The Critical Decade: Full report

72
THE CRITICAL DECADE Climate science, risks and responses

Transcript of The Critical Decade: Full report

Page 1: The Critical Decade: Full report

THE CRITICAL DECADEClimate science, risks and responses

Page 2: The Critical Decade: Full report

2 Purpose

3 Introduction

5 Chapter 1. Developments in the science of climate change6 1.1Observationsofchangesintheclimatesystem13 1.2Whyistheclimatesystemchangingnow?17 1.3Howisthecarboncyclechanging?19 1.4Howcertainisourknowledgeofclimatechange?

22 Chapter 2. Risks associated with a changing climate23 2.1Sea-levelrise27 2.2Oceanacidification32 2.3Thewatercycle38 2.4Extremeevents48 2.5Abrupt,non-linearandirreversiblechangesintheclimatesystem

52 Chapter 3. Implications of the science for emissions reductions53 3.1Thebudgetapproach55 3.2Implicationsforemissionreductiontrajectories56 3.3Relationshipbetweenfossilandbiologicalcarbonemissionsanduptake

61 References

Contents

PublishedbytheClimateCommissionSecretariat(DepartmentofClimateChangeandEnergyEfficiency)

www.climatecommission.gov.au

ISBN: 978-1-921299-50-6(pdf) 978-1-921299-51-3(paperback)

©CommonwealthofAustralia2011

ThisworkiscopyrightCommonwealthofAustralia.AllmaterialcontainedinthisworkiscopyrighttheCommonwealthofAustralia,exceptwhereathirdpartysourceisindicated.

CommonwealthcopyrightmaterialislicensedundertheCreativeCommonsAttribution3.0AustraliaLicence.Toviewacopyofthislicense,visithttp://creativecommons.org/licenses/by/3.0/au/.

TheDepartmentofClimateChangeandEnergyEfficiencyassertstherighttoberecognisedasauthoroftheoriginalmaterialinthefollowingmanner:

or

©CommonwealthofAustralia(DepartmentofClimateChangeandEnergyEfficiency)2011.

Permissiontousethirdpartycopyrightcontentinthispublicationcanbesoughtfromtherelevantthirdpartycopyrightowner/s.

IMPORTANT NOTICE – PLEASE READ

ThisdocumentisproducedforgeneralinformationonlyanddoesnotrepresentastatementofthepolicyoftheCommonwealthofAustralia.Whilereasonableeffortshavebeenmadetoensuretheaccuracy,completenessandreliabilityofthematerialcontainedinthisdocument,theCommonwealthofAustraliaandallpersonsactingfortheCommonwealthpreparingthisreportacceptnoliabilityfortheaccuracyoforinferencesfromthematerialcontainedinthispublication,orforanyactionasaresultofanyperson’sorgroup’sinterpretations,deductions,conclusionsoractionsinrelyingonthismaterial.

Page 3: The Critical Decade: Full report

ScienceUpdate2011 1

Preface

With critical decisions to be made in 2011 on responses to climate change, I hope that this report provides useful information from the scientific community to a wide range of audiences – our political leaders, the general public, the private sector, NGOs, and the media. More specifically, the aim of this report is to provide up-to-date information on the science of climate change and the implications of this knowledge for societal responses, both for mitigation strategies and for the analysis of and responses to risks that climate change poses for Australia.

Overthepasttwoyears,alargenumberofexcellentreviewsandsynthesesofclimatechangesciencehavebeenproducedbyacademiesofscience,bygroupsofexperts,andasoutcomesofmajorinternationalmeetings.Muchofthisinformationisstillcurrent,andIhavedrawnheavilyonitforthisreport;alistofthesedocumentsisgivenbelow.Scientificknowledgeonclimatechangeiscontinuouslyevolving,however,andIhavealsoincludedinformationfromkeypaperspublishedinrecentmonths.

Ihavetriedtobeasbriefaspossibleintreatingthevarioustopicscoveredinthisreport,withtheaimofprovidingthekeypointsonly.Forinterestedreaders,furtherinformationonthetopicscoveredcanbefoundinthereportslistedbelow,and,ofcourse,fromtheoriginalsourcesofinformationinthepeer-reviewedliterature.Thesearepresentedinthereferencelistattheendofthisreportandinsimilarlistsattheendofthereportsbelow.

Atseveralplacesinthisreport,Ihavemademyownsynthesesandjudgementsbasedonlargebodiesofworkwherethereisnoclearconsensusinthepeer-reviewedliterature.Asanexample,onmyreadingoftheliteraturetodateandondiscussionswithexperts,Iexpectthemagnitudeofglobalaveragesea-levelrisein2100comparedto1990tobeintherangeof0.5to1.0metre.Forthisandothersuchjudgements,Itakefullandsoleresponsibility.

Thisreporthasbeenextensivelyreviewedby15-20colleaguesfromCSIRO,theBureauofMeteorologyandtheuniversitysector.Theyareallwidelyrecognisedexpertsintheirfieldsofclimatescience,andIamgratefulforthecareandthoroughnesswithwhichtheyreadandcommentedonearlierdraftsofthereport.

IalsothankmycolleaguesontheScienceAdvisoryPaneloftheClimateCommission,whocriticallyrevieweddraftsofthereport.

Duringthepreparationofthisreport,IhaveworkedcloselywithProfessorRossGarnautandhisteamastheyhaveundertakentheirupdateofclimatescience.Iappreciatedtheavailabilityofearlierdraftsoftheirupdate,andfortheopportunityforfrequentdiscussionsonparticularlytopicalandcontentiousareasofclimatescience.

IamgratefultomanycolleaguesintheDepartmentofClimateChangeandEnergyEfficiencyformanyusefuldiscussionsandforongoingsupportofvariouskinds.

Will Steffen Climate Commissioner CanberraMay2011

Climate Change 2011: Update of science, risks and responses

Page 4: The Critical Decade: Full report

2 ClimateCommission

Sources that were drawn upon in the compilation of this report

AustralianAcademyofScience(AAS).(2010).The Science of Climate Change: Questions and Answers.August2010.www.science.org.au/policy/climatechange2010.html

Canadell,J.(ed).(2010).Carbonsciencesforanewworld.Current Opinion in Environmental Sustainability(specialissue)2:209-311.

Garnaut,R.(2008).The Garnaut Climate Change Review: Final Report.Cambridge,UK:CambridgeUniversityPress,634pp.

Garnaut,R.(2011).Garnaut Climate Change Review – Update 2011. Update paper five: The science of climate change.www.garnautreview.org.au

IntergovernmentalPanelonClimateChange(IPCC).(2007).Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,(eds).Solomon,S.,Qin,D.,Manning,M.,Chen,Z.,Marquis,M.,Averyt,K.,Tignor,M.M.B.,Miller,JrH.L.,andChen,Z.Cambridge,UKandNewYork,NY:CambridgeUniversityPress,996pp.

Richardson,K.,Steffen,W.,Schellnhuber,H.-J.,Alcamo,J.,Barker,T.,Kammen,D.M.,Leemans,R.,Liverman,D.,Munasinghe,M.,Osman-Elasha,B.,Stern,N.andWaever,O.(2009).Synthesis Report. Climate Change: Global Risks, Challenges & Decisions.SummaryoftheCopenhagenClimateChangeCongress,10-12March2009.UniversityofCopenhagen,39pp.

Richardson,K.,Steffen,W.,Liverman,D.,Barker,T.,Jotzo,F.,Kammen,D.,Leemans,R.,Lenton,T.,Munasinghe,M.,Osman-Elasha,B.,Schellnhuber,J.,Stern,N.,Vogel,C.,andWaever,O.(2011).Climate Change: Global Risks, Challenges and Decisions.Cambridge:CambridgeUniversityPress,501pp.

RoyalSociety(UK).(2010).Climate change: a summary of the science.London:TheRoyalSociety,September2010,17pp.

Steffen,W.(2009).Climate Change 2009: Faster Change & More Serious Risks.DepartmentofClimateChange,AustralianGovernment,52pp.

TheCopenhagenDiagnosis.(2009).Updating the World on the Latest Climate Science.Allison,I.,Bindoff,N.L.,Bindschadler,R.A.,Cox,P.M.,deNoblet,N.,England,M.H.,Francis,J.E.,Gruber,N.,Haywood,A.M.,Karoly,D.J.,Kaser,G.,LeQuéré,C.,Lenton,T.M.,Mann,M.E.,McNeil,B.I.,Pitman,A.J.,Rahmstorf,S.,Rignot,E.,Schellnhuber,H.J.,Schneider,S.H.,Sherwood,S.C.,Somerville,R.C.J.,Steffen,K.,Steig,E.J.,Visbeck,M.,Weaver,A.J.Sydney,Australia:TheUniversityofNewSouthWalesClimateChangeResearchCentre(CCRC),60pp.

WBGU(GermanAdvisoryCouncilonGlobalChange).(2009).Solving the Climate Dilemma: The Budget Approach.SpecialReport.Berlin:WBGUSecretariat,54pp.

Purpose

THIs upDATE REvIEws wHAT THE sCIEnCE Is TELLIng us AbouT THE nEED To ACT on CLImATE CHAngE, AnD THE RIsks of A CHAngIng CLImATE To AusTRALIA.

Page 5: The Critical Decade: Full report

ScienceUpdate2011 3

Introduction

Over the past two or three years, the science of climate change has become a more widely contested issue in the public and political spheres. Climate science is now being debated outside of the normal discussion and debate that occurs within the peer-reviewed scientific literature in the normal course of research. It is being attacked in the media by many with no credentials in the field. The questioning of the Intergovernmental Panel on Climate Change (IPCC), the “climategate” incident based on hacked emails in the UK, and attempts to intimidate climate scientists have added to the confusion in the public about the veracity of climate science.

Bycontrasttothenoisy,confusing“debate”inthemedia,withintheclimateresearchcommunityourunderstandingoftheclimatesystemcontinuestoadvancestrongly.Someuncertaintiesremainandwillcontinuetodoso,giventhecomplexityoftheclimatesystem,andtheimpossibilityofknowingthefuturepathwaysofhumanpolitical,socialandtechnologicalchanges.Meanwhilethereismuchclimatechangesciencethatisnowwellandconfidentlyunderstood,andforwhichthereisstrongandclearevidence.

–THE EvIDEnCE THAT THE EARTH’s suRfACE Is wARmIng RApIDLy Is now ExCEpTIonALLy sTRong, AnD bEyonD DoubT. EvIDEnCE foR CHAngEs In oTHER AspECTs of THE CLImATE sysTEm Is ALso sTREngTHEnIng. THE pRImARy CAusE of THE obsERvED wARmIng AnD AssoCIATED CHAngEs sInCE THE mID-20TH CEnTuRy – HumAn EmIssIons of gREEnHousE gAsEs – Is ALso known wITH A HIgH LEvEL of ConfIDEnCE.

However,thebehaviourofseveralimportantcomponentsorprocessesoftheclimatesystem,includingsomeassociatedwithseriousriskssuchassea-levelriseandchangesinwaterresources,aremuchlesswellunderstoodandarethesubjectofintensescientificresearchanddebate.

Thepurposeofthisupdateistoreviewthecurrentscientificknowledgebaseonclimatechange,particularlywithregardto(i)theunderpinningitprovidesfortheformulationofpolicyand(ii)theinformationitprovidesontherisksofachangingclimatetoAustralia.

Thefirstchapteroftheupdatefocusesonthefundamentalunderstandingoftheclimatesystem,whichisanimportantelementinframingandinformingtheformulationofpolicy.Theanalysisstartswithobservationsoftheclimatesystemandhowitischanging,followedbythereasonsfortheseobservedchanges.Itthenfocusesonthebehaviourofthecarboncycle,whichistheprimaryprocessintheclimatesystemthatpolicyaimstoinfluence.Finally,theoftenconfusingissueofcertaintyinclimatescienceisexplored,withanemphasisonwhatisknownwithahighdegreeofcertaintybutalsowhereconsiderableuncertaintyremainsaboutimportantfeaturesoftheclimatesystem.

Chapter2describessomeofthemostsignificantrisksthatareassociatedwithachangingclimate.Thesectionisfocussedstronglyontheimplicationsofourunderstandingoftheclimatesystemforriskassessments,butdoesnotattempttoundertakethesector-by-sectorriskassessmentsthemselves.Whileitisclearthatclimatechangehaspotentialimpactsonawiderangeofsectors–humanhealth,agriculture,settlementsandinfrastructure,tourism,biodiversityandnaturalecosystems,andothers–manyothernon-climaticfactorsaffecttherisksthatthesesectorsfaceandtheoutcomesthateventuallyoccur.

Page 6: The Critical Decade: Full report

4 ClimateCommission

Introduction (continued)

Forexample,thereislittledoubtthatextremeweathereventssuchasbushfiresandfloodshavesignificantimpactsonhumanhealthandwell-being.The2011Queenslandfloodshaveledtolong-term,mentalhealthandrelatedproblems,suchasdepression,bereavement,post-traumaticstressdisordersandothermoodandanxietydisorders;andthe2009Victorianbushfiresalsoledtoconsiderablepsychologicaldistress,someofitprolonged,tothosewhoexperiencedthefiresandsurvived(A.J.McMichael,personalcommunication).Suchextremeweathereventshaveoccurredbeforetheadventofhuman-inducedclimatechange,andthedegreetowhichclimatechangeaffectsrisksassociatedwithextremeeventsisaveryactiveareaofresearch.

Inadditiontotheintensityoftheweathereventitself,theseverityoftheQueenslandfloodswereaffectedbyseveralotherfactors,manyofwhicharenotrelatedtoclimate.Theseincludethelandcoverandconditionofcatchmentsandtheefficacyofprotectivestructuressuchasdams.Theultimatehealthoutcomeswereadditionallyinfluencedbythevulnerabilityofindividualsandcommunitiesandtheeffectivenessofwarningsandofemergencymanagementactions.

TheGreatBarrierReef,anoft-citedexampleofaniconicnaturalecosystemvulnerabletothepotentialimpactsofclimatechange,illustratestheimportanceofconsideringmultiple,interactingstressesandnotclimatechangeinisolation.Whileclimate-relatedrisksforcoralreefs,suchastemperatureextremesandincreasingoceanacidity,havebeenwidelydocumentedandsomearewellunderstood(e.g.,Hoegh-Gulbergetal.2007),othernon-climaticfactorsarealsocriticalformaintainingcoralreefsaswell-functioningecosystems.Theseincludeoverfishinganddeclinesinwaterquality(Bryantetal.1998),aswellaspollutants,lowsalinity,turbidity,sedimentationandpathogens,whichputfurtherpressureonreefs(Anthonyetal.2007).Thus,riskassessmentsforparticularsectors,suchashumanhealthandnaturalecosystems,arebestundertakenbyexpertsfortheparticularsector,drawingontheinsightsthatclimatesciencecanofferaswellasonnon-climateknowledgeandinformation.

Thischapteraimstoprovideanup-to-datesynthesisofourscientificunderstandingoffivemajoraspectsoftheclimatesystemthatareimportantforriskassessmentsacrossmanysectors.Theseare:(i)sea-levelrise;(ii)oceanacidification;(iii)thewatercycle;(iv)extremeevents;and(v)abrupt,non-linearandirreversiblechangesintheclimatesystem.

Finally,Chapter3providesalinkbetweenthescienceofclimatechangeandthepolicyoptionsforreducingemissionsofgreenhousegases,particularlycarbondioxide(CO

2).Theapproachtakenherecircumvents

thecomplexityandconfusionofthetargets/timetables/baselinesapproachbyturningtoamuchsimplerbudget–oraggregateemissions–analysis.Theapproachdirectlyrelatesthefurtheramountofemissions,inbillionsoftonnesofCO

2,thatglobalsocietycanemittoachieve

aparticulartemperaturelimit,suchas2°Cabovethepre-industriallevel.

Eachchapteropenswithabriefintroductoryparagraphpresentingthemainthrustofthesection,followedbyaseriesofshortbulletedstatements.Thesearebrief,summarystatementswithoutreferences.Eachofthesestatementsissupportedbymoredetailedtext,withreferencesandfigures,inthemainbodyofeachsection.

Page 7: The Critical Decade: Full report

moRE THAn 85% of THE ADDITIonAL HEAT DuE To THE EnERgy ImbALAnCE AT THE EARTH’s suRfACE Is AbsoRbED by THE oCEAn (IpCC 2007a).

foR THE mosT RECEnT 10-yEAR pERIoD (2001-2010), gLobAL AvERAgE TEmpERATuRE wAs 0.46 °C AbovE THE 1961-1990 AvERAgE, THE wARmEsT DECADE on RECoRD.

gLobAL sEA LEvEL HAs RIsEn by AbouT 20 Cm sInCE THE 1880s, wHEn THE fIRsT gLobAL EsTImATEs CouLD bE mADE.

CHApTER 1: DEvELopmEnTs In THE sCIEnCE of CLImATE CHAngE

DID you know...

Page 8: The Critical Decade: Full report

6 ClimateCommission

Chapter 1. Developments in the science of climate change

1.1 Observations of changes in the climate system

Recent observations of changes in the climate system strengthen the conclusions of the IPCC (Intergovernmental Panel on Climate Change) Fourth Assessment Report (2007a) and the Garnaut Review (2008) that contemporary climate change is indeed real, and is occurring at a rapid rate compared with geological time scales. From a human perspective, the rate of climate change is already discernible to the present generation, and will be even more prominent in the lives of our children and grandchildren. It is leading to significant risks today, and more serious risks in the coming decades, as described in Chapter 2.

Inthissectionthefocusisonevidenceforthelong-termwarmingtrend,whileotherchangesintheclimatesystem–extremeevents,thewatercycleandabruptchanges,forexample–aretreatedinthediscussionofclimaterisksinChapter2.Themainconclusionsofthissectionare:

Surface air temperature

TheaveragetemperatureattheEarth’ssurfacehascontinuedtoincrease.Theglobalcombinedlandandseasurfacetemperature(SST)for2010was0.53°Cabovethe1961-1990average(WMO2011)andthus2010ranksamongstthethreewarmestyearsonrecord.

–foR THE mosT RECEnT 10-yEAR pERIoD (2001-2010), gLobAL AvERAgE TEmpERATuRE wAs 0.46 °C AbovE THE 1961-1990 AvERAgE, THE wARmEsT DECADE on RECoRD.

–However,timeseriesofatleastthreedecades–andpreferablymuchlonger–arerequiredtodifferentiatewithconfidencealong-termclimatictrendfromshortertermvariability.Figure1showstheglobalaveragetemperaturerecordfromthelate19thcenturytothepresent.Overthelastthreedecades,therateofwarminghasbeen0.17°Cperdecade,averyhighratefromageologicalperspective.

Therehasbeenconsiderableconfusioninthemediaandinthepublicbetweenshortertermpatternsofvariabilityinclimateandweatherandlongerterm(multi-decadal)trendsinclimate.Theproblemistheinappropriatetendencytoexpectweatherpatternsandchangesovershorttimeperiodsandinparticularregionstoalwaysfollowchangesinglobaltrendsoverlongperiodsoftime.AnexampleistheextremelycoldandsnowyweatherexperiencedbypartsofEuropeandNorthAmericaintheNovember-December2010period.Doesthissignalanendtoglobalwarming?Absolutelynot.Asnotedabove,2010wasoneofthethreewarmestyearsonrecord.Furthermore,themonthofNovember2010wasexceptionallywarm,withextremelyhightemperaturesaroundthenorthernhighlatitudesmorethancompensatingforthecold,snowyweatherinwesternEuropeandpartsofNorthAmerica(Figure2).

– TheaverageairtemperatureattheEarth’ssurfacecontinuesonanupwardtrajectoryatarateof0.17°Cperdecadeoverthepastthreedecades.

– Thetemperatureoftheupper700moftheoceancontinuestoincrease,withmostoftheexcessheatgeneratedbythegrowingenergyimbalanceattheEarth’ssurfacestoredinthiscompartmentofthesystem.

– ThealkalinityoftheoceanisdecreasingsteadilyasaresultofacidificationbyanthropogenicCO2

emissions.

– RecentobservationsconfirmnetlossoficefromtheGreenlandandWestAntarcticicesheets;theextentofArcticseaicecovercontinuesonalong-termdownwardtrend.Mostland-basedglaciersandicecapsareinretreat.

– Sea-levelhasrisenatahigherrateoverthepasttwodecades,consistentwithoceanwarmingandanincreasingcontributionfromthelargepolaricesheets.

– ThebiosphereisrespondinginaconsistentwaytoawarmingEarth,withobservedchangesingenepools,speciesranges,timingofbiologicalpatternsandecosystemdynamics.

Page 9: The Critical Decade: Full report

ScienceUpdate2011 7

Chapter 1. Developments in the science of climate change(continued)

Figure 1. Surface air temperature trend from the 1880s to the present. Thebaselinefortheanalysisisthe1951-1980average.

Source:NASAGISSSurfaceTemperatureAnalysis.

Figure 2. Global map of surface temperature anomalies for November 2010 showing the unusually cold conditions in parts of Europe and North America but the extreme warmth in other parts of the northern hemisphere.

Source:NASAGISSSurfaceTemperatureAnalysis.

0.6

Tem

per

atu

re A

nom

aly

(ºC

)

0.4

0.2

0

-0.2

-0.4

1880 1900 1920 19601940 1980 2000

Japanese Meteorological Agency

NOAA National Climatic Data Center

Met Office Hadley Centre/Climate Research Unit

NASA Goddard Institute for Space Studies

-4.1 -4 -2 -1 -.5 -.2 .2 .5 1 2 4 10

November 2010 Anomaly vs 1951 – 1980

-4.1 -4 -2 -1 -.5 -.2 .2 .5 1 2 4 10

Page 10: The Critical Decade: Full report

8 ClimateCommission

Chapter 1. Developments in the science of climate change(continued)

Ocean temperature

Althoughthereisaverystrongfocusonairandseasurfacetemperatureinboththeclimateresearchcommunityandthegeneralpublic,oceantemperatureisabettermeasureofchangesintheclimatesystem.

–moRE THAn 85% of THE ADDITIonAL HEAT DuE To THE EnERgy ImbALAnCE AT THE EARTH’s suRfACE Is AbsoRbED by THE oCEAn (IpCC 2007a).

– Sincethe1960smeasurementsoftheheatcontentoftheupper700moftheoceanhavebeenavailable,andsince2004,measurementstolowerdepths(upto2km)havebecomewidelyavailablewiththedeploymentofArgofloats(GouldandtheArgoScienceTeam2004).

Figure3showstherecordofoceanthermalexpansionfrom1950through2008,showingtheclearlong-termtrendofwarming(Dominguesetal.2008,andupdates).TheDominguesetal.updatedcurveinthisfigure,whichusesthecarefullycheckedandcorrectedArgodataofBarkeretal.(2011),indicatesthatmulti-decadalwarminghascontinuedtotheendoftherecordinDecember2008(Churchetal.2011).Thisrecordisquantitativelyconsistentwiththeobservedrateofsea-levelriseoverthepasthalf-century.Althoughmostoftheadditionalheatstoredintheoceanisfoundintheupper700m,recentobservationsshowthatwarmingofthedeeperoceanwatersinboththeSouthernandAtlanticOceansisnowoccurring(PurkeyandJohnson2010).

Ocean acidification

IncreasingtheatmosphericconcentrationofCO2leads

tomoredissolutionofCO2insurfaceoceanwaters,

increasingtheiracidity(decreasingtheiralkalinity)viatheformationofcarbonicacid.Throughaseriesofchemicalreactions,increasingtheconcentrationofcarbonicacidreducestheconcentrationofcarbonateionsinseawater(Kleypasetal.2006).Thisprocesshasimplicationsformarineorganismsthatformcalciumcarbonateshells(seeSection2.2).Observationsoftheacidityoftheocean’ssurfacewatersshowtheexpecteddecreaseofabout0.1pHunitsincethepre-industrialera(Guinotteetal.2003).

Sea ice and polar ice sheets

Evidencefromthecryosphere(snow,iceandfrozenground)isconsistentwiththewarmingofthesurfaceoftheEarth.Themoststrikingevidencecomesfromthenorthernhighlatitudes,wheretheseaicecoveringtheArcticOceanhasdecreasedsignificantlyoverthelastseveraldecades(Figure4).ChangestotheseaicesurroundingAntarcticaaremorecomplex,withnoappreciablechangeinoverallextentoverthepastseveraldecades.

ThelargepolaricesheetsonGreenlandandWestAntarctica,whichareimportantfactorsinfluencingsea-levelrise,arecurrentlylosingmasstotheoceanthroughbothmeltinganddynamicaliceloss;thatis,bybreak-upandcalvingofblocksofice.However,thereisconsiderableuncertaintyabouttherateatwhichthelatterprocessisoccurring.Inaddition,thesetrendsareoftenbasedonshortertermobservationalrecords(oftenthelast10-15years),anditisnotentirelyclearwhetherthesearelong-termtrendsthatwillbemaintainedintothefutureorareatleastpartlytheresultofnaturaldecadal-scalevariability(e.g.,Rignotetal.2008).

OverthepastdecadeoneofthemostcommonobservationaltoolsforestimatingchangesinicemassistheGRACEsatellitegravitytechnique,whichestimatesthelossofmassfromchangesinthegravityfield.GRACEmeasurementshavebeenprominentinconfirmingatrendoficelossfrompolaricesheets,especiallyGreenland(Figure5).However,theGRACEobservationaltechniqueitselfiscomplexwithsignificantuncertainties;arecentre-analysisoftheGreenlandgravitychangedatasuggeststhattherateoficelosshasbeenoverestimatedbyafactoroftwo(BromwichandNicolas2010;Figure6).

Nevertheless,asynthesisofallobservationsshowsthatthereisanetlossofmassfromtheGreenland(andWestAntarctic)icesheets;theuncertaintyreferstotherateatwhichthisicelossisoccurring,withsomeevidencethatthisrateoflossmaybeaccelerating(Rignotetal.2011).

Page 11: The Critical Decade: Full report

ScienceUpdate2011 9

Chapter 1. Developments in the science of climate change(continued)

Figure 3. Updated estimates of ocean thermal expansion relative to 1961. TheupdatedDominguesetal.(2008)timeseriesisshownasaredbrokenline,andonestandarddeviationuncertaintyestimatesareindicatedbythegreyshading.TheestimatesforIshiiandKimoto(2009)andLevitusetal.(2009)areshownaspurpleandbrokenpurplelinesrespectively.Theestimatedstratosphericaerosolloading(arbitraryscale)fromthemajorvolcaniceruptionsisshownatthebottom.

Source:Churchetal.(2011).

Figure 4. Observed (red line) and modelled September (end of summer) Arctic sea ice extent in millions of square kilometres. Thesolidpurplelineistheensemblemeanofthe13IPCCAR4modelsandtheedgesofthegreyshadedarearepresenttherangeofmodelprojections.

Source:Stroeveetal.(2007),updatedtoincludedatafor2008.

