16, 1

    0

    5U>

     without any observable change in the magnitude of the current.

    1.2 Destruction of Superconduct vity by a Magnetic Field

    The foregoing discussion of the superconductive transition is

    valid only in zero magnetic field. With a magnetic field applied, the onset

    of superconductivity occurs at a lower temperature. If the intensity of

    the magnetic field is increased, the transition temperature is still lower.

    A plot of the transition temperature as a function of the applied magnetic

    field is more or less parabolic in shape, levelling out as absolute zero

    is approached. Such a plot for several common elements is given in Figure

    1.

    If the temperature is held below the transition temperature for

    one of these materials, the resistance of that material is zero. Its

    resistance will remain zero as a magnetic field is applied until that

     APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

  • 8/20/2019 The Cryotron Superconductive Computer Component

    3/32

    Memorandum 6M-38U3 Page 3

    I n a t y p i c a l c r y o t r o n , t h e r e s i s t a n c e b e in g c o n t r o l l e d i s i n t h e

    fo rm o f a s t r a i g h t p i e c e o f w i r e a b o u t 1 i n c h i n l e n g t h .  Th e  magne t i c

    c o n t r o l f i e l d i s g e n e r a t e d b y c u r r e n t i n a s i n g l e - l a y e r w i n d i n g w h ic h i s

    w ou nd o v e r t h e c e n t r a l w i r e ( F i g u r e 3 , t o p ) . The c e n t r a l w i r e i s a n a l o g o u s

    t o t h e p l a t e c i r c u i t o f a v ac uu m t u b e a nd t h e c o n t r o l w i n d i n g i s a n a l o g o u s

    t o t h e c o n t r o l g r i d . I n t h i s c a s e , t h e p l a t e r e s i s t a n c e i s z e r o i n t h e

    c u t o ff r e g i o n an d r i s e s r a p i d l y a s g r i d - c u r r e n t c u to f f i s r e a c h e d .

    1 . 3 S u p e r c o n d u c t i n g C o n t r o l W i n d in g

    T h e c o n t r o l w i n d i n g i s m ade o f a s u p e r c o n d u c t i n g w i r e w h ic h h a s a

    r e l a t i v e l y h i g h t r a n s i t i o n t e m p e r a t u r e . N io biu m ( f o r m e r l y c a l l e d c olu m biu m )

    i s u se d b e c a u s e i t h a s a v e r y h i g h t r a n s i t i o n t e m p e r a t u r e a n d c an b e d ra w n

    i n t o f i n e w i r e w h ic h i s s t r o n g . L ea d o r l e a d - p l a t e d w i r e i s a se c o n d

    p o s s i b l e c o n t r o l - w i n d i n g m a t e r i a l .

    A t th e t e m p e r a t u r e u s e d , t h e c o n t r o l w i n d in g r e m a i n s a s u p e r c o n

    d u c t o r a t a l l t i m e s , a n d w o u l d r e m a i n so e v e n i n m a g n e t i c f i e l d s m uch

    h i g h e r t h a n t h o s e b e i n g u s e d t o c o n t r o l th e c e n t r a l w i r e . T h e r e f o r e , t h e r e

    i s no r e s i s t a n c e i n t h e c o n t r o l w i n d i n g . A m a g n e ti c f i e l d , o nc e e s t a b l i s h e d ,

    n e e d s no f u r t h e r e n e r g y f o r i t s s u p p o r t ^ t h e c o n t r o l c u r r e n t i s m a i n t a i n e d

    a g a i n s t z e r o b a c k v o l t a g e . S i m i l a r l y , a l l i n t e r c o n n e c t i n g w i r e i s a l s o

    s u p e r c o n d u c t i n g .

    2 .  The C r yo t ro n a s a Dev i ce

    2 . 1 S t a t i c C h a r a c t e r i s t i c s

    T he r e s i s t a n c e o f t h e c e n t r a l w i r e o f a t y p i c a l c r y o t r o n i s

    p l o t t e d a s a f u n c t i o n o f c u r r e n t i n t h e c o n t r o l w i n d in g i n F i g u r e U . T he

     APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

  • 8/20/2019 The Cryotron Superconductive Computer Component

    4/32

    Memorandum 6M-38Ii3 Page  h

    current.

      The magnetic field, H, at the surface is given by:

    where H is in ampere-turns per meter

    I is in amperes

    d is in meters.

    If H is given in oersteds, I in amperes, and d in mils (thousandths

    of an inch) this becomes

    H

      = 157.5 j

    oersteds d mils

    It will be noted that the transition characteristics are very

    sharp for high gate currents. The additional sharpness is a peculiarity

    of the measuring technique wherein a current is passed through the gate

    circuit and the voltage across the gate circuit is measured. When resis

    tance suddenly appears, I^R loss in the gate circuit causes heating which

    lowers the critical field and speeds switching.