Th

erm

oste

ric

sea

leve

l (m

m)

-20

-15

-10

-5

-0

5

10

15

20

1950 1960 1965

Agung Chichon Pinatubo

1955 1970 1975 199019851980 1995 20001990 2005 2010

One standard deviation error

Ishii & KimotoLevitus et al.Domingues et al. (updated)

10

8

6

4

2

Arc

tic

sea

ice

exte

nt

(Sep

t. m

inim

um

) [m

illi

ons

of k

m2]

1900 1950 2000 2050 2100

Observations

Mean and range of IPCC models

Page 12: The Critical Decade: Full report

10 ClimateCommission

Chapter 1. Developments in the science of climate change(continued)

Figure 5. Results from the recent large area total mass balance measurements of the Greenland ice sheet, placed into common units and displayed versus the time intervals of the observations. Theheightsoftheboxescoverthepublishederrorbarsorrangesinmasschangerateoverthoseintervals.

Source:AMAP(2009),whichincludesreferencestotheindividualdatasetsshowninthefigure.

Net

Bal

ance

(G

t/ye

ar)

Radar Altimetry

Johannessen et al.Science 2005

Zwally et al.JGlac. 2005 SRALT

Laser Altemetry Mass Budget Satellite Gravity

80

60

40

20

0

-20

-40

-60

-80

-100

-120

-140

-160

-180

-200

-220

-240

-260

-280

1990Year 91 92 93 94 96 97 98 99 01 02 03 04 06 07 08 091995 2000 2005 2010

Rignot and KanagaratnamScience 2006 InSAR + SMB

Luthke et al.Science 2006- GRACE/MASCON

Chen et al.Science 2006 Grace

Velicogna and WahrNature 2006 GRACE

Slobbe et al.GJI 2009 GRACE(CNES/CSR/DEOS/GFZ range)

Ramillien et al.GBC 2006 GRACE

Wouters et al.GRL 2008 GRACE/EOFfilter

Krabill et al.GRL 2004 ATMa b a bc

Thomas et al.GRL 2006 + ATM GLASa b

Slobbe et al.GJI 2009 GLAS(Density Range±300kg m-3)

A B

A

a

a

b

a

b

b

B

a bc

c

a

b

c

Page 13: The Critical Decade: Full report

ScienceUpdate2011 11

Chapter 1. Developments in the science of climate change(continued)

Figure 6. Cumulative mass loss of the Greenland ice sheet. TheestimatebyWuetal.(2010)ofmasslosssince2003(red)isconsiderablylowerthananearlierpredictedvalue(Velicogna2009)(purple),owinginparttolargerthanpreviouslyestimatedsubsidenceratesofunderlyingbedrock.Thecurvesandtheirdifferencescanthusbeinterpretedintermsofcontributiontoglobalmeansealevel(right-handverticalaxis).Theshadedareasreflectuncertainties.

Source:BromwichandNicolas(2010).

Land-based glaciers and ice caps

Mostglaciersandmountainice-capsaroundtheworldhavebeeninretreatthepastcenturyandareestimatedtobecontributingabout0.8mmperyeartosealevelriseatthebeginningofthiscentury(IPCC2007a).Glaciersandicecapsarenotyetinequilibriumwiththepresentclimate,andthatadjustmentwouldleadtoamasslossequivalenttoanother18cmsea-levelrise(Bahretal.2009).However,theclimateisstillwarmingandwillalmostsurelycontinuetowarmthroughthiscentury,withcurrentwarmingtrendsleadingtoanestimatedmasslossequivalenttoabout55cmofsea-levelrisebytheendofthecentury(Pfefferetal.2008).

Sea-level rise

Globalsealevelhasrisenbyabout20cmsincethe1880s,whenthefirstglobalestimatescouldbemade.Therateofincreasehasrisentoabout3.2mmyr-1forthe1993-2009period,basedonsatellitealtimeterdata(Cazenaveetal.2009;Dominguesetal.2008;ChurchandWhite2011),comparedtoarateof1.7mmyr-1forthe1900-2009period(ChurchandWhite2011).Figure7showsacomparisonoftheobservedsea-levelrisetoprojectionsfromclimatemodels,whichfirstbecameavailablein1990andweresummarisedinthetwomostrecentIPCCreports(2001;2007a).Observedsealevelsince1993istrackingneartheupperendofthemodelprojections,pointingtowardssignificantrisksofsea-levelrelatedimpactsinthe21stcentury(seeSection2.1).

Figure 7. Sea-level change from 1970 to 2008. Thethinredlinefrom1970to2002isbasedontidegaugedata,andthejaggedpurplelinefrom1993to2008isbasedonsatellitedata.Thethickpurpleandredlinesarerunningmeans.TheenvelopeofIPCCprojections(brokenlinesfrom1990)areshownforcomparison.

Source:afterRahmstorfetal.(2007),basedondatafromCazenaveandNarem(2004);ChurchandWhite(2006),Cazenave(2006)andA.Cazenavefor2006–08data.

Mas

s lo

ss s

ince

200

3 (G

t)

Sea-

leve

l eq

uiv

alen

t (m

m)

-1,500

-1,200

-900

-600

-3001

2

3

4

2003 200904 05 06 07 08

Sea

Lev

el C

han

ge [

cm]

-2

-4

0

2

4

6

1970 20108075 85 1990 95 0500

Page 14: The Critical Decade: Full report

12 ClimateCommission

Severalprocessescontributetosea-levelrise,andaquantitativebudgetoftheirrelativecontributionsforthe1961-2003periodhasbeengenerated(Dominguesetal.2008).Thebudgetshowsthatabout40%oftheriseoverthisperiodcanbeattributedtothethermalexpansionoftheoceanasitwarms,about35%tothemeltingofcontinentalglaciersandicecaps(e.g.,theAndeanandHimalayanmountainglaciers)andabout25%fromthelargepolaricesheetsonGreenlandandAntarctica.Estimatesoftheseindividualtermsaggregatetoatotalof1.5+/-0.4mmyr-1,whichisnotsignificantlydifferentfromtheobservedrateforthesameperiodof1.6+/-0.2mmyr-1.

Figure 8. Local sea-level rise (mm/year) around Australia from the early 1990s to 2008.

Source:NTC2008

Globalaveragevaluesofsea-levelrisemasklargeregionaldifferences.Forexample,aroundAustralia(Figure8)recentsealevelrise(fromtheearly1990sto2008)hasbeenbelowtheglobalaveragealongtheeastcoast,neartheglobalaveragealongthemuchofthesoutherncoast,butatleastdoubletheglobalaveragealongmuchofthenortherncoastline.Suchregionaldifferencesareimportantinassessingtherisksposedbysea-levelriseatparticularlocations.

Terrestrial and marine biosphere

Thebiosphererespondstosignificantchangesintheabioticenvironment,sothelong-termincreaseintemperatureshouldbeevidentinbiosphericresponses.

–InDEED, A CLImATE CHAngE (wARmIng) sIgnAL Is now CLEAR In An InCREAsIng numbER of AusTRALIAn AnD gLobAL obsERvATIons of THE REsponsEs of bIoLogICAL spECIEs AnD ECosysTEms (E.g., pARmEsAn 2006; RooT ET AL. 2005; IpCC 2007b).

–Australianobservationsthatshowaclearresponsetoaclimatesignal,distinguishablefromtheresponsestootherstressorsonecosystems,includegeneticshiftsinthepopulationsoffruitflies(Uminaetal.2005),migrationofbothnativeandferalmammalstohigherelevationsinalpineregions(GreenandPickering2002;Pickeringetal.2004),thesouthwardexpansionofthebreedingrangeofblackflyingfoxes(Welbergenetal.2007),earlierarrivalandlaterdeparturetimesofmigratorybirds(Chambers2005,2008;Chambersetal.2005)andtheearliermatingandlongerpairingofthelargeskinkTiliqua rugosa(BullandBurzacott2002).

Inthemarinerealmresponsestoawarmingclimatehavealsobeenobserved.Theseincludesouthernrangeextensionofthebarrens-formingseaurchinfromthemainlandtoTasmania(Lingetal.2008,2009),significantchangesinthegrowthratesoflong-livedPacificfishspecies(Thresheretal.2007),andasouthwardshiftinthedistributionofoverhalfoftheintertidalspeciesalongtheeastcoastofTasmania(Pitt2008).

PerhapsthebestknownmarineexampleofresponsetoclimatechangeistheincreaseinbleachingeventsontheGreatBarrierReef;therehavebeeneightmassbleachingeventsontheGBRsince1979withnoknownsucheventspriortothatdate(Doneetal.2003).

Chapter 1. Developments in the science of climate change(continued)

+7.9

+8.1

+4.5+3.5

+4.6

+2.8

+3.5

+1.8

+1.7

+1.3

+2.5

+6.6

+7.7

Page 15: The Critical Decade: Full report

ScienceUpdate2011 13

1.2 Why is the climate system changing now?

The evidence for a long-term warming trend in Earth’s climate is overwhelming. The critical question is: what is causing this warming trend, and the associated changes in the climate system?

Thissectionexploresthepossiblereasonsfortheobservedwarmingtrendbyfirstplacingcontemporaryclimatechangeinalongertermperspectiveandthenexaminingthevariouspotentialcausesforthewarming.Themainconclusionsare:

The longer-term context

Earthhasbeenmuchwarmerandmuchcolderinthedistantpast,butforhumanstheperiodofrelevanceisthelasthalf-millionyears,duringwhichfullymodernhumansevolved.Inparticular,thelast12,000years–theHolocene–isimportant;duringthisperiodagriculture,villagesandcities,andmorecomplexsocietiesandcivilisations,includingourcurrentcivilisation,havedeveloped.Comparedtothepatternoflongiceagesandmuchshorterinterglacialperiodsoverthepast420,000years(Petitetal.1999),theHolocenehasbeenanunusuallylongandstablewarmperiod,facilitatingthedevelopmentofhumansocietybeyondthehunter-gathererstage.ThebehaviouroftheclimatesystemduringtheHoloceneprovidesauseful,human-relevantbaselineagainstwhichtotestpossibleexplanationsforcontemporarywarming.

Changes in solar radiation

VariationintheamountofsolarradiationreachingtheEarthhasbeenimplicatedintemperaturefluctuationsearlierintheHolocene,forexample,asapossiblefactorintheMedievalClimateAnomaly,oftencalledtheMedievalWarmPeriod(Mannetal.2009).Variationsinsolarradiationhavebeenknownwithbetteraccuracysincethelate1800s,andespeciallyinthelastthreetofourdecades,andcouldhavecontributedatmost10%totheobservedwarmingtrendinthe20thcentury(LeanandRind2008).Inparticular,therehasbeennosignificantchangeinsolarradiationoverthepast30years(IPCC2007a),whenglobalaveragetemperaturehasrisenatabout0.17°Cperdecade.Furthermore,patternsofwarmingoverrecentdecadesareinconsistentwithsolarforcing.Inparticular,solarforcingwouldproduceawarmingofthestratosphere,inadditiontothatofthetroposphere.Infactstratosphericcoolinghasbeenobserved,inconsistentwithsolarforcingbutconsistentwithCO

2-dominatedforcing(IPCC2007a).

Chapter 1. Developments in the science of climate change(continued)

– Thereisnocredibleevidencethatchangesinincomingsolarradiationcanbethecauseofthecurrentwarmingtrend.

– Neithermulti-decadalorcentury-scalepatternsofnaturalvariability,suchastheMedievalWarmPeriod,norshortertermpatternsofvariability,suchasENSO(ElNiño-SouthernOscillation)ortheNorthAtlanticOscillation,canexplainthegloballycoherentwarmingtrendobservedsincethemiddleofthe20thcentury.

– Thereisaverylargebodyofinternallyconsistentobservations,experiments,analyses,andphysicaltheorythatpointstotheincreasingatmosphericconcentrationofgreenhousegases,withcarbondioxide(CO2

)themostimportant,astheultimatecausefortheobservedwarming.

– ImprovedunderstandingofthesensitivityoftheclimatesystemtotheincreasingatmosphericCO

2

concentrationhasprovidedfurtherevidenceofitsroleinthecurrentwarmingtrend,andprovidedmoreconfidenceinprojectionsoftheleveloffuturewarming.

Page 16: The Critical Decade: Full report

14 ClimateCommission

Modes of natural variability

TheMedievalClimateAnomaly(MCA),asomewhatwarmerperiodfromabout1000toabout1250or1300AD,hassometimesbeeninvokedtoinferthatthecontemporarywarmingisnothingunusualintheHoloceneandthatitisthuslikelyduetonaturalvariability.However,thebulkofevidencefortheMCAcomesfromthenorthernhemisphere,whichmakesitdifficulttodeterminewhethertheMCAwastrulyglobalinscale.Furthermore,aspatiallyexplicitsynthesisofallavailabletemperaturereconstructionsaroundtheglobesuggeststhattheMCAwashighlyheterogeneous,eveninthenorthernhemisphere,withgloballyaveragedwarmingmuchbelowthatobservedoverthelastcentury(Mannetal.2009;Figure9).Thus,theMCAisdifferentinmagnitudeandextentfromcontemporarywarming(Figure10).

Shorter-termmodesofnaturalvariability,suchasENSOandtheNAO(NorthAtlanticOscillation),areveryimportantinfluencesontheweatherthatpeopleexperiencefromyeartoyear,buttheycannotexplainrecentmulti-decadal,globallysynchronoustrendsintemperature.Rather,suchmodesofnaturalvariabilityaredrivenbychangesincoupledoceanicandatmosphericcirculation;ingeneral,theyredistributeheatbetweenoceanandatmosphereaswellasredistributeitgeographicallyaroundtheplanet.

Greenhouse gas forcing

ThephysicsbywhichgreenhousegasesinfluencetheclimateattheEarth’ssurfaceisnowverywellestablishedandaccepted;itwasfirstproposedin1824byJosephFourier,experimentallyverifiedin1859byJohnTyndall(Crawford1997)andquantifiedneartheendofthe19thcenturybySvanteArrhenius(Arrhenius1896).Muchresearchinthe20thcentury(e.g.,Weart2003;Fleming2007;RevelleandSuess1957)hasstrengthenedthescientificbasisforthetheoryaswellassharpenedourunderstandingofit.Forexample,theverylargedifferencesinsurfacetemperatureamongEarth,VenusandMarscanonlybeexplainedbytheverydifferentamountsofCO

2in

theiratmospheres(Lacisetal.2010).Also,thedifferenceingloballyaveragedtemperaturebetweenaniceageandawarmperiod,about5-6°C,canonlybeexplainedbychangesingreenhousegasconcentrationsandinthereflectivity(albedo)oftheEarth’ssurfacethatamplifytheoriginalmodestchangesintemperatureduetovariationsinincomingsolarradiationcausedbycyclicalchangesintheEarth’sorbitaroundthesun(RahmstorfandSchellnhuber2006).

Chapter 1. Developments in the science of climate change(continued)

Figure 9. Reconstructed surface temperature pattern for the Medieval Climate Anomaly (MCA, 950 to 1250 C.E., sometimes called the Medieval Warm Period). Shownarethemeansurfacetemperatureanomaly(left)andassociatedrelativeweightingsofvariousproxyrecordsused(indicatedbysizeofsymbols)forthelow-frequencycomponentofthereconstruction(right).Anomaliesaredefinedrelativetothe1961-1990referenceperiodmean.Statisticalskillisindicatedbyhatching(regionsthatpassvalidationtestsatthep=0.05levelwithrespecttoRE(CE)aredenotedby/(\)hatching).Greymaskindicatesregionsforwhichinadequatelong-termmodernobservationalsurfacetemperaturedataareavailableforthepurposesofcalibrationandvalidation.

Source:Mannetal.(2009),whichcontainsfurtherinformationonmethodology.

-2.5 -.9 -.7 -.5 -.3 -.1 .1 .3 .5 .7 .9 1.4

Page 17: The Critical Decade: Full report

ScienceUpdate2011 15

Figure 10. Comparison of observed continental- and global-scale changes in surface temperature with results simulated by climate models using natural and anthropogenic forcings. Decadalaveragesofobservationsareshownfortheperiod1906to2005(blackline)plottedagainstthecentreofthedecadeandrelativetothecorrespondingaveragefor1901–1950.Linesaredashedwherespatialcoverageislessthan50%.Purpleshadedbandsshowthe5–95%rangefor19simulationsfromfiveclimatemodelsusingonlythenaturalforcingsduetosolaractivityandvolcanoes.Redshadedbandsshowthe5–95%rangefor58simulationsfrom14climatemodelsusingbothnaturalandanthropogenicforcings.

Source:IPCC(2007a)

Chapter 1. Developments in the science of climate change(continued)

Tem

per

atu

re a

nom

oly

(°c)

0.0

0.5

1.0

200019501900

Global Ocean

Tem

per

atu

re a

nom

oly

(°c)

0.0

0.5

1.0

South America

19501900 2000

Tem

per

atu

re a

nom

oly

(°c)

0.0

0.5

1.0

Africa

19501900 2000

Tem

per

atu

re a

nom

oly

(°c)

0.0

0.5

1.0

Australia

19501900 2000

Tem

per

atu

re a

nom

oly

(°c)

0.0

0.5

1.0

Asia

19501900 2000

Tem

per

atu

re a

nom

oly

(°c)

0.0

0.5

1.0

Europe

19501900 2000

Tem

per

atu

re a

nom

oly

(°c)

0.0

0.5

1.0

North America

19501900 2000

Tem

per

atu

re a

nom

oly

(°c)

0.0

0.5

1.0

200019501900

Global

Tem

per

atu

re a

nom

oly

(°c)

0.0

0.5

1.0

200019501900

Global land

Page 18: The Critical Decade: Full report

16 ClimateCommission

Asknowledgeofthegreenhouseeffectimproves,changesintheclimatesystemmoresubtlethangloballyaveragedtemperatureyieldpatternsofchangeconsistentwiththeinfluenceofCO

2andothergreenhousegases,

andinconsistentwithchangesinsolarradiation.Such“fingerprintsofgreenhousegasforcing”include,forexample,theobservationthatwintersarewarmingmorerapidlythansummersandthatovernightminimumtemperatureshaverisenmorerapidlythandaytimemaximumtemperatures(IPCC2007a).Anapparentinconsistencybetweenobservationswithgreenhousetheorywastheallegedfailuretofindaso-called“tropicalhotspot”,awarminginthetropicalatmosphereabout10-15kmabovetheEarth’ssurface.Inreality,therewasnoinconsistencybetweenobservedandmodelledchangesintropicaluppertropospherictemperatures,allowingforuncertaintiesinobservationsandlargeinternalvariabilityintemperatureintheregion.Furthermore,recentthermalwindcalculationshaveindeedshowngreaterwarmingintheregion(AllenandSherwood2008),confirmingthatthereisnoinconsistencyandprovidinganotherfingerprintofenhancedgreenhouseforcing.

Climate sensitivity

Theriseingloballyaveragedtemperatureatequilibriumduetoagivenchangeinradiativeforcingisknownasthe“climatesensitivity”.Inthecontextofhuman-drivenclimatechange,climatesensitivityusuallyreferstotheequilibriumtemperatureriseresultingfromadoublingofCO2

concentration(from280to560ppm;ppm=partspermillion).Withnootherresponsesoftheclimatesystem(e.g.changesinwatervapour,albedoorclouds),adoublingofCO

2alonewouldresultinaround1°Cwarming–a

numbereasilyderivedfromwellestablishedradiationcalculations.Importantly,watervapouramountsarecloselytiedtotemperature,increasingwithwarming,andtrappingextraheat.Theory,modellingstudiesandobservationsallstronglysupporttherebeingastrongpositive(reinforcing)watervapourfeedback,whichroughlydoublestheinitialwarmingfromCO

2.Otherfeedbacks,

duetoresponsesfromsurfacealbedo(positive),temperature‘lapserate’(negative)andcloudsalsocontribute,withcloudfeedbacksbeingthemostuncertain.

somE of THE mosT ImpoRTAnT REsEARCH In RECEnT yEARs HAs REDuCED THE unCERTAInTy suRRounDIng EsTImATEs of CLImATE sEnsITIvITy.

–Multiplesimulationsbyclimatemodelsdrivenbya560ppmCO

2atmospherehavegeneratedaprobability

densityfunctionwithmostofthevaluesforsensitivityfallingbetween2and4.5°Candapeaknear3°C(IPCC2007a).AnanalysisofthetransitionoftheEarthfromthelasticeagetotheHolocene,whichinfersclimatesensitivityfromtheobservedchangeintemperatureandthecorrespondingchangesinthefactorsthatinfluenceradiativeforcing,alsoestimatesavalueofabout3°C(Hansenetal.2008).Muchoftheuncertaintyonthemagnitudeofclimatesensitivityisassociatedwiththedirectionandstrengthofcloudfeedbacks.Recentobservationalevidencefromshort-termvariationsincloudssuggeststhatshort-termcloudfeedbacksarepositive,reinforcingthewarming,consistentwiththecurrentmodel-basedestimatesofcloudfeedbacks(Clementetal.2009;Dessler2010).

Arecentmodelstudycomparingtherelativeimportanceofvariousgreenhousegasesfortheclimateestimatesasensitivityofapproximately4°CforadoublingofCO2

(Lacisetal.2010).Inaddition,thestudypointstotheimportanceofCO

2astheprincipal“controlknob”

governingEarth’ssurfacetemperature.AlthoughCO2

accountsforonlyabout20%ofEarth’sgreenhouseeffect(otherlong-livedgreenhousegasesaccountfor5%andwatervapourandcloudsaccountfor75%viatheirfastfeedbackeffects),itistheonethateffectivelycontrolsclimatebecauseofitsverylonglifetimeintheatmosphere.Watervapouramountsaredeterminedbyatmospherictemperatures,whichinturnaregovernedbyconcentrationsofthelong-livedgreenhousegasessuchasCO

2.Infact,withouttheselong-livedgreenhouse

gases,theEarth’stemperaturewoulddroprapidlyanddrivetheplanetintoanice-boundstate.

Chapter 1. Developments in the science of climate change(continued)

Page 19: The Critical Decade: Full report

ScienceUpdate2011 17

1.3 How is the carbon cycle changing?

The analysis in the previous two sections shows that (i) the Earth’s surface is warming at a relatively rapid rate, and (ii) the primary reason for this warming, at least since the middle of the 20th century, is the increase in CO2 in the atmosphere. These conclusions focus attention strongly on the carbon cycle – both how the natural carbon cycle operates and how human activities are modifying the cycle.

Thissectionsummarisesthemostrecentresearchonchangesinthebehaviourofthecarboncycleandpotentialchangestothecycleinthefuture:

Human emissions of CO2

TheGlobalFinancialCrisisledtoadropin2009of1.3%intheglobalemissionsofCO

2fromfossilfuelcombustion,

insharpcontrasttotheaverageannualriseinfossilfuelCO

2emissionsof3.2%forthe2000-2008period

(Friedlingsteinetal.2010).Thegrowthrateofemissionsisexpectedtoresumeitsupwardtrendof3%orgreaterin2010andsubsequentyears,barringafurthersharpeconomicdownturnorrapidandvigorousreductionsinemissionsinresponsetoclimatechange(Figure11;RaupachandCanadell2010).Giventhestrongriseinemissionsoverthepastdecade,currentemissionsareabout37%largerthanthosein1990,sometimesusedasthebaselineagainstwhichtomeasureemissionreductions.ThecurrentrateofemissionsliesnearthetopoftheenvelopeofIPCCprojections(RaupachandCanadell2010).Overthelastfewyears,coalhasovertakenoilasthelargestsourceofCO

2fromfossilfuelcombustion

(LeQuéréetal.2009:CDIAC2010).Despitethedropintheabsoluteamountofemissionsin2009,theatmosphericconcentrationofCO

2stillroseby1.6ppmduringtheyear,

comparedtoanaveragegrowthrateof1.9ppmperyearforthe2000-2008period(TansandConway2010).

Figure 11. Global CO2 emissions since 1997 from fossil fuel and cement production. EmissionswerebasedontheUnitedNationsEnergyStatisticsto2007,andonBPenergydatafrom2007onwards.CementCO

2

emissionsarefromtheUSGeologicalSurvey.Projectionfor2010isincludedinred.

Source:Friedlingsteinetal.(2010),andreferencestherein.

CO

2 em

issi

ons

(Pg

C y

-1)

CO

2 emission

s (Pg C

O2 y

-1)

7

8

9

30

Growth rate2000-20092.5% per year

Growth rate1990-19991% per year

25

20102000 2005

Chapter 1. Developments in the science of climate change(continued)

– Despitethedipinhumanemissionsofgreenhousegasesin2009duetotheGlobalFinancialCrisis,emissionscontinueonastrongupwardtrend,onaveragetrackingnearthetopofthefamilyofIPCCemissionscenarios.

– Oceanandlandcarbonsinks,whichtogethertakeupmorethanhalfofthehumanemissionsofCO

2,

appeartobeholdingtheirproportionalstrengthscomparedtoemissions,althoughsomerecentevidencequestionsthisconclusionandsuggestsalossofefficiencyinthesenaturalsinksoverthepast60years.

– Ifglobalaveragetemperaturerisessignificantlyabove2°C(relativetopre-industrial),thereisanincreasingriskoflargeemissionsfromtheterrestrialbiosphere,themostlikelysourcebeingmethanestoredinpermafrostinthenorthernhighlatitudes.

Page 20: The Critical Decade: Full report

18 ClimateCommission

Figure 12. Terms in the global CO2 budget for the period 1850-2008 inclusive. AnthropogenicCO2emissions,

shownaspositivefluxesintotheatmosphere,comprisecontributionsfromfossilfuelcombustionandotherindustrialprocesses,andlandusechange,mainlydeforestation.ThefateofemittedCO

2,includingtheaccumulationof

atmosphericCO2,thelandCO

2sinkandtheoceanCO

2sink,isshownbythebalancingnegativefluxes.Valuesof

averagefluxesfor2000-2008(shownatright)includeasmallresidualbecausealltermswereestimatedindependentlyfrommeasurementsormodels,withoutaprioriapplicationofamass-balanceconstraint.

Source:RaupachandCanadell(2010),basedonLeQuereetal.(2009).

Chapter 1. Developments in the science of climate change(continued)

Ocean and land carbon sinks

Naturalsinksofcarbononlandandinoceans(e.g.,uptakeofCO2

bygrowingvegetation;dissolutionofCO2in

seawater)havehistoricallyremovedoverhalfofthehumanemissionsfromtheatmosphere–forexample,57%forthe1958-2009period(LeQuéréetal.2009).Thecarbonistakenupinapproximatelyequalproportionsbylandandocean(RaupachandCanadell2010;Figure12),althoughthereisconsiderablevariabilityinthestrengthofthesenaturalsinksfromyeartoyear,largelyinresponsetoclimatevariability.Overthepasthalf-centurythecapabilityofthesenaturalsinkshasgenerallykeptpacewiththeincreasinghumanemissionsofCO

2.However,

thereisevidencethattheefficiencyofthesesinksisdeclining(Canadelletal2007;Raupachetal.2008;LeQuéréetal.2009),particularlyintheSouthernocean(LeQuéréetal.2007).Thereareuncertaintieswithsomeoftheseresults,andsomescientificcontroversyoverthedecliningtrendparticularlyinrecentyears(Franceyetal.2010;Knorr2009;Poulteretal.2011).

Theongoingstrengthofthesenaturalsinksiscruciallyimportantforthelevelofeffortthatwillberequiredtolimitclimatechangetonomorethana2°Criseabovepre-industrial,oftenreferredtoasthe2°Cguardrail(CounciloftheEuropeanUnion2005;IPCC2007a;CopenhagenAccord2009).Thistarget,oftenquotedasdefiningtheboundaryof“dangerous”climatechange,isbasedonvaluejudgements,informedbyscientificunderstanding,andhasbeendevelopedthroughapoliticalprocess.Thereisconsiderablescientificevidence(e.g.,Smithetal.2009;Richardsonetal.2011)thatvaluesoftemperatureriseabove2°Care“dangerous”bymostdefinitions,butthisevidencealsoshowsthattherearesignificantrisksofseriousimpactsinvarioussectorsandlocationsattemperatureincreasesoflessthan2°C.Nevertheless,the2°Cguardrailhasbeenawidelyacceptedandquotedpoliticalgoal.

TropicalNontropical

CO

2 fl

ux

(PgC

y-1

)

1850 1900 1950 2000

Fossil fuelemmissions

Other industrialemissions

Deforestation

Atmospheric CO2

OceanLand

-8

-6

-4

-2

0

2

4

6

8

2.3 (4 models)

0.3 Residual

3.0 (5 models)

2000-2008(PgC y-1)

4.1

1.4

7.7

Page 21: The Critical Decade: Full report

ScienceUpdate2011 19

Vulnerable new sources of carbon

Inadditiontothepotentialweakeningofthecurrentnaturalcarbonsinksastemperatureincreases,thereisthepotentialforactivatingnewnaturalsourcesofcarbonemissionsfrompoolsthatarecurrentlyinactive.Examplesincludemethanehydratesstoredundertheseafloor,organicmaterialstoredintropicalpeatbogsandorganicmaterialstoredinpermafrostinthenorthernhighlatitudesandtheTibetanplateau.Ofthesepotentialsources,thepermafrostcarbonisgenerallyconsideredtobethemostimportant.

–THERE ARE ovER 1,700 bILLIon TonnEs of CARbon sToRED In pERmAfRosT (TARnoCAI ET AL. 2009), wHICH Is AbouT TwICE THE AmounT sToRED In THE ATmospHERE AT pREsEnT.

–Thereisuncertaintyaboutthevulnerabilityofthispotentialnewsourceofcarbon(e.g.,LawrenceandSlater2005;Lawrenceetal.2008),butthereisalreadyevidenceofsomelossofmethanefromthenorthernhighlatitudes(e.g.,Dorrepaaletal.2009).Oneanalysisoffuturevulnerabilityassessesthatabout100billionofthe1,700billiontonnesarevulnerabletothawingthiscentury(Schuuretal.2009).

1.4 How certain is our knowledge of climate change?

Following criticisms of the IPCC, the so-called “climategate” incident in the UK (the hacking of emails of climate scientists at the University of East Anglia), and numerous attacks in the media and elsewhere on climate science, there has been much focus on the veracity of climate science and on the level of certainty or uncertainty surrounding knowledge of climate science. The key question is: Are we confident enough about (i) our understanding of the climate system, (ii) the human influence on climate, and (iii) the consequences of contemporary climate change for societies and ecosystems to provide a reliable knowledge base on which to base policy and economic responses?

Thissectionwillbrieflyexplorethelevelofcertaintyanduncertaintysurroundingtheknowledgebaseonwhichscientificunderstandingofcontemporaryclimatechangerests.Themainmessagesare:

Chapter 1. Developments in the science of climate change(continued)

– TheIPCC’sFourthAssessmentReporthasbeenintensivelyandexhaustivelyscrutinisedandisvirtuallyerror-free.

– TheEarthiswarmingonamulti-decadaltocenturytimescale,andataveryfastratebygeologicalstandards.Thereisnodoubtaboutthisstatement.

– Humanemissionsofgreenhousegases–andCO2

isthemostimportantofthesegases–istheprimaryfactortriggeringobservedclimatechangesinceatleastthemid20thcentury.TheIPCCAR4(2007a)reportattached90%certaintytothatstatement;researchoverthepastfewyearshasstrengthenedourconfidenceinthisstatementevenmore.

– Manyuncertaintiessurroundprojectionsoftheparticularrisksthatclimatechangeposesforhumansocietiesandnaturalandmanagedecosystems,especiallyatsmallerspatialscales.However,ourcurrentlevelofunderstandingprovidessomeusefulinsights:(i)somesocial,economicandenvironmentalimpactsarealreadyobservablefromthecurrentlevelofclimatechange;(ii)thenumberandmagnitudeofclimateriskswillriseastheclimatewarmsfurther.

Page 22: The Critical Decade: Full report

20 ClimateCommission

Figure 13. The process by which the IPCC carries out an assessment, including the careful and exhaustive, two-tiered review process.

Source:IPCC(2011).

The IPCC

Astheprimarysourceofinformationonclimatechangeforthepolicycommunity,theIPCCproducesperiodicassessmentsoftheliteraturebyscientificexpertsapproximatelyeverysixyears,aswellasinterimspecialreports.Therearethreeworkinggroups–oneeachforthefundamentalclimatescience;impacts,adaptationandvulnerability;andmitigationofclimatechange.TheFourthAssessmentReport(AR4),publishedin2007,involvedabout1,250expertauthorsand2,500reviewers,whoproducedabout90,000commentsondrafts,eachoneofwhichwasaddressedexplicitlybytheauthors.Thisexhaustive,thoroughprocessisshownschematicallyinFigure13.

TheIPCCAR4hasbeenintensivelyandexhaustivelyscrutinised,includingformalreviewssuchasthatbytheInterAcademyCouncil(2010),andonlytwoperipheralerrors,bothofthemintheWG2reportonimpactsandadaptation,haveyetbeenfound(inapublicationcontainingapproximately2.5millionwords!).Noerrorshavebeenfoundinanyofthemainconclusions,norhaveanyerrorsbeenfoundinthe996-pageWG1report,whichdescribesourunderstandingofhowandwhytheclimatesystemischanging.TheIPCCAR4WG1reportprovidesthescientificinputtothedevelopmentofclimatepolicy.Severalofficial“assessmentsoftheassessment”haveconcludedthattheconclusionsoftheAR4aresound(InterAcademyCouncil2010;RoyalSociety2010;NationalResearchCouncil2010).

Chapter 1. Developments in the science of climate change(continued)

IPCC approves outline

Governmentsorganisationsnominate experts

Bureaux select Authors

Expert andGovernmentReview

Final distributionand governmentreview of Summary for Policy Makers

Working Group/IPCCaccepts/approvesreport and Summary for Policy Makers

Peer reviewed and internationally available scientific, technical and socio-economic literature, manuscripts made available for IPCC review and selected non-peer reviewed literature produced by other relevent institutions including industry

Authors prepareFINAL DRAFT

Publicationof report

Step

1St

ep 2

Step

10

Step

3

Step

9St

ep 8

Step

7St

ep 1

1Authors prepare1st-order DRAFT

Step

4

Expert Review

Step

5 Authors prepare2nd-order DRAFT

Step

6

Page 23: The Critical Decade: Full report

ScienceUpdate2011 21

Insummary,despiteintensive,andultimatelyunsuccessful,attemptstofindimportanterrorsintheassesments,theIPCChasbeenconfirmedasasourceofreliablescientificinformationonclimatechange.

Certainty of warming

TheevidencethattheEarthiswarmingonamulti-decadaltimescale,andataveryfastratebygeologicalstandards,isnowoverwhelming.Someofthisevidencehasbeenpresentedabove.TheIPCCusedtheword“unequivocal”todescribeourconfidenceintheobservationsofawarmingEarth.Observationssince2007havestrengthenedourconfidenceinthisstatement.

Human causation

Basedonitsthoroughassessmentoftheevidence,theIPCCin2007statedthat:

–“mosT of THE obsERvED InCREAsE In gLobAL AvERAgE TEmpERATuREs sInCE THE mID-20TH CEnTuRy Is vERy LIkELy DuE To THE obsERvED InCREAsE In AnTHRopogEnIC gREEnHousE gAs ConCEnTRATIons”.

–Thetermvery likelyintheIPCCdefinitionsofuncertaintyisassociatedwithagreaterthan90%certaintythatthestatementiscorrect(IPCC2007a).ResearchoverthepastfewyearshasfurtherstrengthenedourconfidenceintheIPCC’sassessmentofattribution.Suchresearch,describedearlier,includesbetterestimatesofclimatesensitivity,moreobservationsofthepatternsofclimaticchanges–“fingerprints”characteristicofgreenhousegasforcing,andimprovedunderstandingofthelong-termroleofCO

2intheclimatesystem.

Large uncertainties

Althoughthefundamentalfeaturesofclimatechange,asdescribedabove,areverywellknown,significantuncertaintiessurroundourunderstandingofthebehaviourofimportantpartsoftheclimatesystem.Forexample,thewaysinwhichthelargepolaricesheetsonGreenlandandAntarcticaarerespondingandwillrespondinfuturetowarmingarenotwellknown,andaregeneratingintensediscussionandfurtherresearchinthescientificcommunity.Similarly,althoughconsiderableevidencepointstowardanaccelerationofthehydrologicalcycleastheclimatewarms–increasedevaporation,morewatervapourintheatmosphere,andincreasedprecipitation–thistrendisstillbeingdebatedintheresearchcommunity,asistheinfluenceofclimatechangeonspatialpatternsofprecipitationacrosstheEarth’ssurfaceandonthetemporalpatternsofprecipitation–droughtsandintenserainfallevents.Theseuncertainties,however,innowaydiminishourconfidenceintheobservationthattheEarthiswarmingandinourassessmentthathumanemissionsofgreenhousegasesaretheprimaryreasonforthiswarming.

Manyuncertaintiesalsosurroundourunderstandingoftherisksthatclimatechangeposesforhumansocietiesandnaturalandmanagedecosystems.Theseuncertaintiesstemfromseveralfactors:(i)uncertaintiesintheprojectionsofpotentialimpactsfromfutureclimatechange;(ii)uncertaintiesassociatedwiththedynamicsofsystemsbeingimpactedbyclimate,suchasagriculturalsystems,naturalecosystems,orurbansystems;and(iii)uncertaintiesinthewaysinwhichhumanswillrespondtothethreatsofclimatechangebyreducingtheirvulnerabilityorincreasingtheiradaptivecapacity.Despitetheseseeminglydauntinguncertainties,anumberofsocial,economicandenvironmentalimpactscanbeobservedthatareconsistentwithwhatisanticipatedfromthecurrentlevelofclimatechange.Thenumberandmagnitudeofclimate-relatedriskswillriseconsiderablyastheclimatewarmstowards2°Cabovethepre-industriallevel;andabovethe2°Cguardrail,therisksmayrisedramatically(Smithetal.2009;Richardsonetal.2011).Themostseriousrisksareassociatedwithpotentialabruptorirreversiblechangesinlargefeaturesoftheclimatesystem,suchastheswitchtoadrystateoftheIndianSummerMonsoon(Lentonetal.2008).Decision-makinginthefaceofsuchuncertaintieswillremainabigchallengeforthepolicyandmanagementcommunities.

Chapter 1. Developments in the science of climate change(continued)

Page 24: The Critical Decade: Full report

CHApTER 2:RIsks AssoCIATED wITH A CHAngIng CLImATE

TEmpERATuRE InCREAsEs of 1 oR 2 °C mAy sEEm moDEsT, buT THEy CAn LEAD To DIspRopoRTIonATELy LARgE CHAngEs In THE fREquEnCy AnD InTEnsITy of ExTREmE wEATHER EvEnTs.

CoRAL-DomInATED ECosysTEms ARE sEnsITIvE To smALL RIsEs In THE TEmpERATuRE of THE wATER In wHICH THEy REsIDE. wHEn THE sEA TEmpERATuRE RIsEs 1-2°C AbovE noRmAL foR A sIx-EIgHT wEEk pERIoD THE CoRALs ARE “bLEACHED”.

wHAT wE CAn sAy wITH CERTAInTy Is THAT RAInfALL pATTERns wILL CHAngE As A REsuLT of CLImATE CHAngE AnD ofTEn In unpREDICTAbLE wAys, CREATIng LARgE RIsks foR wATER AvAILAbILITy.

DID you know...

Page 25: The Critical Decade: Full report

ScienceUpdate2011 23

Chapter 2. Risks associated with a changing climate

2.1 Sea-level rise

With much of our population and a high fraction of our infrastructure located close to the coast, Australia is vulnerable to the risks posed by sea-level rise. Although sea level will continue to rise for many centuries (Solomon et al. 2009), the more immediate concern is the level of risk associated with sea-level rise out to 2100, when some of our existing infrastructure and much new infrastructure will be at risk. The rate at which sea level will rise through this century is a critical factor in determining the degree of exposure to risk.

ThissectionbuildsonSection1.1onobservationsofsea-levelrisetoexploretherangeofratesatwhichsea-levelcouldrisethiscenturyandtheimplicationsofsuchrisesfortheinundationofpartsofourcoastline.

Thekeymessagesare:

Projections of future sea-level rise

–pRojECTIons of sEA-LEvEL RIsE foR THE REsT of THE CEnTuRy vARy wIDELy, fRom THE ofT-quoTED RAngE of 0.19-0.59 m bAsED on THE IpCC AR4 (2007a) To nEARLy 2 mETREs (vERmEER AnD RAHmsToRf 2009).

–TheIPCCprojectionsareoftenmisquotedastheydonottakeintoaccountthelossoficeduetodynamicalprocessesinthelargepolaricesheets.

Whenestimatesforthisprocessareincluded,therangechangesto0.18–0.76m,andtheIPCCiscarefultonotethathighervaluescannotbeexcluded(IPCC2007a;Figure14).Bycomparison,theThirdAssessmentReportoftheIPCC(2001)projectedasea-levelriseof0.11–0.88mforthiscentury.

Theprojectionsyieldinghigherrangesofsea-levelareoftenbasedonstatisticalorsemi-empiricalmodelsthatrelatetheobservedsea-levelriseoverthepast120yearstotheobservedtemperatureriseoverthatperiod(e.g.,Rahmstorf2007;Hortonetal.2008;Grinstedetal.2009).Theapproachistouseprojectionsoftemperatureriseto2100toestimatethecorrespondingriseinsea-levelbasedontheobservedrelationship.Therangeoftemperatureincreasesthenyieldsarangeofprojectedsea-levelchanges.Projectionsusingsemi-empiricalmodelsaregenerallyhigherthanthoseoftheIPCCbecausetheyincorporatetheobservedaccelerationofsea-levelriseduringthe1990-2009periodandprojectthatfurtheraccelerationwilloccurastheclimatewarms.Figure15showsanexampleofprojectedchangesinsealevelbasedonasemi-empiricalmodel(VermeerandRahmstorf2009).

– Aplausibleestimateoftheamountofsea-levelriseby2100comparedto2000is0.5to1.0m.Thereissignificantuncertaintyaroundthisestimate,thelargestofwhichisrelatedtothedynamicsoflargepolaricesheets.

– Muchmorehasbeenlearnedaboutthedynamicsofthelargepolaricesheetsthroughthepastdecadebutcriticaluncertaintiesremain,includingtherateatwhichmassiscurrentlybeinglost,theconstraintsondynamiclossoficeandtherelativeimportanceofnaturalvariabilityandlonger-termtrends.

– Theimpactsofrisingsea-levelareexperiencedthrough“highsea-levelevents”whenacombinationofsea-levelrise,ahightideandastormsurgeorexcessiverun-offtriggeraninundationevent.Verymodestrisesinsea-level,forexample,50cm,canleadtoveryhighmultiplyingfactors–sometimes100timesormore–inthefrequencyofoccurrenceofhighsea-levelevents.

Page 26: The Critical Decade: Full report

24 ClimateCommission

Chapter 2. Risks associated with a changing climate (continued)

Figure 14. Projections of sea-level rise from 2100 from the IPCC Third Assessment Report (TAR) and the Fourth Assessment Report (AR4). TheTARprojectionsareindicatedbytheshadedregionsandthebrokenredlinesaretheupperandlowerlimits.TheAR4projectionsarethebarsplottedinthe2090-2100period.Theinsetshowssealevelobservedwithsatellitealtimetersfrom1993to2006(red)andobservedwithcoastalsea-levelmeasurementsfrom1990to2001(purpledashes).

Source:ACECRC2008.

Figure 15. Projection of sea-level rise from 1990 to 2100, based on IPCC temperature projections for three different emission scenarios (labelled on right, see Vermeer and Rahmstorf (2009) for explanation of uncertainty ranges). Thesea-levelrangeprojectedintheIPCCAR4(2007a)(excludingcontributionsfromice-sheetdynamicprocesses)forthesescenariosisshownforcomparisoninthebarsonthebottomright.Alsoshownistheobservations-basedannualglobalsea-leveldata(solidredlineto2003)includingartificialreservoircorrection.

Source:VermeerandRahmstorf(2009),andreferencestherein.

Seal

evel

ris

e (m

)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Chichon

1990 2010 20202000 2030 2040 207020602050 2090 21002080

200019951990 2005

Sea

leve

l ris

e (m

)

0.00

0.02

0.04

0.06 Larger values cannot be excluded

Model projections

Additional contributionsfrom potential ice-sheetdynamic processes

1950 2000 2050 2100

B1

AR4

A2

A1FI

Sea

Lev

el C

han

ge (

cm)

40

60

0

-20

20

80

100

120

140

160

180

200

Page 27: The Critical Decade: Full report

ScienceUpdate2011 25

Chapter 2. Risks associated with a changing climate (continued)

Anestimateofthelikelymagnitudeofsea-levelrisethiscenturyisusefulinformationforriskassessments.Acontinuationofthecurrentlyobservedrateof3.2mmyr-1wouldgiveariseofabout0.32mby2100,aboutthemid-rangeoftheIPCCscenarios.However,sealeveliscurrentlytrackingneartheupperrangeofthescenarios,anditseemsunlikelythattherateofsea-levelrisewillremainfixedfornearlyacenturyatitscurrentlevelasthetemperaturecontinuestorise.Ontheotherhand,projectionsof1.5or2.0metresseemhighinlightofrecentquestionssurroundingestimatesofthecurrentrateofmasslossfrompolaricesheets(seeFigure6).

Anestimateforthemostlikelymagnitudeofsea-levelrisein2100relativeto2000takingpolaricesheetdynamicsintoaccountisabout0.8m(Pfefferetal.2008),andanexpertassessmentofGreenlandicesheetdynamicssuggeststhatitwillcontributeabout20cmtoglobalsea-levelriseby2100(Dahl-JensenandSteffen2011).Thesearebothconsistentwithanestimateofa0.5–1.0mriseinsealevelby2100.

Dynamics of large polar ice sheets

Thelargestuncertaintyintheprojectionsofsea-levelrisediscussedaboveisthebehaviourofthelargemassesoficeonGreenlandandAntarctica.Projectionsattheupperlevelsoftherangesofsea-levelriseassumeamuchgreatercontributionfromthesepolaricesheets,and,inparticular,fromdynamicalprocessesthatdischargelargeblocksoficeintothesea.Observationsoverthepast20years,eitherbysatelliteoraircraftaltimetersthatmeasurechangesintheheightoftheicesheetsorbysatellitegravitymeasurementsthatinferchangesinmass,showacceleratingdecreasesinthemassoftheGreenlandicesheetoverthepast15years(Figure16)andinthemassoftheAntarcticicesheetoverthepastdecade.Suchobservationsappeartosupporthigherestimatesofsea-levelriseby2100.

Figure 16. Estimates of the net mass budget of the Greenland ice sheet since 1960. Anegativemassbudgetindicatesicelossandsea-levelrise.DottedboxesrepresentestimatesusedbytheIPCC(2007a).Thesolidboxesarepost-IPCCAR4assessment(R=Rignotetal.2008b;VW=VelicognaandWahr2006;L=Luthckeetal.2006;WT=Woutersetal.2008;CZ=Cazenaveetal.2009;V=Velicogna2009).

Source:TheCopenhagenDiagnosis(2009).

Rat

e of

mas

s in

crea

se (

Gt/

year

)

-300

-250

-200

-150

-100

-50

0

50

100

1960 1970 19751965 1980 1985 200019951990 20102005

0.5 mm yr 1 sea-level riseR

LWT

CZ

WT

WT

V

V

R

VW

Page 28: The Critical Decade: Full report

26 ClimateCommission

However,themeasurementsareforveryshortperiodsoftimeandsoaredifficulttoextrapolatetolongertimescales.Forexample,Figure16includesonlyonerecordofmasschangeintheGreenlandicesheetthatislongerthan20years,therecordofRignotetal.(2008b)from1958.Thatobservationalrecordshowsconsiderablevariabilityonadecadaltimescale,makingitmoredifficulttoextrapolatetheobservationsofthelast10-15yearsintothefuturewithahighdegreeofcertainty.Furthermore,arecentanalysisofthegravitymeasurementmethodology(BromwichandNicolas2010)arguesthatestimatesofthecumulativemasslossoftheGreenlandicesheetaretoolargebyafactoroftwoorso(Figure6).ThestudyofPfefferetal.(2008)ofthekinematicconstraintsonrapidicedischargefromthelargepolaricesheetssuggestsanabsolutemaximumsea-levelriseof2metresby2100,butonlyunderextremeclimaticforcing.

–gIvEn THE ImpoRTAnCE of THE LARgE poLAR ICE sHEETs foR THE RATE of sEA-LEvEL RIsE To 2100 AnD bEyonD, THEsE ongoIng unCERTAInTIEs AbouT THE bEHAvIouR of THE ICE sHEETs unDER fuRTHER gLobAL TEmpERATuRE InCREAsEs CompRIsE onE of THE mosT pREssIng sCIEnTIfIC REsEARCH CHALLEngEs THAT REquIRE uRgEnT REsoLuTIon.

High sea-level events (inundation)

Manyoftherisksduetosea-levelriseareassociatedwithinundationevents,whichdamagehumansettlementsandinfrastructureinlow-lyingcoastalareas,andcanleadtoerosionofsandybeachesandsoftcoastlines.Whileasea-levelriseof0.5m–lessthantheaveragewaistheightofanadulthuman–maynotseemlikeamatterformuchconcern,suchmodestlevelsofsea-levelrisecanleadtounexpectedlylargeincreasesinthefrequencyofextremehighsea-levelevents.Thesearedefinedasinundationeventsassociatedwithhightidesandstormsurges,amplifiedbytheslowriseinsealevel.Sucheventsareverysensitivetosmallincreasesinsealevel,andtheprobabilityoftheseeventsrisesinahighlynonlinearwaywithrisingsealevel.

Figure17showstheresultsofananalysisexploringtheimplicationsofsea-levelriseforextremesea-leveleventsaroundtheAustraliancoastline(Churchetal.2008).Asea-levelriseof0.5m,atthelowerendoftheestimatesfor2100,wasassumedintheanalysisshowninthefigure,andleadstosurprisinglylargeimpacts.ForcoastalareasaroundAustralia’slargestcities–SydneyandMelbourne–ariseof0.5mleadstoverylargeincreasesintheincidenceofextremeevents,byfactorsof1000or10,000forsomelocations.Amultiplyingfactorof100meansthatanextremeeventwithacurrentprobabilityofoccurrenceof1-in-100–theso-calledone-in-a-hundred-yearevent–wouldoccureveryyear.Amultiplicationfactorof1000impliesthattheone-in-a-hundred-yearinundationeventwouldoccuralmosteverymonth.

Chapter 2. Risks associated with a changing climate (continued)

Page 29: The Critical Decade: Full report

ScienceUpdate2011 27

Chapter 2. Risks associated with a changing climate (continued)

Figure 17. Estimated multiplying factor for the increase in the frequency of occurrence of high sea-level events caused by a sea-level rise of 0.5 metres. Highsea-leveleventsareverysensitivetosmallincreasesinsealevel.

Source:ACECRC2008.

Theobservedsea-levelriseofabout20cmfrom1880to2000shouldalreadyhaveledtoanincreaseintheincidenceofextremesea-levelevents.Suchincreaseshaveindeedbeenobservedatplaceswithverylongrecords,suchasFremantleandFortDenison,wherea3-foldincreaseininundationeventshasoccurred(Churchetal.2006).ThisisconsistentwiththemethodologyusedtoproduceFigure17.

Amoredetailedassessmentofthepotentialimpactsofsea-levelrisehasbeencarriedoutbythethenDepartmentofClimateChange(DCC2009),providingestimatesofareasofinundationforasea-levelriseof1.1m,justabovetheupperendofourprojectionrangefor2100.TheDepartmenthasrecentlyreleasedmoredetailedmapstohighlightlow-lyingcoastalareasvulnerabletoinundationfromsea-levelrise.

10000 x 1000 x 100 x

Sydney

Brisbane

Darwin

Fremantle

Adelaide

Melbourne

Hobart

2.2 Ocean acidification

Changes in the alkalinity/acidity of the ocean represent a change in a fundamental environmental condition for marine ecosystems. In particular, those marine organisms that form calcium carbonate shells are at risk from decreasing alkalinity of the ocean, which reduces the concentration of carbonate ions in seawater. Corals are probably the most well-know of these organisms, but other calcifying organisms are important for the marine carbon cycle and play fundamental roles in the dynamics of marine ecosystems.

Thissectionprovidesinformationontheprojectedmagnitudeandrateofchangeofoceanalkalinity/aciditythroughthiscentury,andonobservationsoftheimpactsofincreasingacidityonmarineecosystems.Thekeymessagesare:

– Thecontemporaryrateofincreaseinoceanacidity(decreaseinalkalinity)isverylargefromalong-timeperspective.

– Theeffectsofincreasingacidityaremostapparentinthehighlatitudeoceans,wheretheratesofdissolutionofatmosphericCO

2arethegreatest.

– Increasingacidityintropicaloceansurfacewatersisalreadyaffectingcoralgrowth;calcificationrateshavedroppedbyabout15%overthepasttwodecades.

– RisingSSTshaveincreasedthenumberofbleachingeventsobservedontheGreatBarrierReef(GBR)overthelastfewdecades.Thereisasignificantriskthatwithatemperatureriseabove2°Crelativetopre-industriallevelsandatCO2

concentrationsabove500ppm,muchoftheGBRwillbeconvertedtoanalgae-dominatedecosystem.

Page 30: The Critical Decade: Full report

28 ClimateCommission

Chapter 2. Risks associated with a changing climate (continued)

Ocean acidity in a long-time context

Therateatwhichoceanacidityisincreasingisimportant,especiallyfromanevolutionaryperspective.Figure18ashowsthechangeinoceanacidityoverthepast25millionyearsandprojectedto2100(Turleyetal.2006;2007).

Oceanacidityhasvariedconsiderablyoverthatperiod,butthelevelofaciditytodayisashighasitwas25millionyearsago,thepreviousmostacidicstateintherecord.