    The magnetic field due to the control winding is along the axis

    of the central wire while the self-field of the wire due to its own current

    is tangential to the wire. Tne two fields thus add in quadrature and the

    resulting net field is the vector sum of two fields. Results indicate

    that the superconducting central wire reaches its critical field when the

    net field reaches a certain value, regardless of which way the net field

    points in relation to the center line of the wire. In one experiment,

    the curves of Figure

      k

     were reproduced exactly for all four combinations

    rrd

     APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

  • 8/20/2019 The Cryotron Superconductive Computer Component

    5/32

    Memorandum 6M-38U3

    Page 5

    c u r r e n t th r e s h o ld th an th e f i r s t c r y o t r o n c o u ld h a n dle th ro u g h i t s

    s u p e r c o n d u c t in g g a te c i r c u i t .

    The c o n t r o l f i e ld i s r e l a te d to th e c o n t r o l c u r r e n t b y th e

    number of tu rn s per inch in the co ntr o l winding , and the se l f f i e l d i s

    re la ted to the ga te cur ren t by the d iamete r o f wire used in the ga te

    c i r cu i t . Cur ren t ga in , K, i s simp ly g iven by :

    I

      =

     Kd

      I

    For a given pi tc h c on tro l wind ing and a given gat e wire diam ete r , the

    c u r r e n t g a in i s s p e c i f i e d . F ig u r e 5 i s a p l o t o f l in e s of c o n s ta n t K a s

    a func t io n of winding p i tch and ga te wire d iam ete r . For th e c ryo tron

    who se c h a r a c t e r i s t i c s a r e p l o t t e d i n F ig u r e U# K • 7 . The c u r r e n t

    ga in ac tu a l ly observed for a g iven c ryo tron is o f ten le ss than ca lcu la t ed ,

    presumably due to the co ns tr i c t io n of sup ercu r ren ts by smal l normal reg ion s

    which nu c le a te about f laws in the wire sur f ace . Co ntro l-cu r ren t th re sho ld

    p o in t s th u s fo rm a lo c u s in th e g a t e c u r r e n t - c o n t r o l c u r r e n t p la n e wh ic h

    l i e s on an e l l i p s e of s ma l le r ma jo r -to - min o r a x i s r a t i o .

    2 .3 Power Gain and i/R Time Constant

    The input power to a cryotron, exclusive of eddy current and

    r e l a x a t i o n lo s s e s , i s the p r o d u c t o f th e e n e r g y s to r e d in th e ma g n e ti c

    f ie ld of the control winding and the f requency at which the control wind

    ing i s en erg ized :

    2

    f L I

    c c

     APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

  • 8/20/2019 The Cryotron Superconductive Computer Component

    6/32

    Memorandum 6K-38U3

    Page 6

    Power gain, G, can be approximated by:

    X

    V  J  2

    R

    power out

      m

      g ii „ 1 / g \ g

    power i n ,

    T T

    2 f l l / L

    f I * *0 c

    c c

    In the pulse circuits of section 3* the gate current of one

    cryotron becomes the control current of another^ I • I • For this condi

    tion, the frequency at which the power gain becomes unity is:

    R

    f = _£

    max L

    c

    which is the reciprocal of the L/R time constant of the circuit. The L

    and R are on different cryotrons, but since large numbers of identical

    cryotrons are involved, one can speak of the L/R time constant of a given

    cryotron as being the fundamental time constant of the circuitry.

    If a given cryotron is made longer while holding the pitch of

    the control winding constant, the resistance and inductance increase

    together such that the l/R time constant is not affected. The L/R time

    constant is thus independent of cryotron length.

    If the diameter of a given cryotron is made smaller while

    holding the pitch of the control winding constant, the resistance increases

    inversely as the diameter squared, while the inductance decreases directly

    as the diameter squared. The i/R time constant thus decreases as the

    fourth power of the diameter.

     APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

  • 8/20/2019 The Cryotron Superconductive Computer Component

    7/32

    Memorandum 6M-38U3 Page 7

    C ir cu i t speed can a ls o be inc rea sed by us i ng a ho l low ce n t ra l

    w i r e . Su p e r c o n d u c t iv i ty i s a s k in e f f e c t , p e n e t r a t in g b u t a few h u nd re d

    atom la y er s , and th ere for e the core of a w ire can be removed and the wir e

    w i l l s t i l l h av e z e ro r e s i s t a n c e i n i t s su p e rc o n d u ct i ng s t a t e . The r e s i s

    tance in the normal s t a te , however , w i l l be h igh er by the ra t io of the

    o r ig in a l c r o s s - s e c t io n a l a r e a to th e new c r o s s - s e c t io n a l a r e a . The c o r e

    need no t ac tu a l ly be removed, p rov ided i t i s made to have a r e l a t iv e ly

    h i g h r e s i s t i v i t y . W ire w i t h a h i g h - r e s i s t i v i t y c o re a nd a s up e rc o n d uc t in g

    s h e l l c an b e f a b r ic a te d b y v a p or p l a t in g .

    2.U Eddy C urr en ts

    I t has been shown in Faber t h a t th e dela y, c , due to eddy

    c u r r e n t s in th e d e s t r u c t io n o f s u p e r c o n d u c t iv i ty o f a w i r e b y a lo n g i tu d in a l

    m a g n et ic f i e l d i s :

    2

    T  - con st. K

      d

    . A

    e

      />

      U - H

    c

    )

    wher e H is the external magnetic field, H is the threshold magnetic field

    an d

      /°

      is the resistivity. The switching time varies directly as the square

    of the diameter and inversely as the resistivity, and is a function of the

    amount by which the threshold magnetic field is exceeded.