–moRE sTRIkIng Is THE RATE of CHAngE In ACIDITy THAT HAs ALREADy oCCuRRED fRom 1800 To 2000 AnD THAT wHICH Is pRojECTED To 2100. THIs Is An ExCEpTIonALLy RApID RATE of CHAngE, LIkELy unpRECEDEnTED In THE 25 mILLIon yEARs of THE RECoRD, AnD wouLD no DoubT pLACE sEvERE EvoLuTIonARy pREssuRE on mARInE oRgAnIsms. (fIguRE 18b)

Figure 18a. Ocean acidity (pH) over the past 25 million years and projected to 2100. ThelowerthepH,themoreacidictheoceanbecomes.Prehistoricsurface-layerpHvalueswerereconstructedusingboron-isotoperatiosofancientplanktonicforaminiferashells.FuturepHvalueswerederivedfrommodelsbasedonIPCCmeanscenarios.

Source:Turleyetal.(2006).Marine ecosystems

Theimpactsofincreasingoceanacidityarealreadyevidentinsomemarinespecies(Moyetal.2009).Manyoftheearliestimpactsareexpectedinpolarorsub-polarwaters,asCO

2ismoresolubleincoldwaterthanwarm

andsoacidificationisexpectedtoproceedmorerapidlythere.ObservationalstudiesintheSouthernOceanofacidityandcarbonateionconcentrationshowstrongseasonalminimumsinwinter;conditionsdeleteriousforthegrowthofcalcifyingplanktonspeciescouldoccurasearlyas2030inwinter(McNeilandMatear2008).Experimentsinseawaterwiththeaciditylevelexpectedin2100haveshowna30%reductionincalcificationratesforacommonpteropod(pelagicmarinesnail),animportantcomponentofmarinefoodchains(Comeauetal.2009).Evenlargerreductionsincalcificationratesofaround50%havebeenfoundinexperimentswithadeepwatercoral(Maieretal.2009).Impactsofacidificationfurtherupmarinefoodchains,includingfish,arelargelyunknownasyet(TurleyandFindlay2009).Previousoceanacidificationeventsarelikelytohavebeensignificantfactorsinmassextinctioneventsinmarineecosystems(Veron2008).

Oce

an p

H2100 AD2050 AD2000 AD1800 AD

7.4

7.6

7.8

8

8.2

8.4

8.6

-25 -15 -10-20 -5 0

Time (million years before present)

Page 31: The Critical Decade: Full report

ScienceUpdate2011 29

Figure 18b. Changes in relative aragonite saturation predicted to occur as atmospheric CO2 concentrations (ppm – upper left of panels) increase over shallow-water coral reef locations (pink dots).

Source:Hoegh-Guldbergetal.(2007),whichgivesmoreinformationonthefigure.SeealsoFigure20afortheconnectionbetweenaragonitesaturationandcoralreefstate.

0

5

4

1

2

3

Ω a

rago

nit

e

450 ppm

380 ppm

280 ppm

650 ppm

550 ppm

500 ppm

Chapter 2. Risks associated with a changing climate (continued)

Page 32: The Critical Decade: Full report

30 ClimateCommission

Coral reefs

TherisksofclimatechangeforcoralreefsareparticularlyimportantforAustralia,giventheiconicstatusandeconomicimportanceoftheGreatBarrierReef(OxfordEconomics2009).

Thereisevidencethatshowsapossibleimpactoftheincreaseinaciditythathasalreadyoccurred,basedonastudyofchangesinthecalcificationrateofthecoralPorites(De’athetal.2009).Theobservationalstudywascarriedoutusing328siteson69reefsandshowedaprecipitousdropincalcificationrate,linearextensionandcoraldensity,allindicatorsofcoralgrowth,inthelast15-20yearsofa400-yearrecord(Figure19).Thesedataaresuggestiveofahighlynonlinearresponseofcoralstooceanacidity(incombinationwithotherstressors),perhapstakingtheformofthreshold-abruptchangebehaviour(cf.Section3.5).

Figure 20a. Temperature, atmospheric CO2 concentration and carbonate ion concentrations reconstructed for the past 420,000 years. CarbonateconcentrationswerecalculatedfromVostokicecoredata.Acidityoftheoceanhasvariedby+/-0.1pHunitsoverthepast420,000years.Thethresholdsformajorchangestocoralcommunitiesareindicatedforthermalstress(+2°C)andcarbonateionconcentration(200micro-molkg−1);thelattercorrespondstoanapproximatearagonitesaturationof3.3andanatmosphericCO

2concentrationof480ppm.

RedarrowspointingtowardstheupperrightindicatethepathwaycurrentlyfollowedtowardsatmosphericCO

2

concentrationofmorethan500ppm.

Source:Hoegh-Guldbergetal.(2007),includingdetailsofthereconstructionsandthelocationofthephotosinpart(b).

Chapter 2. Risks associated with a changing climate (continued)

Dev

iati

on f

rom

tod

ay’s

te

mp

erat

ure

(°C

)

-2

-4

0

2

4

6

400 0200

Carbonate ion concentration (µmol kg-1)

300 100

200 1200400300 500 600 800

Atmospheric CO2 content (ppm)

Thermalthreshold(+°C)

Reefs not dominated by corals

Caron

onate

threshold 480 p

pm

AB

C

Non-carbonate reefcoral communitiesInterglacial

Today

Glacial

0.2pH

Figure 19. Variation of (a) calcification (grams per square centimetre per year), (b) linear extension (centimetres per year) and (c) density (grams per cubic centimetre) in Porites over time. Darkgreybandsindicate95%confidenceintervalsforcomparisonbetweenyears,andpurplebandsindicate95%confidenceintervalsforthepredictedvalueforanygivenyear.

Source:De’athetal.(2009).

Cal

cifi

cati

on

1.5

1.6

1.7

1.8

1900 20001920 1940 1960 1980

(A)

Ext

ensi

on

1.20

1.25

1.45

1.50

1900 20001920 1940 1960 1980

1.40

1.35

1.30

(B)

Den

sity

1.20

1.25

1.30

1900 20001920 1940 1960 1980

(C)

Page 33: The Critical Decade: Full report

ScienceUpdate2011 31

Chapter 2. Risks associated with a changing climate (continued)

CoralsarealsoaffectedbyextremesinSSTs(cf.Section3.4),whichcanleadtocoralbleaching.A21stcenturyriskanalysisforcoralreefsemphasisestheimportanceofbothSSTandacidity/carbonateionconcentrationfortheirfutureviability.Figure20combinesthetemperatureandacidity/carbonateionconcentrationinfluencesinatwo-dimensionalenvironmentalspacediagramthatcontraststhepast,presentandfutureenvironmentsforcoralreefs(Hoegh-Gulbergetal.2007).

Theclusterofreddotsrepresentstheenvelopeofnaturalvariabilitythatreefshaveexperiencedoverthepast420,000years.Presentconditionsofcarbonateionconcentration–butnottemperature–havepushedreefsoutsideofthisenvelope.

mosT EmIssIons AnD CLImATE sCEnARIos foR THE REsT of THIs CEnTuRy (IpCC 2007a) pREDICT THE ConvERsIon of CoRAL REEfs InTo ALgAE-DomInATED ECosysTEms (THE uppER RIgHT quADRAnT of fIguRE 20a AnD THE RIgHT-HAnD pAnEL of fIguRE 20b).

A. B. C.

375 ppm +1 C 450 – 500 ppm +2˚C > 500 ppm > +3 °C

Source:modifiedfromHoegh-Guldbergetal.(2007).

Figure 20b. Extant examples from the Great Barrier Reef as analogs for the reef states anticipated for the environmental conditions marked A, B and C in part (a) of the figure.

Page 34: The Critical Decade: Full report

32 ClimateCommission

Chapter 2. Risks associated with a changing climate (continued)

2.3 The water cycle

Australia is the driest of the six inhabited continents, and experiences a high degree of natural climatic variability – the proverbial “land of droughts and flooding rains”. Thus, the link between climate and water resources has been a dominant theme in the lives of all Australians, from the arrival of the first people about 60,000 years ago to the present. The risks of climate change for water resources, and especially the ways in which the longer term trends of human-induced climate change interact with modes of natural variability, is a hotly debated topic, both within and outside of the research community.

–ACHIEvIng A bETTER unDERsTAnDIng of THE nATuRE of THIs RIsk Is An uRgEnT REsEARCH CHALLEngE, THE REsuLTs of wHICH wILL InfoRm mAny mAnAgEmEnT AnD poLICy DECIsIons now AnD InTo THE fuTuRE.

Thissectionexploresourcurrentlevelofknowledgeabouttheclimatechange-variabilityrelationshipandtheconsequentrisksforwaterresources.Thekeymessagesare:

– – Observationssince1970showadryingtrendinmostofeasternAustraliaandinsouthwestWesternAustraliabutawettingtrendformuchofthewesternhalfofthecontinent.

– GiventhehighdegreeofnaturalvariabilityofAustralia’srainfall,attributingobservedchangestoclimatechangeisdifficult.Thereisnocleartrend,eitherinobservationsormodelprojections,forhowthemajormodeofvariability,ENSO,isrespondingtoclimatechange.EvidencepointstoapossibleclimatechangelinktoobservedchangesinthebehaviouroftheSouthernAnnularMode(SAM)andtheIndianOceanDipole(IOD).

– ImprovementsinunderstandingoftheclimaticprocessesthatinfluencerainfallsuggestaconnectiontoclimatechangeintheobserveddryingtrendinsoutheastAustralia,especiallyinspring.InsouthwestWesternAustralia,climatechangeislikelytohavemadeasignificantcontributiontotheobservedreductioninrainfall.

– Theconsensusonprojectedchangesinrainfallfortheendofthiscenturyis(i)highforsouthwestWesternAustralia,wherealmostallmodelsprojectcontinuingdryconditions;(ii)moderateforsoutheastandeasternAustralia,whereamajorityofmodelsprojectareduction;and(iii)lowacrossnorthernAustralia.Thereisahighdegreeofuncertaintyintheprojectionsin(ii)and(iii),however.

– Rainfallisthemaindriverofrunoff,whichisthedirectlinktowateravailability.HydrologicalmodellingindicatesthatwateravailabilitywilllikelydeclineinsouthwestWesternAustralia,andinsoutheastAustralia,withlessconfidenceinprojectionsofthelatter.Thereisconsiderableuncertaintyintheprojectionsofamountsandseasonalityofchangesinrunoff.

Page 35: The Critical Decade: Full report

ScienceUpdate2011 33

Chapter 2. Risks associated with a changing climate (continued)

Observations of rainfall change

AlthoughthecontinentofAustraliahasbecomeslightlywetterintermsoftotalannualrainfalloverthepastcentury,apronouncedpatternhasdevelopedsince1970,withdryinginmuchofeasternAustraliaandinthesouthwestcornerofWesternAustraliaandincreasingrainfallinmuchofthewest(Figure21).Thedevelopmentofthispatternhascoincidedwiththesharpincreaseinglobalaveragetemperature,raisingthequestionofpossiblelinkswithclimatechange.However,Australianaturallyhasahighdegreeofvariabilityinrainfall,withlongperiodsofintensedroughtspunctuatedbyheavyrainfallandflooding,soitisdifficultfromobservationsalonetounequivocallyidentifyanythingthatisdistinctlyunusualaboutthepost-1950pattern(apart,perhaps,fromthedryingtrendinsouthwestWesternAustralia,seebelow).Whiletheinstrumentalrecordgoesbacklittlemorethanacentury,notlongenoughtoclearlydiscernmulti-decadalpatternsofvariabilitythatarerepeatedoncenturytimescales,palaeostudiescouldoffersomeinsightsintotheseverityoftherecentdroughtinalongertimeperspective.Forexample,arecentstudy(GallantandGergis2011)statesthattheverylowstreamflowintheRiverMurrayforthe1998-2008periodisveryrare–abouta1-in-1500yearevent.

Figure 21. Trend in annual total rainfall (mm/10 years) for (a) 1900 – 2010; and (b) 1970 – 2010.

Source:BureauofMeteorology.

Page 36: The Critical Decade: Full report

34 ClimateCommission

Chapter 2. Risks associated with a changing climate (continued)

The climate change-variability interaction

RainfallpatternsacrossAustraliaareinfluencedincomplexwaysbyseveralmodesofnaturalvariability,themostimportantofwhichareENSO(ElNiño–SouthernOscillation),SAM(SouthernAnnularMode)andIOD(IndianOceanDipole).

Thesemodesareamanifestationofchangesinoceanicandatmosphericcirculationand,inparticular,theircoupling.

Therefore,theirbehaviourmaychangeasoceanicandatmosphericcirculationchangeinresponsetothechangingenergybalanceattheEarth’ssurface.However,forENSOthereisnoclearpatternofchangeinbehaviourthatcanbeobservedintheobservationalrecordoverthepastseveraldecadesandcanbelinkedclearlytoclimatechange,noristhereastrongconsensusinclimatemodelprojectionsofthefuturebehaviourofthismodeofvariability(Collinsetal.2010)

FortheIOD,thenumberof“positive”events,whichinduceareductioninrainfalloversouthernAustraliainwinterandspring,hasbeenincreasingsince1950,reachingarecordhighfrequencyoverthepastdecade(Abrametal.2008;Iharaetal.2008;Caietal.2009a).Bycontrast,thenumberofnegativeIODeventshasbeendecreasing.ThemajorityofclimatemodelsassessedbytheIPCCintheir20thcenturysimulationsproduceanupwardtrendinthefrequencyofpositiveIODevents(Caietal.2009b).Theprojectedpatternofthemeanocean-atmospherecirculationchangeintheIndianOceaninthefutureissimilartothatofapositiveIODphase,implyinganincreaseinpositiveIODfrequencyand/orintensityandthusareductioninrainfalloversouthernAustraliainwinterandspring(Caietal.2011a).

ThesituationisevenclearerfortheSAM.

–THERE Is gooD EvIDEnCE THAT A souTHwARD sHIfT of THE sAm (souTHERn AnnuLAR moDE), wHICH bRIngs RAIn-bEARIng fRonTs In AuTumn AnD wInTER To souTHwEsT wEsTERn AusTRALIA, Is An ImpoRTAnT fACToR In THE obsERvED DRop In RAInfALL THERE ovER THE pAsT sEvERAL DECADEs (TImbAL ET AL. 2010; nICHoLLs 2009).

–CaiandCowan(2006)estimatethatabout50%oftherainfallreductionisattributabletoclimatechange.Thisexplanationisconsistentwithourunderstandingofhowatmosphericcirculationischanginginresponsetoglobalwarming,andisconsistentwithmodelsimulationsofpresentclimateandoffuturechangesintheSAM(FrederiksenandFrederiksen2007;Yin2005;Arblasteretal.2011).

Furthermore,thedryingtrendinthesouthwesthascontinuedinto2011(Figure22),consistentwiththedominantroleoftheSAMthere,incontrasttothemuchwetterperiodintheeast,wheretheothermodesofvariabilityaremoreimportant.

Understanding hydrometeorological processes

Giventheshortobservationalrecord,theimportanceofnaturalvariabilityforAustralia’srainfall,andthelackofconsensusinclimatemodelsimulationsatregionalscales,aprocess-levelunderstandingofthefactorsthatinfluenceAustralianrainfallpatternsoffersonewaytocutthroughthecomplexityanduncertaintyandexplorepossiblelinksbetweenobservedchangesandclimatechange.ThelinkbetweentheSAMandthedecreaseinrainfallinsouthwestWesternAustralia,exploredindepthbytheIndianOceanClimateInitiative(Caietal.2003;CaiandCowan2006;Hendonetal.2007),isanexampleofthesuccessofthisapproach.

Page 37: The Critical Decade: Full report

ScienceUpdate2011 35

Chapter 2. Risks associated with a changing climate (continued)

Figure 22. Trend in total annual stream flow into Perth dams 1911-2010.

Source:WesternAustralianWaterCorporation.

Total 1911–1974Average 338 GLTotal 1975–2000Average 117 GLTotal 2001–2005Average 92.4 GLTotal 2006–2010Average 57.7 GL

100

200

300

400

500

600

700

900

800

1911

1913

1915

1917

1919

1921

1923

1925

1927

1929

1931

1933

1935

1937

1939

1941

1943

1945

1947

1949

1951

1953

1955

1957

1959

1961

1963

1965

1967

1969

1971

1973

1975

1977

1979

1981

1983

1985

1987

1989

1991

1993

1995

1997

1999

2001

2003

2005

2007

2009

Tota

l An

nu

al ‘

Infl

ow t

o Pe

rth

Dam

s’ (

GL

)

ProgresshasalsobeenmadeinunderstandingrecentchangestorainfallinsoutheastAustralia,withtheSEACI(SouthEasternAustralianClimateInitiative,www.seaci.org)playingamajorroleinthisresearch.Severalaspectsoftheobserveddecreaseinrainfall,especiallyinVictoriaandsouthernSouthAustralia,arenowbetterunderstood.First,theproximatecauseoftherainfalldeclineisanincreaseinthesurfaceatmosphericpressureovermuchofthecontinent(Nicholls2009),althoughthecauseoftherisingpressureisnotclear.Inaddition,thesubtropicalridge,aneast-westzoneofhighatmosphericpressurethatoftenliesoverthesouthernpartofthecontinent,hasstrengthenedconsiderablysince1970(Timbaletal.2010;Figure23a).Furthermore,thisstrengtheningofthepressuresystemcorrelatesverywellwiththeriseinglobalmeantemperature(Timbaletal.2010;Figure23b),andisconsistentwithexpectationsfromthebasicphysicsoftheclimatesystem.Inanotherefforttounderstandchangesattheprocesslevel,researchonchangingsouthernhemispherecirculationpatterns,linkedtoanthropogenicincreaseinCO

2concentration,hasshown

aconnectiontoareductioninwinterstormformationandaconsequentreductioninwinterrainfallinsouthernAustralia(Frederiksenetal.2011).

Additionalresearchhasshownthat,whilerainfallvariabilityonyear-to-yeartimescalesisstronglyassociatedwithchangesintropicalSSTs,thisrelationshipexplainslittleoftheobservedrainfalldeclineinthesoutheast(SEACI;Watterson2010).Furthermore,thereisnoevidenceofastronglandcover-rainfallsignaloversoutheastAustralia(NarismaandPitman2003),butthemethodologiesusedtoexplorethisrelationshipareweakandrequirefurtherdevelopment.

StratifyingtheobservedsoutheastAustraliarainfallchangesintoseasons,thereductioninautumnislargest(CaiandCowan2008),followedbythatinspring.Outputsof20thcenturysimulationsby24climatemodelsshowthatonlyoneortwowereabletoreproducetheobservedautumnrainfallreduction.Inthisseason,eventhechangesinthesub-tropicalridgeareunabletoaccountfortherainfallreduction(Caietal.2011b).Themajorityofthesemodelsreproduceareductioninspringrain,asaconsequenceofanupwardtrendinthefrequencyofpositiveIndianOceanDipoleevents(Caietal.2009b).

Page 38: The Critical Decade: Full report

36 ClimateCommission

Chapter 2. Risks associated with a changing climate (continued)

Figure 23a. Relationship between the May-June-July (MJJ) rainfall in the southwest part of eastern Australia and the sub-tropical ridge intensity during the same three months. Theslopeofthelinearrelationshipandtheamountofexplainedvariance(R2)isshownintheupperrightcorner.

Figure 23b. Long-term (21-year running mean) evolution of the sub-tropical ridge MJJ mean intensity (anomalies in hPa shown on the left-hand Y-axis) compared with the global annual surface temperature.

Source:Timbaletal.(2010),includingfurtherdetailsonmethodology.

Projecting changes in water availability

Althoughtherehasbeenprogressinunravellingsomeofthelinkagesbetweenclimatechangeandobservedshiftsinrainfallpatterns,ourcapabilitytoprojectfuturechangestorainfallpatterns,apartfromthedryingtrendinsouthwestWesternAustralia,remainsuncertain.Doesthe2010-2011extremelywetperiodacrosseasternAustraliarepresentabriefinterruptioninamulti-decadaldryingtrend,orisitashifttoamulti-decadalwetregime,asoneanalysisemphasisingthePacificDecadalOscillation(PDO)asserts(Caietal.2010)?

Modelprojectionsoffuturerainfallchangedonotaddmuchclaritytothesituation.BasedonthemodelsassessedbytheIPCC(2007a),formuchofAustraliathereisnostrongconsensusacrossmodelsonthedirectionofchange(increaseordecreaseinrainfall),oronthemagnitudeorseasonality.ArecentassessmentofclimatesciencebytheAustralianAcademyofScience(2010)notedthatmanyaspectsofclimatechangeremaindifficulttoforesee,and,inparticular,statedthat“howclimatechangewillaffectindividualregionsisveryhardtoprojectindetail,particularlyfuturechangesinrainfallpatterns,andsuchprojectionsarehighlyuncertain.”

Improvingprojectionsoffuturerainfallpatternsisimportant,asrainfallisthemaindriverofrunoff,whichisthelinktoriverflowsandwateravailability.Achangeinannualrainfallistypicallyamplifiedbytwoorthreetimesinthecorrespondingchangeinaverageannualrunoff(Chiew2006).Downscaledprojectionsofrainfallchangefromclimatemodelscanbetranslatedintochangesinwateravailabilitythroughuseofhydrologicalmodellingbasedonpointandcatchmentscaleestimatesofrainfallandpotentialevaporation(Chiewetal.2009).Theresultsofthehydrologicalmodellingreflecttheuncertaintyinthelargerscalerainfallprojectionsbytheclimatemodels,butindicatethatriverflowsinsouthwestWesternAustraliaandinsoutheastAustraliaarelikelytodeclineinthefuture,withhigherconfidenceintheprojectionsfortheformer.Thehydrologicalmodelscanalsoprojectchangesinotheraspectsofwateravailabilitythatareimportantforriskassessment,suchasvariabilityinreservoirinflowsandfloodsandlowflowsthataffectecosystemsandtheenvironment.

Pre

ssu

re (

in h

Pa)

-0.6

-0.8

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

-0.2

-0.3

-0.1

0.0

0.1

0.2

0.3

0.4

1017 102510211019 1023STR (in hPa)

Deg

ree

(in

Cel

siu

s)

STR Intensity in MJJGlobal Annual Temperature

y = -20.6x

R2 = 0.44

SWE

A R

ain

9in

(m

m)

100

50

150

200

250

300

350

400

1017 102510211019 1023STR (in hPa)

Page 39: The Critical Decade: Full report

ScienceUpdate2011 37

Chapter 2. Risks associated with a changing climate (continued)

Figure 24. Time series of Sea Surface Temperature (SST) for the month of December from 1900 to 2010 for (a) the Coral Sea and the (b) northern tropical Australian oceanic region.

Source:BureauofMeteorology.

Sea

Surf

ace

Tem

per

atu

re A

nom

oly

(ºC

)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1900 1920 1940 19801960 2000

a) December Sea Surface Temperature Anomaly – Coral Sea Tropics

Sea

Surf

ace

Tem

per

atu

re A

nom

oly

(ºC

)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1900 1920 1940 19801960 2000

b) December Sea Surface Temperature Anomaly – Northern Tropics

Page 40: The Critical Decade: Full report

38 ClimateCommission

ApossiblelinkbetweenclimatechangeandwateravailabilityisviatheriseinSST(Figure24).Basedonthestrongroleofperiodicchangesinocean-atmospherecoupling,suchasENSO,forAustralia’srainfall,thereisaplausibleconnectionbetweentherisingtrendinSSTandthebehaviourofnaturalmodesofvariability.Asnotedinsection3.5(Figure32),observationsintheeasternPacificOceanhaveshownalinkbetweenincreasingSSTs,watervapourcontentintheatmosphere,andheavyprecipitationevents.TheveryhightemperaturesintheCoralSeaandtheNorthernTropicsinlate2010(Figure24)mayhavecontributedtotheverystrongLaNiñaeventinlate2010andearly2011andthustotherecordhighrainfallacrosseasternAustraliainDecember2010(BoM2011a).However,theextentofsuchaninfluence,andeventhedirectionoftheinfluence(towardsstrongerorweakerLaNiñaevents)isunknownatthistime.NocleartrendhasbeenseeninindicesoftheENSO,orineasternAustraliarainfalloverthepastcentury,suggestingthatanylinkbetweenclimatechange,ENSO,andAustralianrainfallissubtle,atleastuptothepresenttime.

ThebottomlineisthatsignificantuncertaintiesstillsurroundtherelationshipbetweenclimatechangeandshiftsinAustralianrainfallpatterns,bothinobservationsoverthepastseveraldecadesandinprojectionsforthefuture.

ItislikelythatthedryingtrendinsouthwestWesternAustraliaislinkedtoclimatechangeandwillcontinue.Formuchoftherestofthecountry,thereisnostrongconsensusoneventhedirectionofchange–moreorless–ofrainfall.Climatechangecould,infact,leadtomoreextremesingeneral–bothindroughtandinrainfall.

–ApART fRom THEsE InsIgHTs, wHAT wE CAn sAy wITH CERTAInTy Is THAT RAInfALL pATTERns wILL CHAngE As A REsuLT of CLImATE CHAngE, AnD ofTEn In unpREDICTAbLE wAys, CREATIng LARgE RIsks foR wATER AvAILAbILITy.

Thisdauntinguncertaintynotonlychallengesattemptsatadaptation,butalsoenhances,notdiminishes,theimperativeforrapidandvigorousglobalmitigationofgreenhousegasemissions.

2.4 Extreme events

Many of the impacts of climate change are due to extreme weather events, not changes in average values of climatic parameters. The most important of these are high temperature-related events, such as heatwaves and bushfires; heavy precipitation events; and storms, such as tropical cyclones and hailstorms. The connection between long-term, human-driven climate change and the nature of extreme events is both complex and controversial, leading to intense debate in the scientific community and heated discussion in the public and political arenas.

Thissectionexploresourcurrentlevelofunderstandingabouttherelationshipbetweenclimatechangeandextremeevents,withafocusontypesofextremeeventsthathavealreadyoccurredinAustraliaandarelikelytooccurinfuture.Thekeymessagesare:

Chapter 2. Risks associated with a changing climate (continued)

– Modestchangesinaveragevaluesofclimaticparameters–forexample,temperatureandrainfall–canleadtodisproportionatelylargechangesinthefrequencyandintensityofextremeevents.

– OnaglobalscaleandacrossAustraliaitisverylikelythatsinceabout1950therehasbeenadecreaseinthenumberoflowtemperatureextremesandanincreaseinthenumberofhightemperatureextremes.InAustraliahightemperatureextremeshaveincreasedsignificantlyoverthepastdecade,whilethenumberoflowtemperatureextremeshasdecreased.

– TheseasonalityandintensityoflargebushfiresinsoutheastAustraliaislikelychanging,withclimatechangeapossiblecontributingfactor.Examplesincludethe2003Canberrafiresandthe2009Victoriafires.

Page 41: The Critical Decade: Full report

ScienceUpdate2011 39

Average-extreme relationship

Temperatureincreasesof1or2°C,orequivalentchangesinotherclimaticparameters,mayseemmodest,buttheycanleadtodisproportionatelylargechangesinthefrequencyandintensityofextremeweatherevents.

Figure25showstherelationshipbetweenachangeinaveragetemperatureandtheincidenceandseverityofextremeevents(IPCC2007a).Amodestshifttohigheraveragetemperaturesleadstoadisproportionatelylargeincreaseinthenumberofextremehightemperatureevents,theareaunderthecurvetotherightofthedashedverticalline.Inaddition,themostextremeeventsbecomemuchmoreintense–thelong“tail”attherightofthedistribution.Correspondingly,extremecoldeventsbecomefewerandlessextreme,asshownintheleft-sideofthefigure.Thissimplepictureassumesthattherewillbenochangeinthevariabilityoftemperaturedistribution.Ifvariabilitywerealsoincreasing,thenthiswouldleadtoamuchlargerimpactinthetails.

AnotherwaytovisualisetherelationshipbetweenaveragesandextremesisshowninFigure26,wheretheleft-handsideofthefigureshowsvariabilityaroundalong-termaveragetemperaturethatdoesnotchange.Thehorizontallinesaboveandbelowthelong-termaveragetemperatureshowthelimitsaboveandbelowwhichextremeeventsaredefinedtooccur.Theright-handsideofthefigureshowsarisingaveragetemperaturewiththesameshorter-termvariabilityimposeduponit.Thefigureagainshowsthatthenumberofextremehightemperatureeventsincreasesandtheintensityofthemostextremeoftheseeventsalsoincreases.

Figure 25. Relationship between means and extremes, showing the connection between a shifting mean and the proportion of extreme events, when extreme events are defined as some fixed threshold related to a significant impact (e.g., heatwave leading to excess deaths).

Source:IPCC(2007a).

Figure 26. The increase in frequency and intensity of extreme events when an underlying, long-term trend is imposed on an existing pattern of natural variability.

Source:AdaptedfromJonesandMearns(2004).

– Thereislittleconfidenceinobservedchangesintropicalcycloneactivityinthepastbecauseofproblemswiththelackofhomogeneityofobservationsovertime.Theglobalfrequencyoftropicalcyclonesisprojectedtoeitherstayaboutthesameorevendecrease.Howeveramodestincreaseinintensityofthemostintensesystems,andinassociatedheavyrainfall,isprojectedastheclimatewarms.

– Onaglobalscale,severalanalysespointtoanincreaseinheavyprecipitationeventsinmanypartsoftheworld,includingtropicalAustralia,consistentwithphysicaltheoryandwithprojectionsofmoreintenserainfalleventsastheclimatewarms.

Chapter 2. Risks associated with a changing climate (continued)

Less cold leather

Previous Climate New Climate

Increase in mean

MorehotWeather

MoreRecord hotWeather

Pro

bab

ilit

y of

occ

urr

ence

HotCold Average

Changing Climate

Page 42: The Critical Decade: Full report

40 ClimateCommission

Chapter 2. Risks associated with a changing climate (continued)

Becauseextremeeventsare,bydefinition,relativelyrare,longtimeseriesandlargespatialareasarerequiredtoobtainenoughobservationstodeterminestatisticallywhetherachangeintheirfrequencyandintensityisactuallyoccurring.Inmostpartsoftheworld,theinstrumentalrecordisatmostacenturyorsolong,anddensespatialcoverageofmanyareashasonlybeenachievedforafewdecades,sodeterminingfromobservations,withahighdegreeofconfidence,whetheranychangeinthefrequencyandintensityofextremeeventsisoccurringisverydifficult.

Temperature extremes

AsdescribedinSection2.1,theEarthasawhole,includingtheAustraliancontinent,hasbeenwarmingstronglysincethemiddleofthe20thcentury.Thus,itmightbepossiblefromobservationstodiscernthebeginningsofshiftsinextremesthatareconsistentwithwhatisexpected.ThisisindeedthecaseforAustraliantemperatureextremes(Alexanderetal.2007).

– THE numbER of HIgH TEmpERATuRE ExTREmEs (E.g. HEATwAvEs) In AusTRALIA HAs InCREAsED sIgnIfICAnTLy ovER THE pAsT DECADE, wHILE THE numbER of Low TEmpERATuRE ExTREmEs HAs DECREAsED (fIguRE 27).

Anincreaseinwarmnightshasalsooccurredacrossmostofthecontinentandthisisconsistentwithanthropogenicclimatechange(AlexanderandArblaster2009;Figure27).ChangesinMelbournetemperaturesprovideagoodexampleoftheshiftsinthefrequencyandintensityofextremesdepictedschematicallyinFigure25.Thelong-termaverageinthenumberofdaysperyear35°Coraboveis10(BoM2011c).Duringthedecade2000-2009,thenumberofsuchdaysperyearroseto13(BoM2011c).Furthermore,theincreasedintensityofextremeevents–thelongtailtotherightinFigure25–isclearlyevidentinMelbournewiththerecordhightemperatureof46.4°CinFebruary2009,andthethreeconsecutivedaysof43°CoraboveinlateJanuary.

Sea surface temperature

Coral-dominatedecosystemsaresensitivetosmallrisesinthetemperatureofthewaterinwhichtheyreside.Thissensitivityresultsfromthebreakdownofasymbiosisbetweencoralsandtinyorganismscalleddinoflagellates,whicharephotosyntheticallyactiveandprovidecoralswithorganiccarbon.Whentheseatemperaturerises1-2°Cabovenormalforasixtoeightweekperiod,thissymbiosisbreaksdown,thedinoflagellatesareexpelled,andthecoralsare“bleached”.Coralscanrecoverfromableachingevent,butsustainedorrepeatedbleachingcanleadtostarvation,diseaseanddeath(Hoegh-Guldberg1999).

Risingseasurfacetemperature(Figure24)hasincreasedthenumberofbleachingeventsthathavebeenobservedontheGBRoverthelastfewdecades,consistentwithglobaltrendsshowingincreasingincidenceofbleachingeventssince1979(Hoegh-Guldberg1999;Wilkinson2008).TheGBRhasfaredbetterthanmanyreefsaroundtheworld,althoughpartsofthereefhaveexperiencedbleachingeventsin1980,1982,1983,1987,1992,1994,1998,2002and2006–withthe1998and2002eventstheworstonrecordfortheGBR(Berklemansetal.2004).Intheseeventsover50%oftheGBRbleachedintheexceptionallywarmconditions,withanestimatedlossof5-10%ofcoralsineachevent(GBRMPA2009).

Bushfire intensity and frequency

Extremeeventsthatarecloselyrelatedtotemperaturearealsoshowingchangesconsistentwithwhatisexpected.TheintensityandseasonalityoflargebushfiresinsoutheastAustraliaappearstobechanging,withclimatechangeapossiblecontributingfactor(Caietal.2009c).Bushfireshavelongbeenafeatureofecosystemsinthesoutheast;the1939firesinVictoriaareanoften-quotedexampleoflargeandintensivefires.However,inthefirstdecadeofthe21stcentury,twoverylargeandextremelyintensefiresoccurred–the2003Canberrafires,whichdestroyed500housesinsuburbanCanberraandkilledthreepeople,andthe2009Victoriafires,whichkilled173peopleinruralareasofthestate.

Page 43: The Critical Decade: Full report

ScienceUpdate2011 41

Chapter 2. Risks associated with a changing climate (continued)

Figure 27. Number of (a) record hot day maximums and (b) record cold day maximums at Australian climate reference stations.

Source:BureauofMeteorology.

Nu

mb

er in

eac

h y

ear

10

20

30

40

50

60

1960 1970 1980 20001990 2010

a) Number of record hot day maximums at Australian climate reference stations

Average number of record hot days per annum for each decade

Nu

mb

er in

eac

h y

ear

10

20

30

40

50

60

1960 1970 1980 20001990 2010

b) Number of record cold day maximums at Australian climate reference stations

Average number of record cold days per annum for each decade

Page 44: The Critical Decade: Full report

42 ClimateCommission

Climatechangeaffectsfireregimesinatleastthreeways(Williamsetal.2009;Lucasetal.2007).First,changingprecipitationpatterns,highertemperaturesandelevatedatmosphericCO

2concentrationsaffectthebiomassand

compositionofvegetation,thefuelloadforfires.Second,highertemperaturestendtodrythefuelload,makingitmoresusceptibletoburning;droughtconditionscansignificantlyexacerbatetheseconditions.Third,climatechangeincreasestheprobabilityofextremefireweatherdays–conditionswithextremetemperature,lowhumidityandhighwinds.

TheseverityofbushfiresinsoutheastAustraliaisstronglypre-conditionedbylowrainfallandhightemperatureinducedbythepositivephaseoftheIndianOceanDipole.Since1950,themajorityoflargebushfiresinsoutheastAustralia,includingtheAshWednesday,Canberra,andBlackSaturdaybushfires,occurredfollowingapositiveIODeventintheprecedingspringseason,whichledtowarmanddryconditions(Caietal.2009c).Since2002,theIndianOceanhasexperiencedfivepositiveIODevents(2002,2004,2006,2007,2008),withclimatechangeacontributortotheincreasingfrequencyoftheseevents(Caietal.2009b).

Tropical cyclones

Therelationshipbetweentropicalcyclonebehaviourandclimatechangeisaparticularlycomplexone,withahighdegreeofuncertaintyinourcurrentunderstanding.Observationalrecordsshownochangesbeyondnaturalvariabilityineitherthefrequencyofcyclonesortheirstormtracks.Withtheadventofsatellitemeasuredintensitiesoftropicalcyclonesin1980,somestudieshavefoundapossiblelinkbetweencycloneintensityandhigherseasurfacetemperatures(e.g.Elsneretal.2008).However,someofthesatellitedataisquestionable(e.g.overtheIndianOcean),andtimeperiodistooshorttoseparateoutdecadalpatternsofnaturalvariabilityfromtheunderlyingtrendofrisingSST(Knutsonetal.2010).Inshort,giventheshortobservationalperiodandthechangingobservationalcapabilitythroughtime,itisnotyetpossibletoattributeanyaspectofchangesincyclonebehaviour(frequency,intensity,rainfall,etc.)toclimatechange;allobservationscurrentlyremainwithintheenvelopeofnaturalvariability(Knutsonetal.2010).

Heavy precipitation events

–THE sEvERE fLooDIng In quEEnsLAnD AnD vICToRIA In EARLy 2011 HAs RAIsED THE quEsTIon of A possIbLE LInk bETwEEn THE fLooDs AnD HumAn-InDuCED CLImATE CHAngE.

–Theseverityofthefloodsisrelatedtoseveralfactors,includingtheintensityoftherainfallevent(s)thattriggeredthefloods,theconditionofthecatchmentsupstreamofandwithinthefloodingarea,theeffectivenessofstructuressuchasdamsdesignedtoameliorateflooding,andthevulnerabilityofpeopleandinfrastructuretoflooding.Herewedealonlywiththepossibleconnectionbetweenclimatechangeandthefrequencyorseverityofextremerainfallevents.

ThefloodsacrosseasternAustraliain2010andearly2011weretheconsequenceofaverystrongLaNiñaevent,andnottheresultofclimatechange.Thatis,theunderlyingcauseofthefloodsisanaturalpartofclimatevariability,whichispartofthereasonwhyAustraliahasalwaysbeena“landofdroughtsandfloodingrains”.Theextent,ifany,oftheinfluenceofthewarmingplanetontheintensityoftheseheavyrainsandfloodsissimplyunknownatthistime.ThereisnoevidencethatthestrengthofLaNiñaeventsisincreasingduetoclimatechange.

Thephysicalconnectionbetweenawarmingclimateandmorerainfallisrelativelystraightforward.Highertemperatures,especiallyofthesurfaceocean,leadtomoreevaporation;thisleadstohigherwatervapourcontentinawarmeratmosphere(whichcanholdmorewatervapour);andthisinturninducesmoreprecipitation.

Chapter 2. Risks associated with a changing climate (continued)

Page 45: The Critical Decade: Full report

ScienceUpdate2011 43

Chapter 2. Risks associated with a changing climate (continued)

Figure 28. (a) Linear trends in precipitable water (total column water vapour) in % per decade; (b) monthly time series of anomalies relative to the 1988 to 2004 period in % over the global ocean plus linear trend (broken purple line); and (c) monthly time series of global mean (80 °N to 80 °S) anomalies of T2-T12 (an atmospheric radiative signature of upper-trophospheric moistening) relative to 1982 to 2004.

Source:IPCC(2007a),updatedfromTrenberthetal.(2005)andSodenetal.(2005).

c) Global mean T2-T12 (˚C)

a) Column Water Vapour, Ocean only: Trend, 1988-2004

b) Global ocean mean (%)

% per decade

1.2% per decade

0.17% per decade

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

2

0

-2

0.3

0.6

0

-0.3

-0.6

1984 20041988 1992 1996 2000

1989 20041992 1995 1998 2001

Page 46: The Critical Decade: Full report

44 ClimateCommission

Figure 29. (a) Observed trends (% per decade) for 1951-2003 in the contribution to total annual precipitation from very wet days (95th percentile). Trendswereonlycalculatedforgridcellswhereboththetotalandthe95thpercentilehadatleast40yearsofdataduringthisperiodandhaddatauntilatleast1999.(b) Anomalies (%) of the global annual time series (relative to 1961-1990) defined as the percentage change of contributions of very wet days from the base period average (22.5%). Thesmoothredcurveshowsdecadalvariations.

Source:IPCC(2007a),basedonAlexanderetal.(2006).

4

2

0

-2

-4

a) Trend % per decade 1951 - 2003 contribution from very wet days

b) Global Annual Anomalies

% per decade

1950 1960 1970 1980 1990 2000

3

2

1

0

-1

-2

Chapter 2. Risks associated with a changing climate (continued)

Page 47: The Critical Decade: Full report

ScienceUpdate2011 45

TheIPCCassessment(2007a)ofobservationsonaglobalscaleshowsanincreaseinatmosphericwatervapourfrom1988to2004(Figure28)aswellasincreasesinprecipitationinmanypartsoftheworld,withasubstantialincreaseinheavyprecipitationevents(Figure29).Arecentstudy(Minetal.2011)comparingobservedandmodel-simulatedpatternsofextremeprecipitationeventsfoundthatovertheNorthernHemispherelandareawithsufficientdatacoverage(abouttwo-thirdsofthetotalarea),human-drivenincreasesingreenhousegasconcentrationshavecontributedtotheobservedintensificationofheavyprecipitationevents.However,thereisnoconsistentevidenceofanobservedincreaseinheavyprecipitationeventsovermostpartsofAustraliaatthistime.

Atthecontinentalscalea100-yearrecordfromtheUnitedStatesshowsasharpincreaseintheareaoftheU.S.experiencingveryheavydailyprecipitationevents(Gleasonetal.2008;Figure30).ArecentanalysisoftemperatureandrainfallextremesinAustraliausingacombinedclimateextremesindexshows,overthewholecontinentandforallseasons,anincreaseintheextentofhotandwetextremesandadecreaseintheextentofcoldanddryextremesannuallyfrom1911to2008atarateofbetween1%and2%perdecade(GallantandKaroly2010).Thesetrendsareprimarilydrivenbychangesintropicalregionsduringsummerandspring.Whilesuchcontinental-scaleanalysesinboththeU.S.andAustraliashowtrendsconsistentwithawarmingplanet,itisdifficulttoattributethemunequivocallytoclimatechangebecauseoftheconsiderablenaturalvariabilityinrainfallpatterns.

Determiningalinkbetweenclimatechangeandextremeeventsbecomesevenmoredifficultforsingleextremeevents,suchastheheavyrainfalleventthattriggeredthefloodsinsoutheastQueenslandinJanuary2011.ThisisespeciallydifficultforeasternAustraliaingeneral,wheremodesofnaturalvariability,suchasENSOandtheIndianOceanDipole(IOD),playaveryimportantroleininfluencingrainfallpatterns.

Duringthesecondhalfof2010astrongLaNiñaeventdevelopedacrossthePacific,withtheSOI(SouthernOscillationIndex)-anindicatorforthestateoftheENSOsystem-showingrecordpositivevaluesforOctoberandDecember2010(BoM2011b).LaNiñaeventsnormallybringheavyrainfalltoeasternAustralia.InthepresentcasethestrongLaNiñaeventwasaccompaniedbyapositivephaseoftheIOD,whichisassociatedwithunusuallywarmoceanwatersaroundIndonesia.ThecombinationofaLaNiñaeventandapositiveIODisrelativelyrare,buttheyreinforceeachothertobringwetter-than-usualconditionsacrossmuchofAustralia.Thus,thesetwomodesofnaturalvariabilityalonecouldhavegeneratedtheheavyprecipitationeventsthatoccurredineasternAustraliainDecember2010andJanuary2011.

However,long-termhuman-inducedclimatechangemayalsobeafactor.

–sEA suRfACE TEmpERATuREs (ssT) HAvE wARmED nEARLy EvERywHERE ovER THE pAsT CEnTuRy, InCLuDIng ARounD AusTRALIA (fIguRE 31).

–Thisadditionalwarmthintheupperocean–SSTsinthenorthernAustralianregionarecurrentlyatornearrecordlevelsandaremuchwarmerforthisLaNiñaeventthanforpreviousstrongLaNiñaevents(Figure24)–maypossiblyhaveenhancedprecipitationandledtoanevenmoreintenseprecipitationeventthanwouldotherwisehaveoccurred,althoughsuchenhancementhasyettobedemonstrated.

Chapter 2. Risks associated with a changing climate (continued)

Page 48: The Critical Decade: Full report

46 ClimateCommission

Figure 30. Time series of the annual values of the percentage area of the United States with a much greater than normal proportion of precipitation originating from very heavy (equivalent to the highest tenth percentile) 1-day precipitation amounts.

Source:Gleasonetal.(2008),updatedbyNOAAatwww.ncdc.noaa.gov/oa/climate/research/cei/cei.html

Figure 31. Times series of SST for the month of December from 1900 to 2010 for the oceanic region around Australia.

Source:BureauofMeteorology.

Chapter 2. Risks associated with a changing climate (continued)

Actual PercentAverage Percent5-Year Moving Average

1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

2

4

6

8

10

12

14

22

16

18

20

Perc

ent

(%)

Sea

Surf

ace

Tem

per

atu

re A

nom

oly

(ºC

)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1900 1920 1940 19801960 2000

December Sea Surface Temperature Anomaly - Australian Region

Page 49: The Critical Decade: Full report

ScienceUpdate2011 47

Chapter 2. Risks associated with a changing climate (continued)

Figure 32. Time series of (a) Niño-3 ENSO index (SST anomalies for 90° to 150 °W, 5 °S – 5 °N region, deseasonalised tropical ocean (30 °S to 30 °N) mean anomalies of SST, and column-integrated water vapour (CWV); and (b) precipitation (P).

Source:AllanandSoden(2008).

ThereisobservationalevidencethatshowsalinkbetweenSSTandrainfallextremes(Figure32).Thetoppanelofthefigureshowsa28-yearrecordofanENSOindex,theseasurfacetemperatureandthecolumn-integratedwatervapourinthetropicalatmosphere.Thethreearecloselyrelated,withENSOdominatingtheinterannualvariability.Thebottompanelshowstwoobservationsofprecipitation,againshowingtheprominentENSOpattern,andalsoshowingthestrongcorrelationbetweenheavyrainfalleventsandperiodsofhighSSTs.However,despiteasubstantialwarmingoftheoceanaroundnorthernAustralia(Figure24),thereisnoevidenceyetofatrendtowardsincreasedprecipitationineasternAustraliaoverthepast50years,although,asnotedabove,GallantandKaroly(2010)foundanincreaseintheextentofhotandwetextremesinthetropicalregionsofAustraliafrom1911to2008atarateofbetween1%and2%perdecade.

Lookingtowardsthefuture,RafterandAbbs(2009)usedextremevaluetheorytoexaminechangesintheintensityofextremerainfallassimulatedbyclimatemodels.Theirresultsshowedincreasesinallregionsfor2055and2090formostmodelsconsidered.Thespatialpatternswereconsistentwithpreviousstudies,withsmallerincreasesinthesouthofAustraliaandlargerincreasesinthenorth.Fine-scaleregionalclimatemodelling(e.g.Abbset al.,2007;AbbsandRafter,2009)suggestsincreasesindailyprecipitationextremesonaverage,althoughwithlargefine-scalespatialvariability.Thestudyfoundshortduration(sub-daily)rainfallwillchangemorerapidlythanlongerduration(dailyandmulti-day)rainfall.

ThebottomlineisthatalthoughaconclusivelinkbetweenthesoutheastQueenslandrainfalleventsandclimatechangecannotbemade,suchalinkisplausibleevenifitisnotdiscernibleyet.Fromariskperspective,thisisusefulknowledge,andsuggeststhatitwouldbeprudenttofactorinaclimatechange-inducedincreaseinintenserainfalleventsinurbanandregionalplanning,thedesignoffloodmitigationworks,andanyreviewsofemergencymanagementprocedures.

P (

%)

SST

x10

(K)

CW

V (

%);

NIN

O3

-5

0

5

10

-2

0

2

4

1980 1985 1990 20001995 2005

NINO3a SST CWV

GPCP SSM/Ib

Page 50: The Critical Decade: Full report

48 ClimateCommission

2.5 Abrupt, non-linear and irreversible changes in the climate system

Many projections of future changes in climatic variables are simulated and presented as smooth curves from present values to an altered state at some future point in time. The temperature projections to 2100 highlighted in the IPCC reports are a good example of this. However, smooth changes are not the norm in the climate system. Often the system seems unresponsive to forcing agents until a threshold is reached, after which the system rapidly changes or reorganises into an alternate state. The abrupt drop in rainfall in the mid-1970s in southwest Western Australia is a well-known Australian example. Some changes in the climate system can be irreversible in any timeframe relevant to human affairs, such as the loss of the Greenland ice sheet.

Inthissectionwepresentabriefsummaryofthecurrentknowledgebaseonthepotentialforabrupt,irreversiblechangesintheclimatesystem:

The science of abrupt change

Whileitiscommon,eveninmanypartsofthescientificcommunity,toemploycause-effectlogicandlinearthinking(achangeinacausalagentdrivesanappropriatelyscaledresponse),thegrowthofcomplexsystemsciencehasbroughtanewperspectivetoobservingandinterpretingchangesintheclimatesystem.Thephenomenonofabrupt,highlynonlinearchanges,whichoftenoccurwhenanapparentlysmallchangeinaforcingagenttriggersanunexpected,large,complexresponseinthesystem,hasrecentlybeenreviewedinthecontextoftheclimatesystem(Lentonetal.2008;Figure33).

Figure 33. Schematic representation of a system being forced past a tipping point. Thesystem’sresponsetimetosmallperturbations, τ,isrelatedtothegrowingradiusofthepotentialwell.

Source:H.Held,fromLentonetal.(2008).

Figure34isaschematicoftwotypesofabruptchangeinacomplexsystemsuchasclimate–so-called“tippingelements”–oneamono-stablesystemshowingthreshold,abruptchangebehaviourandtheothershowingbistabilitywhenathresholdiscrossed.Animportantfeatureofatippingelementisthatitmustcontainastrongpositive(reinforcing)feedbackprocessinitsinternaldynamics.Inaddition,tippingelementscanhavevaryingdegreesofirreversibility.Forexample,althoughthelargepolaricesheetsonGreenlandandAntarcticahavewaxedandwanedingeologicaltimescales,theyareessentiallyirreversibleontimescalesofrelevancetohumanaffairs.

Chapter 2. Risks associated with a changing climate (continued)

System being forced past a tipping point

τ

– Anumberofpotentialabruptchangesinlargesub-systemsorprocessesintheclimatesystem–so-called“tippingelements”–havebeenidentifiedlargelythroughpalaeo-climaticresearch.Manyofthese,iftriggered,wouldleadtocatastrophicimpactsonhumansocieties.

– ExamplesoftippingelementsincludeabruptchangesintheNorthAtlanticoceancirculation,theswitchoftheIndianmonsoonfromawettoadrystateorviceversa,andtheconversionoftheAmazonrainforesttoagrasslandorasavanna.

– Verylargeuncertaintiessurroundthelikelihood,ornot,ofhuman-drivenclimatechangetriggeringanyoftheseabruptorirreversiblechanges.Expertsagreethattheriskoftriggeringthemincreasesastemperaturerises.

– Abruptshiftsinatmosphericcirculationcanoccurveryquicklyandcanhavelargeimpactsonregionalclimates.Therecentcold,snowywintersinnorthernEurope,andtheirpossiblelinktoclimatechange,compriseagoodexampleofthisrisk.

Page 51: The Critical Decade: Full report

ScienceUpdate2011 49

Figure 34. Schematic of two types of tipping element that can exhibit a tipping point where a small change in control (δρ) results in a large change in a system feature (∆F), illustrated here in terms of the time-independent equilibrium solutions of the system: (a) A system with bi-stability passing a true bifurcation point. (b) A mono-stable system exhibiting highly non-linear change.

Source:T.M.Lenton,publishedinRichardsonetal.(2011).

Examples of tipping elements in the climate system

Therearemanyexamplesoftippingelementsintheclimatesystem(Figure35);itisusefultoclassifythemintothoseassociatedwiththemeltingoflargemassesofice,thoseinvolvingsignificantchangestouniquebiomes,andthoseassociatedwithlarge-scaleschangesinthecirculationoftheatmosphereandtheocean(Richardsonetal.2011).

–THE gREEnLAnD AnD AnTARCTIC ICE sHEETs mAy noT sEEm LIkE CAnDIDATEs foR TIppIng ELEmEnTs As THEIR RATE of CHAngE Is noT “AbRupT” fRom A HumAn pERspECTIvE, buT THEy ARE DEfInITELy TIppIng ELEmEnTs In THAT bEyonD A RATHER nARRow RAngE of TEmpERATuRE CHAngE, THEy wILL bE CommITTED To IRREvERsIbLE mELTDown (HuybRECHTs AnD DE woLDE 1999).

–TheacceleratingdownwardtrendinthelossofArcticseaiceisindicativeofthreshold-abruptchangebehaviourinwhichthethresholdmayalreadyhavebeencrossed(Perovich2011),althoughthelossofsummerseaiceisnotirreversibleandcouldquicklyrecoverwithareturntoacolderclimate.

Syst

em f

eatu

re (

F)

Control (ρ)

F

a

Syst

em f

eatu

re (

F)

F

Control (ρ)

b

Chapter 2. Risks associated with a changing climate (continued)

Page 52: The Critical Decade: Full report

50 ClimateCommission

Figure 35. Map of potential policy-relevant tipping elements, adjusted from Lenton et al. (2008) based on further analysis by T.M. Lenton reported in Richardson et al. (2011). Questionmarksindicatesystemswhosestatusaspolicy-relevanttippingelementsisparticularlyuncertain.

Source:V.Huber, T.M.LentonandH.J.Schellnhuber,publishedinRichardsonetal.(2011).

MeltingCirculation ChangeBiome loss No data

Boreal forest

Cold water coral reefs

Tropical Coral Reefs

Marine Biological Carbon Pump?