    As the circuits of section 3 are speeded up by making cryotron

    diameters smaller, there will be a speed range where eddy currents become

    important. Lowering the diameter still further and increasing the pitch

    proportionally should then increase the speed as the inverse square of the

    diameter, since both circuit L/R time constants and eddy current time

     APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

  • 8/20/2019 The Cryotron Superconductive Computer Component

    8/32

    Memorandum 6M-38U3

    Page 8

    with a current gain of two. As soon as a superconducting path is estab

    lished over the surface of the wire, the cryotron is in its superconducting

    stat e—even if the center of the wire requires additional time to become

    superconducting. While it is not anticipated that this transition will

    be a major source of delay, it is interesting to note that this delay is

    one which depends on the length of the cryotron.

    As circuit speeds are increased by increasing the resistance of

    the central wi re , thereby shortening l/R circuit time constants and

    minimizing eddy current effects, a fundamental limit to the ultimate speed

    exists in the form of relaxation losses. The exact frequency repion in

    which these losses will become predominant is not known , but from experi

    ments with superconducting coaxial cable and wave guide resonators, an

    estimate is available which places the limit between 100 megacycles and

    1P00 megacycles.

    3. Cryotron Computer Circuitry

    The low impedance level of cryotron circuitry dictates a high-

    impedance power supply (current source) with circuit elements connected

    in series. Each element allows the current a choice among two or more

    paths only one of which is superconducting; all of the current flows

    through the superconducting path. The current encounters zero back voltage

    except when the paths are changing. The standby pcwer is therefore zero.

    Several circuits, representative of those found in digital computers, are

    described below.

    3.1 Flip-Flop

    A b is ta b le elem ent , one of the most common in a di g i ta l computer,

     APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

  • 8/20/2019 The Cryotron Superconductive Computer Component

    9/32

    Memorandum 6M-38U3

    Page  9

    c r y o t r o n s i s r e s i s t i v e a n d t h e o t h e r i r s u p e r c o n d u c ti v e o The g a t e c i r c u i t s

    a r e j o i n e d a n d a r e a d - o u t c u r r e n t p u l s e i s a p p l i e d a t t h e j u n c t i o n . The

    r e a d - o u t p u l s e w i l l ch o o se o n e p a t h o r th e t h e r , d e p e n d i n g o n t h e s t a t e

    o f t h e f l i p - f l o p . The f l i p - f l o p w i t h r e a d - i n a nd r e a d - o u t c r y o t r o n s i s

    shown i n F i gure 6 .

    A ny n um b er o f i n p u t c r y o t r o n s c a n b e a d d e d i n s e r i e s w i t h t h o s e

    a l r e a d y d e s c r i b e d ( F i g u r e 7 ) t o s e t th e f l i p - f l o p t o o ne s t a t e o r t h e

    o t h e r . C o n n e c t e d a s s u c h , t h e y a r e OR g a t e s ; a n y o n e o f th em a c t i n g a l o n e

    c a n s e t t h e f l i p - f l o p . S i m i l a r l y , a d d i t i o n a l c r y o t r o n ; c a n b e a dd ed w i t h

    t h e i r g a t e c i r c u i t s i n p a r a l l e l w i t h t h e c o n t r o l w i n d i n g o f th e i n p u t

    c r y o t r o n a l r e a d y d e s c r i b e d , b e h a v i n g a s AND g a t e s ( F i g u r e 9 ) .  The  f l i p -

    f l o p s e t c u r r e n t i s b y p a s s e d t h r o u g h on e o r m o re o f t h e s e p a r a l l e l g a t e s

    u n l e s s a l l of th em a r e r e s i s t i v e . T h is l a t t e r c o n n e ct io n i n v o l v e s s u p e r

    c o n d u c t o r s i n p a r a l l e l , i n w h ic h c a se t h e c u r r e n t d i v i d e s i n v e r s e l y a s t h e

    i n d u c t a n c e o f t h e p a r a l l e l p a t h s .

    A d d i t i o n a l r e a d - o u t c r y o t r o n s ca n b e a d d e d i n s e r i e s w i t h t h o s e

    a l r e a d y d e s c r i b e d . S i n c e t h e i r c o n t r o l w i n d i n g s a r e s u p e r c o n d u c t i n g , t h e

    a d d i t i o n a l c r y o t r o n s do n o t a d d a n y r e s i s t a n c e t o t h e f l i p - f l o p . The

    a d d i t i o n a l i n d u c t a n c e i n c r e a s e s t h e i / R t im e c o n s t a n t o f t h e c i r c u i t , h o w

    e v e r , l e n g t h e n i n g t h e t r a n s i t i o n t im e b e tw e e n s t a t e s .