Boreal Forest

Yedoma Permanfrost

Arctic sea ice

Atlantic Thermohaline Circulation

El Nino-Southern Oscillation

AmazonRainforest

West Antarctic Ice Sheet

Ocean Methane Hydrates?

SW North America?

HimalayanGlaciers?

Indian Summer Monsoon

West Africa Monsoon

Sahara Greening?

Sahel Drying?

Dust SourceShort down

Greenland Ice Sheer

Chapter 2. Risks associated with a changing climate (continued)

TheAmazonrainforestisthemostwidelyquotedexampleofalargebiomeatriskofabruptchangefromawarmingclimate.Theclimate-relatedforcingfactorsincludebothrisingtemperatureandapotentialincreaseinthelengthofthedryseasonandtheintensityofdroughts.Aprominentfeedbackisthewayinwhicharainforeststoresandrecycleswater.Ecologicaldisturbanceprocesses,suchasfiresandinsectinfestations,mayalsobecomeimportantfeedbackprocesses.Simulationsthatincorporatetheseecologicalprocessessuggestthatathresholdexistsarounda2°Ctemperatureincrease,beyondwhichtheareaoftheAmazonforestscommittedtodiebackrisesrapidlyfrom20%toover60%(JonesandLowe2011).SeveredroughtsintheAmazonBasinin2005and2010,alongwiththeobservationthatsuchdroughtsco-occurwithpeaksoffireactivity,supportthisriskassessment(Lewisetal.2011).

PerhapsthearchetypalexampleofatippingelementistheAtlanticthermohalinecirculation(THC),whichinitscurrentmodecontributessignificantlytothemildclimateexperiencedbywesternEuropeandScandinaviabutwhichhasshownthreshold-abruptchangebehaviourinthepast(e.g.,Dansgaard-Oeschgerevents,GanopolskiandRahmstorf2001).AcollapseoftheTHCcouldleadtoareducedlevelofwarminginthenorthAtlanticregioncomparedtotheglobalaverage.CurrentunderstandingoftheTHCsystemsuggeststhatthethresholdforcollapseisstillratherremote(IPCC2007a),butthataweakeningofthestrengthofthecirculationislikelythroughthiscentury(WeberandDrijfhout2011).TheTHCisanexampleofacirculation-relatedtippingelement.OthersincludetheElNiñoSouthernOscillation(ENSO)andtheWestAfricanMonsoon,bothexamplesofcoupledocean-atmospherecirculation.

Page 53: The Critical Decade: Full report

ScienceUpdate2011 51

Chapter 2. Risks associated with a changing climate (continued)

Likelihood of triggering abrupt changes

Muchoftheinterestintippingelementsderivesfromtheverylargerisksforhumanwell-beingassociatedwithactivationofmanyofthetippingelements.Forexample,lossofsignificantamountsoftheGreenlandandAntarcticicesheetswouldleadtometresofsea-levelrise.TheAsianmonsoon,ormorepreciselytheIndianSummerMonsoon,isatippingelementwhosebehaviourisinfluencedbyboththewarmingoftheIndianOceanandthepresenceofan“atmosphericbrowncloud”overmuchofthesub-continent.Somemodelssuggestatippingpointrelatedtochangesinregionalalbedo,leadingtosuddenswitchesinthestrengthandlocationofmonsoonalrains(Zickfeldetal.2005;Levermannetal.2009).GiventhatoverabillionpeopledirectlydependonthereliablebehaviouroftheIndianSummerMonsoonfortheirfoodproduction,rapidchangesinrainfallcouldhavecatastrophicconsequencesforlargenumbersofpeople.

Table1givesanexampleofhowariskassessmentontippingelementsmightbecarriedout(Richardsonetal.2011).Theassessmentisbasedonthecombinationofthelikelihoodofthetippingelementbeingactivatedandtheimpactonhumanwell-beingofachangeofstateofthetippingelement.Ofthetippingelementsconsidered,itisinterestingthatthehighestrisksareassociatingwiththelossoficefromthelargepolaricesheets.RisksassociatedwiththeAtlanticthermohalinecirculationandthebehaviourofENSOareconsideredtoberatherlowprimarilybecauseofthesmalllikelihoodthatatippingpointwillbepassed.

Abrupt shifts in atmospheric circulation

Tippingelementsassociatedwithchangesinatmosphericcirculation,orcoupledocean-atmospherecirculation,areespeciallyimportantbecauseoftheshorttimescalesonwhichtheycanoperate.Thebi-stabilityoftheIndianSummerMonsoon,notedabove,isanexampleofalargeshiftinatmosphericcirculationthatcanhappenveryquickly,evenonanannualbasis.Therecentcold,snowywinters(2005-06,2009-10,2010-11)inpartsofnorthernEuropeandNorthAmerica(Figure2),andtheirpossiblelinktoclimatechange,compriseanothergoodexampleofrisksassociatedwiththistypeoftippingelement.

Althoughitsoundscounter-intuitive,suchcoldweathermaybelinkedtotheoverallwarmingoftheplanet.Morespecifically,apossiblelinkisviathelossofArcticseaiceinwinterandtheconsequentformationofahighpressurecelloverthepolarregion(PetoukhovandSemenov2010).ThiscellchangespressuregradientsinthenorthAtlanticregion,rearrangingNorthernHemisphereatmosphericcirculationandgeneratingcold,easterlyairflowsovermuchofwesternEurope.Thischangerepresentsanabrupttransitionbetweentwostatesofthecirculation.Interestingly,thethresholdfortheabruptshiftincirculationliesnear40%reductioninseaice,butanothertransition,flippingthecirculationbacktotheearlierregime,isprojectedtoexistatabout80%reductioninseaice.

Table 1. A simple ‘straw man’ example of tipping element risk assessment, by Timothy M. Lenton

Tipping element Likelihoodof passing atipping point(by 2100)

Relative impact** ofchange in state(by 3000)

Risk score(likelihood x impact)

Risk ranking

Arctic summer sea-ice High Low 3 4

Greenland ice sheet Medium-High* High 7.5 1(highest)

West Antarctic ice sheet Medium* High 6 2

Atlantic THC Low* Medium-High 2.5 6

ENSO Low* Medium-High 2.5 6

West African monsoon Low High 3 4

Amazon rainforest Medium* Medium 4 3

Boreal forest Low Low-Medium 1.5 8(lowest)

*Likelihoodsinformedbyexpertelicitation**InitialjudgmentofrelativeimpactsisthesubjectiveassessmentofT.M.L.

Page 54: The Critical Decade: Full report

HumAnITy CAn EmIT noT moRE THAn 1 TRILLIon TonnEs of Co2 bETwEEn 2000 AnD 2050 To HAvE A 75% CHAnCE of LImITIng TEmpERATuRE RIsE To 2 °C oR LEss.

THE pEAkIng yEAR foR EmIssIons Is vERy ImpoRTAnT foR THE RATE of REDuCTIon THEREAfTER. THE DECADE bETwEEn now AnD 2020 Is CRITICAL.

AbouT 15-20% of nET Co2 EmIssIons gLobALLy HAvE oRIgInATED fRom LAnD ECosysTEms, pRImARILy fRom DEfoREsTATIon.

CHApTER 3:ImpLICATIons of THE sCIEnCE foR EmIssIon REDuCTIons

DID you know...

Page 55: The Critical Decade: Full report

ScienceUpdate2011 53

Chapter 3: Implications of the science for emission reductions

3.1 The budget approach

Although the targets-and-timetables approach (e.g. an agreed percentage reduction in greenhouse gas emissions by 2020) remains the most common approach to defining trajectories for climate mitigation, the budget, or cumulative emissions, approach is rapidly becoming the favoured approach in analyses in the scientific community. It offers a much simpler, easier-to-understand, transparent and powerful framework to estimate what level of emission reductions is required to meet the 2 °C guardrail.

Thissectionoutlinestheconceptualframeworkforthebudgetapproachanditsimplicationsformitigationstrategies:

Conceptual framework.

ThebudgetapproachavoidstheexplicituseoftargetsforthestabilisationofatmosphericCO

2orCO

2-equivalent

concentrationsbydirectlylinkingtheprojectedriseintemperaturetotheaggregatedglobalemissions(inGtCO

2orGtC)foraspecifiedperiod,usually2000to

2050or2100.Thatis,itisbasedonthedegreeofclimatechangethatwecanexpectinfutureestimateddirectlyfromthesumofadditionalgreenhousegasesthatareemittedtotheatmosphere(e.g.,Allenetal.2009;Meinshausenetal.2009;Figure36).Therelationshipisnotdeterministicbutratherprobabilistic,givenuncertaintiesinourunderstandingofthesensitivityofclimatetoaparticularincreaseintheamountofgreenhousegasesintheatmosphere.

Toapplytheconcept,ifwewishtohavea75%chanceofobservingthe2°Cguardrail,wecanemitnomorethan1000Gt(onetrilliontonnes)ofCO2

intheperiodfrom2000to2050.Ifwanttoachievea50:50chanceofobservingtheguardrail,thenwecanemit1440Gtintheperiod.Inthefirstnineyearsoftheperiod(2000through2008),humanityemitted305GtofCO

2,over30%ofthe

totalbudgetinlessthan20%ofthetimeperiod.

Strategic implications.

Givenanoverallbudgetbetweennowand2050,theapproachdoesnotstipulateanyparticulartrajectory,solongastheoverallbudgetisrespected.Thisapproachallows,inmakingthetransitiontoalow-orno-carboneconomy,aflexibleapproachthatdeliversleastcosttotheeconomy,notonlyacrosssectorsintheeconomyatanyparticulartime,butalsothroughtimefromthepresenttomid-centuryandbeyond.Asitisthecumulativeemissionsovertimethatmustbelimited,ratherthanaseriesofinterimemissionreductiontargetsthatmustbemet,manyemissionreductiontrajectoriesarepossible.However,thelateremissionreductiontrajectoriesareinitiated,themoredifficultandcostlytheybecome(Garnaut2008).

– ThebudgetapproachdirectlylinkstheprojectedriseintemperaturetotheaggregatedglobalemissionsinGtCO

2orGtCforaspecifiedperiod,

usually2000to2050or2100.Forexample,humanitycanemitnotmorethan1trilliontonnesofCO

2

between2000and2050tohaveaprobabilityofabout75%oflimitingtemperatureriseto2°Corless.

– Givenanoverallcarbonbudgetbetween2000and2050,theapproachdoesnotstipulateanyparticulartrajectory,solongastheoverallbudgetisrespected.Thisallowsastrategythatdeliversleastcosttotheeconomyovertimeinmakingthetransitiontoalow-orno-carboneconomy.

Page 56: The Critical Decade: Full report

54 ClimateCommission

Chapter 3: Implications of the science for emission reductions (continued)

Figure 36. Top: Fossil fuel CO2 emissions for two scenarios: one “business as usual” (red) and the other with net emissions peaking before 2020 and then reducing sharply to near zero emissions by 2100, with the cumulative emission between 2000 and 2050 capped at 1 trillion tonnes of CO2 (purple). Bottom: Median projections and uncertainties of global-mean surface air temperature based on these two emissions scenarios out to 2100. The darkest shaded range for each scenario indicates the most likely temperature rise (50% of simulations fall within this range).

Source:AustralianAcademyofScience(2010),adaptedfromMeinshausenetal.(2009).

Possible future without climate policy

1000 GtCO2 until 2050

1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100

Fossil CO2 Emissions

Em

issi

ons

(GtC

O2/y

r) 60

20

40

Past observed temperatures

Max +2°C

Global warming

Possible future without climate policy

1000 GtCO2 until 2050

1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100

Glo

bal

Mea

n S

urf

ace

War

min

g (°

C)

Com

par

ed t

o p

re-i

nd

ust

rial

3

4

1

0

2

5

6

7

Page 57: The Critical Decade: Full report

ScienceUpdate2011 55

Chapter 3: Implications of the science for emission reductions (continued)

3.2 Implications for emission reduction trajectories

Although the budget approach allows more flexibility in the economic and technical pathways to emissions reductions than does a targets-and-timetables approach, the fact that we have already consumed over 30% of our post-2000 budget means that much of that flexibility has been squandered if we wish to avoid the escalating risks associated with temperature rises beyond 2 °C. Thus, there is no room for any further delay in embarking on the transition to a low- or no-carbon economy.

Thekeymessagesofthissectionare:

Emissions trajectories

Figure37(WBGU2009)showsthreeofthemultitudeoftrajectoriesforglobalemissionsthatarepossibleunderthebudgetapproachtohavea67%probabilityofmeetingthe2°Cguardrail.Itisclearfromthefigurethatglobalemissionswillneedtobereducedtoveryclosetozeroby2050tomeetthischallenge,thatis,tostabilisetheCO

2concentrationatavaluecompatible

withthe2°Cguardrail.LessambitiousemissionreductionswillslowtheaccumulationofCO

2inthe

atmosphere,butitsconcentrationwillcontinuetorise.

Figure37alsoshowsthatthepeakingyearforemissionsisespeciallyimportantfortherateofreductionthereafter.Forexample,delayingthepeakingyearbyonlynineyears,from2011to2020,changesthemaximumrateofemissionreductionfrom3.7%perannum,whichisverychallengingbutperhapsachievable,to9.0%perannum,whichisimpossibleonanythingbutawartimefooting.

–In summARy, In TERms of mEETIng THE 2 °C guARDRAIL, THE DECADE bETwEEn now AnD 2020 Is CRITICAL.

–Targets and timetables

Themorefamiliarapproachofconstrictingtheemissionstrajectorytoatimetablewithasetofinterimtargetsbecomeslessimportantinthebudgetapproach.Thestrategicchallengechangesfromwhetherthe2020targetisa5%,25%or40%reductionagainstaparticularbaselinetohowdoweimplementthetransitiontoalow-orno-carboneconomyby2050withtheleasteconomicandsocialcostwhilestayingwithinthebudget?Forexample,themiddletrajectoryofFigure37,withapeakingyearof2015,hasaglobalemissionslevelfor2020ofabout32GtCO

2,whichisaboutthesameasfor

2010,andmuchhigherthanfor1990,theKyotobaseline.ThecurvesofFigure37areforglobalemissions,though,andindustrialisedcountrieswouldbeexpectedtohavemuchlargeremissionreductionsthantheglobalaverage.

– ReducingemissionsofCO2doesnotreduceor

stabiliseitsconcentrationsintheatmosphere;itslowstherateofincreaseofCO

2concentration.

TostabilisetheconcentrationofCO2requires

emissionstobereducedtoverynearzero.

– Thepeakingyearforemissionsisveryimportantfortherateofreductionthereafter.Thedecadebetweennowand2020iscritical.

– Targetsandtimetablesare,inprinciple,lessimportantinthebudgetapproach,buttheurgencyofbendingemissiontrajectoriesdownwardsthisdecadeimpliesthatmoreambitioustargetsfor2020arecriticalinpreventingdelaysinthetransitiontoalow-orno-carboneconomy.

Page 58: The Critical Decade: Full report

56 ClimateCommission

Chapter 3: Implications of the science for emission reductions (continued)

Figure 37. Three emission trajectories based on the budget approach and giving a 67% probability of meeting the 2 °C guardrail.

Source:WBGU(2009).

Theconnectionbetweenthebudgetapproachandthemorefamiliartargetsandtimetablesapproachisclearonceadesiredtrajectoryisestablishedbasedonanation’soverallcarbonbudget.Thetrajectorytostaywithinthebudget,ineffect,setsaseriesoftargetswithinaspecifictimetablethatdefinethetrajectory.Theflexibilityisassociatedwiththedeterminationofthetrajectoryitself.

–THE buDgET AppRoACH ALso HAs A subTLE buT ImpoRTAnT psyCHoLogICAL ADvAnTAgE ovER THE TARgETs-AnD-TImETAbLE AppRoACH In THAT IT foCusEs ATTEnTIon on THE EnD gAmE – EssEnTIALLy DECARbonIsIng THE EConomy.

Thus,investmentdecisionscanbetakenfromalong-termperspective,knowingthatalimitedbudgetismostefficientlyallocatedtoinvestinnewinfrastructurethateventuallydeliversverylowornoemissionsbymid-century,ratherthantoinvestinshorter-termmeasuresaimedatmeetinganinterimtargetthatareperhapslesseffectiveindeliveringlonger-termemissionreductions.

Perhapsthebiggestchallengetoimplementingthebudgetapproachisallocatingtheglobalbudgettoindividualcountries,whereequityissuesbecomeimportant.Thisisapoliticalratherthanascientificquestion,whereastheoverallglobalbudgetismoredirectlyrelatedtothescience.Theproblemisnotuniquetothebudgetapproach,butalsobedevilsnegotiationsunderthetargets-and-timetablesapproachandhasperhapsbeenthesinglemostdifficultissuetoresolvetoachieveaninternationalagreementonaglobalemissionreductionplan.

3.3 Relationship between fossil and biological carbon emissions and uptake

Carbon “offsets”, in which emitters of CO2 from fossil fuel combustion can meet their emission reduction obligations by buying an equivalent amount of carbon uptake by ecological systems, are often proposed as a way of achieving rapid emission reductions at least cost. However, although the immediate net effect on the atmospheric concentration of CO2 is the same for both actions, the nature of the carbon cycle means that the uptake of CO2 from the atmosphere by an ecosystem cannot substitute in the long term for the reduction of an equivalent amount of CO2 emissions from the combustion of fossil fuels. In fact, the offset approach, if poorly implemented, has the potential to lock in more severe climate change for the future.

Glo

bal

em

issi

ons

Gt

CO

2

5

35

30

25

20

15

10

40

2005 20502010 2015 2020 2025 2030 2035 2040 2045

Maximum reduction rate 3.7% per year 5.3% per year 9.0% per year

Peak year 2020

20152011

Page 59: The Critical Decade: Full report

ScienceUpdate2011 57

Chapter 3: Implications of the science for emission reductions (continued)

AlthoughitisveryimportanttosequesteratmosphericCO

2intolandecosystems,thissectionoutlinesthe

reasonswhyisnotagoodideatoconsidersuchbiologicalsequestrationasanoffsetforfossilfuelemissions.Thekeymessagesare:

Carbon from land ecosystems

Overthepastcenturyabout15%-20%ofCO2emissions

globallyoriginatefromlandecosystems,primarilyfromdeforestation(RaupachandCanadell2010).Thisfractionhasdecreasedoverthepastdecadetoabout11%in2009(Friedlingsteinetal.2010)dueprimarilytothelargeincreaseinfossilfuelemissions.Emissionsfromlandecosystemsrepresenttheremovalofcarbonfromastockintheactiveatmosphere-land-oceancarboncycle.Inessence,deforestationisahuman-drivenredistributionofcarbonamongthethreeactivestocks–fromlandtotheatmosphere,andthen,inpart,totheocean.Itdoesnotintroduceanyadditionalcarbontotheatmosphere-land-oceancycle.Naturalprocessessuchasclimatevariabilityalsoredistributecarbonamongthesethreestocks.AstrongLaNiñaevent,forexample,redistributescarbonfromtheatmospheretothelandthroughincreasedproductivityduetoabove-averageprecipitationinsomepartsoftheworld.However,averagedoverdecades,andintheabsenceofhumanperturbationorlong-termchangesinclimate,landcarbonstocksarerelativelystable.

Fossil fuel combustion

Thecombustionoffossilfuelsrepresentstheinjectionofadditionalcarbonfromaninert,undergroundstockintotheactiveatmosphere-land-oceansystem.Thisadditionalcarbonisredistributedamongthethreemainstocksintheactivecarboncycle,thusaddingtotheamountofatmosphericCO2

.Alittlelessthanhalfoftheadditional,inertcarbonactivatedbythecombustionoffossilfuelsremainsintheatmosphere;therestisredistributedaboutequallytothelandandocean(Canadelletal.2007;Raupachetal.2007).Sothecombustionoffossilfuelisfundamentallydifferentfromdeforestationbecausefossilfuelcombustionintroducesadditionalcarbontotheactivecycle,ratherthanredistributingtheexistingamountofcarbonintheactivecycleamongthethreemajorstocks.

– About15-20%ofnetCO2emissionsgloballyhave

originatedfromlandecosystems,primarilyfromdeforestation.Thisrepresentstheremovalofcarbonfromastockintheactiveatmosphere-land-oceancarboncycle.Itdoesnotintroduceanyadditionalcarbonintotheatmosphere-land-oceansystem,butsimplyredistributesit.

– Thecombustionoffossilfuelsrepresentstheinjectionofadditionalcarbonfromaninert,undergroundstockintotheactiveatmosphere-land-oceancycle.Thisadditionalcarbonisredistributedamongthethreemainstocksintheactivecarboncycle,thusaddingtotheamountofatmosphericCO

2.

– Avoidingemissionsbyprotectingecosystemcarbonstocksisanecessarypartofacomprehensiveapproachtomitigation.SequesteringCO

2into

degradedecosystemsisalsoanimportantmitigationactivitybecauseitreversesanearlieremission.However,sequesteringCO

2intoland

ecosystemsdoesnotremoveitfromtheactiveatmosphere-land-oceancycle.Therefore,thesequesteredcarbonisvulnerabletohumanlanduseandmanagement,whichcanrapidlydepletecarbonstocks,andtomajorchangesinenvironmentalconditions,whichcanchangetheamountofcarbonstoredinthelongterm.

– TheonlywaythatCO2sequesteredintoland

ecosystemscanpermanently“offset”fossilfuelcombustionisifthesequesteredcarbonissubsequentlyremovedfromthelandecosystemandstoredinaninertstateorinastablegeologicalformation,thuslockedawayfromtheactiveatmosphere-land-oceancycle.Anotherapproachtooffsettingistoreplacefossilfuelswithbiofuels.

Page 60: The Critical Decade: Full report

58 ClimateCommission

Chapter 3: Implications of the science for emission reductions (continued)

Replacing the legacy carbon on land

SequesteringCO2intolandecosystemsdoesnot

removeitfromtheactiveatmosphere-land-oceansystem.Itreturnstheoriginalcarbon,sometimescalled“legacycarbon”,lostfromland-usechangebackintothelandstock,andtheamountthatcanbesequesteredislimitedbytheprevailingenvironmentalconditions.Thatis,atmosphericcarboncannotbesequesteredintolandecosystemsindefinitely.

However,itisveryimportantthatthislegacycarbonbereturnedtolandecosystemsassoonaspossibleforanumberofreasons.First,suchsequestrationisindeedarapidwaytobeginreducingtheanthropogenicburdenofCO2

intheatmosphere.Thus,ityieldssomequickgainswhiletheslowerprocessoftransformingenergyandtransportsystemsunfolds.

–fuRTHERmoRE, If DonE CAREfuLLy, sEquEsTRATIon of CARbon InTo LAnD ECosysTEms CAn LEAD To mAny oTHER Co-bEnEfITs, suCH As EnHAnCED soIL ConDITIon, moRE pRoDuCTIvE AgRICuLTuRAL sysTEms, AnD bETTER bIoDIvERsITy ouTComEs.

–Somegeneralprinciplesprovideaguidefordesigningandimplementinganappropriatelandcarbonmitigationscheme:

1.Thesizeofthestockistheimportantfactorinthecarboncycle,nottherateoffluxfromonecompartment(e.g.atmosphere)toanother(e.g.alandecosystem).Thesetwodifferentaspectsofthecarboncycleareoftenconfused.Althoughafast-growing,mono-cultureplantationforestmayhavearapidrateofcarbonuptakefortheyearsofvigorousgrowth,itwillstorelesscarboninthelongtermthatanoldgrowthforestorasecondaryregrowthforestonthesamesite(Diochonetal.2009;Brownetal.1997;Nepstadetal.1999;CostaandWilson2000;ThornleyandCannell2000).

2.Naturalecosystemstendtomaximisecarbonstorage,thatis,theystoremorecarbonthantheecosystemsthatreplacethemaftertheyareconvertedoractivelymanagedforproduction(Diochonetal.2009;Brownetal.1997;Nepstadetal.1999).AnobservationalstudyoftemperatemoistforestsinsoutheastAustraliaidentifiedtheworld’smostcarbondenseforestanddevelopedaframeworkforidentifyingtheforeststhatarethemostimportantforcarbonstorage(Keithetal.2009).Ingeneral,forestswithhighcarbonstoragecapacitiesarethoseinrelativelycool,moistclimatesthathavefastgrowthcoupledwithlowdecompositionrates,andolder,complex,multi-agedandlayeredforestswithminimalhumandisturbance.Thisframeworkunderscorestheimportanceofeliminatingharvestingofold-growthforestsasperhapsthemostimportantpolicymeasurethatcanbetakentoreduceemissionsfromlandecosystems.RecognitionoftheneedtoprotectprimaryforestshashelpedtocatalyseformulationoftheREDD(ReductionofEmissionsfromDeforestationandforestDegradation)agendaitemundertheUNFCCCnegotiations(http://unfccc.int/methodsandscience/lulucf/items/4123.php).

Page 61: The Critical Decade: Full report

ScienceUpdate2011 59

Chapter 3: Implications of the science for emission reductions (continued)

3.Ifdesignedcarefully,abio-sequestrationapproachcanyieldsignificantco-benefits.Theseareespeciallyimportantfordeforested,degradedandintensivelycroppedlandswherethepotentialforsequesteringcarbonislarge.Well-conceivedandimplementedbio-sequestrationschemesintheselandscapescanimprovetheproductivityofcroppingsystemsthroughthereplacementofsoilcarbonthatwaslostintillage,candeliveradditionalecosystemservicessuchasimprovedwaterqualityonlandscapes,andcanmaintainorenhancebiodiversity.Therelationshipbetweenbio-sequestrationandbiodiversityisparticularlyimportant,aswell-designedsequestrationschemeshavethepotentialtoyieldpositiveoutcomesforbiodiversity(Steffenetal.2009).Infact,asynthesisoftheinterplayamongforestbiodiversity,productivityandresiliencearguesthatmorediverseforestshavehigherproductivity,storemorecarbon,andaremoreresilienttowardsdisturbancethanthosewithimpoverishedbiodiversity(Thompsonetal.2009).

Therearesomecautionsassociatedwithbio-sequestrationintolandecosystems,however.AsshowninFigure12,thelandsinkishighlyvariableontimescalesofafewyears,varyingbyasmuchas2-3PgCinthosetimeframes.ThestrongfluctuationsaredrivenlargelybymodesofclimatevariabilitysuchasENSOandbyvolcanicactivity,whichinducerapidchangesinsoilrespirationandplantgrowththroughchangesinsolarradiation,rainfall/droughtandtemperature(RaupachandCanadell2010;Kirschbaumetal.2007).

–In THE LongER TERm, CLImATE CHAngE CAn sIgnIfICAnTLy wEAkEn oR EvEn REvERsE THE LAnD sInk THRougH DRougHTs, InCREAsED soIL REspIRATIon AnD DIsTuRbAnCEs suCH As fIRE AnD InsECT ouTbREAks.