    3 . 2 M u l t i v i b r a t o r

    T h r ee f l i p - f l o p s m a de o f o n e - i n c h p i e c e s o f t h e c r y o t r o n s t o c k

    w h os e c h a r a c t e r i s t i c s a r e g i v en by F i g u r e

      h

      h a v e b e en s t u d i e d i n a m u l t i -

    v i b r a t i n g c i r c u i t ( F i g u r e 9 ) . The r e a d - o u t c r y o t r o n s o f f l i p - f l o p A a r e

    c o n n e c t e d i n s u ch a w ay a s t o s e t f l i p - f l o p B t o t h e s t a t e o p p o s i t e t h a t o f

    A .  A  s i m i l a r c o n n e c t i o n b e t w e e n B a n d C c a u s e s C t o a ss u m e t h e s t a t e

     APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

  • 8/20/2019 The Cryotron Superconductive Computer Component

    10/32

    Memorandum 6K-3QU3 Page 10

    The t i m e t a k e n f o r t r a n s i t i o n f ro m o n e t i m e p e r i o d t o t h e n e x t

    i s a f u n c t i o n o f t h e t r a n s f e r c u r r e n t . I f t r a n s i t i o n o c c u r s a t a f i x e d

    t h r e s h o l d c u r r e n t v a l u e , t h e f i n a l v a l u e o f th e r i s i n g c u r r e n t i n a g i v en

    c o n t r o l w i n d i n g d e t e r m i n e s t h e f r a c t i o n o f t h e i / R t i m e c o n s t a n t r e q u i r e d

    t o r e a c h t h a t t h r e s h o l d v a l u e . I f t h e f i n a l v a l u e i s ( a ) t i m e s t h e

    t h r e s h o l d v a l u e , t h e t im e r e q u i r e d t o r e a c h t h e t h r e s h o l d i s g i v e n b y :

    t • i / R l n ( a / a - l ) . T he p a r t i c u l a r m u l t i v i b r a t o r c i r c u i t d e s c r i b e d c o m p le te s

    t h e r o u n d - t r i p t h r o u g h i t s s i x t im e p e r i o d s a t t h e r a t e o f 1 0 0 t o 1 ,0 0 0

    t i m e s p e r s ec o nd d e p e n d i n g o n t r a n s f e r c u r r e n t . H ie h i g h e r f r e q u e n c y

    g i v e s i n d i v i d u a l t i m e p e r i o d s of 16 7 m i c r o s e c o n d s d u r a t i o n .

    To m o n i t o r t h e t r a n s i t i o n s o f o ne o f t h e f l i p - f l o p s , a n a d d i t i o n a l

    c r y o t r o n g a t e i s a d d e d w i t h i t s c o n t r o l w i n d i ng i n s e r i e s w i t h o n e s i d e

    o f t h e f l i p - f l o p . A c u r r e n t s o u r c e i s c o n n e c te d t o i t s g a t e c i r c u i t . W hen

    t h e c o n t r o l c u r r e n t i s z e r o , t h e g a t e c i r c u i t i s a s u p e r c o n d u c t o r a nd t h e

    v o l t a g e i s z e r o . W hen t h e c o n t r o l c u r r e n t r e a c h e s t h e t h r e s h o l d v a l u e ,

    t h e e ja te c i r c u i t b e co m es r e s i s t i v e a n d d e v e l o p s a v o l t a g e w h i c h i s a m p l i

    f i e d a n d d i s p l a y e d . T y p i c a l v a l u e s a r e : R

      c

      0.01 ohm, I • 100 ma;

    V * 1 m i l l i v o l t . T he ta m e c u r r e n t w a ve fo rm i s n o t p r e s e r v e d b y t h e

    m o n i t o r i n g g a t e d u e t o i t s i n h e r e n t n o n l i n e a r i t y p l u s t h e s h a r p e n i n g o f

    i t s t r a n s i t i o n du e t o l 2 R h e a t i n g a s i t be co m es r e s i s t i v e .

    3 . 3 M u l t i t e r m i n a l S w i tc h

    D i s t r i b u t i n g a p u l s e am ong s e v e r a l w i r e s c a n b e a c c o m p l i s h e d b y

    a c r y o t r o n sw i t c h ( F i g u r e 1 0 ) . I n f o r m a t i o n i s f e d i n t o t h e s w i t c h f ro m

    c r y o t r o n f l i p - f l o p s , h e r e r e p r e s e n t e d b y t o g g l e s w i t c h e s . O ne f l i p - f l o p

    c a u s e s t h e od d o r e v en ro w s o f t h e s w i t c h t o b e r e s i s t i v e , a s e co n d f l i p -

    f l o p c a u s e s o dd o r e v en p a i r s t o b e r e s i s t i v e , a t h i r d f l i p - f l o p c a u s es

    o dd o r e ve n f o u r s t o b e r e s i s t i v e , a n d s o o n . A s i n g l e p a t h s u r v i v e s

     APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

  • 8/20/2019 The Cryotron Superconductive Computer Component

    11/32

    Memorandum 6M-38U3 Pag e 1 1

    INPUT

    A

    1

    0

    1

    0

    1

    0

    1

    0

    INPUT

    B

    1

    1

    0

    0

    1

    1

    0

    0

    CARRY

    IN

    1

    1

    1

    1

    0

    0

    0

    0

    SUM

    1

    0

    0

    1

    0

    1

    1

    0

    CARRY

    OUT

    1

    1

    0

    1

    0

    0

    0

    Table n . Binary Add ition Table

    the sum f l ip - f lo p to i t s proper s t a te . A s im i lar group of ga tes develops

    the carry for the fo l low ing stage . Note that a l l c ir cu i ts are in se r ie s

    from a current source power supply.