SimulationsbydynamicglobalvegetationmodelsusingtheIPCCIS92aemissionsscenarioshowalevellingoffofthelandsinkinthesecondhalfofthecenturywithtwomodelsshowingasignificantweakening(Crameretal.2001).Whencoupledtoaclimatemodelininteractivemode,allvegetationmodelsshowaweakeningofthelandsinkby2100withanetreleaseofcarbonbacktotheatmospherecorrespondingtoanadditionalriseinconcentrationfrom20to200ppmCO

2(Friedlingtsteinetal.2006).

Therearealreadyseveralobservationsoftheprocessesinthemodelsthatweakenthelandsinkandultimatelythreatentoreducethesizeofthelandstock.The2003droughtandheatwaveincentralEuropetriggereda30%reductioningrossprimaryproductivityovertheregion,whichresultedinastrongnetsourceof0.5PgCyr-1totheatmosphere,undoingfouryearsofanetcarbonsinkfortheregion(Ciaisetal.2005).Amulti-decadalstudyofthecarbonbalanceofCanadianforestshasdemonstratedthatsince1970theyhavebecomeaweakercarbonsinkdespitealongergrowingseason,owingtoasharpincreaseindisturbancessuchasfireandinsectoutbreakstriggeredbyawarmingclimate(KurzandApps1999).Ascitedearlier,theAmazonrainforest,animportantstockofcarbononagloballevel,hassufferedseveredroughtsandfiresin2005and2010,leadingtoestimatedlossesincarbonstorageof2.2and1.6PgCforthetwodroughtevents,respectively(Lewisetal.2011).Thisanalysissuggeststhatthetwodroughtshaveoffsetadecadeofcarbonsinkactivity,estimatedtobeabout0.4PgCuptakeperannum;suchobservationssupporttheassessmentthat,attemperaturesabovethe2°Cguardrail,theAmazonrainforestisatriskofextensivediebackandconversiontoasavanna,withconsequentlossofcarbontotheatmosphere(cf.Section2.5).Ifthisoccurs,thenAmazonianecosystemswillcontinuetoholdsignificantcarbonstocksbutatlowerthancurrentlevels.

Page 62: The Critical Decade: Full report

60 ClimateCommission

Chapter 3: Implications of the science for emission reductions (continued)

Insummary,formanyreasonsincreasingcarbonstorageinlandecosystemsisanecessaryanddesirablecomponentofacomprehensiveapproachtogreenhousegasmitigation.However,itisnotequivalenttostoringcarboninasecuregeologicalformation,lockedawayfromtheinfluencesofclimatevariabilityandchangeorfromthedirectimpactsofhumanmanagement.Therelativevulnerabilityofcarbonstoredinlandecosystemstoperturbationscomparedtoinertgeologicalfossilfuelissometimescalledthe“permanence”issueinthedesignofeconomicinstrumentstoreduceemissions.

Geosequestration as an offset

Inprinciple,CO2sequesteredintolandecosystems

canfullyoffsettheemissionsofCO2fromfossilfuel

combustionifthesequesteredcarbonissubsequentlymadeinerttotheimpactsofhumanlandmanagement,environmentaldisturbancesorchangingenvironmentalconditions.Itistheoreticallyconceivablethatbio-sequesteredcarboncouldberemovedandstoredinastablegeologicalformation,lockedawayfromtheactiveatmosphere-land-oceansystem.

Anotherapproach,equivalenttogeosequestration,istoreplacefossilfuelcombustionwithbiofuelcombustiontoproduceenergy.Thegrowthandthencombustionofbiofuelsispotentiallycarbon-neutralasitrepresentsacyclicalprocessesofshiftingcarbonbetweenthelandandtheatmosphericcompartmentsinthefastatmosphere-land-oceancarboncycle.Thefossilfuelsthusreplacedwouldleavethecarboninfossilfuelsinthegroundandthusawayfromtheatmosphere.

Caremustbetaken,however,inthegenerationofthebiofuelstolimittheemissionsassociatedwiththeproductionprocesstolowlevelsrelativetotheamountofenergyproduced,andavoidundesiredsideeffectssuchascompetitionwithfoodproduction,lossofnaturalecosystemsandthusgenerationoflargecarbonemissions(seepoint2onpage60)andlossesofbiodiversity.Ingeneral,biofuelsmadefrom‘waste’biomassfromplantationforestsorfromperennialvegetationgrownonabandonedagriculturallandofferthemostadvantagesandavoidtheundesirablesideeffects.

Focussing on the end game

Thebudgetapproachtomitigationdescribedabove,whichisbecomingmorewidelyusedforanalysesintheresearchcommunity,offerssomescientificallybasedinsightsintomitigationapproaches.Perhapsmostimportantly,itfocusesstronglyonthe“endgame”ratherthaninterimtargets.

–puT sImpLy, If THE 2 °C guARDRAIL Is To bE ACHIEvED, THEn THERE Is no TImE foR DELAy In InvEsTIng In Low AnD no-CARbon TECHnoLogIEs foR EnERgy gEnERATIon, buILT InfRAsTRuCTuRE AnD TRAnspoRT.

–Responsiblyimplementedbio-sequestrationschemesoffersomeearlygains;theycanremovecarbonquicklyfromtheatmosphereandalsoofferanumberofimportantco-benefits.Thechallengeistoensurethatlinkingbio-sequestrationtothefossilfuelemissionssectorsdoesnotlead toanydelaysintheinvestmentordeploymentoflow-orno-carbontechnologiesinthosesectors.

As you’ve read in this report, we know beyond reasonable doubt that the world is warming and that human emissions of greenhouse gases are the primary cause. The impacts of climate change are already being felt in Australia and around the world with less than 1 degree of warming globally. The risks of future climate change – to our economy, society and environment – are serious, and grow rapidly with each degree of further temperature rise. Minimising these risks requires rapid, deep and ongoing reductions to global greenhouse gas emissions. We must begin now if we are to decarbonise our economy and move to clean energy sources by 2050. This decade is the critical decade.

Page 63: The Critical Decade: Full report

References

ScienceUpdate2011 61

Abbs,D.J.,andRafter,A.S.(2009).ImpactofclimatevariabilityandclimatechangeonrainfallextremesinWesternSydneyandsurroundingareas:Component4–dynamicaldownscaling.ReporttotheSydneyMetropolitanCatchmentManagementAuthorityandPartners.CSIROMarineandAtmosphericResearch.84pp.

Abbs,D.J.,McInnes,K.L.andRafter,A.S.(2007).Theimpactofclimatechangeonextremerainfallandwindeventsoversouth-eastQueensland:Part2:Ahigh-resolutionmodellingstudyoftheeffectofclimatechangeontheintensityofextremerainfallevents.Aspendale,Victoria:CSIROAtmosphericResearch.39pphttp://www.cmar.csiro.au/e-print/open/2007/abbsdj _ c.pdf.

Abram,N.J.,Gagan,M.K.,Cole,J.E.,Hantoro,W.S.,andMudelsee,M.(2008).RecentintensificationoftropicalclimatevariabilityintheIndianOcean.Nature Geoscience1:849–853,doi:10.1038/ngeo357.

ACECRC(AntarcticClimate&EcosystemsCooperativeResearchCentre).(2008).Briefing: A Post-IPCC AR4 Update on Sea-level Rise.Hobart,Tasmania:ACECRC.

Alexander,L.V.,Zhang,X.,Peterson,T.C.,Caesar,J.,Gleason,B.,KleinTank,A.M.G.,Haylock,M.,Collins,D.,Trewin,B.,Rahimzadeh,F.,Tagipour,A.,Ambenje,P.,RupaKumar,K.,Revadekar,J.,Griffiths,G.,Vincent,L.,Stephenson,D.B.,Burn,J.,Aguilar,E.,Brunet,M.,Taylor,M.,New,M.,Zhai,P.,Rusticucci,M.andVazquez-AguirreJ.L.(2006).Globalobservedchangesindailyclimateextremesoftemperatureandprecipitation.Journal of Geophysical Resesarch111:D05109.

Alexander,L.V.,Hope,P.,Collins,D.,Trewin,B.,Lynch,A.,andNicholls,N.(2007).TrendsinAustralia’sclimatemeansandextremes:aglobalcontext.Australian Meteorological Magazine56:1–18.

Alexander,L.V.,andArblaster,J.M.(2009).AssessingtrendsinobservedandmodelledclimateextremesoverAustraliainrelationtofutureprojections.International Journal of Climatology29:417-435.

Allan,R.P.andSoden,B.J.(2008).Atmosphericwarmingandtheamplificationofprecipitationextremes.Science321:1481-1484.

Allen,R.J.andSherwood,S.C.(2008).Warmingmaximuminthetropicaluppertropospherededucedfromthermalwinds.Nature Geoscience1:399-403.

Allen,M.R.,Frame,D.J.,Huntingford,C.,Jones,C.D.,Lowe,J.A.,Meinshausen,M.andMeinshausen,N.(2009).Warmingcausedbycumulativecarbonemissions:Towardsthetrillionthtonne.Nature458:116366.

AMAP(ArcticMonitoringandAssessmentProgramme).(2009).The Greenland Ice Sheet in a Changing Climate: Snow, Water, Ice and Permafrost in the Arctic (SWIPA).Oslo:ArcticMonitoringandAssessmentProgramme.

Anthony,K.R.N.,Kline,D.I.,Diaz-Pulido,G.,Dove,S.,andHoegh-Guldberg,O.(2008).Oceanacidificationcausesbleachingandproductivitylossincoralreefbuilders.Proceedings of the National Academy of Sciences (USA)105:17442–17446.

Arblaster,J.M.,Meehl,G.A.andKaroly,D.J.(2011).FutureclimatechangeintheSouthernHemisphere:Competingeffectsofozoneandgreenhousegases.Geophysical Research Letters38:L02701,doi:10.1029/2010GL045384.

Arrhenius,S.(1896).“OntheInfluenceofCarbonicAcidintheAirupontheTemperatureoftheGround”.Philosophical Magazine and Journal of ScienceSeries5,Vol.41,pp237-276(PaperpresentedtotheRoyalSwedishAcademyofSciences,11thDecember1895).

AustralianAcademyofScience.(2010).The Science of Climate Change: Questions and Answers.August2010.www.science.org.au/policy/climatechange2010.html

Bahr,D.B.,Dyurgeror,M.andMeier,M.F.(2009).Sea-levelrisefromglaciersandicecaps:Alowerbound.Geophysical Research Letters36:L03501.

Barker,P.M.,Dunn,J.R.,Domingues,C.M.andWijffels,S.E.(2011).PressuresensordriftsinArgoandtheirimpacts.Journal of Atmospheric and Oceanic Technology,doi:10.1175/2011JTECHO831.

Berkelmans,R.,De’ath,G.,Kininmonth,S.andSkirving,W.J.(2004).Acomparisonofthe1998and2002coralbleachingeventsoftheGreatBarrierReef:spatialcorrelation,patternsandpredictions.Coral Reefs23:74-83.

BOM(BureauofMeteorology).(2011a).Frequentheavyraineventsinlate2010/early2011leadtowidespreadfloodingacrosseasternAustralia.SpecialClimateStatement24

BOM(BureauofMeteorology).(2011b).SouthernOscillationIndex(SOI),chartlastupdated:Monday4thApril2011,http://www.bom.gov.au/climate/current/soi2.shtml

Page 64: The Critical Decade: Full report

BOM(BureauofMeteorology).(2011c).ClimatestatisticsforAustralianlocations:Melbourneregionaloffice,Meannumberofdays>=35°C,http://www.bom.gov.au/jsp/ncc/cdio/cvg/av

Bromwich,D.H.andNicolas,J.P.(2010).Ice-sheetuncertainty.Nature Geoscience3:596-597.

Brown,S.,Schroeder,P.andBirdsey,R.(1997).AbovegroundbiomassdistributionofUSeasternhardwoodforestsandtheuseoflargetreesasanindicatorofforestdevelopment.Forest Ecology and Management 96:37-47.

Bryant,D.,Burke,L.,McManus,J.andSpalding,M.(1998).Reefs at Risk: A Map-based Indicator of Threats to the World’s Coral Reefs.Washington,DC,USA:WorldResourcesInstitute.

Bull,C.M.,andBurzacott,D.(2002).ChangesinclimateandinthetimingofpairingoftheAustralianlizard,Tiliqua rugosa:a15yearstudy.Journal of Zoology256:383-387.

Cai,W.,Whetton,P.H.,andKaroly,D.J.(2003).TheresponseoftheAntarcticoscillationtoincreasingandstabilizedatmosphericCO

2.Journal of Climate16:1525–1538.

Cai,W.,andCowanT.(2006).TheSAMandregionalrainfallinIPCCAR4models:cananthropogenicforcingaccountforsouthwestWesternAustralianrainfallreduction.Geophysical Research Letters33:L24708,doi:10.1029/2006GL028037

Cai,W.,andCowan,T.(2008).DynamicsoflateautumnrainfallreductionoversoutheasternAustralia.Geophysical Research Letters35:L09708,doi:10.1029/2008GL033727.

Cai,W.,Cowan,T.andSullivanA.(2009a).RecentunprecedentedskewnesstowardspIODoccurrencesanditsimpactsonAustralianrainfall.Geophysical Research Letters36:L11705,doi:10.1029/2009GL037604

Cai,W.,Sullivan,A.,andCowan,T.(2009b).ClimatechangecontributestomorefrequentconsecutivepositiveIndianOceanDipoleevents.Geophysical Research Letters36:L19783,doi:10.1029/2009GL040163.

Cai,W.,T.Cowan,andM.Raupach(2009c).PositiveIndianOceanDipoleeventspreconditionsoutheastAustraliabushfires.Geophysical Research Letters36:L19710,doi:10.1029/2009GL039902.

Cai,W.,vanRensch,P.,Cowan,T.,andSullivan,A.(2010).AsymmetryinENSOteleconnectionwithregionalrainfall,itsmultidecadalvariability,andimpactonregionalrainfall.Journal of Climate 23:4944–4955.

Cai,W.,Sullivan,A.,Cowan,T.,Ribbe,J.,andShi,G.(2011a).SimulationoftheIndianOceanDipole:Arelevantcriterionforselectingmodelsforclimateprojections.Geophysical Research Letters 38:L03704,doi:10.1029/2010GL046242.

Cai,W.,vanRensch,P.,andCowan,T.(2011b).Influenceofglobal-scalevariabilityonthesubtropicalridgeoversoutheastAustralia.Journal of Climate,inpress.

Canadell,J.G.,LeQuéré,C.,Raupach,M.R.,Field,C.R.,Buitenhuis,E.,Ciais,P.,Conway,T.J.,Gillett,N.P.,Houghton,R.A.andMarland,G.(2007).ContributionstoacceleratingatmosphericCO

2growthfromeconomic

activity,carbonintensity,andefficiencyofnaturalsinks.Proceedings of the National Academy of Sciences (USA) 104:18866-18870.

Cazenave,A.(2006).Howfastaretheicesheetsmelting?Science314:1250-1252.

Cazenave,A.andNarem,R.S.(2004).Present-daysealevelchange:Observationsandcauses.Reviews of Geophysics 42:doi10.1029/2003RG000139.

Cazenave,A.,Dominh,K.,Guinehut,S.,Berthier,E.,Llovel,W.,Ramillien,G.,Ablain,M.andLarnicol,G.(2009).Sealevelbudgetover2003–2008:AreevaluationfromGRACEspacegravimetry,satellitealtimetryandArgo.Global and Planetary Change,65:83–88.

CDIAC(CarbonDioxideInformationAnalysesCenter).(2010).http://cdiac.ornl.gov

Chambers,L.E.(2005).MigrationdatesatEyreBirdObservatory:Linkswithclimatechange?Climate Research 29:157-165.

Chambers,L.E.(2008).TrendsinavianmigrationtiminginsouthWesternAustraliaandtheirrelationshiptoclimate.Emu108:1-14.

Chambers,L.E.,Hughes,L.,andWeston,M.A.(2005).ClimatechangeanditsimpactonAustralia’savifauna.Emu105:1-20.

References (continued)

62 ClimateCommission

Page 65: The Critical Decade: Full report

Chiew,F.H.S.(2006).EstimationofrainfallelasticityofstreamflowinAustralia.Hydrological Sciences Journal51:613–625.

Chiew,F.H.S.,Teng,J.,Vaze,J.,Post,D.A.,Perraud,J.-M.,Kirono,D.G.C.andViney,N.R.(2009).Estimatingclimatechangeimpactonrunoffacrosssouth-eastAustralia:method,resultsandimplicationsofmodellingmethod.Water Resources Research 45:W10414,doi:10.1029/2008WR007338

Church,J.A.andWhite,N.J.(2006)A20thcenturyaccelerationinglobalsea-levelrise,Geophysical Research Letters33:doi:10.1029/2005GL024826

Church,J.A.andWhite,N.J.(2011)Sealevelrisefromthelate19thtotheearly21stcentury.Survey of Geophysics. doi10.1007/s10712-011-9119.1.

Church,J.A.,Hunter,J.R.,McInnes,K.L.andWhite,N.J.(2006).Sea-levelrisearoundtheAustraliancoastlineandthechangingfrequencyofextremesea-levelevents.Australian Meteorological Magazine55:253-260.

Church,J.,White,N.,Hunter,J.,McInnes,K.,Cowell,P.andO’Farrell,S.(2008).Sea-levelRise.In:Newton,P.W.(ed),Transitions: Pathways Towards Sustainable Urban Development in Australia.Australia:CSIROPublishing.

Church,J.A.,White,N.J.,Domingues,C.M.,Barker,P.M.,Wijffels,S.E.andDunn,J.R.(2011).Oceanwarmingandsea-levelrise.In:Richardson,K.,Steffen,W.,Liverman,D.(eds),Climate Change: Global Risks, Challenges and Decisions.Cambridge:CambridgeUniversityPress,pp.14-17.

Ciais,Ph.,Reichstein,M.,Viovy,N.,Granier,A.,Ogée,J.,Allard,V.,Buchmann,N.,Aubinet,M.,Bernhofer,Ch.,Carrara,A.,Chevallier,F.,DeNoblet,N.,Friend,A.,Friedlingstein,P.,Grünwald,T.,Heinesch,B.,Keronen,P.,Knohl,A.,Krinner,G.,Loustau,D.,Manca,G.,Matteucci,G.,Miglietta,F.,Ourcival,J.M.,Pilegaard,K.,Rambal,S.,Seufert,G.,Soussana,J.F.,Sanz,M.J.,Schulze,E.D.,Vesala,T.andValentini,R.(2005).UnprecedentedEuropean-levelreductioninprimaryproductivitycausedbythe2003heatanddrought.Nature437:529-533.

Clement,A.C.,Burgman,R.J.R.andNorris,J.R.(2009).Observationalandmodelevidenceforpositivelow-levelcloudfeedback.Science325,460-64.

Collins,M.,An,S.,Cai,W.,Ganachaud,A.,Guilyardi,A.,Jin,F.F.,Jochum,M.,Lengaigne,M.,Power,S.,Timmermann,A.,Vecchi,G.,andWittenberg,A.(2010).TheimpactofglobalwarmingonthetropicalPacificOceanandElNiño.Nature Geoscience3:391–397.doi:10.1038/ngeo868.

Comeau,S.,Gorsky,G.,Jeffree,R.,Teyssié,J.-L.andGattuso,J.-P.(2009).ImpactofoceanacidificationonakeyArcticpelagicmollusc(Limacina helicina). Biogeosciences 6:1877–82.

CopenhagenAccord.(2009).Draftdecision-/CP.15,http://unfccc.int/resource/docs/2009/cop15/eng/l07.pdf

Costa,P.M.andWilson,C.(2000).AnequivalencefactorbetweenCO

2avoidedemissionsandsequestration—

descriptionandapplicationsinforestry.Mitigation and Adaptation Strategies for Global Change5:51–60.

CounciloftheEuropeanUnion(2005).Presidency Conclusions.Brussels,22-23March.EuropeanCommission.

Cramer,W.,Bondeau,A.,Woodward,F.I.,Prentice,I.C.,Betts,R.A.,Brovkin,V.,Cox,P.M.,Fisher,V.,Foley,J.A.,Friend,A.D.,Kucharik,C.,Lomas,M.R.,Ramankutty,N.,Sitch,S.,Smith,B.,White,A.,Young-Molling,C.(2001).GlobalresponseofterrestrialecosystemstructureandfunctiontoCO

2andclimatechange:Resultsfromsix

dynamicglobalvegetationmodels.Global Change Biology 7:357-373.

Crawford,E.(1997).Arrhenius’1896modelofthegreenhouseeffectincontext.Ambio26:6-11.

Dahl-Jensen,D.andSteffen,K.(2011).DynamicsoftheGreenlandicesheet.In:Richardson,K.,Steffen,W.,Liverman,D.(eds),Climate Change: Global Risks, Challenges and Decisions.Cambridge:CambridgeUniversityPress,pp.60-63.

DepartmentofClimateChange(DCC).(2009).Climate Change Risks to Australia’s Coast: A First Pass National Assessment.Canberra:DepartmentofClimateChange,AustralianGovernment,168pp.

De’ath,G.,Lough,J.M.andFabricius,K.E.(2009).DecliningcoralcalcificationontheGreatBarrierReef.Science323:116-119.

Dessler,A.E.(2010).Adeterminationofthecloudfeedbackfromclimatevariationsoverthepastdecade.Science330:1523-1527.

References (continued)

ScienceUpdate2011 63

Page 66: The Critical Decade: Full report

Diochon,A.,Kellman,L.andBeltrami,H.(2009).Lookingdeeper:Aninvestigationofsoilcarbonlossesfollowingharvestingfromamanagednortheasternredspruce(Picea rubens Sarg.)forestchronosequence.Forest Ecology and Management257:413–420.

Domingues,C.M.,Church,J.A.,White,N.J.,Gleckler,P.J.,Wijffels,S.E.,Barker,P.M.andDunn,J.R.(2008).Improvedestimatesofupper-oceanwarmingandmulti-decadalsea-levelrise.Nature453:1090-1093.

Done,T.P.,Whetton,R.,Jones,R.,Berkelmans,R.,Lough,J.,Skirving,W.andWooldridge.S.(2003).Global climate change and coral bleaching on the Great Barrier Reef.Townsville:AustralianInstituteofMarineScience.

Dorrepaal,E.,Toet,S.,vanLogtestijn,R.,Swart,E.,vandeWeg,M.,Callaghan,T.andAerts,R.(2009).Carbonrespirationfromsubsurfacepeatacceleratedbyclimatewarminginthesubarctic.Nature460:616-619.

Elsner,J.B.,Kossin,J.P.andJagger.T.H.(2008).Theincreasingintensityofthestrongesttropicalcyclones.Nature455:92-95.

Fleming,J.R.(2007).The Callendar Effect: The Life and Work of Guy Stewart Callendar (1889-1964), the Scientist Who Established the Carbon Dioxide Theory of Climate Change.Boston:AmericanMeteorologicalSociety.

Francey,R.J.,Trudinger,C.M.,vanderSchoot,M.,Krummel,P.B.,Steele,L.P.andLangenfelds,R.L.(2010).DifferencesbetweentrendsinatmosphericCO

2andthereportedtrends

inanthropogenicCO2emissions.Tellus62B:316-328.

Frederiksen,J.S.,andFrederiksenC.S.(2007).Inter-decadalchangesinSouthernHemispherewinterstormtrackmodes.Tellus59A:559–617.

Frederiksen,C.S.,Frederiksen,J.S.,Sisson,J.M.andOsbrough,S.L.(2011).ChangesandprojectionsinAustralianwinterrainfallandcirculation:Anthropogenicforcingandinternalvariability.The International Journal of Climate Change: Impacts and Responses,inpress.

Friedlingstein,P.,Cox,P.,Betts,R.,Bopp,L.,vonBloh,W.,Brovkin,V.,Doney.V.S.,Eby,M.I.,Fung,I.,Govindasamy,B.,John,J.,Jones,C.,Joos,F.,Kato,T.,Kawamiya,M.,Knorr,W.,Lindsay,K.,Matthews,H.D.,Raddatz,T.,Rayner,P.,Reick,C.,Roeckner,E.,Schnitzler,K.-G.,Schnur,R.,Strassmann,K.,Weaver,A.J.,Yoshikawa,C.,Zeng,N.(2006).Climate-carboncyclefeedbackanalysis:resultsfromtheC4MIPmodelintercomparison.Journal of Climate19:3337-3353.

Friedlingstein,P.,Houghton,R.A.,Marland,G.,Hackler,J.,Boden,T.A.,Conway,T.J.,Canadell,J.G.,Raupach,M.R.,Ciais,P.andLeQuéré,C.(2010).UpdateonCO

2emissions.

Nature Geoscience3:811-812.

Gallant,A.J.E.andGergis,J.(2011).AnexperimentalstreamflowreconstructionfortheRiverMurray,Australia,1783-1988.Water Resources Research,inpress.

Gallant,A.J.E.andKaroly,D.J.(2010).AcombinedclimateextremesindexfortheAustralianregion. Journal of Climate 23:6153-6165

Ganopolski,A.andRahmstorf,S.(2001).Rapidchangesofglacialclimatesimulatedinacoupledclimatemodel.Nature409:153-158.

Garnaut,R.(2008).The Garnaut Climate Change Review.FinalReport.Cambridge,UK:CambridgeUniversityPress,634pp.

GreatBarrierReefMarineParkAuthority.(2009).GreatBarrierReefOutlookReport2009:90-98.Townsville:GreatBarrierReefMarineParkAuthority.

Gleason,K.L.,Lawrimore,J.H.,Levinson,D.H.,Karl,T.R.andKaroly,D.J.(2008).ArevisedU.S.climateextremesindex.Journal of Climate21:2124-2137.

Gould,J.andTheArgoScienceTeam.(2004).Argoprofilingfloatsbringneweraofinsituoceanobservations.Eos, Transactions of the American Geophysical Union85(19).

Green,K.,andPickering,C.M.(2002).AscenarioformammalandbirddiversityintheAustralianSnowyMountainsinrelationtoclimatechange.In:Körner,C.andSpehn,E.M.,(eds),Mountain Biodiversity: a Global Assessment.London:ParthenonPublishing.

Grinsted,A.,Moore,J.C.andJevrejeva,S.(2009).Reconstructingsealevelfrompaleoandprojectedtemperatures200to2100AD.Climate Dynamics 34(4):461-472.

Guinotte,J.M.,Buddemeier,R.W.andKleypas,J.A.(2003).Futurecoralreefhabitatmarginality:temporalandspacialeffectsofclimatechangeinthePacificbasin.Coral Reefs 22:551-558.

Hansen,J.,Sato,M.,Kharecha,P.,Beerling,D.,Berner,R.,Masson-Delmotte,V.,Pagani,M.,Raymo,M.,Royer,D.L.andZachos,J.C.(2008).TargetatmosphericCO

2:Where

shouldhumanityaim?Open Atmospheric Science Journal 2:217-231,doi:10.2174/1874282300802010217

References (continued)

64 ClimateCommission

Page 67: The Critical Decade: Full report

References (continued)

ScienceUpdate2011 65

Hendon,H.H.,Thompson,D.W.J.andWheeler,M.C.(2007).AustralianrainfallandsurfacetemperaturevariationsassociatedwiththeSouthernHemisphereannularmode.Journal of Climate20:2452–2467.