    The foregoing binary adder des ign i s described to i l lu st r a te

    the way in which switch es and gate s can be interco nn ected . A design having

    fewer cryotron s per stage is av ail ab le wherein the carry is handled by a

    la tt ic e network shown in Figure 12. The la be l beside each of the s ix

    con trol windings ind ica te s when i t i s to be ener gized . The A • B • 0 and

    A • B • 1 windings can each be made of two cryotr ons in a p a r a ll e l AND

     APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

  • 8/20/2019 The Cryotron Superconductive Computer Component

    12/32

    - J*

    Memorandum 6M-38U3 Pa ge 12

    3.fp S t e p p i n g R e g i s t e r

    S t e p p in g r e g i s t e r s a r e com monly u s e d f o r r e c e i v i n g d i g i t a l

    i n f o r m a t i o n i n s e r i a l f or m a t o ne p u l s e r e p e t i t i o n f r e q u e n c y an d a f t e r a

    p r e d e t e r m i n e d n um b er o f b i n a r y b i t s ha v e b e en s t o r e d , s h i f t i n g t h e i n f o r m a

    t i o n o u t a t a d i f f e r e n t f r e q u e n c y . A s e c o n d common u s e f o r s h i f t i n g

    r e g i s t e r s i s t o a c c o m p l i s h th e c o n v e r s i o n b e tw e e n d i g i t a l i n f o r m a t i o n i n

    s e r i a l a n d p a r a l l e l f o r m . T he s t e p p i n g r e g i s t e r s i n common u s e a r e m ade

    o f v ac uu m t u b e s , t r a n s i s t o r s , o r m a g n e t i c c o r e s . C r y o t r o n s ca n a l s o be

    u s e d i n t h e sam e s e r v i c e . E a ch s t a g e o f t h e s h i f t r e g i s t e r c o n s i s t s o f

    tw o c r y o t r o n f l i p - f l o p s w i t h r e a d - i n an d r e a d - o u t c r y o t r o n s . O ne t r a n s f e r

    c i r c u i t s e t s t h e s e c o n d o f t h e tw o f l i p - f l o p s o f e ac h s t a g e t o c o r r e s p o n d

    t o t h e s t a t e o p p o s i t e t h a t o f t h e f i r s t . The c o u p l i n g l i n k t o a c c o m p l i s h

    t h i s i s s i m i l a r t o t h e o n e d e s c r i b e d i n s e c t i o n 3» 2 w h i ch i n t e r c o n n e c t s

    s t a g e s o f t h e m u l t i v i b r a t o r . A s ec on d t r a n s f e r c i r c u i t s e t s t h e f i r s t

    f l i p - f l o p o f e a ch s t a g e t o c o r r e s p o n d t o t h e s t a t e o p p o s i t e t h a t o f t h e

    s e co n d f l i p - f l o p o f t h e s t a g e to i t s l e f t . A l i n e o f s u ch s t a g e s s e r v e s a s

    a s h i f t i n g r e g i s t e r , c a p a b le o f s h i f t i n g d i g i t a l i n f o r m a t i o n to t h e r i g h t .

    I n f o r m a t i o n ( ON E'S o r ZE RO 's) f e d i n t o t h e f i r s t f l i p - f l o p i n s y n c h r o n i s m

    w i t h t h e s e c o n d o f t h e t wo t r a n s f e r p u l s e s ( c a l l e d ADVANCE B p u l s e ) , w i l l

    a d v an c e t h r o u g h t h e s t e p p i n g r e g i s t e r o n e s t a g e f o r e a c h p a i r o f t r a n s f e r

    p u l s e s , ADVANCE A an d ADVANCE B, which ar e d is p la c e d in t im e. F ig u re lU

    s ho ws tw o s t a g e s o f a c r y o t r o n s t e p p i n g r e g i s t e r . P a r a l l e l o u t p u t g a t e s

    are not shown.

    3 . 6 C o i n c i d e n t - C u r r e n t C i r c u i t s

    M any i n t e r e s t i n g c i r c u i t s c a n b e m ade o f c r y o t r o n s w i t h tw o o r

    m o re c o n t r o l w i n d i n g s w ou nd o v e r e ac h o t h e r i n s u c h a w ay t h a t t h e n e t

    m a g n e t i c f i e l d a f f e c t i n g t h e c e n t r a l w i r e i s du e t o t h e sum o f t h e m a g n e t i c

    f i e l d s o f t h e i n d i v i d u a l w i n d i n g s . The d - c c r y o t r o n c h a r a c t e r i s t i c s of

     APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

  • 8/20/2019 The Cryotron Superconductive Computer Component

    13/32

    Memorandum 6M-38U3

    Page 13

    U . E n g i n e e r i n g a C r y o t r o n S y st em

    U«l Low-Tempera tu re Env i ronm ent

    T he m o s t u n u s u a l r e q u i r e m e n t of a c r y o t r o n s y s t em i s t h a t i t

    o p e r a t e a t a t e m p e r a t u r e n e a r t h e a b s o l u t e z e r o . T en y e a r s a g o t h i s

    r e q u i r e m e n t w o u l d h a v e p r e c l u d e d s e r i o u s t h o u g h t of s uc h a s y s t e m .

    T o d ay , h o w e v e r, s u ch a n o p e r a t i n g t e m p e r a t u r e i s r e l a t i v e l y e a s y t o

    ac h i e v e . ^ Th i s change i s ma i n l y due t o t he work of Samuel C . C o l l i ns

    w ho se h e li u m l i q u i f i e r s r e v o l u t i o n i z e d t h e f i e l d o f l o w - t e m p e r a t u r e

    p h y s i c s . A r t h u r D. L i t t l e , I n c . o f C a m br id g e, M a s s a c h u s e t t s , h a s b u i l t

    s e v e n t y C o l l i n s h e li um l i q u i f i e r s o f a b - l i t r e - p e r - h o u r c a p a c i t y . The

    l i q u i f i e r a t M . I . T . l i q u i f i e s 27 l i t r e s p e r h o u r . S t o ra g e o f l i q u i d h e l iu m

    h a s a l s o i m p r o v e d . C o m m e r c ia l ly a v a i l a b l e d o u b l e D e w ar s w h i c h u s e l i q u i d

    n i t r o g e n i n t h e o u t e r D ew ar l o s e l e s s t h a n o ne p e r c e n t of t h e i r l i q u i d

    h e l i u m p e r d a y .

    T he h e a t d i s s i p a t e d b y a c r y o t r o n s y s t e m c a u s e s e v a p o r a t i o n o f

    t h e h e l i u m . I f t h e a v e r a g e p o w er d i s s i p a t e d p e r c r y o t r o n i s 1 0~ k w a t t ,

    a n e s t i m a t e b a s e d o n p r e s e n t e x p e r i m e n t a l u n i t s , a 5 , 0 0 0 - c r y o t r o n c o m p ut er

    w o uld d i s s i p a t e o n e - h a l f w a t t . T he l a t e n t h e a t o f v a p o r i z a t i o n o f l i q u i d

    h e l iu m a t U .2 K i s 5> c a l o r i e s p e r g r a m , i t s d e n s i t y i s 0 » 1 2 5 7 , an d t h e r e

    f o r e o n e - h a l f w a t t c o r r e s p o n d s t o a n e v a p o r a t i o n r a t e of 0 . 9 3 l i t r e p e r

    h o u r . A c o n t i n u o u s s y s t e m w h i ch r e c y c l e s h e l i u m w o u l d b e m o s t e c o n o m i c a l

    f o r a s t a t i o n a r y i n s t a l l a t i o n ^ a t e n - o r t w e n t y - l i t r e c h a rg e a t t h e ti m e

    o f l a u n c h i n g w o uld s u f f i c e f o r p o r t a b l e s y s t e m s .

    The t e m p e r a t u r e o f a l i q u i d h e l i u m b a t h c an b e c o n t r o l l e d b y

    c o n t r o l l i n g t h e p r e s s u r e o f t h e b a t h . T a b le I I I g i v e s t h e b o i l i n g p o i n t

    o f h e l iu m a t v a r i o u s p r e s s u r e s . B elo w 2 . 1 9 K , t h e s o - c a l l e d l a m b d a - p o i n t ,

    l i q u i d h e l iu m e x h i b i t s u n u s u a l p r o p e r t i e s w hi ch m ay p r o v e u s e f u l i n a

     APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

  • 8/20/2019 The Cryotron Superconductive Computer Component

    14/32

    Memorandum 6M-38U3 Pa ge Hi

    Pr e s s u r e

    mom. Hg.

    0.001

    0 .0 1

    0 .1

    1 .

    10.

    100.

    200.

    300.

    Uoo.

    5oo.

    600.

    700.

    710.

    Temperature

    degrees K

    0.657

    0.791

    0.982

    1.269

    1.71.3

    2.638

    3.067

    3.368

    3.605

    3.803

    3.975

    U.127

    u.ua

    Pr e s s u r e

    num. Hg„

    72 0

    o

    730.

    7U0.

    750.

    760.

    770.

    780.

    790.

    800.

    900.

    1000.

    1500.

    1720.

    Temperature

    degrees K

    U.156

    li .170

    U.18U

    U.198

    l i .211

    U.225

    U.239

    U.252

    U.266

    h.UO

    li.52

    5.03

    5 .20

    Table i n . Bo i l ing Poin t o f He lium

    U«2 P hys ical Co nstru ction

     APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

  • 8/20/2019 The Cryotron Superconductive Computer Component

    15/32

    Memorandum 6M-38U3 Page 15

    extreme lew temperatures. Some are relatively good thermal insulators

    (stainless steel and cupro-nickel) and may be used for mechanical support.

    There is no basis for the common impression that everything falls apart

    just below JAN specifications (-85 C) .

    U.3 Input, Output, and Power Supply

    Input pulses to cryotron circuits involve current amplitudes

    which are easily achieved in the terminal equipments commonly associated

    with digital computers. Since the voltage level is low, input of informa

    tion to a cryotron system involves no unusual problems.