Hoegh-Guldberg,O.(1999).Climatechange,coralbleachingandthefutureoftheworld’scoralreefs.Marine and Freshwater Research50:839-866.

Hoegh-Guldberg,O.,Mumby,P.J.,Hooten,A.J.,Steneck,R.S.,Greenfield,P.,Gomez,E.,Harvell,C.D.,Sale,P.F.,Edwards,A.J.,Caldeira,K.,Knowlton,N.,Eakin,C.M.,Iglesias-Prieto,R.,Muthiga,N.,Bradbury,R.H.,Dubi,A.,Hatziolos,M.E.(2007).Coralreefsunderrapidclimatechangeandoceanacidification.Science318:1737-1742.

Horton,R.,Herweijer,C.,Rosenzweig,C.,Jiping,L.Gomitz,V.andRuane,R.C.(2008).SealevelriseprojectionsforcurrentgenerationCGCMsbasedonthesemi-empiricalmethod.Geophysical Research Letters35:L02715.1–L02715.5.

Huybrechts,P.andDeWolde,J.(1999).ThedynamicresponseoftheGreenlandandAntarcticicesheetstomultiple-centuryclimaticwarming. Journal of Climate12:2169-2188.

Ihara,C.,Kushnir,Y.,andCane,M.A.(2008).WarmingtrendoftheIndianOceanSSTandIndianOceanDipolefrom1880to2004.Journal of Climate21:2035–2046.

InterAcademyCouncil.(2010).Climate change assessments: Review of the processes and procedures of the IPCC.Amsterdam:InterAcademyCouncil.

IntergovernmentalPanelonClimateChange(IPCC).(2001). Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change.Houghton,J.T.,Ding,Y.,Griggs,D.J.,Noguer,M.,vanderLinden,P.J.,andXiaosu,D.(eds).Cambridge,UKandNewYork,NY:CambridgeUniversityPress.

IntergovernmentalPanelonClimateChange(IPCC).(2007a). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon,S.,Qin,D.,Manning,M.,Chen,Z.,Marquis,M.,Averyt,K.,Tignor,M.M.B.,Miller,H.L.JrandChen,Z.(eds).Cambridge,UKandNewYork,NY,USA:CambridgeUniversityPress.

IntergovernmentalPanelonClimateChange(IPCC).(2007b).Climate Change 2007. Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental panel on Climate Change,Parry,M.,Canziani,O.,Palutikov,J.,vanderLinden,P.,andHanson,C.,(eds).Cambridge,UKandNewYork,NY:CambridgeUniversityPress.

IPCC(2011).Publicationsanddata.http://www.ipcc.ch/publications _ and _ data/publications _ and _ data.shtml

Ishii,M.andKimoto,M.(2009).Reevaluationofhistoricaloceanheatcontentvariationswithtime-varyingXBTandMBTdepthbiascorrections.Journal of Oceanography65:287-299.

Jones,C.D.andLowe,J.(2011).Committedecosystemchanges.In:Richardson,K.,Steffen,W.,Liverman,D.(eds)Climate Change: Global Risks, Challenges and Decisions. Cambridge:CambridgeUniversityPress,pp.180-183.

Jones,R.N.andMearns,L.O.(2004).Assessingfutureclimaterisks.In:Lim,B.,Spanger-Siegfried,E.,Burton,I.,Malone,E.andHuq,S.(eds.),Adaptation Policy Frameworks for Climate Change: Developing Strategies, Policies and Measures,CambridgeandNewYork:CambridgeUniversityPress,119-144.

Keith,H.,Mackey,B.G.andLindenmayer,D.B.(2009).Re-evaluationofforestbiomasscarbonstocksandlessonsfromtheworld’smostcarbon-denseforests.Proceedings of the National Academy of Sciences(USA)doi/10.1073/pnas.0901970106

Kirschbaum,M.U.F.,Keith,H.,Leuning,R.,Cleugh,H.A.,Jacobsen,K.L.,vanGorsel,E.,Raison,R.J.(2007).ModellingnetecosystemcarbonandwaterexchangeofatemperateEucalyptus delegatensisforestusingmultipleconstraints.Agricultural and Forest Meteorology145:48-68.

Kleypas,J.A.,Feely,R.A.,Fabry,V.J.,Langdon,C.,Sabine,C.L.andRobbinsL.L.(2006).Impactsofoceanacidificationoncoralreefsandothermarinecalcifiers:Aguideforfutureresearch.In:Reportofaworkshopheld18-20April2005,St.Petersburg,FL,USA:NSF,NOAA,andtheU.S.GeologicalSurvey.

Knorr,W.(2009).IstheairbornefractionofanthropogenicCO

2emissionsincreasing?Geophysical Research Letters

36:L21710.

Page 68: The Critical Decade: Full report

Knutson,T.R.,McBride,J.L.,Chan,J.,Emanuel,K.,Holland,G.,Landsea,C.,Held,I.,Kossin,J.P.,Srivastava,K.andSugi,M.(2010).Tropicalcyclonesandclimatechange.NatureGeoscience3:157-163.

Kurz,W.A.andApps,M.J.(1999).A70-yearretrospectiveanalysisofcarbonfluxesintheCanadianforestsector.Ecological Applications9:526-547.

Lacis,A.A.,Schmidt,G.A.,Rind,D.andRuedy,R.A.(2010).AtmosphericCO

2:Principalcontrolknobgoverningearth’s

temperature.Science330:356-359.

Lawrence,D.M.andSlater,A.G.(2005).Aprojectionofseverenear-surfacepermafrostdegradationduringthe21stcentury.Geophysical Research Letters32:L24401,doi:10.1029/2005GL025080.

Lawrence,D.M.,Slater,A.G.,Romanovsky,V.E.andNicolsky,D.J.(2008).Sensitivityofamodelprojectionofnear-surfacepermafrostdegradationtosoilcolumndepthandrepresentationofsoilorganicmatter.Journal of Geophysical Research113:F02011,doi:10.1029/2007JF000883.

Lean,J.L.andRind,D.H.(2008).Hownaturalandanthropogenicinfluencesalterglobalandregionalsurfacetemperatures:1889to2006.Geophysical Research Letters35:L18701.

Lenton,T.M.,Held,H.,Kriegler,E.,Hall,J.W.,Lucht,W.,Rahmstorf,S.,Schellnhuber,H.J.(2008).TippingelementsintheEarth’sclimatesystem.Proceedings of the National Academy of Sciences (USA)105:1786-1793.

LeQuéré,C.,Raupach,M.R.,Canadell,J.G.,Marland,G.,Bopp,L.,Ciais,P.,Conway,T.J.,Doney,S.C.,Feely,R.A.,Foster,P.,Friedlingstein,P.,Gurney,K.,Houghton,R.A.,House,J.I.,Huntingford,C.,Levy,P.E.,Lomas,M.R.,Majkut,J.,Metzl,N.,Ometto,J.P.,Peters,G.P.,Prentice,I.C.,Randerson,J.T.,Running,S.W.,Sarmiento,J.L.,Schuster,U.,Sitch,S.,Takahashi,T.,Viovy,N.,vanderWerf,G.R.andWoodward,F.I.(2009).Trendsinthesourcesandsinksofcarbondioxide.Nature Geoscience2:831–836.

LeQuéré,C.,Rodenbeck,C.,Buitenhuis,E.T.,Conway,T.J.,Langenfelds,R.,Gomez,A.,Labuschagne,C.,Ramonet,M.,Nakazawa,T.,Metzl,N.,Gillett,N.andHeimann,M.(2007).SaturationoftheSouthernOceanCO

2sinkduetorecent

climatechange.Science316:1735-1738.

Levermann,A.,Schewe,J.,Petoukhov,V.andHeld,H.(2009).Basicmechanismforabruptmonsoontransitions.Proceedings of the National Academy of Sciences (USA) 106:20572-20577.

Levitus,S.,Antonov,J.I.,Boyer,T.P.,Locarnini,R.A.,Garcia,H.EandMishonor,A.V.(2009).Globaloceanheatcontent1955-2008inlightofrecentlyrevealedinstrumentationproblems.Geophysical Research Letters36:L07608.

Lewis,S.L.,Brando,P.M.,Phillips,O.L.,vanderHeijden,G.M.F.andNepstad,D.(2011).The2010Amazondrought.Science331:554

Ling,S.D.,Johnson,C.R.,Frusher,S.andKing,C.K.(2008).Reproductivepotentialofamarineecosystemengineerattheedgeofanewlyexpandedrange.Global Change Biology 14:907-915.

Ling,S.D.,Johnson,C.R.,Ridgway,K.,Hobday,A.J.andHaddon,M.(2009).Climate-drivenrangeextensionofaseaurchin:inferringfuturetrendsbyanalysisofrecentpopulationdynamics.Global Change Biology15:719-731.

Lucas,C.,Hennessy,K.,Mills,G.andBathols,J.(2007).Bushfire Weather in Southeast Australia: Recent Trends and Projected Climate Change Impacts.ConsultancyReportpreparedfortheClimateInstituteofAustraliabytheBushfireCRCandCSIRO,80pp.

Luthcke,S.B.,Zwally,H.J.,Abdalati,W.,Rowlands,D.D.,Ray,R.D.,Nerem,R.S.,Lemoine,F.G.,McCarthy,J.JandChinn,D.S.(2006).RecentGreenlandicemasslossbydrainagesystemfromsatellitegravityobservations.Science314:1286-1289.

Maier,C.,Hegeman,J.,Weinbauer,M.G.andGattuso,J.-P.(2009).Calcificationofthecold-watercoralLophelia pertusa underambientandreducedpH.Biogeosciences6:1671–1680

Mann,M.E.,Zhang,Z.,Rutherford,S.,Bradley,R.S.,Hughes,M.K.,Shindell,D.Ammann,C.,Faluvegi,G.andNi,F.(2009).GlobalsignaturesanddynamicaloriginsoftheLittleIceAgeandtheMedievalClimateAnomaly.Science326:1256-1260.

McNeil,B.I.andMatear,R.J.(2008).SouthernOceanacidification:atippingpointat450-ppmatmosphericCO

2.

Proceedings National Academy of Sciences (USA)105:18860-18864.

Meinshausen,M.,Meinshausen,N.,Hare,W.,Raper,S.C.B.,Frieler,K.,Knutti,R.,Frame,D.J.andAllen,M.R.(2009).Greenhousegasemissiontargetsforlimitingglobalwarmingto2°C.Nature458:1158–1162.

References (continued)

66 ClimateCommission

Page 69: The Critical Decade: Full report

References (continued)

ScienceUpdate2011 67

Min,S.-K.,Zhang,X.,Zwiers,F.W.andHegerl,G.C.(2011).Humancontributiontomore-intenseprecipitationextremes.Nature470:378-381

Moy,A.D.,Bray,S.G.,Trull,T.W.andHoward,W.R.(2009).ReducedcalcificationinmodernSouthernOceanplanktonicforaminifera.Nature Geoscience2:276-280.

Narisma,G.T.andPitman,A.J.(2003).Theimpactof200-yearslandcoverchangeonAustraliannear-surfaceclimate.Journal of Hydrometeorology4:424-436.

NASAGISS.(2011).GISSSurfaceTemperatureAnalysis(GISTEMP).NASAGoddardInstituteforSpaceStudies.http://data.giss.nasa.gov/gistemp/

NationalResearchCouncil.(2010).America’s Climate Choices: Panel on Advancing the Science of Climate Change,Washington,D.C:TheNationalAcademiesPress.

Nepstad,D.C.,Verissimo,A.,Alencar,A.,Nobre,C.,Lima,E.,Lefebvre,P.,Schlesinger,P.,Potter,C.,Moutinho,P.,Mendoza,E.,Cochrane,M.andBrooks,V.(1999).Large-scaleimpoverishmentofAmazonianforestsbyloggingandfire.Nature398:505-508.

Nicholls,N.(2009).LocalandremotecausesofthesouthernAustralianautumn-winterrainfalldecline,1958-2007.Climate Dynamics32:doi10.1007/s00382-009-0527-6.

NTC(BureauofMeteorology).(2008).TheAustralianBaselineSeaLevelMonitoringProject,AnnualSeaLevelSummaryReport,July2007–June2008.

OxfordEconomics.(2009).Valuing the Effects of Great Barrier Reef Bleaching.Brisbane:GreatBarrierReefFoundation.

Parmesan,C.(2006).Ecologicalandevolutionaryresponsestorecentclimatechange.Annual Review of Ecology, Evolution, and Systematics37:637-669.

Perovich,D.(2011).ThedeclineofArcticsea-ice.In:Richardson,K.,Steffen,W.,Liverman,D.(eds),Climate Change: Global Risks, Challenges and Decisions.Cambridge:CambridgeUniversityPress,pp.167-169.

Petit,J.R.,Jouzel,J.,Raynaud,D.,Barkov,N.I.,Barnola,J.-M.,Basile,I.,Bender,M.,Chappellaz,J.,Davis,M.,Delaygue,G.,Delmotte,M.,Kotlyakov,V.M.,Legrand,M.,Lipenkov,V.Y.,Lorius,C.,Pépin,L.,Ritz,C.,Saltzman,E.andStievenard,M.(1999).Climateandatmospherichistoryofthepast420,000yearsfromtheVostokicecore,Antarctica.Nature399:429–436.

Petoukhov,V.andSemenov,V.A.(2010).AlinkbetweenreducedBarents-Karaseaiceandcoldwinterextremesovernortherncontinents.Journal of Geophysical Research115:D21111.

Pfeffer,W.T.,Harper,J.T.andNeel,S.(2008).Kinematicconstraintsonglaciercontributionsto21st-centurysea-levelrise.Science321:1340-1343.

Pickering,C.,Good,R.andGreen,K.(2004).Potential effects of global warming on the biota of the Australian Alps.Canberra:AustralianGreenhouseOffice,AustralianGovernment.

Pitt,N.(2008).Climate-driven changes in Tasmanian intertidal fauna:1950s to 2000s.Hobart:UniversityofTasmania,SchoolofZoology.

Poulter,B.,Frank,D.C.,Hodson,E.L.andZimmermann,N.E.(2011).ImpactsoflandcoverandclimatedataselectiononunderstandingterrestrialcarbondynamicsandtheCO

2

airbornefraction.Biosciences Discussions8:1617-1642.

Purkey,S.G.andJohnsonG.C.(2010).WarmingofglobalabyssalanddeepSouthernOceanwatersbetweenthe1990sand2000s:Contributionstoglobalheatandsealevelrisebudgets. Journal of Climate 23:6336-6351.

Rafter,T.andAbbs,D.(2009).CalculationofAustralianextremerainfallwithinGCMsimulationsusingExtremeValueAnalysis.CAWCR Research Letters3:44-49.

Rahmstorf,S.(2007).Asemi-empiricalapproachtoprojectingfuturesea-levelrise.Science315:368-370.

Rahmstorf,S.,Cazenave,A.,Church,J.A.,Hansen,J.E.,Keeling,R.F.,Parker,D.E.andSomerville,R.C.J.(2007)Recentclimaticobservationscomparedtoprojections.Science.316:709.

Rahmstorf,S.andSchellnhuber,H.J.(2006).Der Klimawandel.BeckVerlag,Munich.144pp.

Raupach,M.R.andCanadell,J.G.(2010).CarbonandtheAnthropocene.Current Opinion in Environmental Sustainability2:210-218

Raupach,M.R.Canadell,J.G.andLeQuéré,C.(2008).AnthropogenicandbiophysicalcontributionstoincreasingatmosphericCO

2growthrateandairbornefraction.

Biogeosciences5:1601-1613.

Page 70: The Critical Decade: Full report

Raupach,M.R.,Marland,G.,Ciais,P.,LeQuéré,C.,Canadell,J.G.,Klepper,G.andField,C.B.(2007).GlobalandregionaldriversofacceleratingCO

2emissions.

Proceedings of the National Academy of Sciences (USA)104:10288-10293.

Revelle,R.andSeuss,H.E.(1957).CarbondioxideexchangebetweenatmosphereandoceanandthequestionofanincreaseofatmosphericCO

2duringthepastdecades.Tellus

9:18-27.

Richardson,K.,Steffen,W.,Liverman,D.,Barker,T.,Jotzo,F.,Kammen,D.,Leemans,R.,Lenton,T.,Munasinghe,M.,Osman-Elasha,B.,Schellnhuber,J.,Stern,N.,Vogel,C.andWaever,O.(2011).Climate Change: Global Risks, Challenges and Decisions.Cambridge:CambridgeUniversityPress,502pp.

Rignot,E.,Bamber,J.,vandenBroeke,M.,Davis,C.,Li,Y.,vandeBerg,W.andvanMeijgaard,E.(2008a).RecentmasslossoftheAntarcticIceSheetfromdynamicthinning.Nature Geoscience1:doi:10.1038/ngeo102.

Rignot,E.,Box,J.E.,Burgess,E.andHanna,E.(2008b).MassbalanceoftheGreenlandicesheetfrom1958to2007.Geophysical Research Letters35:L20502.

Rignot,E.,Velicogna,I.,vandenBroeke,M.R.,Monaghan,A.andLenaerts,J.(2011).AccelerationofthecontributionoftheGreenlandandAntarcticicesheetstosealevelrise.Geophysical Research Letters38:L05503doi:10.1029/2011GL046583.

Root,T.L.,MacMynowski,D.P.,Mastrandrea,M.D.andSchneider,S.H.(2005).Humanmodifiedtemperaturesinducespecieschanges:jointattribution.Proceedings of the National Academy of Sciences (USA) 102:7465-7469.

RoyalSociety.(2010).Climate Change: A Summary of the Science,IssuedSeptember2010,http://royalsociety.org/climate-change-summary-of-science/

Schuur,E.A.G.,Vogel,J.G.,Crummer,K.G.,Lee,H.,Sickman,J.O.andOsterkamp,TE.(2009).Theeffectofpermafrostthawonoldcarbonreleaseandnetcarbonexchangefromtundra.Nature459:556–559.

Smith,J.B.,Schneider,S.H.,Oppenheimer,M.,Yohe,G.W.,Hare,W.,Mastrandrea,M.D.,Patwardhan,A.,Burton,I.,Corfee-Morlot,J.,Magadza,C.H.D.,Fussel,H.-M.,Pittock,A.B.,Rahman,A.,Suarez,A.andvanYpersele,J.-P.(2009).AssessingdangerousclimatechangethroughanupdateoftheIntergovernmentalPanelonClimateChange(IPCC)“reasonsforconcern”.Proceedings of the National Academy of Sciences (USA) 106:doi/10.1073/pnas.0812355106

Soden,B.J,Jackson,D.L.,Ramaswamy,V.,Schwarzkopf,M.D.andHuang,X.(2005).Theradiativesignatureofuppertroposphericmoistening.Science310:841-844.

Solomon,S.,Plattner,G.-K.,Knutti,R.andFriedlingstein,P.(2009).Irreversibleclimatechangeduetocarbondioxideemissions.Proceedings of the National Academy of Sciences (USA)106:1704-1709.

Steffen,W.,Burbidge,A.,Hughes,L.,Kitching,R.,Lindenmayer,D.,Musgrave,W.,StaffordSmith,M.andWerner,P.(2009).Australia’s Biodiversity and Climate Change.CSIROPublishing,236pp.

Stroeve,J.,Holland,M.M.,Meier,W.,Scambos,T.andSerreze,M.(2007).Arcticseaicedecline:Fasterthanforecast. Geophysical Research Letters34:L09501.

Tans,P.andConway,T.(2010).Trendsinatmosphericcarbondioxide.NOAA/ESRLwww.esrl.noaa.gov/gmd/ccgg/trends

Tarnocai,C.,Canadell,J.G.,Schuur,E.A.G.,Kuhry,P.,Mazhitova,G.andZimov,S.(2009).Soilorganiccarbonpoolsinthenortherncircumpolarpermafrostregion.Global Biogeochemical Cycles23:GB2023.

TheCopenhagenDiagnosis.(2009).Updating the World on the Latest Climate Science.Allison,I.,Bindoff,N.L.,Bindschadler,R.A.,Cox,P.M.,deNoblet,N.,England,M.H.,Francis,J.E.,Gruber,N.,Haywood,A.M.,Karoly,D.J.,Kaser,G.,LeQuéré,C.,Lenton,T.M.,Mann,M.E.,McNeil,B.I.,Pitman,A.J.,Rahmstorf,S.,Rignot,E.,Schellnhuber,H.J.,Schneider,S.H.,Sherwood,S.C.,Somerville,R.C.J.,Steffen,K.,Steig,E.J.,Visbeck,M.,Weaver,A.J.TheUniversityofNewSouthWalesClimateChangeResearchCentre(CCRC),Sydney,Australia,60pp.

Thompson,I.,Mackey,B.,McNulty,S.andMosseler,A.(2009).ForestResilience,Biodiversity,andClimateChange.Asynthesisofthebiodiversity/resilience/stabilityrelationshipinforestecosystems.SecretariatoftheConventiononBiologicalDiversity,Montreal.TechnicalSeriesno.43,67pp.

Thornley,J.H.M.andCannell,M.G.R.(2000).Managingforestsforwoodyieldandcarbonstorage:atheoreticalstudy.Tree Physiology20:477–484.

Thresher,R.R.,Koslow,J.A.,Morrison,A.K.andSmith,D.C.(2007).Depth-mediatedreversaloftheeffectsofclimatechangeonlong-termgrowthratesofexploitedmarinefish.Proceedings of the National Academy of Sciences (USA) 104:7461-7465.

References (continued)

68 ClimateCommission

Page 71: The Critical Decade: Full report

References (continued)

ScienceUpdate2011 69

Timbal,B.,Arblaster,J.,Braganza,K.,Fernandez,E.,Hendon,H.,Murphy,B.,Raupach,M.,Rakich,C.,Smith,I.,Whan,K.andWheeler,M.(2010).Understandingtheanthropogenicnatureoftheobservedrainfalldeclineacrosssouth-easternAustralia,CAWCRTechnicalReport26,180pp,ISSN:1835-9884,availableonlineat:http://www.cawcr.gov.au/publications/technicalreports.php

Trenberth,K.E.,Fasullo,J.andSmith,L.(2005).Trendsandvariabilityincolumnintegratedatmosphericwatervapor.Climate Dynamics24:741-758.

Turley,C.,Blackford,J.,Widdicombe,S.,Lowe,D.,Nightingale,P.D.andRees,A.P.(2006).ReviewingtheimpactofincreasedatmosphericCO

2onoceanicpHandthemarine

ecosystem.In:Schellnhuber,HJ.,Cramer,W.,Nakicenovic,N.,Wigley,T.andYohe,G.(eds)Avoiding Dangerous Climate Change,CambridgeUniversityPress,8:65-70.

Turley,C.M.andFindlay,H.S.(2009).Oceanacidificationasanindicatorofglobalchange.In:Letcher,T.(ed).Climate Change: Observed Impacts on Planet Earth,n.p.:Elsevier,pp.367–390.

Turley,C.M.,Roberts,J.M.andGuinotte,J.M.(2007).Coralsindeep-water:Willtheunseenhandofoceanacidificationdestroycold-waterecosystems?Coral Reefs 26:445-448.

Umina,P.A.,Weeks,A.R.,Kearney,M.R.,McKechnie,S.W.andHoffmann,A.A.(2005).ArapidshiftinaclassicclinalpatterninDrosophilareflectingclimatechange.Science308:691-693.

Velicogna,I.(2009).IncreasingratesoficemasslossfromtheGreenlandandAntarcticicesheetsrevealedbyGRACE.Geophysical Research Letters34:L19503.

Velicogna,I.andWahr,J.(2006).AccelerationofGreenlandicemasslossinspring2004.Nature443:329-331.

Vermeer,M.andRahmstorf,S.(2009).Globalsealevellinkedtoglobaltemperature.Proceedings of the National Academy of Sciences (USA)106:21527–21532.

Veron,J.E.N.(2008).Massextinctionsandoceanacidification:biologicalconstraintsongeologicaldilemmas.Coral Reefs27:459-472.

Watterson,I.G.(2010).RelationshipsbetweensoutheasternAustralianrainfallandseasurfacetemperaturesexaminedusingaclimatemodel.Journal of Geophysical Research 115:D10108,doi:10.1029/2009JD012120.

WBGU(GermanAdvisoryCouncilonGlobalChange).(2009).Solving the Climate Dilemma: The Budget Approach.SpecialReport.Berlin:WBGUSecretariat.

Weart,S.R.(2003).The Discovery of Global Warming.Cambridge,MA:HarvardUniversityPress.

Weber,S.L.andDrijfhout,S.S.(2011).IstheTHCbi-stableatpresent?In:Richardson,K.,Steffen,W.,Liverman,D.(eds),Climate Change: Global Risks, Challenges and Decisions.Cambridge:CambridgeUniversityPress,pp.173-174.

Welbergen,J.A.,Klose,S.M.,Markus,N.andEbyP.(2007).ClimatechangeandtheeffectsoftemperatureextremesonAustralianflying-foxes.Proceedings of the Royal Society B – Biological Sciences275:419-425.

Wilkinson,C.(2008).Status of Coral Reefs of the World: 2008.Townsville,Australia:GlobalCoralReefMonitoringNetworkandReefandRainforestResearchCentre.

Williams,R.J.,Bradstock,R.A.,Cary,G.J.,Enright,N.J.,Gill,A.M.,Liedloff,A.,Lucas,C.,Whelan,R.J.,Andersen,A.N.,Bowman,D.M.J.S.,Clarke,P.J.,Cook,G.D.,Hennessy,K.andYork,A.(2009).The impact of climate change on fire regimes and biodiversity in Australia – a preliminary assessment.ReporttoDepartmentofClimateChangeandDepartmentofEnvironment,Water,HeritageandtheArts,Canberra.

WMO(WorldMeteorologicalOrganization).(2011).http://www.wmo.int/pages/mediacentre/news/index _ en.html#warmest

Wouters,B.,Chambers,D.andSchrama,E.J.O.(2008).GRACEobservessmall-scalemasslossinGreenland.Geophysical Research Letters35:L20501.

Wu,X.,Heflin,M.B.,Schotman,H.,Vermeersen,B.L.A.,Dong,D.,Gross,R.S.,Ivins,E.R.,Moore,A.W.andOwen,S.E.(2010).Simultaneousestimationofglobalpresent-daywatertransportandglacialisostaticadjustment.Nature Geoscience3:642-646.

Yin,J.H.(2005).Aconsistentpolewardshiftofthestormtracksinsimulationsof21stcenturyclimate.Geophysical Research Letters32:L18701,doi10.1029/2005GL023684.

Zickfeld,K.,Knopf,B.,Petoukhov,V.andSchellnhuber,H.J.(2005).IstheIndiansummermonsoonstableagainstglobalchange?Geophysical Research Letters 32:doi:10.1029/2005GL022771.

Page 72: The Critical Decade: Full report

The Climate Commission usesNational CarbonOffset Standardcertified Tudor RP Carbon Neutral paperAn Australian Government Initiative