    Connecting the output pulses of a cryotron system to terminal

    equipment, on the other hand, is difficult due to the low power level of

    the cryotron circuitry. Power cryotrons can be designed to increase the

    power level, but it appears that vacuum-tube or transistor amplifiers

    are necessary to bring the level up to that of most output equipments.

    Magnetic amplifiers with superconductive control windings are an interest

    ing possibility for power amplification.

    Power supplies for cryotron systems are easy to achieve. The

    low impedance of the circuitry dictates a current-source power supply.

    A battery with a series resistance is adequate.

    >.  Conclusion

    The cryotron in its present state of development is a new circuit

    component having power gain and current gain so that it can be used as an

    active element in logical circuits. It is easily and inexpensively

    fabricated from commercially available materials and its size is small.

     APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

  • 8/20/2019 The Cryotron Superconductive Computer Component

    16/32

    Memorandum 6M-38I;3 Pa ge

      16

    D r a w i n g s A t t a c h e d :

    F i g u r e

      1

    C-6333k

    F i g u r e

      2

    A-63O87

    F i g u r e  3 A-63088

    F i g u r e

     

    B-63091

    F i g u r e  5 B-63U9I

    F i g u r e

      6

    A-63090

    F i g u r e

      7

    C-6329U

    F i g u r e

      8

    C-63291

    F i g u r e

      9

    C-63293

    F i g u r e  10 C-63292

    F i g u r e

      11

    C-63338

    F i g u r e  12 B-63335

    F i g u r e

      13

    C-63336

    F i g u r e

      lit

    C-63337

    F i g u r e

      15

    A-63679

    F i g u r e

      16

    A-63678

    D i s t r i b u t i o n L i s t :

    Group

      63

      S t a f f

    Group

      35

      S t a f f

    Group  65  S t a f f

    M.

      A.

      H e r l i n

      D 321

    B .

      G.

      F a r l e y

    R.

      P.

      Mayer

    »  L. L.  S u t r o

    R.

      F.

      J e n n e y

     APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

  • 8/20/2019 The Cryotron Superconductive Computer Component

    17/32

    C 63334

    F 2969

    SN - 1220

    H

    c

      GA U S S

    FIG . I

    1000

    900

    800

    700

    600

    500

    400 

    THRESHOLD

    MAGNETIC FIELD

      3 0

    °

    vs TEMPERATURE

      2 0

    °

    FOR SE VE RA L ,oo

    COMMON

    SUPERCONDUCTORS

    2 3 4 5 6

    T E M P E R A T U R E °K

     APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

  • 8/20/2019 The Cryotron Superconductive Computer Component

    18/32

    A - 6 3 0 8 7

    F 2862

    SN-1169

    H

    N O R M A L

    R E G I O N

    SUPERCONDUCTING

    REG

     I

     ON

    4.2° K

    FIG. 2

    T H R E S H O L D M A G N E T I C F I E L D

    A S A F U N C T I O N O F T E M P E R A T U R E

    F O R A S U P E R C O N D U C T O R

     APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

  • 8/20/2019 The Cryotron Superconductive Computer Component

    19/32

    I

    r\

    £\

    n n n

    n

    )

    S I N G L E C R Y O T R O N

    F I G .  3

    C R YO T RO N B I S T A B L E E L E M E N T

    ( F L I P -  FL O P )

     APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

  • 8/20/2019 The Cryotron Superconductive Computer Component

    20/32

    B 63091

    F 2865

    SN 1172

    *

    r €

    n

    rj

    S I N G L E L A Y E R  . 0 0 3 N I O B I U M

    0 0 9 T A N T A L U M

    .01

    n

    u

    n

    .0075

    h

    9  .005 

    OHMS

    .0025

    CRYOTRON GATE

    vs.

     CONTROL

    100

    2 0 0 3 0 0

    I M I L L I A M P E R E S

    c

    RES

     I

     S T A N C E

    CURRENT

    400

     APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

  • 8/20/2019 The Cryotron Superconductive Computer Component

    21/32

    B 63491

    F 2974

    SN - 1225

    5 0 0

    4 0 0 -

    C O N T R O L

    3 0 0 -

    W I N D I N G

    PITCH ru

    T U R N S

      2 0 0

    PER INCH

    100 -

    0

      1 2 3 4 5 6 7 8

    C E N T R A L W IR E D I A M E T E R ~ M I L S

    CURRENT GAIN vs CONTROL WINDING

    PITCH AND CENTRAL WIRE DIAMETER

     APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

  • 8/20/2019 The Cryotron Superconductive Computer Component

    22/32

    A - 6 3 0 9 0

    F-2864

    SN-1171

    ZE RO INPUT I ONE INPUT

    9 9 SUPPLY 9 o

    a

    a

    a

    a

    n

    {I

    r

    D

    a

    D

    a

    D

    H-a

    a

    o

    a

    a

    D

    a

    D

    >

    O

    Q-Q

    a

    D

    a

    TJ TJ

    SUPPLY

    a

    u

    n

    u

    JH

    n

    £

    1

    D

    H - Q

    1

    n

    CJ

    n

    D

    n

    u

    a

    u

    }

    u

    ONE

    O U T P U T

    C R Y O T R O N

    C R Y O T R O N S

    READ

    F I G .

      G

    F L I P - F L O P

    t

    ZERO

    OUTPUT

    WITH READ - IN

    AND RE A - OU T C RY OT RO NS

     APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

  • 8/20/2019 The Cryotron Superconductive Computer Component

    23/32

    C-63294

    F 2968

    SN 1219

    A

      C

    c

    )

    I)

    • )

    Z E R O

    I N P U T S

    o -

    B

    o -

    X

    c

    c

    c

    )

    )

    • )

    S U P P L Y

    S U P P L Y

    O N E

    N P U T S

    W I T H

    C R Y O T R O N  FL I

     P-FLOP

    O R G A T E S

      IN

      B O T H

      SI

    D E S

     APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

  • 8/20/2019 The Cryotron Superconductive Computer Component

    24/32

    C 63291

    F 2965

    SN 1216

    I

    S U P P L Y

    Z E R O

      C

    I N P U T  C

    D

      ONE

    P I N P U T

    d

    (CD,

    D

    D

    B

    C

    C

    d

    Y

    D

    D

    I N PU T

    P U L S E

    S U P P L Y

    F l C i .  U

    C R Y O T R O N F L I P - F L O P

    W I T H

      AND

      G A T E S

      IN ONE

    S

      I DE

     APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

  • 8/20/2019 The Cryotron Superconductive Computer Component

    25/32

    o

    Q .

    o

    CD

    a

    o

    _i

    u.

    i

    0 .

    tr

    h-

    <

    cr

    DQ

    >

    o

    or

    h-

    o

    > -

     APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

  • 8/20/2019 The Cryotron Superconductive Computer Component

    26/32

    C-63292

    F-2966

    S N - 1 2 1 7

    r-C

    •S

    •a

    R E A D

    n n

    TD O

    o n

    era

    O-

    Q .

    LTD

    n n

    era

    _Q

    o n

    U U

    _Q

    o

    L T U

    CL

    n.

    era

    1

    cnx

    O

    4

    a

    O-

    n n

    t r o

    n n

    t3TD

    n

    a

    wo

    L

    T)

    p_

    TJ

    n n

    era

    ^ C ON T R O L J ^

    O Q

    U~U

    _Q

    n

    enr

    o o

    ~0~T7

    Q Q

    Cr t7

    I

    C O N T R O L

    Q- Q

    cr

    p_

    v~o

    _Q JQ

    Crcr

    Q Q

    o~o

    v

    8 POSITION

      C R Y O T R O N S W I T C H

     o

    I

    -o

     2

     3

    -o

     4

    -o

     6

    •o 7

     APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

  • 8/20/2019 The Cryotron Superconductive Computer Component

    27/32

    C - 6 3 3 3 8 * *

    F 2973

    SN - 1224

    CARRY

    OUT

    SUM

    FLIP-FLOP

    00 00 Oo 00

    0 1 0 I

    A INPUT B INPUT

    CARRY

    IN

    ONE STAGE OF A BINARY ADDER

     APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

    APPROVED FOR PUBLIC RELEASE CASE 06 1104

  • 8/20/2019 The Cryotron Superconductive Computer Component

    28/32

    B 63335

    F 2970

    SN-1221

    W

    A = B = 0

    ? Q  n

    a

    FIG.

     12

    CARRY NETWORK

    o o

     APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

    APPROVED FOR PUBLIC RELEASE CASE 06 1104

  • 8/20/2019 The Cryotron Superconductive Computer Component

    29/32

    C-63336

    F 2971

    SN 1222

    *

    I CARRY

      OUT

    J21

    A=l

    r€

    — •

    u

    D-

    U~

    CT

    ^ X B=0

    - « - •

    0 CARRY

      OUT

    iK

    n

    L

    Q

    i

    r

    u

    B

    n

    b

    n

    n

    y l

    0

    0 0

    0

    B

     

    l

    A=l

    T 7

    ^ S ^

    /

      0 \ i

    T 7

    - Q

    SUM

    F L I P -

    FLOP

    O O

    A= B

    A * B

    BINARY ACCUMULATOR STAGE

     APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

  • 8/20/2019 The Cryotron Superconductive Computer Component

    30/32

     

    in

    H i

    T 7

    cr

    ^b^££

    a o

    • c r

    i O .

    <

    u_

    o

    CO

    j LU

    ]  o

    8

      <

    h-

    (X)

    cr

    LU

    K

    CO

    CD

    LU

    cr

    o

    z

    CL

    Q_

    LU

    co

     APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

    APPROVED FOR PUBLIC RELEASE CASE 06 1104

  • 8/20/2019 The Cryotron Superconductive Computer Component

    31/32

    A - 6 3 6 7 9

    F I G .

      15

    EXPERIMENTAL CRYOTRON CIRCUITS

     APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

    APPROVED FOR PUBLIC RELEASE CASE 06 1104

  • 8/20/2019 The Cryotron Superconductive Computer Component

    32/32

    A - 6 3 6 7 8

    *

    FIG.  16

    3 - CRYOT RON- F L I P- F LOP M ULT I V I BRAT OR

     APPROVED FOR PUBLIC RELEASE. CASE 06-1104.